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(1) CMAP, CNRS, École Polytechnique, Institute Polytechnique de Paris
Route de Saclay, 91120 Palaiseau, France
giuseppe.orlando@polytechnique.edu

(2) Weather Research, Danish Meteorological Institute
Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark

tbo@dmi.dk

(3) Dipartimento di Matematica, Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

luca.bonaventura@polimi.it

Keywords: Numerical Weather Prediction, Discontinuous Galerkin methods, High-order
mapping, Flows over orography, Curved boundary.

1



Abstract

We present a quantitative assessment of the impact of high-order mappings on the
simulation of flows over complex orography. Curved boundaries were not used in early
numerical methods, whereas they are employed to an increasing extent in state of the
art computational fluid dynamics codes, in combination with high-order methods, such
as the Finite Element Method and the Spectral Element Method. Here we consider
a specific Discontinuous Galerkin (DG) method implemented in the framework of the
deal.II library, which natively supports high-order mappings. A number of numerical
experiments based on classical benchmarks over idealized orographic profiles demon-
strate the positive impact of curved boundaries on the accuracy of the results, with no
significantly adverse effect on the computational cost of the simulation. These findings
are also supported by results of the application of this approach to non-smooth and
realistic orographic profiles.
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1 Introduction

High-order numerical methods are employed to an increasing extent for many rele-
vant physical problems, in particular for applications in Computational Fluid Dynam-
ics (CFD), see e.g. [6, 19, 24], among many others. Moreover, in recent years, a general
effort to design numerical methods allowing for more general element shapes, such as
polygonal/polyhedral elements, is witnessed, see, e.g., [9, 14, 23], and the references
therein. However, such methods must be supplemented by high-order approximations
of curved geometries to maintain their high-order accuracy [33] and achieve optimal
convergence rates [13]. For instance, considering Dirichlet boundary conditions, any
finite element method on curved domains is at most second order accurate [54, 55],
unless a curved boundary element is adopted [13]. Thus, the use of curved meshes
takes on considerable importance for many realistic applications, and the treatment
of boundary conditions for curved boundaries is an active research area, see e.g. the
recent contributions [11, 12]. While the use of numerical schemes in combination with
curved boundaries posed limitations for early numerical methods, a number of ap-
proaches to deal naturally with curved geometries have been proposed for high-order
methods over the last fifty years.

A very popular approach to build a curvilinear element method relies on the iso-
parametric approximation of the curved boundary which, since the seminal contribu-
tions [29, 63], has widely been employed in the literature, see among many others
[18, 21, 44, 56, 57]. Advanced developments use rational B-spline or NURBS approxi-
mations in the so-called iso-geometric analysis (IGA) framework [34]. An alternative
to curvilinear elements is to improve the treatment of the boundary conditions, tak-
ing into account the features of the real curved geometry on a straight faced mesh
[39, 59]. However, this method can be formulated only for slip-wall conditions and
for 2D geometries. We also mention the approach described, e.g, in [1], in which a
sub-tessellation is considered to evaluate integrals on straight faced meshes. Finally,
recent developments employ a reconstruction off-site data approach [15, 16], using a
least-squares method to handle several constraints imposed by scattered mean values
associated to the elements, while yet another approach employs the so-called Shifted
Boundary Method, see [11], to which we refer for all the details.

We focus here on the Discontinuous Galerkin (DG) method, which combines high-
order accuracy and flexibility [27]. A theoretical analysis on the applicability of
the DG method on essentially arbitrary shaped-elements, including curved polygo-
nal/polyhedral elements, was presented in [10]. The iso-parametric approximation
and IGA have been widely used in conjunction with DG schemes [6, 32, 38]. How-
ever, these approaches are particularly expensive, both in terms of computational cost
and memory overhead. A simpler treatment of curved elements in the context of DG
methods uses instead high-order mappings from the straight-sided reference element
to each curved element [40, 58], leading to a non-trivial expression for the determinant
of the mapping Jacobian (see Section 3).

While the accuracy loss due to the use of low-order mappings can be clearly identi-
fied and analyzed when dealing with smooth boundaries, the use and impact of high-
order mappings in presence of irregular and non-smooth boundaries is less straightfor-
ward. This aspect is especially important when dealing with applications to numerical
weather prediction (NWP) and climate simulations, in which the lower boundary is
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defined by irregular orographic data. Indeed, in NWP and climate models it is often
necessary to filter the orographic data to avoid or reduce spurious numerical effects
[60]. Subgrid-scale orographic drag parametrizations are then employed to compensate
the insufficient resolution of orographic features [43, 49]. On the other hand, increasing
the resolution without parametrization is beneficial to improve the description of atmo-
spheric processes over complex orography and forecast skill [22, 35]. The importance of
an accurate description of orography is also highlighted in studies like [50], where the
impact of improved orographic resolution is assessed via idealized climate simulations.
Moreover, the positive impact of parametrizations decreases as the model resolution
increases. Hence, it is important to assess the performance of high-order mappings also
in the case of non-smooth orography and to analyse the interplay of those mappings
with standard filtering procedures. Atmospheric motion over idealized orography is
the focus of a number of popular benchmarks proposed and analyzed in the NWP
literature [7, 36, 37, 52]. The orography is typically described by non-linear smooth
analytical profiles and therefore the computational domain is characterized by a curved
boundary. Nevertheless, to the best of our knowledge, curved elements have not been
employed for such benchmarks and no survey of their impact on numerical results is
available.

In this work, we assess the impact of high-order mappings on the accuracy of
numerical simulations of atmospheric flow over both idealized and real orography. For
the purpose of this study, we use the IMEX-DG scheme proposed in [45, 46], to which
we refer for a complete analysis and description of the method. The method was
validated for the simulations of weakly compressible atmospheric flows in [47, 48].
The solver is implemented in the framework of the open-source library deal.II [2, 5],
which natively supports high-order mappings. We show that, for smooth orography
profiles, using high-order mappings leads to more accurate results than using linear
mapping. In addition, high-order mappings are found to provide analogous results
to those obtained with linear mappings at higher resolution, meaning that the use of
high-order mappings acts as a sort of sub-tessellation. Next, we modify the customary
smooth benchmarks by adding a non-differentiable perturbation. We compare the
results of very high resolution simulations using linear mappings that resolve well the
irregular profile to those of lower resolution simulations carried out with both low- and
high-order mappings. High-order mappings are found to provide more accurate results
also in this case. We then assess the impact of two common filtering procedures on
the results. Finally, we consider the use of high-order mappings for a realistic complex
orography described by a set of point data.

The paper is structured as follows. The model equations are briefly presented
in Section 2. A short review of the use of high-order mappings for DG schemes is
reported in Section 3. Relevant numerical simulations showing the impact of high-order
mappings and curved elements are presented in Section 4. Finally, some conclusions
are reported in Section 5.

2 The model equations

The mathematical model consists of the fully compressible Euler equations of gas
dynamics in conservation form under the influence of gravity, completed with the
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ideal gas law [47, 48], in a vertical (x, z) slice domain. Let Ω ⊂ Rd, d = 2, be a
connected open bounded set with a possibly curved boundary ∂Ω, with x denoting
the spatial coordinates and t the temporal coordinate. We consider the case d = 2 in
this work, but the analysis and the considerations outlined in the following sections
straightforward extend to d = 3. No ad hoc two-dimensional numerical procedure or
code was employed for the numerical results presented in this work. We consider the
unsteady compressible Euler equations, written in conservation form as

∂ρ

∂t
+∇· (ρu) = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +∇ p = ρg (1)

∂ (ρE)

∂t
+∇· [(ρE + p)u] = ρg · u,

for x ∈ Ω, t ∈ (0, Tf ], endowed with suitable initial and boundary conditions. Here
Tf is the final time, ρ is the density, u is the fluid velocity, p is the pressure, and ⊗
denotes the tensor product. Moreover, g = −gk represents the acceleration of gravity,
with g = 9.81m s−2 and k denoting the upward pointing unit vector in the standard
Cartesian frame of reference. The total energy ρE can be rewritten as ρE = ρe+ ρk,
where e is the internal energy and k = 1

2 |u|
2 is the kinetic energy. We also introduce

the specific enthalpy h = e+ p
ρ and we notice that one can rewrite the energy flux as

(ρE + p)u =

(
e+ k +

p

ρ

)
ρu = (h+ k) ρu. (2)

The above equations are complemented by the equation of state for ideal gases, given
by

p = ρRT, (3)

with R being the specific gas constant. For later reference, we define the Exner pressure
Π as

Π =

(
p0
p

) γ−1
γ

, (4)

with p0 = 105 Pa being a reference pressure and γ denoting the specific heats ratio. We
take the specific heats ratio γ = 1.4 and the specific gas constant R = 287 J kg−1K−1.

3 High-order mappings for DG schemes

We consider a tessellation of the domain Ω into a family of quadrilaterals Th and
denote each element by K. The most classical approach for the treatment of curved
boundaries in the finite element method is the iso-parametric approximation, in which
both the geometry and the solution are approximated by some high-order polynomial
functions [29, 63]. In particular, rational B-spline or NURBS approximations lead to
the iso-geometric analysis (IGA) [34]. Even though its effectiveness has been shown in
several contributions, see e.g. [44, 51, 56, 57], this approach can be expensive in terms
of computational cost and memory overhead, because of the integration on curvilinear
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elements, especially when the boundary geometry is represented by very high-order
polynomials [61, 62].

We consider here a simpler approach based on the local polynomial interpolation
of the curved geometry. We define as mappings the transformations from the reference
element to elements in the physical space. Let x̂ be a point in the reference element,
namely the unit square [0, 1] × [0, 1] ⊂ R2. Hence, each mapping is a function FK

such that x = FK (x̂). We assume that the function FK is invertible. A relevant
quantity is the Jacobian of the transformation JK (x̂) = ∇FK (x̂). Requiring that
FK is invertible is equivalent to assuming JK (x̂) has nonzero determinant [31]. For
a generic function ϕ(x), which can be real-valued, vector-valued or tensor-valued, the
mapping acts therefore as follows:

ϕ (x) = ϕ (FK (x̂)) = ϕ̂ (x̂) . (5)

The DG method is characterized by integrals over elements and over faces that share
two elements (see e.g. [27] for a general presentation of the method). Using a simple
change of variables, it is possible to express integrals over a cell K as integral over the
reference element K̂. More specifically, the following relation holds [4, 31]:∫

K
ϕ (x) dx =

∫
K̂
ϕ̂ (x̂) |det JK (x̂)| dx̂, (6)

where det JK (x̂) is the determinant of the Jacobian and dx̂ is the volume form in the
reference element. Analogous considerations hold for face integrals. Note also that the
transformation of differential forms, such as gradients of scalar functions, denoted by
v, and gradients of vector fields, denoted by T, follows the general rule

v (x) = A (x̂) v̂ (x̂) T (x) = A (x̂) T̂ (x̂)B (x̂) . (7)

The differential formsA andB are determined by the kind of object being transformed,
as discussed in [4] (see also [3] for an analysis of finite element differential forms on
curvilinear cubic meshes). For the sake of clarity, we report the transformation for the
gradient of a shape function φ, which reads as follows:

∇φ (x) = J−1
K (x̂) ∇̂φ̂ (x̂) . (8)

The integral in (6) is then approximated by a quadrature rule, so as to obtain∫
K
ϕ (x) dx ≈

∑
q

ϕ̂ (x̂q) |det JK (x̂q)|wq, (9)

where x̂q are the nodes and wq are the corresponding weights of the chosen quadrature
formula. A visual impression of orography representation using high-order and low-
order mapping is presented in Figure 1. Note that the transformation depends on the
location of the physical element, therefore it is different for each element.

4 Numerical results

The technique outlined in Section 3 is employed in a number of two-dimensional
benchmarks concerning flows over orography. Several analytical profiles for the bottom
boundary have been considered in literature. We focus here on two of them:
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Figure 1: Comparison between linear mapping (left) and polynomial degree 3 mapping
(right) for a vertical section of the Sierra profile height in Section 4.5.

• The versiera of Agnesi [7, 37]

h(x) =
hm

1 +
(
x−xc
ac

)2 , (10)

with hm being the height of the orographic profile and ac representing its half-
width.

• The five-peak mountain range profile [52]

h(x) = hm exp

[
−
(

x

ac

)2
]
cos2

(
πx

λc

)
, (11)

where λc is a characteristic length scale.

Wall boundary conditions are employed for the bottom boundary, whereas non-reflecting
boundary conditions are needed for the top boundary and for lateral boundaries. These
are achieved by applying Rayleigh damping in the regions close to the boundary, with
the following coefficient [42, 47]:

λ =

{
0, if z < zB

λ sin2
[
π
2

(
z−zB
z−zT

)]
if z ≥ zB.

(12)

Here, zB denotes the height at which the damping starts and zT is the top height of
the considered domain. Analogous definitions apply for the two lateral boundaries.
The classical Gal-Chen height-based coordinates [25] are adopted to obtain a terrain-
following mesh in Cartesian coordinates:

z = ξ +
zT − ξ

zT
h(x), (13)

where ξ is the vertical coordinate of the rectangular domain before the transformation.
Transformation (13) leads to a terrain-following mesh at the bottom boundary, i.e.
ξ = 0, and to a horizontal top boundary, i.e. ξ = zT .

A simple model for turbulent vertical diffusion for NWP applications, originally
proposed in [41] and also discussed e.g. in [8], is employed in some configurations to
achieve stable solutions. The nonlinear diffusivity κ has the form

κ

(
∂u

∂z
,
∂θ

∂z

)
= l2

∣∣∣∣∂u∂z
∣∣∣∣ f (Ri) , (14)
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with l being a mixing length and Ri denoting the Richardson number given by

Ri =
g

θ0

∂θ
∂z∣∣∂u
∂z

∣∣2 . (15)

Here, θ0 is a reference temperature, while the function f (Ri) is defined as

f (Ri) = (1 + b |Ri|)β , (16)

where {
β = −2, b = 5 if Ri > 0

β = 1
2 , b = 20 if Ri < 0.

(17)

We also recall the definition of the vertical flux of horizontal momentum (henceforth
“momentum flux”) [53]. This is an important diagnostic quantity, often used to verify
if a correct orographic response is established in numerical experiments. It is defined
as

m(z) =

∫ ∞

−∞
ρ(z)u′(x, z)w′(x, z)dx. (18)

Here, ρ is the background density, whereas u′ and w′ denote the deviation from the
background state of the horizontal and vertical velocity, respectively. Relation (18) is
valid only for an isolated orography profile with a constant background field ū [53].
Hence, we also compute the full vertical flux of horizontal momentum, given by

m(z) =

∫ ∞

−∞

(
ρ̄ (z) + ρ′ (x, z)

) (
ū+ u′ (x, z)

)
w′ (x, z) dx, (19)

Table 1 reports the parameter values used in the test cases in this work. For time
and space discretizations, we consider the IMEX-DG scheme proposed in [45, 46] and
successfully employed for atmospheric dynamics in [47, 48]. We consider piecewise
polynomials of degree r = 4 for the finite element space, unless differently stated. The
solver is implemented in the framework of the deal.II library [2, 5], which natively
supports high-order polynomial mappings in addition to linear mappings.

4.1 Hydrostatic flow over a hill

We first consider the linear hydrostatic configuration employed, e.g., in [28, 47]. The
initial state consists of a constant mean flow with ū = 20m s−1 and of an isothermal
background profile with temperature T̄ = 250K. Finally, the initial profile of the
Exner pressure is given by

Π̄ = exp

(
− g

cpT̄
z

)
, (20)

with cp =
γ

γ−1R denoting the specific heat at constant pressure. The bottom boundary
is described by (10), with hm = 1m, xc = 120 km, and ac = 10 km.

For the construction of the boundary elements, we consider polynomial degrees 2
(i.e., a parabolic profile) and 4, and we compare the results with those obtained em-
ploying a linear mapping. The computational mesh is composed by 100× 60 elements,
leading to a resolution of 600m along the horizontal direction and of 125m along the
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Test case ∆t Tf Domain Damping Damping λ∆t
[s] [h] [km× km] layer (x) layer (z)

LHMW 2.5 15 240× 30 (0,80), (160,240) (15,30) 0.3

NLNHMW 1 5 40× 20 (0,10), (30,40) (9,20) 0.15

Schär 5 10 100× 30 (-50,-20), (20,50) (20,30) 1.2

NST 0.5 6 100× 20 (0,20), (80,100) (9,20) 0.15

T-REX 0.75 4 100× 26 (0,50), (350,400) (20,26) 0.15

Table 1: Model parameters for the test cases, see main text for details. LHMW: lin-
ear hydrostatic mountain wave (Section 4.1). NLNHMW: nonlinear non-hydrostatic
mountain wave (Section 4.2). Schär: Schär profile (Section 4.3). NST: non-smooth
orography (Section 4.4). T-REX: Sierra profile, T-REX experiment (Section 4.5).
The intervals where the damping layers are applied are in units of km.

vertical direction. Note that, here and in the following, the effective resolution is com-
puted dividing the size of the element along each direction by the polynomial degree,
r = 4 in this case. From linear theory [53], the analytical momentum flux is given by

mH = −π

4
ρsusNh2m, (21)

where ρs and us denote the surface background density and velocity, respectively, and
N is the buoyancy frequency.

The momentum flux at final time normalized by mH and computed using curved
elements for the bottom boundary provides an improved description of the orographic
response compared to the same quantity computed using linear mapping (Figure 2).
Moreover, increasing the polynomial degree of the mapping does not lead to further im-
provement in the accuracy of the results, meaning that the parabolic profile is already
an excellent approximation for orographic profile (10). Similar considerations apply to
the vertical velocity variable, albeit with slight differences (Figure 3). The wall-clock
time needed employing high-order mappings is essentially the same as that needed
using the linear mapping (Table 2). We refer to Section 4.6 for further considerations
on the computational cost of high-order mappings.

Configuration WT[s] Overhead

Linear mapping 10500 -

Degree 2 mapping 10400 -0.95%

Degree 4 mapping 10600 0.95%

Table 2: Linear hydrostatic flow over a hill: wall-clock times (WT) for the linear map-
ping and the high-order mappings simulations using a computational mesh composed
by Nel = 100 × 60 = 6000 elements. The overhead using the high-order mapping is
computed with respect to the WT of the simulation employing the linear mapping.
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Figure 2: Linear hydrostatic flow over a hill, computed normalized momentum flux
at t = Tf = 15h using a mapping with polynomial degree 4 (black line), a mapping
with polynomial degree 2 (blue dots), and the linear mapping (red line).

Figure 3: Linear hydrostatic flow over a hill, vertical velocity at t = Tf = 15h using
the high-order mapping with polynomial degree 4 (continuous black lines) and the
linear mapping (red dashed lines). Contours in the range [−4.0, 4.0] × 10−3 ms−1

with a 5× 10−4 ms−1 contour interval.

4.2 Non-Hydrostatic flow over a hill

Next, we consider the nonlinear non-hydrostatic configuration employed, e.g., in
[47, 48]. Here, the background velocity is ū = 13.28m s−1, whereas the initial state is
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described by the following potential temperature θ̄ and Exner pressure Π̄:

θ̄ = Tref exp

(
N2

g
z

)
Π̄ = 1 +

g2

cpTrefN2

[
exp

(
−N2

g
z

)
− 1

]
, (22)

where Tref = 273K denotes the surface temperature and N = 0.02 s−1 denotes the
constant Brunt-Väisälä frequency. The bottom boundary is described again by (10),
with hm = 450m, xc = 20 km, and ac = 1km. We consider again elements of polyno-
mial degree equal to 2 and to 4, and we compare the results with those achieved with
a linear mapping. The computational mesh is composed by 50× 50 elements, yielding
a resolution of 200m along the horizontal direction and of 100m along the vertical
direction.

The use of different polynomial mappings leads to different values of the normalized
momentum flux at t = Tf in the lower part of the computational domain (Figure 4).
The maximum relative difference is around 8.2%, meaning that the geometric error
associated with the description of the bottom boundary with a linear mapping is
not negligible. Analogous considerations to those reported for the linear hydrostatic
test case in Section 4.1 are valid for the vertical velocity (Figure 3). Finally, for
what concerns the computational cost, analogous considerations to those reported in
Section 4.1 still hold. We refer again to Section 4.6 for further considerations on the
computational cost.

Configuration WT[s] Overhead

Linear mapping 3320 -

Degree 2 mapping 3600 8.4%

Degree 4 mapping 3480 4.8%

Table 3: Nonlinear non-hydrostatic flow over a hill: wall-clock times (WT) for the
linear mapping and the high-order mappings simulations using a computational mesh
composed by Nel = 50 × 50 = 2500 elements. The overhead using the high-order
mapping is computed with respect to the WT of the simulation employing the linear
mapping.

4.3 Flow over Schär profile

Next, we consider the more complex five-peak idealized mountain range (11) orig-
inally proposed in [52] (see also [42, 47]). We choose hm = 250m, ac = 5km, and
λc = 4km. The initial state has the expression (22), with surface temperature
Tref = 288K, constant buoyancy frequency N = 0.01 s−1, and a background hori-
zontal velocity ū = 10m s−1. The domain is Ω = (−50, 50)× (0, 30) km. The mesh is
composed by 50 × 25 elements, leading to a resolution of 500m along the horizontal
direction and of 300m along the vertical direction. A reference solution is computed
using a mesh composed by 200 × 50 elements and a linear mapping to describe the
orography. We compute the momentum flux (18) at t = Tf and we normalize it by the
value obtained with the reference solution at z = 600m (Figure 6). It is important to
remark that (18) is valid only for an isolated orography with a constant background
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Figure 4: Nonlinear non-hydrostatic flow over a hill, comparison of normalized mo-
mentum flux at t = Tf = 5h using a mapping with polynomial degree 4 (black line),
a mapping with polynomial degree 2 (blue dots), and a linear mapping (red line).

Figure 5: Nonlinear non-hydrostatic flow over a hill, vertical velocity at t = Tf = 5h
using the high-order mapping with polynomial degree 4 (continuous black lines) and
the linear mapping (red dashed lines). Contours in the range [−4.2, 4.0]m s−1 with a
0.586m s−1 contour interval.

field ū [53]. Hence, following [30], we also compute the full vertical flux of horizontal
momentum, given by

m(z) =

∫ xmax

xmin

(
ρ̄ (z) + ρ′ (x, z)

) (
ū+ u′ (x, z)

)
w′ (x, z) dx, (23)

with xmin = 0km and xmax = 30 km.
12



Significant differences arise in the transfer of the momentum flux along the vertical
direction (Figure 6). Moreover, for this test case, increasing the polynomial degree
of the mapping yields significantly different results. This is due to the fact that (11)
is described by a non-polynomial function. Therefore, the accuracy in the orography
description improves as the polynomial degree of the mapping increases. We also notice
that the use of a polynomial degree equal to 4 reduces the oscillations in the profile of
the momentum flux. Finally, high-order mappings avoid small oscillations close to the
orography for the horizontal velocity deviation (Figure 7) and this further emphasizes
the importance of the use of high-order mappings. Analogous considerations to those
reported in Section 4.1 hold for the computational time (Table 4).

Configuration WT[s] Overhead

Linear mapping 2030 -

Degree 2 mapping 2140 5.4%

Degree 4 mapping 1930 -4.9%

Table 4: Flow over Schär profile: wall-clock times (WT) for the linear mapping simu-
lation and the high-order mappings simulations using a computational mesh composed
by Nel = 50 × 25 = 1250 elements. The overhead using the high-order mappings is
computed with respect to the WT of the simulation employing the linear mapping.

Figure 6: Flow over Schär profile, normalized momentum flux computed with formula
(18) (left) and formula (19) (right) at t = Tf = 10h, using polynomial degree 4
mapping (blue line), polynomial degree 2 mapping (red line), linear mapping (green
line). The black line denotes a reference solution with a 200× 50 mesh using a linear
map (black line). In all cases, the momentum flux is normalized using the value at
z = 600m obtained with the reference solution.

4.4 Non-smooth orography

In this Section, we modify one of the previous classical benchmarks by adding a
non-smooth perturbation. More specifically, we consider the versiera of Agnesi (10),
with hm = 0.45 km, xc = 50 km, and ac = 8km, and we add the perturbation

h′ (x) = 1− 4

∣∣∣∣x−
⌊
x+

1

2

⌋∣∣∣∣ , (24)
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Figure 7: Flow over Schär profile, horizontal velocity deviation at t = Tf = 10h using
a mapping with polynomial degree 4 (solid black contours) and a linear mapping
(dashed red contours). Contours in the range [−2, 2]m s−1 with a 0.2m s−1 contour
interval.

where ⌊x⌋ denotes the largest integer smaller or equal to x (floor function) and the
length is in units of kilometers. Hence, the resulting orography reads as follows (Figure
8):

h(x) =


hm

1+
(

x−xc
ac

)2 + hmδ
(
1− 4

∣∣x−
⌊
x+ 1

2

⌋∣∣) if |x− xc| ≤ 2ac

hm

1+
(

x−xc
ac

)2 otherwise,
(25)

with δ = 0.025. The perturbation has zero mean value, so that, if an increasingly
strong filter is applied, the original smooth profile is recovered. Notice that

Nac
ū

≈ 12 ≫ 1, (26)

which implies that we are considering a hydrostatic regime.
The computational mesh is composed by 100 × 50 elements, yielding a resolution

of 250m along the horizontal direction and of 100m along the vertical direction. A
reference solution is computed using a computational mesh composed by 300 × 50
elements with a linear mapping, so as to allow a correct description of the non-smooth
perturbation. The value obtained at z = 550m for the reference solution is adopted to
normalize the momentum flux. Following the discussion in [53], the momentum flux
(18) is associated with a pressure difference which results in a net drag force on the
mountain. For an isolated orography with a constant background field, one can show
that (18) is equivalent to

m(z) =

∫ ∞

−∞
p′ (x, z)

dh(x)

dx
dx, (27)
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Figure 8: Non-smooth orography profile obtained with formula (25) using δ = 0.025.

with p′ denoting the pressure perturbation with respect to the background state.
Hence, the momentum flux is strongly influenced by the orography, and therefore
it can be employed as an indicator to analyze the quality in the description of the
orographic profile.

The use of high-order mappings leads to results in good agreement with the refer-
ence solution, while a visible discrepancy arises with the linear mapping (Figure 9).
Quantitatively, we compute the l2 relative error in the region [z1, z2], with z1 = 1km
and z2 = 9km, excluding the damping layer (Table 5). The results on the momentum
flux computed with (18) show that the use of high-order mappings provides a better
description of some small-scale features of the orography even at lower spatial reso-
lution and leads to improved results in the development of lee waves and large-scale
features. Analogous considerations hold for the vertical flux of horizontal momentum
computed with (19). The overhead of the simulation employing the high-order map-
ping with respect to that using the linear mapping amounts to around 4.8% in terms
of wall-clock time (Table 5).

t
Linear mapping High-order mapping

error m(z) (18) error m(z) (19) error m(z) (18) error m(z) (19) Overhead

Tf

2 = 3h 6.37× 10−2 6.43× 10−2 1.88× 10−2 1.90× 10−2

Tf = 6h 3.48× 10−2 3.64× 10−2 6.86× 10−3 7.46× 10−3 4.8%

Table 5: Flow over non-smooth orography with δ = 0.025 in (25), l2 relative errors
on the normalized momentum flux computed with both (18) and (19) using linear
mapping and degree 3 (high-order) mapping. The relative error is computed with
respect to the reference solution in the region [z1, z2], with z1 = 1km and z2 = 9km.
The overhead using the high-order mapping is computed with respect to the WT of
the simulation employing the linear mapping.
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Figure 9: Flow over non-smooth orography with δ = 0.025 in (25), normalized mo-

mentum flux computed with (18) at times t =
Tf

2 = 3h (left panel) and t = Tf = 6h
(right panel). Results with polynomial degree 3 mapping (blue dots), linear mapping
(red line), and reference results with a 300 × 50 elements mesh and linear mapping
(black line). The momentum flux is normalized by the value obtained with the 300×50
elements mesh at z = 550m.

Next, we increase the perturbation and we set δ = 0.15 in (25) (Figure 10). We
also employ the simple model for turbulent vertical diffusion (14) and we take l = 50m
and θ0 = 273K in (14).

Figure 10: Non-smooth orography profile obtained with formula (25) using δ = 0.15
in (25).

A comparison of the contours of the horizontal velocity deviation and of the po-
tential temperature shows that high-order mapping results more closely match the
reference results compared to linear mapping results (Figure 11). This is confirmed

by the values of the normalized momentum flux at t =
Tf

2 and at t = Tf (Figure
12 and Table 6). In terms of relative l2 error with respect to the reference solution,
the high-order mapping outperforms the linear mapping by an order of magnitude.
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Slightly larger values of the error of the momentum flux using the high-order mapping
are obtained for larger values of the final time, due to the severity of the artificial orog-
raphy profile (not shown). Moreover, the overhead of the simulation employing the
high-order mapping with respect to that using the linear mapping amounts to ≈ 71%
in terms of wall-clock time (Table 6). The possible reasons for this overhead will be
discussed in Section 4.6.

While a linear mapping might seem the most appropriate choice for the non-smooth,
non-differentiable orography profile (25), the use of a linear mapping on coarse meshes
yields a poor description of small-scale orographic patterns. It is well known [22, 35]
that small-scale orographic patterns can have a significant impact on the development
of lee waves and, more in general, on mountain wave-driven atmospheric processes.
Improved representation of the orography significantly contributes to improvements in
forecast skill at increasing resolutions.

t
Linear mapping High-order mapping

error m(z) (18) error m(z) (19) error m(z) (18) error m(z) (19) Overhead

Tf

2 = 3h 1.30 1.31 1.72× 10−1 1.69× 10−1

Tf = 6h 3.79× 10−1 3.76× 10−1 3.26× 10−2 3.19× 10−2 71%

Table 6: Flow over non-smooth orography with δ = 0.15 in (25), l2 relative errors
on the normalized momentum flux computed with both (18) and (19). The relative
error is computed with respect to the reference solution in the region [z1, z2], with
z1 = 1km and z2 = 9km. The overhead is computed with respect to the WT of the
simulation employing the linear mapping.

4.4.1 Filtered non-smooth orography

Next, we consider the results obtained smoothing the orography using filters. This
approach seeks to avoid the resolution of small-scale features at a resolution close
to that of the mesh, so as to avoid spurious oscillations and problems with physical
parametrizations, see, e.g., the discussion in [60]. Subgrid-scale orographic (gravity
wave) drag parametrizations are employed in NWP and climate models to compen-
sate the insufficient resolution of orographic features [43, 49]. However, the interplay
between resolved and parameterized orographic effects is critical, and improved re-
sults in simulations of mountain atmospheric processes can be obtained by increasing
the resolution, see [22, 35], and the recent contribution of the authors on the use of
non-conforming meshes [48].

In order to smooth the orography, we consider a discrete set of N values hi com-
puted from (25) and we apply two different filtering techniques: the moving average
filter and the Raymond filter described in [60]. We take N = 601 equispaced points.
For the moving average, we define the new discrete orography as

ĥi =
1

M + 1

i+M
2∑

i−M
2

hi, (28)

17



Figure 11: Flow over non-smooth orography with δ = 0.15 in (25) at t = Tf =
6h. Top: Reference solution. Middle: Polynomial degree 3 mapping. Bottom:
Linear mapping. Horizontal velocity perturbation (colors), contours in the range
[−15, 15]m s−1 with a 2.5m s−1 interval. Potential temperature (dashed lines), con-
tours in the range [273, 403]K with a 10K interval.

with M + 1 being the number of values employed for the average. We consider here
M = 4, 6. The Raymond filter is instead a spectral filter and it is defined by specifying
the Fourier coefficients of its response function as

F̃ (κ̂) =
1

1 + ε tanm
(
1
2 κ̂∆

) , (29)
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Figure 12: Flow over non-smooth orography with δ = 0.15 in (25), normalized mo-

mentum flux computed with (18) at t =
Tf

2 (left panel), t = Tf (right panel). Results
with polynomial degree 3 mapping (blue dots), linear mapping (red line), and ref-
erence results with a 300 × 50 elements mesh and linear mapping (black line). The
momentum flux is normalized by the value at z = 550m obtained with the 300× 50
elements mesh.

where κ̂ denotes the wave number, ε a suitable constant, and m a suitable exponent.
The variable ∆ is related to the resolution in the description of the orography. Since the
orography changes after the application of the filter, a reference solution using the linear
mapping on the 300× 50 elements mesh is computed for each filtered configuration. A
cubic spline interpolation [17] is employed to evaluate the orography at the points of
this finer mesh.

First, we analyze the results obtained with the moving-average filter (28) (Figure
13). For M = 4 and in terms of l2 relative error, a comparison of the normalized
momentum flux (18) shows that the high-order mapping outperforms the linear map-

ping by a factor 3 at t =
Tf

2 and by a factor 4 at t = Tf (Figure 14 and Table 7).
Analogous results are obtained for M = 6, for which the better accuracy established
by the high-order mapping is even more evident. This is due to the fact that only
few small-scale topographic features are preserved by the filter, and such features, at
a coarse resolution, can be properly captured only by means of a high-order mapping.
The overhead of the simulations employing the high-order mapping with respect to
those using the linear mapping amounts around 15− 20% in terms of wall-clock time
(Table 7).

Next, we consider the spectral filter (29). Following [60], we take m = 6 and ε = 1,
whereas we consider

∆ =
3

20
∆x,

1

5
∆x,

1

4
∆x,

with

∆x =
L

N − 1
=

100

600
=

1

6
.

We immediately notice that the filtered orography strongly depends on the parameter
∆ (Figure 15, 16). For ∆ = 0.2∆x, the high-order mapping provides a higher accuracy
than the linear mapping. On the other hand, for ∆ = 0.15∆x and ∆ = 0.25∆x,
the linear mapping performs globally better than the high-order mapping. This is
likely due to the fact that the filtered orography for these values of ∆ is characterized
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M t
Linear mapping High-order mapping

error m(z)
(18)

error m(z)
(19)

error m(z)
(18)

error m(z)
(19)

Overhead

4
Tf

2 = 3h 7.97× 10−2 8.04× 10−2 2.52× 10−2 2.55× 10−2

Tf = 6h 4.16× 10−2 4.05× 10−2 7.39× 10−3 9.97× 10−3 12%

6
Tf

2 = 3h 5.39× 10−2 5.42× 10−2 6.00× 10−3 5.97× 10−3

Tf = 6h 2.77× 10−2 2.69× 10−2 2.69× 10−3 4.23× 10−3 20%

Table 7: Flow over non-smooth orography with δ = 0.15 in (25) filtered using the
moving-average filter (28), l2 relative errors on the normalized momentum flux com-
puted with both (18) and (19). The relative error is computed with respect to the
reference solution in the region [z1, z2], with z1 = 1km and z2 = 9km. Here, and
in the following tables and figures, M + 1 is the number of values employed for the
moving-average filter. The overhead using the high-order mapping is computed with
respect to the WT of the simulation employing the linear mapping.

by spurious high frequency features, which are not resolved by the linear mapping
and induce instead a spurious response of the high order mapping. The obtained
results display a very strong sensitivity with respect to the parameter ∆ and highlight
the difficulty of applying the filtering approach (29) for mesoscale applications. The
overhead of the simulations employing the high-order mapping with respect to those
using the linear mapping amounts to around 10% in terms of wall-clock time (Table
8).

∆ t
Linear mapping High-order mapping

error m(z)
(18)

error m(z)
(19)

error m(z)
(18)

error m(z)
(19)

Overhead

0.15∆x
Tf

2 = 3h 5.80× 10−3 5.83× 10−3 2.14× 10−2 2.15× 10−2

Tf = 6h 6.41× 10−3 6.61× 10−3 2.22× 10−2 2.20× 10−2 7.1%

0.2∆x
Tf

2 = 3h 6.41× 10−3 6.58× 10−3 4.52× 10−3 4.49× 10−3

Tf = 6h 1.02× 10−2 1.01× 10−2 1.16× 10−2 1.18× 10−2 9.6%

0.25∆x
Tf

2 = 3h 1.13× 10−2 1.13× 10−2 3.61× 10−2 3.63× 10−2

Tf = 6h 6.65× 10−3 7.02× 10−3 2.78× 10−2 2.79× 10−2 13.3%

Table 8: Flow over non-smooth orography with δ = 0.15 in (25) filtered using the
spectral filter (29), l2 relative errors on the normalized momentum flux computed
with both (18) and (19). The relative error is computed with respect to the reference
solution in the region [z1, z2], with z1 = 1km and z2 = 9km. The overhead is com-
puted with respect to the WT time of the simulation employing the linear mapping.
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Figure 13: Non-smooth orography with δ = 0.15 in formula (25), smoothed profiles
with moving-average filter (28). Top: M = 4. Bottom: M = 6.

4.5 T-REX Mountain-Wave

In a final test, we consider simulations of a flow over a real orography profile
(Figure 17, see also [20, 48]). The initial state, reported in Figure 18, is horizontally
homogeneous and it is based on conditions observed during the Intensive Observation
Period 6 of the Terrain-Induced Rotor Experiment (T-REX) [20]. The pressure is
computed from the temperature using hydrostatic balance, namely

p(z) = p0 exp

(
− g

R

∫ z

0

1

T (s)
ds

)
, (30)

with p0 = 105 Pa. Linear interpolation is used to evaluate both temperature and hori-
zontal velocity outside the given data points. We consider a DG spatial discretization
using degree r = 2 polynomials. The computational mesh is composed by 150 × 52
elements, yielding a resolution of around 133.33m along the horizontal direction and
of 250m along the vertical direction. A reference solution is computed using a com-
putational mesh composed by 400 × 52 elements. Note that, as reported in [20], the
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Figure 14: Flow over non-smooth orography with δ = 0.15 in (25) filtered using the
moving-average filter (28) and M = 4 (top row), M = 6 (bottom row), normalized

momentum flux computed with (18) at t =
Tf

2 (left column) and t = Tf (right
column). Results with polynomial degree 3 mapping (blue dots), linear mapping (red
line), and reference results with a 300×50 elements mesh and a linear mapping (black
line). The momentum flux is normalized by the value at the z = 550m obtained with
the 300× 50 elements mesh.

orographic profile has already been filtered to remove high frequency variations. There-
fore, we do not employ the filtering approaches described in Section 4.4. The vertical
turbulent diffusion model (14) is again necessary to obtain a stable numerical solution
and it is used with l = 100m and θ0 = 273K.

A comparison of the contours of the horizontal velocity deviation and of the po-
tential temperature shows that high-order mapping results are more similar to the
reference results with respect to those obtained with the linear mapping (Figure 19).

Finally, we provide a more quantitative comparison by computing the vertical mo-
mentum flux. Following [20], we use the average value of the velocity along the hori-
zontal and vertical direction to compute u′ and w′ in (18). As discussed in [20], there
is low predictability of key characteristics such as the strength of downslope winds or
the location and intensity of stratospheric wave breaking. Moreover, the change in the
resolution of the orography has been shown to modify the representation of mountain
wave-driven middle atmosphere processes [35]. Nevertheless, the values of the mo-
mentum flux obtained with the high-order mapping are much closer to the reference
results than those obtained with the linear mapping, see Figure 20 and Table 9. In
terms of l2 relative error, the high-order mapping is almost three times smaller than
the error using the linear mapping. These results corroborate those obtained in the
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Figure 15: As in Figure 13, but using the spectral filter (29) as defined in [60]. Top:
∆ = 0.15∆x. Middle: ∆ = 0.2∆x. Bottom: ∆ = 0.25∆x.
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Figure 16: As in Figure 14, but using the spectral filter (29) with ∆ = 0.15∆x (top
row), ∆ = 0.2∆x (middle row), ∆ = 0.25∆x (bottom row).

non-smooth orography test case, and confirm the advantage of high-order mapping
over linear mapping in resolving small-scale orographic features. The overhead of the
simulations employing the high-order mapping with respect to those using the linear
mapping amounts to around the 37% in terms of wall-clock time (Table 9).

4.6 Considerations on the computational cost

In this Section, we report some considerations on the computational cost. The use
of high-order mappings has an impact on the quadrature rule (9). More specifically,
the determinant of the Jacobian is not a constant, but a polynomial. In this work,
following, e.g., [26], we consider exact integration. In order to achieve this goal, we
employ the so-called over-integration or consistent integration. This means that we
use more than r + 1 Gauss quadrature points along each coordinate direction and,
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Figure 17: T-REX mountain-wave test, Sierra height profile.

Figure 18: T-REX mountain-wave test case, initial conditions. Left: horizontal ve-
locity. Right: potential temperature.

Linear mapping High-order mapping

error m(z) (18) error m(z) (19) error m(z) (18) error m(z) (19) Overhead

1.64 1.84 4.42× 10−1 5.85× 10−1 37%

Table 9: T-REX mountain wave test case, l2 relative errors on the normalized mo-
mentum flux at t = Tf = 4h computed with both (18) and (19). The relative error is
computed with respect to the reference solution in the region [z1, z2], with z1 = 5km
and z2 = 20 km. The overhead using the high-order mapping is computed with re-
spect to the WT time of the simulation employing the linear mapping.

in particular, we use 2r + 1 quadrature points in the case of linear mapping and
2r + 1 + ⌈r̂ − 2⌉ quadrature points in the case of high-order mapping, where r̂ is
the polynomial degree of the high-order mapping. We also recall that r denotes the
polynomial degree employed for the spatial discretization. One can easily notice that,
for r̂ = 2, the same number of quadrature points employed for linear mapping are
sufficient to obtain exact integration. The overhead in the use of high-order mapping
is therefore due to the use of higher order quadrature formulas for r̂ > 2.

However, one can notice from the results in Section 4.1-4.5 that the overhead typ-
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Figure 19: T-REX mountain wave test case at t = Tf = 4h. Top: Reference solution.
Middle: Polynomial degree 3 mapping. Bottom: Linear mapping. Horizontal velocity
perturbation (colors), contours in the range [−50, 50]m s−1 with a 5m s−1 interval.
Potential temperature (dashed lines), contours in the range [270, 800]K with a 10K
interval.

ically amounts only to around ≈ 5 − 10% and, for the test cases in Section 4.1 and
Section 4.3, the simulations using high-order mappings can be even faster. This is
likely due to the fact that the use of higher order quadrature formulas is limited to
the curved boundary, namely on a very small number of faces. Moreover, an efficient
implementation of quadrature rules in the deal.II library helps to avoid overhead

26



Figure 20: T-REX mountain wave test case, comparison of normalized momentum
flux at t = Tf = 4h computed with (19). Results using polynomial degree 3 mapping
(blue dots), linear mapping (red line), and reference results with a 400× 52 elements
mesh and a linear mapping (black line). The momentum flux is normalized by the
value at z = 5km obtained with the 400× 52 elements mesh.

when high-order mappings are employed. More specifically, a variable JxW , which
stands for “Jacobian determinant times weight”, is stored. The two factors, i.e. the
determinant of the Jacobian and the weights of the quadrature formula, are always
coupled and, therefore, storing only their product allows an efficient evaluation of in-
tegrals and saves computational operations. We refer to [5] for further details on the
specific implementation in the library. Hence, for r̂ = 2, the computational cost is the
same of the linear mapping (see Table 2), while for r̂ > 2 the overhead in terms of
wall-clock time is reduced and, because of caching effects, the computational cost can
be even lower.

The only test cases in which a sizeable overhead appears are the unfiltered non-
smooth topography with perturbation factor δ = 0.15 in (25) and, with a reduced
overhead, the T-REX mountain wave (Tables 6 and 9). This result is likely due to
the fact that the high-order mapping captures and resolves small-scale flow patterns
that lead to a more complex flow field and strongly affect the development of lee waves
(see Figure 12). This is confirmed by the fact that the overhead factor is significantly
reduced employing a filtered orography. These considerations further support the
use of high-order mappings, which significantly outperform linear mapping in terms
of accuracy with an increase in computational cost that only depends on the more
complex flow features induced by the better resolved orography. However, the wall-
clock time needed for the high-order mapping is more than twice smaller than the
wall-clock needed for the reference simulation employing the linear mapping.
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5 Conclusions

The accurate resolution of orographic profiles is of paramount importance for at-
mospheric applications [48, 50]. Here we have performed a quantitative study on the
impact of curved elements for flows over orography. To the best of our knowledge, this
study has never been performed for atmospheric applications. We have employed the
IMEX-DG solver originally proposed in [46] and validated for atmospheric applications
in [47, 48]. The software, implemented in the framework of the open-source library
deal.II [2], natively supports high-order polynomials for the mapping between the
reference element and elements in the physical space.

Numerical experiments on a number of classical benchmarks of flow over idealised
and real orography have shown that, at a given resolution, results obtained with a
high-order mapping significantly outperform those obtained using a linear mapping in
terms of error with respect to reference solutions. A sizeable increase in computational
cost is only observed when more complex flow features are induced by the better
resolved orography. In fact, the use of high-order mapping leads to results which
are analogous to those obtained using a linear mapping at orography-resolving high
resolution. Hence, employing high-order mapping is to some extent equivalent to
considering a sub-tessellation to evaluate the integrals. Applications of the use of high-
order mappings to non-smooth orography profiles have also been presented, showing
that the use of high-order mappings generally provides better results with respect to
those obtained with a linear mapping. This is valid also for orography profiles obtained
with standard filtering procedures. At a given spatial resolution, high-order mappings
capture small-scale topographic features inaccessible to the standard linear mapping.
Performing very high resolution simulations is computationally expensive, but it is
beneficial for mountain atmospheric processes and forecast skill. The use of high-order
mappings can be considered as a valuable alternative tool to resolve orographic features
at lower spatial resolutions and at a feasible computational cost. Furthermore, based
on the numerical evidence presented in this paper, we believe that only results taking
into account improved representations of the geometry should be considered as the
reference for future works.
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