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Iñigo Martínez-Solano e, Manon C. de Visser a,b, Jan W. Arntzen a,b,1, Ben Wielstra a,b,1 

a Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands 
b Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands 
c LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People’s Republic of China 
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A B S T R A C T   

European marbled newts come in two species that have abutting ranges. The northern species, Triturus mar-
moratus, is found in France and the northern part of the Iberian Peninsula, whereas the southern species, 
T. pygmaeus, is found in the southwestern corner of the Iberian Peninsula. We study the intraspecific genetic 
differentiation of the group because morphological data show geographical variation and because the Iberian 
Peninsula is a recognized center of speciation and intraspecific genetic diversity for all kinds of organisms, 
amphibians included. We use target enrichment by sequence capture to generate c. 7 k nuclear DNA markers. We 
observe limited genetic exchange between the species, which confirms their distinctiveness. Both species show 
substantial genetic structuring that is only in part mirrored by morphological variation. Genetically differenti-
ated groups are found in the south (T. marmoratus) and west (T. pygmaeus) of the species ranges. Our observations 
highlight the position of the Iberian Peninsula as a hotspot for genetic differentiation.   

1. Introduction 

A fundamental goal of evolutionary biogeography is to determine 
how long-term environmental processes influence the distribution and 
diversification patterns of taxa, especially within groups of closely 
related species composed of multiple evolutionary lineages (Avise, 
2000). The Mediterranean region has been the subject of intensive 
phylogeographic surveys over the past decades, presumably triggered by 
the high amount of biodiversity and endemism that it hosts (Cuttelod 
et al., 2009; Médail and Quezél, 1999; Myers et al., 2000). The species 
richness of the Mediterranean Basin is thought to be the product of its 
ecological heterogeneity and complex geological history. As a conse-
quence, the entire area is recognized as one of the world’s major 
biodiversity hotspots (Médail and Myers, 2004). 

In shallower times, the Mediterranean region also functioned as a 
glacial refugium, which allowed populations of temperate taxa to sur-
vive locally during the cold spells of the Quaternary Ice Age, when 

environmental conditions further north became intolerable (Hewitt, 
2011a). Populations in glacial refugia are typically characterized by 
higher genetic variation (Hewitt, 2000), both due to a more stable de-
mographic history and the cyclical dynamics of lineage allopatry and 
fusion. Furthermore, glacial refugia appear more complex than initially 
thought, and harbored multiple, fragmented areas of suitable habitat: a 
concept called “refugia-within-refugia” (Abellán and Svenning, 2014; 
Gómez and Lunt, 2007). Accordingly, phylogeographical studies of 
Mediterranean taxa often reveal distinct evolutionary lineages. At con-
tact zones these lineages may show wide zones of genetic intergradation 
(suggesting genetic isolation is limited) to narrow hybrid zones with 
little to no introgression (suggesting distinct species are involved) 
(Hewitt, 2011b). 

Amphibians have played an important role in exposing the patterns 
and processes underlying Mediterranean biodiversity (Ehl et al., 2019; 
Oosterbroek and Arntzen, 1992). As terrestrial ectotherms, amphibians 
are particularly sensitive to past and present climatic fluctuations 
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(Zeisset and Beebee, 2008) as well as topographic barriers to dispersal. 
Mediterranean amphibians regularly represent groups of closely related 
species that are themselves characterized by high intraspecific genetic 
variability, with evolutionary lineages of varying ages (Ambu et al., 
2023; Dufresnes et al., 2020a; Fijarczyk et al., 2011; Martinez-Solano 
et al., 2006; Pabijan et al., 2015; Recuero et al., 2012; Vences et al., 
2013; Wielstra et al., 2013). Typically, relatively young evolutionary 
lineages show wide zones of genetic admixture between them, while 
introgression between relatively old evolutionary lineages is restricted 
(Arntzen et al., 2014; Dufresnes et al., 2023; Kalaentzis et al., 2023; 
Wielstra et al., 2018, 2017). Many of these evolutionary lineages have 
recently been recognized or confirmed as distinct (cryptic) species (Díaz- 
Rodríguez et al., 2017; Dufresnes et al., 2020b, 2019; Sequeira et al., 
2020; van Riemsdijk et al., 2022; Wielstra and Arntzen, 2016). 

Despite recent advances to identify shared biogeographic drivers at 
the community level (Ehl et al., 2019), there is still little consensus as to 
what processes contributed to the diversification of Iberian herpeto-
fauna. Beside the effect of the Pleistocene glaciations (which were pre-
sumably more pronounced in Iberia compared to other southern 
European refugia; Macaluso et al., 2023), the Iberian Peninsula was 
affected by suites of geological events since the Middle-Miocene, 
including the formation of saline megalakes (the Betic salinity crisis; 
Lonergan and White, 1997), the accretion of the Betic mountains in 
southwestern Spain (Lonergan and White, 1997), as well as several 
marine transgression promoting insularity in southern Iberia (Achalhi 
et al., 2016; Martin, 2014). These events presumably promoted in situ 

diversification in several Iberian species, while also mediating ex-
changes with northwestern Africa through land-bridges up until the Late 
Pliocene (Booth-Rea et al., 2018). 

Until recently, mitochondrial DNA (mtDNA) has been the marker of 
choice in phylogeographic studies, allowing researchers to build testable 
hypotheses on the evolutionary history of species (Beheregaray, 2008). 
However, studies based entirely on mtDNA sequence data, or on only a 
few nuclear genetic markers, may lead to an underestimation of the true 
genetic diversity (e.g. Irwin et al., 2009; Milá et al., 2010), give 
misleading results due to introgression (e.g. Ballard and Whitlock, 
2004), or lead to erroneous conclusions due to selection by maternally 
inherited symbionts (Hurst and Jiggins, 2005), potentially creating 
taxonomic chaos (Dufresnes and Jablonski, 2022). To avoid such limi-
tations, recent phylogeographic surveys employ genome-wide, multi- 
locus datasets (Dufresnes et al., 2019, 2017; Gernandt et al., 2018; 
Huang et al., 2019; van Riemsdijk et al., 2022). 

Generating genome-wide datasets can be problematic, especially 
when working with organisms that are characterized by massive ge-
nomes such as salamanders (Newman and Austin, 2016; Sun et al., 
2012). Fortunately, whole genome data are usually not necessary, 
because sufficient information can be extracted from subsets of inde-
pendent genetic markers (Jones and Good, 2016). Various genome 
reduction techniques are currently available to avoid the high-costs and 
computational workload of whole genome datasets (Davey et al., 2011). 
A particularly efficient approach is target enrichment by sequence 
capture, which allows for DNA regions of interest to be selected and 

Fig. 1. Map showing the distribution and study localities of marbled newts in western Europe. The green and brown shades represent the ranges of Triturus mar-
moratus and T. pygmaeus (after Arntzen et al., 2007). Round symbols represent studied localities and are colored according to the genetic subgroup they belong, with 
northern (dark blue) and southern (light blue) T. marmoratus and western (yellow) and eastern (orange) T. pygmaeus. Localities where interspecific introgression 
was suggested in the Admixture analysis are marked with a white spot. Numbers correspond to individuals listed in Supplementary Table 1. 
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sequenced by hybridization to specific probes (Andermann et al., 2020; 
Hutter et al., 2022; Jones and Good, 2016; McCartney-Melstad et al., 
2016). 

The marbled newt, Triturus marmoratus (Latreille, 1800), and the 
pygmy marbled newt, T. pygmaeus (Wolterstorff, 1905), are two closely 
related salamander species distributed in southwestern France and the 
Iberian Peninsula (Fig. 1). These embody the discovery of distinct 
evolutionary lineages that meet at a narrow hybrid zone and were 
eventually recognized as species, which themselves turn out to be sub-
jected to extensive intraspecific genetic structuring. Early research on 
marbled newts relied on morphology, osteology, chromosome banding 
and allozymes (Busack et al., 1988; Dorda and Esteban, 1986; García- 
París et al., 1993), whereas later studies incorporated mtDNA sequence 
data (García-París et al., 2001). While initially recognized as subspecies, 
given the significant morphological and phylogenetic divergence their 
species status was advocated by García-París et al. (2001), which is the 
current concensus (Arntzen, 2023; Frost et al., 2006). The sampling 
scheme of 21st century studies that employed (several up to several 
dozens of) nuclear markers was geographically restricted, particularly to 
focussing on the parapatric range of the two taxa, revealing the local and 
restricted occurrence of hybridization (Arntzen, 2018; Arntzen et al., 
2020; Espregueira Themudo and Arntzen, 2007a; López-Delgado et al., 
2020). While morphological information suggests the presence of 
distinct intraspecifc structuring (Arntzen, 2023), intraspecific phylo-
geography has so far only been studied from the perspective of a single 
marker, namely mitochondrial DNA, and suggests shallow differentia-
tion without a strong geographical component (Wielstra et al., 2013). 

A range-wide, genome-wide study of marbled newts is required to 
determine the geographical extent of genetic admixture between the two 
marbled newt species, as well as the geographical genetic structuring 
within these species. We use target enrichment by sequence capture to 
collect genome-wide data for individuals sampled across the marbled 
newt range. This allows us to determine the extent of introgression be-
tween the marbled newt species and to delineate intraspecific genetic 
structure. We explain our findings in the context of palaeogeological and 
paleoclimatic history of the Iberian Peninsula, taking into account 
comparative phylogeographical patterns in co-distributed Iberian 
amphibians. 

2. Materials & methods 

2.1. Sampling scheme and DNA extraction 

We studied 59 marbled newt individuals, of which 28 were 
T. marmoratus and 31 were T. pygmaeus (Supplementary Table 1). 
Samples spanned the entire range of both species (Fig. 1). We included 
individuals from close to the species contact zone to determine the depth 
of introgressive hybridization (Arntzen et al., 2020, 2014; López-Del-
gado et al., 2020). Whole genomic DNA was extracted with the Promega 
Wizard™ Genomic DNA Purification Kit (Promega, Madison, WI, USA), 
according to the salt-based extraction protocol of Sambrook and Russell 
(2001). 

2.2. Laboratory methods and data preparation 

The NEBNext Ultra™ II FS DNA Library Prep Kit for Illumina (New 
England Biolabs, Ipswich, MA, USA) was used for library preparations, 
by following the manufacturer’s protocol with all volumes divided by 
four. Additionally, the fragmentation time was optimized for Triturus 
samples (6:30 min). The isolated DNA was first sheared enzymatically, 
NEB adapters were then ligated and cleaved with USER enzyme (New 
England Biolabs, Ipswich, MA, USA). Next, size selection was performed, 
using NucleoMag™ magnetic beads (Macherey-Nagel, Düren, Germany) 
targeting an insert size of 300 bp. Unique combinations of i5 and i7 
index primers (Illumina Inc., San Diego, CA, USA) were assigned to each 
sample via PCR amplification. Finally, the products were purified with 

magnetic beads, and the concentration and fragment size of each sample 
was assessed with the Agilent 2200 TapeStation System (Agilent Tech-
nologies, Santa Clara, CA, USA). 

Libraries were equimolarly pooled into batches of 16 samples, with a 
total mass of 4000 ng (250 ng per sample). For target enrichment the 
MyBaits-II kit (Arbor Bioscience, Ann Arbor, MI, USA; Ref# 170210-32) 
was used, targeting 7102 exon sequences for a total target length of c. 
2.3 million bp (for details see Wielstra et al., 2019). The pooled libraries 
were first incubated with Triturus-derived C0t-1 repetitive sequence 
blockers for 30 min, this replaces Blocks C and O from the kit (see 
Wielstra et al., 2019). Then the libraries were hybridized for 30 h at 
65 ◦C with the Triturus-based RNA probes designed by Wielstra et al. 
(2019). Following hybridization, the biotinylated RNA probes bound to 
the target DNA were captured with streptavidin coated magnetic beads, 
then washed to remove off-target DNA. The bead-bound libraries were 
then amplified in 14 cycles of PCR and then purified with NucleoMag™ 
magnetic beads. The Agilent 2200 TapeStation system was used to 
measure the size distribution and concentration of the pools. For each 
pool 16 Gb of 150 bp paired-end sequencing was performed on the 
Illumina NovaSeq 6000 platform (Illumina Inc., San Diego, CA, USA) by 
BaseClear (Leiden, the Netherlands). 

2.3. Processing of sequence-capture data 

A data-analysis pipeline was implemented to analyze the acquired 
sequences for each target region. First the raw reads were trimmed to 
remove adapters and reads of poor quality using Skewer (Jiang et al., 
2014). We checked the quality of the reads before and after trimming 
using FastQC (Andrews, 2010). Next the reads were mapped to a 
reference (the Triturus reciprocal best blast hit reference assembly from 
Wielstra et al., 2019) with BWA_MEM (Li, 2013), and read groups were 
added and duplicates were removed with Picard (https://broadinstitute. 
github.io/picard/). Subsequently, Haplotype Caller and Genotype 
GVCFs were used in GATK (McKenna et al., 2010) to call variants, 
produce genomic variant call format (gVCF) files per individual, create a 
multi-sample VCF file by combining the individual files, and finalize this 
merged file by performing joint genotyping. A Hardy Weinberg Equi-
librium (HWE) filter for heterozygote excess was applied to exclude 
putative paralogous loci from the analysis. BCFtools (Danecek et al., 
2021; Li, 2011) was used to estimate the heterozygote excess p-values 
per sample, and sites with a score below 0.05 were removed from the 
dataset. Finally, additional filtering was performed on the VCF file as 
explained below to remove low-quality data. 

The pipeline was run on two datasets. The first dataset contained 59 
marbled and pygmy newt samples and was used for the Admixture, 
principal component analysis (PCA) and NewHybrids (see below). The 
second dataset was used for the phylogenetic analysis and included 52 
marbled and pygmy marbled newt samples, because seven putative 
hybrids were removed (see Results), while three northern crested newt 
samples (T. cristatus (Laurenti,1768)) taken from Wielstra et al. (2019) 
were added as an outgroup, and this dataset was used in the RAxML and 
BEAST analyses (see below). 

2.4. Admixture analysis 

To assess the genetic differentiation within the marbled newt species 
group, individuals of the first dataset (without outgroup) were clustered 
according to their SNP genotypes using the software Admixture (Alex-
ander et al., 2009). Input consisted of a VCF file containing one random 
SNP per marker and sites with no missing data, resulting in 5,951 SNPs. 
For the number of subpopulations (K), values from 1 to 20 were tested 
and the analysis was run for 25 replicates. Replicates for each K value 
were combined with CLUMPAK (Kopelman et al., 2015). Afterwards, the 
optimal K value was determined by Admixture’s cross validation error 
rate. The results were visualized using the R packages reshape2 (Wick-
ham, 2007) and ggplot2 (Wickham, 2016). 
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2.5. Principal component analysis 

A principal component analysis was carried out using the sequence 
alignment VCF file from the first dataset (without outgroup) to estimate 
the genetic population structure of the marbled newt species group. The 
snpgdsPCA function of the SNPRelate R package (Zheng et al., 2012) 
was used under the default parameters to conduct PCA. We used SNPs 
with a minimum quality score of 20 and no more than 50 % missing 
data, while additional pruning was performed by the R script to remove 
monomorphic sites, after which 105,753 SNPs were kept. 

2.6. NewHybrids analysis 

NewHybrids (Anderson and Thompson, 2002) is a Bayesian model- 
based clustering method that computes the posterior probability for 
each individual to belong to predefined, distinct parental and hybrid 
classes over a genealogical depth set by the user. For seven presumed 
hybrid individuals identified in the Admixture analysis (see Results, 
marked with a white spot in Fig. 1), we investigated the depth of hy-
bridization with the program NewHybrids. The one SNP per target VCF 
file generated for Admixture was converted into NewHybrids format 
using PGD Spider v.2.1.1.5 (Lischer and Excoffier, 2012). All non- 
hybrids were marked as either T. marmoratus or T. pygmaeus by 
invoking the z-option. Under the ’two generations’ boundary condition, 
individuals are allocated to up to six classes (two parental, F1 and F2 
hybrids, and backcross hybrids in either direction). Under the ’three 
generations’ setting, another nine discernable hybrid categories are 
considered. The program was run for 10,000 iterations under default 
conditions. Because of capacity limitations, the dataset was reduced to 
the 345 most informative loci (the largest number with which we could 
run NewHybrids). The criterion used was Cohen’s kappa (with 1 – kappa 
acting as a measure of disconcordance, i.e. diagnosticity). 

2.7. Concatenated maximum likelihood phylogeny 

The second dataset (excluding admixed marbled newts and including 
the crested newt outgroup) was subjected to a concatenated maximum 
likelihood analysis with RAxML (Stamatakis, 2014). We used SNPs with 
a minimum quality score of 20 and no more than 50 % missing data. The 
filtered VCF file from the data-analysis pipeline was converted into 
PHYLIP format using PGD Spider v.2.1.1.5 (Lischer and Excoffier, 
2012). Next, the ‘ascbias.py’ Python script (https://github.com/btmart 
in721/raxml_ascbias) was used to exclude invariant sites from the 
analysis. The phylogenetic tree was built based on an alignment of 
122,989 SNPs from 6,884 target loci. The GTR + GAMMA substitution 
model was used for the analysis, with 100 bootstrap replicates for 
branch-support estimation, followed by a correction for ascertainment 
bias (Lewis’ ascertainment correction; Lewis, 2001). Finally, the 
resulting phylogenetic tree was visualized with FigTree 1.4.3 (https:// 
www.tree.bio.ed.ac.uk/software/figtree). 

2.8. Molecular dating 

In order to obtain a dated phylogeny, we conducted a concatenated 
Bayesian analysis in BEAST 2.7 (Bouckaert et al., 2014). This was based 
on SNPs with a minimum quality score of 20 and no more than 50 % 
missing data. We initially converted the filtered VCF file into NEXUS 
format with Mesquite 3.81 (Maddison and Maddison, 2023) and next to 
XML in BEAUti 2.7 (part of the BEAST package). A fossil dated at 24 Mya 
was used as a minimum estimate for the most recent common ancestor of 
the genus Triturus (Steinfartz et al., 2007) and given a lognormally 
distributed prior with an offset of 24 and a mean and standard deviation 
of 1.0. We applied the GTR + I + G model of sequence evolution, the 
strict clock model and the Yule speciation model. We conducted a 25 
million generation run with a sampling frequency of 0.0001 on the 
Cipres Science Gateway (Miller et al., 2010). We confirmed that sample 

sizes for parameters were > 100 (and in most cases ≫ 200) in TRACER 
v.1.7 (Rambaut et al., 2018), discarded the first half of the sampled trees 
as burn-in and calculated an annotated Maximum Clade Credibility tree 
in TreeAnnotator 2.7 (part of the BEAST package). 

2.9. mtDNA analysis 

We sequenced 658 bp of an mtDNA gene (ND4) with primer pair 
KARF4-KAR1 following Wielstra et al. (2013). Sanger sequencing was 
outsourced to BaseClear B.V. and sequences were edited and trimmed in 
Geneious Prime 2022.1.1. We conducted calibrated Bayesian inference 
in BEAST v.2.1, using the same settings as above, with the mtDNA 
partitioned by codon position. 

3. Results 

A mean of 10,958,752 read pairs per sample was generated, with a 
standard deviation of 3,383,913. An average of 30.03 % raw reads (s.d. 
11.98 %) were mapped. The percentage of duplicate reads, which were 
filtered out, accounted for an average of 44.20 % of mapped reads (s.d. 
11.28 %). 

In the Admixture analysis, K = 4 yields the best fit for the entire 
marbled newt dataset (Fig. 2). These four groups are geographically 
coherent, with two T. marmoratus groups in the north versus the south of 
the species’ range, and two T. pygmaeus groups in the west versus the 
east of the species’ range (Fig. 1). An Admixture analysis for K = 2 re-
veals limited genetic admixture between the two species based on in-
dividual ancestry fractions (Qm). Three T. marmoratus individuals were 
classified as admixed (0.92 > Qm > 0.93), as well as four T. pygmaeus 
individuals (0.02 < Qm < 0.17) (Fig. 2). 

In the principal component analysis, the first axis (PC1) accounts for 
18.8 % of the total variance and separates T. marmoratus from 
T. pygmaeus (Fig. 3). The second principal component (PC2) accounts for 
3.27 % of the total variance and splits each species into two genetic 
groups. The results are overall similar to those of the Admixture analysis, 
with a northern and a southern group in T. marmoratus and a western 
and an eastern group in T. pygmaeus, but note that no intermediates 
between T. marmoratus – T. pygmaeus are found on PC1, and a single 
intermediate is found between the T. marmoratus subgroups on PC2 
(individual P1093). 

Under the ’two generations’ constraint in NewHybrids, six out of 
seven of the presumed hybrids are allocated to one or the other parental 
species, whereas individual P7803 is classified as a backcross hybrid in 
direction of T. pygmaeus, all with probabilities > 0.99 (details are in 
Supplementary Table 2). Conversely, under the ’three generations’ 
boundary condition, all individuals are classified as third generation 
hybrids, with the exception of individuals P7814 and P7824, which 
remain classified as T. pygmaeus. 

The concatenated phylogenetic analysis with RAxML, in which the 
seven genetically admixed individuals were removed, resolves both 
marbled newt species as monophyletic with high bootstrap support 
(Fig. 4). Each species is divided into two major clades with high branch 
support, in general agreement with the Admixture and PCA analyses. 
The BEAST analysis dates the split between T. marmoratus and 
T. pygmaeus to the late Miocene at c. 5 Ma and the basal splits in both 
T. marmoratus and T. pygmaeus to the early Pleistocene at c. 2 Ma 
(Fig. 5a). Note that the position of individual 1093, identified as inter-
mediary between the two groups within T. marmoratus, deviates be-
tween the RAxML and the BEAST analysis. 

We obtained mtDNA sequences for all but two individuals. We do not 
observe interspecific introgression of mtDNA, i.e. we do not see in-
dividuals that are predominantly T. marmoratus based on nuclear DNA 
with T. pygmaeus mtDNA or vice versa. All mtDNA haplotypes present in 
marbled newts identified as genetically admixed based on nuclear DNA 
are also present in individuals that are identified as genetically pure. The 
two species are represented by distinct mtDNA clades for which the split 
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is again dated to c. 5 Ma (Fig. 5b). The intraspecific groups determined 
by the nuclear DNA analysis are not recovered in the mtDNA BEAST 
analysis. 

4. Discussion 

4.1. Near-absence of gene flow between marbled newt species 

The separation of T. marmoratus and T. pygmaeus in all the analyses 
supports their taxonomic distinction, and the little admixture between 
them is consistent with the species level (Espregueira Themudo and 
Arntzen, 2007b; Wielstra et al., 2019). Admixture is geographically 
restricted: the seven admixed individuals all originate from near the 
parapatric range border of the two species (Figures 1 & 2), where 
introgressive hybridization has been previously documented (Arntzen, 
2018; Arntzen et al., 2020). All but two of the admixed individuals are 
identified as deeper generation backcrosses. One of the admixed in-
dividuals (individual P2888) represents a T. marmoratus enclave that is 
enveloped by T. pygmaeus (Espregueira Themudo and Arntzen, 2007a), 
resulting from a near-complete species replacement (Arntzen et al., 
2020; López-Delgado et al., 2020). This population managing to main-
tain its genetic integrity is an indication that introgression is selected 
against, in spite of the apparent opportunity for hybridization and gene 
flow. 

Molecular dating based on either nuclear DNA or mtDNA suggests a 
split between the two marbled newt species around 5 Ma (Fig. 5). This 
dating roughly coincides with the diversification of other Iberian am-
phibians, including the Pelodytes genus (Díaz-Rodríguez et al., 2017; 
Dufresnes et al., 2020c), the Rana temporaria complex (Dufresnes et al., 
2020b), or the emergence of Baleaphryne clade of Alytes (Ambu et al., 
2023). However, it is, with respect to the distributions of these species 
groups, hard to pinpoint a single paleographic event responsible for 
their simultaneous divergences. Here, we see two plausible scenarios for 
the split of T. marmoratus and T. pygmaeus. On the one hand, it could be 

the consequence of the Atlantic-Mediterranean seaways that momen-
tarily re-opened the Betic Straits in the Betic Cordillera by the end of the 
Miocene (Martin, 2014), subsequently isolating Southern Iberia from 
the rest of the peninsula. On the other hand, the ancestor of both our 
Triturus species may have historically colonized North Africa during pre- 
Messinian times, e.g., by Late Miocene land-bridges across the Alboran 
volcanic-arc (which opened as early as 7Mya; Booth-Rea et al., 2018). 
The ancestor would have diverged following the refilling of the Medi-
terranean Sea as the Strait of Gibraltar re-opened, allowing the neo- 
formed T. pygmaeus to make it back to Iberia (and subsequently dis-
appearing from North Africa). Post-Messinian faunal dispersal events 
are also known from another newt, Pleurodeles waltl (Gutiérrez-Rodrí-
guez et al., 2017a). In particular, this scenario was proposed to explain 
the unexpected phylogenetic relationship between the Betic and 
Moroccan endemic midwife toad species Alytes dickhilleni and A. maurus 
(Ambu et al., 2023). Whatever the initial drivers of differentiation, the 
subsequent divergence of T. pygmaeus is likely to have been promoted by 
the isolation of Southern Iberia throughout much of the Pliocene and 
Pleistocene, as environmental connections with west and east Iberia 
became modulated by climatic fluctuations. Consequently, the region is 
inhabited by many regional endemic amphibians (e.g., Pelodytes ibericus, 
Alytes dickhilleni; Discoglossus galganoi jeanneae, Salamandra salamandra 
longirostris). 

4.2. Genetic structure within T. marmoratus 

Our analyses reveal two subgroups within T. marmoratus with a split 
dated around 2 Ma, during the Quaternary Ice Age, and show that most 
genetic diversity of the species is in the Iberian Peninsula. The northern 
subgroup covers a wide area, ranging from the west of France to the 
north of Portugal. The southern subgroup has a narrow distribution 
across north and central Portugal and adjacent Spain. Evidence of ge-
netic admixture between the subgroups is found in the north of Portugal 
(individual P1093) and north of the Central System (Figs. 2 and 3). On 

Fig. 2. Individual genetic admixture proportions bar plots for marbled newts estimated with Admixture based on 5,951 nuclear DNA markers (a single SNP per 
marker). The best-fitting model had a cross-validation error of 0.1 and four ancestry components (K = 4, bottom panel). The model with two ancestry components (K 
= 2, top panel) was created to estimate admixture between the species with Triturus marmoratus in blue and T. pygmaeus in orange, with seven admixed individuals 
shown by an asterisk. Sample numbers correspond to Supplementary Table 1. 
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balance, these observations suggest that the genetic transition of the 
subgroups is likely to be fairly wide. 

Divergence of populations from central and northern Iberia may be 
the consequence of major rivers flowing in a West-East orientation 
acting as a barrier to dispersal, initiating incipient speciation. Similar 
patterns of differentiation are observed in other amphibians, such as 
Chioglossa lusitanica (Sequeira et al., 2022), Lissotriton boscai (Martinez- 
Solano et al., 2006), Alytes obstetricans (Dufresnes and Hernandez, 2021; 
Gonçalves et al., 2015; Maia-Carvalho et al., 2018), and Discoglossus 
galganoi (Martinez-Solano, 2004). Remarkably, the phylogeographic 
transition between the two T. marmoratus lineages coincides with the 
contact area of two phylogeographic lineages attributed to the midwife 
toad A. o. boscai (Maia-Carvalho et al., 2018). Amphibian dispersal in 
this area may be restricted by the Douro River, the highest flow river of 
the Iberian Peninsula, which forms a > 250 m wide brackish estuary tens 
of kilometers from its mouth. 

Triturus marmoratus samples from northern Spain show genetic 
similarity with populations in the west of France. This observation 
suggests either a large glacial refugium encompassing northern Spain 
and France, or the post-glacial expansion from northern Spain into 
France. A Spanish origin and an Atlantic corridor of colonization of 
western Europe has been suggested for many amphibians (e.g. Hyla 
molleri, Sánchez-Montes et al., 2019; and Lissotriton helveticus, Recuero 
and García-París, 2011). However, it is unclear whether the Triturus 

refugium also encompassed the French side of the Pyrenean Mountains, 
as could be the case in Alytes o. obstetricans (Ambu et al., 2023), and Bufo 
spinosus (Arntzen et al., 2017), and as suggested for other species (e.g., 
Epidalea calamita, Rowe et al., 2006). Moreover, a Mediterranean 
corridor cannot be excluded. For instance, the widespread Pelobates 
cultripes colonized France from the Mediterranean coast, and then 
expanded westward inland to reach the Atlantic coast through the Aude 
and Garonne valleys, which offered suitable conditions during the Ho-
locene (Bailon, 2003; Gutiérrez-Rodríguez et al., 2017b). Likewise, 
Pelodytes p. punctatus expanded from Catalonia to most of Western 
France, where it often co-occurs with T. marmoratus (Díaz-Rodríguez 
et al., 2015; Dufresnes, 2019). Either way, the lack of genetic structure 
and diversity between France and Spain (Fig. 4), and the predicted 
absence of the species in model-based glacial distributions (Wielstra 
et al., 2013), clearly support out-of-Iberia post-glacial colonization. 

4.3. Genetic structure within T. pygmaeus 

Our analyses also revealed the presence of two subgroups within 
T. pygmaeus, again with a Quaternary Ice Age split dated around 2 Ma, 
with a western one restricted to the western part of central Portugal and 
an eastern one covering the remainder of the species’ range. Intraspe-
cific introgression was observed in the Admixture analysis not only in 
samples from near the contact zone of the two subgroups, but all the way 

Fig. 3. Principal component analysis of the marbled newts Triturus marmoratus (shown in light and dark blue) and T. pygmaeus (yellow and orange). Admixed 
samples are highlighted with a white spot (see Fig. 2). Sample numbers correspond to Supplementary Table 1. 
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from central to southern Portugal (Fig. 2). A similar pattern of genetic 
differentiation is observed in other amphibian species in this region (e.g. 
Pelodytes atlanticus, Díaz-Rodríguez et al., 2017; and Lissotriton boscai, 
Peñalver-Alcázar et al., 2021; Sequeira et al., 2020; Teixeira et al., 
2015). The limited data available so far suggest that the Tagus river may 
be separating the two groups. Alternatively, regional uplifts linked to 
Pleistocene tectonic activities in southwestern Iberia (Figueiredo et al., 
2014), combined with Quaternary sea level changes, may have locally 
promoted population isolation. 

There is little differentiation in the eastern part of the range, pre-
sumably due to postglacial expansion from a southwestern refugium to 
the central parts of the Iberian Peninsula (Arntzen, 2018; Arntzen and 
Espregueira Themudo, 2008; Espregueira Themudo et al., 2012; Espre-
gueira Themudo and Arntzen, 2007a; Wielstra et al., 2013). Such phy-
logeographic homogeneity is also tangible from other amphibians, 
including Alytes cisternasii (Ambu et al., 2023; Gonçalves et al., 2009). 

Climate deterioration during glacial spells from the perspective of 
T. pygmaeus in the eastern part of its range is known from climate re-
constructions (Hijmans et al., 2005), and reduced habitat suitability has 
been predicted from species distribution modelling (Wielstra et al., 
2013). 

Individuals from the southwestern corner of Portugal (P1082, 5016 
and P7402) form a sister clade relationship with the southeastern 
remainder of the group, from which they are separated by the Guadiana 
river. Our results show that individuals from the Betic region (P7643, 
P7651, P7663 and P7698) are nested within the eastern subgroup of 
T. pygmaeus, along with an individual from Doñana National Park 
(P4199 from north of the Guadalquivir, see Arntzen, 2023 for a possible 
explanation) and two individuals (P7809 and P7722) from the source 
area of that river. Genetically distinct intraspecific groups in the Betic 
region have been observed in other amphibians (Salamandra salamandra 
longirostris, Antunes et al., 2018; Pleurodeles waltl, Gutiérrez-Rodríguez 
et al., 2017a; and Discoglossus galganoi jeanneae, Dufresnes et al., 2020c). 
Southern T. pygmaeus are also morphologically distinct, differing in 
body size and colouration patterning, and have recently been described 
as subspecifically distinct (Arntzen, 2023, 2018; García-París et al., 
1993). However, the phylogenetic position of two individuals from 
north of the Guadalquivir (P6751 and P6537) suggests that, as currently 
defined, the nominotypical subspecies of T. pygmaeus (encompassing the 
Betic T. pygmaeus) and T. pygmaeus lusitanicus (encompassing the 
remainder of the range) are not reciprocally monophyletic, suggesting 
the taxonomy of T. pygmaeus requires further study. 

5. Conclusion 

Our study provides new insights into the phylogeography of an 
Iberian amphibian species pair, the marbled newts, by employing a large 
number of nuclear markers obtained through target enrichment by 
sequence capture. Although the costs per individual with this method 
still limit sampling density (both in terms of the number of localities and 
the number of individuals per locality), we show target enrichment by 
sequence capture to be a robust approach for next-generation phylo-
geography. The observed lack of introgression corroborates species 
status of T. marmoratus and T. pygmaeus and both species show sub-
stantial genetic structuring. Comparative phylogeography of the 
marbled newts and other Iberian amphibians highlights the role of the 
Iberian Peninsula as a hotspot for inter- and intraspecific differentiation. 
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found in the following GitHub repository: https://github. 
com/Wielstra-Lab/marbled_newts. 
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distributions of the six species constituting the smooth newt species complex 
(Lissotriton vulgaris sensu lato and L. montandoni) - An addition to the New Atlas of 
Amphibians and Reptiles of Europe. Amphib. Reptil. 39, 252–259. https://doi.org/ 
10.1163/15685381-17000128. 

Wielstra, B., McCartney-Melstad, E., Arntzen, J.W., Butlin, R.K., Shaffer, H.B., 2019. 
Phylogenomics of the adaptive radiation of Triturus newts supports gradual 
ecological niche expansion towards an incrementally aquatic lifestyle. Mol. 
Phylogenet. Evol. 133, 120–127. https://doi.org/10.1016/j.ympev.2018.12.032. 

Zeisset, I., Beebee, T.J.C., 2008. Amphibian phylogeography: a model for understanding 
historical aspects of species distributions. Heredity 101, 109–119. https://doi.org/ 
10.1038/hdy.2008.30. 

Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., Weir, B.S., 2012. A high- 
performance computing toolset for relatedness and principal component analysis of 
SNP data. Bioinformatics 28, 3326–3328. https://doi.org/10.1093/bioinformatics/ 
bts606. 

C. Kazilas et al.                                                                                                                                                                                                                                 

https://doi.org/10.1002/evl3.9
https://doi.org/10.1163/15685381-17000128
https://doi.org/10.1163/15685381-17000128
https://doi.org/10.1016/j.ympev.2018.12.032
https://doi.org/10.1038/hdy.2008.30
https://doi.org/10.1038/hdy.2008.30
https://doi.org/10.1093/bioinformatics/bts606
https://doi.org/10.1093/bioinformatics/bts606

	Spatial genetic structure in European marbled newts revealed with target enrichment by sequence capture
	1 Introduction
	2 Materials & methods
	2.1 Sampling scheme and DNA extraction
	2.2 Laboratory methods and data preparation
	2.3 Processing of sequence-capture data
	2.4 Admixture analysis
	2.5 Principal component analysis
	2.6 NewHybrids analysis
	2.7 Concatenated maximum likelihood phylogeny
	2.8 Molecular dating
	2.9 mtDNA analysis

	3 Results
	4 Discussion
	4.1 Near-absence of gene flow between marbled newt species
	4.2 Genetic structure within T. marmoratus
	4.3 Genetic structure within T. pygmaeus

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


