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Abstract. This article deals with railway traffic management, which
includes tasks such as traffic planning, resource allocation, service adap-
tation and passenger information. Operators monitor the real-time move-
ment of trains, passengers and resources, mitigate unexpected events and
ensure safety. Human operators currently perform these complex tasks
using their expertise. However, technical aspects of railways and con-
current disturbances increase cognitive load and biases, affecting traffic
management and passenger satisfaction. To address these challenges, we
propose an AI-based railway traffic manager assistant that combines Ma-
chine Learning (ML) and Human-Machine Interaction (HMI) to support
operators in their daily tasks and assists them to make decisions when
facing critical situations. This article outlines the design approach and
introduces the initial assistant version. User-centred evaluation yields
preliminary results from limited-scale experiments.
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1 Introduction

Operational rail supervision consists in monitoring traffic, anticipating disrup-
tions and reducing their impacts. It aims at ensuring the resilience of the railway
operations and the quality of passenger information. In this project, we are par-
ticularly interested in the supervision of passenger train movements. Trains,
resources and passenger information must be monitored in real-time over a large
area. Services must be adapted when disruptions occur. To carry out this activ-
ity, operators: (i) utilise situational awareness tools (e.g. real-time train location,
passenger information); (ii) ponder various mitigation scenarios (e.g. delaying or
canceling some trains, transferring passengers to another train); and (iii) make
collaborative decisions regarding the ultimate course of action. According to [6],
performance depends on the complementarity between operators, operational
tools, and the working environment. In France, the current work environment
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design relies on verbal exchanges and numerous tools (see [9]). Human operators
must then aggregate and digest large amounts of information. While the process
is time-consuming and mentally demanding, decisions must be taken rapidly.
Furthermore, incidents tend to propagate. In this context, the mental load may
hamper operators in understanding the overall situation [5] and act [7,1].
Operational disruptions cannot be solved following a pre-established plan: mit-
igation rather involves exploring a set of strategies and balancing their charac-
teristics (e.g. impact on passengers, delays). Tools based on operational research
have already been developed, but fail to match completely the needs of the
operators. For instance, the strategies automatically suggested are not always
understood by an operator, who may reason differently. Moreover, these algo-
rithms rarely capture human expertise and seldom allow to share experience
feedback when similar situations occur [12].
For these reasons, user-centred design seem more relevant to create efficient de-
cision support tools. Following the progress of ML on cognitive tasks, we decided
to create an AI-based assistant that leverages state-of-the-art RL algorithms and
includes bidirectional features. In this paper, we introduce an AI-based assistant
for railway traffic management that should (1) provide the user with compre-
hensive insights on the situation ; (2) quickly process the most demanding parts
of the decision-making ; (3) learn both from real-life samples and from the expe-
rience of the operator it assists ; (4) investigate unexplored contingency plans.

2 Related works

Several studies have been conducted in the field of railway supervision, such as
research on real-time rescheduling [2] and rescheduling through stop-skipping [3]
in densely populated railway systems. In other studies, the promise of AI, espe-
cially Deep Reinforcement Learning (DRL), in the context of railway planning
and scheduling was acknowledged. In general, DRL merges the capabilities of
deep learning (DL), able to handle complex and vast problems, with reinforce-
ment learning (RL) a generic and flexible framework for making sequential deci-
sions. This integration introduces a new and potent AI tool that is increasingly
gaining traction in the domains of autonomous decision-making and operational
control. In particular, DRL can be highly beneficial in the domain of trans-
portation systems, specifically in traffic management systems by automating
numerous road control strategies, such as speed limit control, ramp metering,
lane pricing, etc., which in turn enhances highway safety and mitigates conges-
tion [4]. Other methodologies demonstrated that DRL agents excel at dynamic
real-time rescheduling. In [8], the authors proposed a multi-agent deep rein-
forcement learning-based approach with different state representational choices
to solve the real-time railway rescheduling problem by comparing three envi-
ronment representation methods and three different solutions. In [11], Ning et
al. proposed a solution to minimise the average total delay for all trains along
the railway line where an agent is responsible for adjusting running time and
generating instructions of departure sequences, aiming to maximise passenger
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satisfaction and minimise the average total delay for all trains along the railway
line. The learning agent is responsible for adjusting train travel times, waiting
times and departure sequences, and conflicts are resolved simultaneously.

3 Research background

In this section, we focus on defining the main research topics of our study, i.e.
Bidirectionality and Reinforcement Learning.

Bidirectionality Our design approach aims to (1) promote collaboration
between the AI assistant and the human operator, (2) centralise expert knowl-
edge for sharing and training. We explore the concept of bidirectionality to favor
mutual learning between the AI assistant and its user. A literature review re-
vealed two core features: bidirectional learning and knowledge transfer. Figure 1
depicts how we have implemented bidirectionality using RL.

Bidirectional learning enhances collaboration through a simultaneous ex-
change of behaviors and mental models. It involves two phases: communication
and interaction. In the former, each agent explicitly shares its understanding,
state and intentions [13]. In the latter, agents adapt their behavior to each other
based on ongoing interaction and dynamic mutual understanding.

Knowledge transfer explores how a neophyte agent can absorb the experience
of an expert agent [14]. This concept extends to human-machine interactions,
regardless of who acts as the expert. Scenarios include distilling domain expertise
to an AI that shares it back to untrained operators.
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Fig. 1: Bidirectional interactions between our assistant and a human operator.
The decision block ensures knowledge transfer. The mediation block enables
bidirectional learning. Both components are trained using RL.

Reinforcement Learning (RL) [15] is a type of machine learning paradigm
where an agent learns by interacting with its environment to achieve a specified
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goal. The foundational principles rest on the agent making sequences of deci-
sions, receiving rewards or penalties as a feedback, and refining its strategies or
exploring others to optimise future rewards.

At its core, RL involves the agent observing the current state s of the envi-
ronment, choosing an action a, based on a policy, and then receiving a reward
r from the environment. The goal of the agent is to find an optimal policy that
maximises the expected cumulative reward over time.

Function approximation – particularly using deep neural networks (often
referred as Deep Reinforcement Learning or DRL) – has made RL applicable to
complex tasks involving large state and action spaces. Our model, which includes
a railway environment simulator, uses DRL to capture intricate patterns and
relationships, allowing our AI assistant to generate nuanced strategies, tailored
to the specificities of traffic management.

An RL agent can leverage the expertise of the human operator as additional
knowledge during its training phase. By observing the actions and decisions made
by the human operator, the agent can derive insights into efficient strategies.
Conversely, the strategies discovered by the RL agent can enrich the decision-
making of the human operator. This reciprocal learning encapsulates the core of
bidirectionality.

4 An AI-based bidirectional assistant

The assistant we designed relies on a multi-services platform fed in real-time
by Flatland simulator [10]. Figure 2 shows the main services of our assistant:
(1) connectors to receive events and context from Flatland; (2) a service that
notifies about failures, real-time train positions and statuses (3) an event and
context tracker, that feeds our training dataset; (4) a recommender that provides
mitigation strategies based on RL.

Fig. 2: Assistant architecture
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To favor bidirectional interactions, we designed our user interface following the
user-centred approach [16]. Workshops were organised to involve operators in
the design process. As a guidance, we proposed to split the user interface into
four zones (see Figure 3): (1) a list of the pending events pushed by Flatland;
(2) a spatial visualisation of the context with the position of the trains; (3) a
panel of mitigation strategies for a given event and their performance (e.g. delays,
costs); (4) a temporal visualisation of the events. Through zone (3), the operator
can request recommendations to the assistant, and choose or amend them. The
proposal guidance is approved by end-users at a validation workshops.

Fig. 3: Assistant HMI

5 Conclusion

In this paper, we described a virtual assistant we have designed to help traffic
managers mitigate disruptions more efficiently and more rapidly. We presented
the specific needs of the human operators and proposed guidelines to match
them. The tool we designed leverages the most recent progress in RL and is
inspired by the concept of bidirectionality. As a result, it allows (1) to learn
from experts, (2) to distillate knowledge to neophytes, and (3) to adapt its
policy recommendations to the human operator it interacts with.
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