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Abstract: This paper proposes a descriptor Nonlinear Parameter Varying (NLPV) observer
for damper fault estimation in vehicle semi-active suspension systems, here considering the
highly practical case of a varying sprung mass, which is an open problem. This mass and the
control input are treated as known scheduling parameters for the design and implementation
of the observers, thus making the structure adaptive. This novel modeling leads to parameter-
dependent dynamics and output matrices in the nonlinear parameter-varying formulation. To
solve this problem, we extend an existing reduced-order observer design method (following
descriptor system modeling) to this new case. Both polytopic and grid-based methods are then
considered to compute and implement the problem solutions. The designs are then assessed
using frequency-domain analysis and realistic time-domain simulations.
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1. INTRODUCTION

The suspension is a crucial component in vehicles, serving
to ensure safety via its road-holding performance as well
as comfort for passengers by mitigating road disturbances.
The literature on suspension research is rich, for instance
(Savaresi et al., 2010; Unger et al., 2013) and the references
therein. Suspensions can be divided into 3 types, namely
active, passive, and semi-active (SA) suspensions, among
which the SA ones are preferred thanks to their balanced
trade-off between performance and energy consumption.

However, in the case of loss of effectiveness of an SA
damper, a stage of fault diagnosis and fault tolerant
control can be integrated, which requires us to pro-
pose extended models and fault estimation algorithms
(Hernández-Alcántara et al., 2016; Morato et al., 2020; Do
et al., 2020). Knowing that fault dynamics are typically
unknown to observer design, two main routes have been
used, including the proportional-integral (PI) one (Tran
et al., 2022; Do et al., 2018; Guzman et al., 2021) assuming
a slow-varying fault (Isermann, 2005), and the reduced-
order observer following the descriptor formulation (Pham
et al., 2022). The first one relies on a rather strict assump-
tion that the fault is slow-varying and, therefore, has zero
time derivatives. Consequently, the fault, which is a lost
part of the damper force (see (2) below), is modeled as a
constant extra state to be estimated by a PI observer (Tran
et al., 2022). While this can be justified for slow faults, it is
not practical for other ones. A solution to avoid this slow-

variation assumption of the fault is to design observers
for descriptor systems (merging differential and algebraic
equations (Darouach et al., 2017)) as proposed in our
previous work (Pham et al., 2022). One of the underlying
interests is that it applies to faults of arbitrary dynamics.

However, as considered in works such as (Wen et al., 2017;
Maciejewski et al., 2014), the chassis or sprung mass ms

depends in practice on the passenger number and vehicle
load, which should be considered. As illustrated in (Tudón-
Mart́ınez et al., 2015) a suspension control scheme adapted
to the sprung mass variation should perform better than
one designed assuming a constant mass, in terms of both
road-holding performance and comfort.

Remark 1. Considering fault estimation using a quarter-
car model is coherent in view of monitoring each damper
of the suspension system. Studying the sprung mass varia-
tions allows us to handle the unknown mass distribution of
a real full-car system, and the corresponding load transfer
phenomena. In this paper, it is assumed that the knowl-
edge of the mass variations is available at all times. Note
that this mass can be estimated in real time as shown in
existing works (Gobbi et al., 2011; Wenzel et al., 2006).

In this work, fault estimation observers are proposed
in the form of Nonlinear Parameter Varying (NLPV)
systems, accounting for varying sprung mass. The main
contributions of this paper are:

• Thanks to available mass estimation schemes, the
sprung mass is modeled as a known parameter used



in LMI solving and observer scheduling, leading to
parameter dependence in both the dynamics and the
output instead of only the input matrix as in (Pham
et al., 2022) which requires special attention and some
specific adaptation;

• Observer parameterization is extended for this case of
parameter-dependent dynamics and output matrices
in Section 3. Two designs are then proposed following
the polytopic and grid-based method in Section 4;

• The two designs are analyzed and compared in the
frequency domain via Bode plots and the polytopic
one is tested via realistic simulations.

Notations: Let W⊤ denote the transpose of the matrix W .
Denote W+ as any general inverse of matrix W satisfying
WW+W = W and W−1 as the inverse of the invertible
square matrix W . Last, v̂ denotes the estimate of v.

2. THE SEMI-ACTIVE SUSPENSION SYSTEM

The Electro-Rheological (ER) suspension from (Pham
et al., 2019) is given in Figure 1. It consists of the sprung
mass ms, the unsprung mass mus, and the suspension
components located between these masses and the tire
modeled as a spring of stiffness kt.

Fig. 1. Quarter-car model with a semi-active suspension.

The dynamics around the equilibrium are{
msz̈s = −Fs − Fd,f

musz̈us = Fs + Fd,f − Ft,
(1)

where zs and zus are the displacements of the sprung and
unsprung masses, respectively; zr is the road displacement
input; Fs = kszdef is the spring force (zdef = zs − zus is
the deflection); Ft = kt(zus − zr) is the tire force.

The faulty damper force Fd,f is given in (2):

Fd,f = Fd − f, (2)

where f is the lost damper force to be estimated and Fd

is the damper force in the healthy case, as given below{
Fd = k0zdef + c0żdef + Fer

Ḟer = −1

τ
Fer +

fc
τ

· u · tanh(k1zdef + c1żdef ),
(3)

where u ∈ [0, 1] is the control input (the electric voltage
supplied to the ER damper). Substituting (2) into (1),
we obtain the system dynamics considering the loss of
effectiveness of the damper{

msz̈s = −Fs − Fd + f
musz̈us = Fs + Fd − f − Ft.

(4)

Since the sprung mass ms is considered varying but still
remaining between known bounds, i.e., ms ≤ ms ≤ ms,
and u is a known input, we choose the scheduling vector

ρ = (ρ1, ρ2), where ρ1 = 1
ms

∈
[

1
ms

, 1
ms

]
and ρ2 = u ∈

[0, 1], that is assumed to be known and to remain at all

times in the compact set P :=
[

1
ms

, 1
ms

]
×[0, 1]. We assume

that ms = 2.2kg and ms = 2.4kg, which is coherent with
the 1/5th-scale quarter-car model at GIPSA-Lab.

Choosing the state vector as x = (x1, x2, x3, x4, x5, x6) =
(zs−zus, żs, zus−zr, żus, Fer, f) ∈ R6, the system dynam-
ics satisfy the descriptor NLPV form:

S(ρ) :
{
Eẋ = A(ρ)x+B(ρ)Φ(x) +Drω
y = C(ρ)x+Dnω,

(5)

where y = (y1, y2) = (z̈s, z̈us) ∈ R2 is the measurement
and ω = (żr, ωn) ∈ R2 with żr the road profile derivative
and ωn the sensor noise.

The system nonlinearity is Φ(x) = tanh(k1x1 + c1(x2 −
x4)) = tanh(Γx), with Γ = (k1 c1 0 −c1 0 0), and is
globally Lipschitz, i.e.,

∥Φ(x)− Φ(x̂)∥ ≤ ∥Γ(x− x̂)∥, ∀(x, x̂) ∈ R6 × R6. (6)

The system matrices are then (with k = ks + k0)

A(ρ) =


0 1 0 −1 0 0

−kρ1 −c0ρ1 0 c0ρ1 −ρ1 ρ1
0 0 0 1 0 0
k

mus

c0

mus

−kt

mus

−c0

mus

1

mus

−1

mus

0 0 0 0
−1

τ
0

 , B(ρ) =


0
0
0
0

fc

τ
ρ2

 ,

Dr =


0 0
0 0
−1 0
0 0
0 0

 , Dn =

(
Dn

Dn

)
=

(
0 10−2

0 10−3

)
, E =

(
I 0
)
,

C(ρ) =

(
Cy,1(ρ)
Cy,2

)
=

(
−kρ1 −c0ρ1 0 c0ρ1 −ρ1 ρ1
k

mus

c0

mus

−kt

mus

−c0

mus

1

mus

−1

mus

)
.

Remark 2. We could define a loss-of-efficiency factor as
α = f/Fd (when Fd ̸= 0). From the estimated additive
fault and damper force, we can estimate this factor as

α̂ = f̂/F̂d (when F̂d ̸= 0), where

F̂d = k0x̂1 + c0(x̂2 − x̂4) + x̂5. (7)

3. OBSERVER PARAMETERIZATION

3.1 System Modeling and Observer Formulation

Thanks to our selection of ρ, both the dynamics and
output matrices are affine in ρ. In order to use a single
framework for both the polytopic and the grid-based meth-
ods, C must be made independent of ρ by adding a filter
with state χ ∈ R and output yχ ∈ R, only at the first
output y1 of (5): {

χ̇ = Aχχ+Bχy1
yχ = Cχχ.

(8)



We can take for example Cχ = 1 and −Aχ = Bχ >> 1 so
that χ or yχ converges very fast to y1. Then, yχ replaces y1
as part of the output yext = (yχ, y2) ∈ R2 of the extended
system with state x′ := (χ, x) ∈ R7 and dynamics:

S ′(ρ) :

{
E′ẋ′ = A′(ρ)x′ +B′(ρ)Φ′(x′) +D′

rω
yext = C ′x′ +D′

nω,
(9)

where E′ =

(
I 0
0 E

)
, A′(ρ) =

(
Aχ BχCy,1(ρ)
0 A(ρ)

)
, B′(ρ) =(

0
B(ρ)

)
, D′

r =

(
BχDn

Dr

)
, C ′ =

(
Cχ 0
0 Cy,2

)
, D′

n =

(
0
Dn

)
.

Note that Φ′(x′) = Φ(x) is globally Lipschitz with constant
Γ′ = (0 Γ), namely for all (x′, x̂′) ∈ R7 × R7,

∥Φ′(x′)− Φ′(x̂′)∥ ≤ ∥Γ′(x′ − x̂′)∥. (10)

System
Filter

Observer
żr

ωn

z̈s

z̈us

yχ

x̂

Extended system
ρ ρ

Fig. 2. Scheme of the system extension for observer design.

Remark 3. Thanks to the descriptor representation, there
is no assumption on the fault dynamics, unlike when
using a PI observer. Note also that in this case, it is not
possible to filter both the two outputs, otherwise the rank
conditions given in Section 3.2 would not be satisfied.

The reduced-order observer takes the form

O(ρ) :

{
ż = N(ρ)z + J(ρ)yext +H(ρ)Φ′(x̂′)
x̂′ = R(ρ)z + S(ρ)yext,

(11)

where z ∈ R5 is the observer state and x̂′ is the estimate
of x′. The observer matrices N(ρ), J(ρ), H(ρ), R(ρ), and
S(ρ) of appropriate dimensions have to be designed. Let
us introduce the dynamic error

ϵ = z − TE′x′ ∈ R5, (12)

where T is an arbitrary matrix. Differentiating (12) with
respect to time and using (9) and (11), one obtains

ϵ̇ = N(ρ)ϵ+ (N(ρ)TE′ − TA′(ρ) + J(ρ)C ′)x
+ (H(ρ)− TB′(ρ))Φ′(x̂′)
− TB′(ρ)(Φ(x)− Φ′(x̂′))
+ (J(ρ)D′

n − TD′
r)ω

x̂′ = R(ρ)ϵ+ (R(ρ)TE′ + S(ρ)C ′)x+ S(ρ)D′
nω.

(13)

It is obvious that if the decoupling conditions

N(ρ)TE′ − TA′(ρ) + J(ρ)C ′ = 0, (14)

H(ρ)− TB′(ρ) = 0, (15)

R(ρ)TE′ + S(ρ)C ′ = I, (16)

are satisfied for all ρ ∈ P, system (13) becomes{
ϵ̇ = N(ρ)ϵ− TB′(ρ)∆Φ′ + (J(ρ)D′

n − TD′
r)ω

e = R(ρ)ϵ+ S(ρ)D′
nω,

(17)

where e := x̂′ − x′ is the error and ∆Φ′ = Φ′(x′)−Φ′(x̂′).

We also define ef := f − f̂ = Cwe with a weighting matrix

Cw = (0 0 0 0 0 0 1)

to emphasize the attenuation of disturbance/noise on the
fault estimation error. Parameterization of the observer
matrices is next performed to satisfy the decoupling con-
ditions (14)-(16).

3.2 Observer Parameterization

This part is extended from our former work (Pham et al.,
2022), considering parameter-dependent matrices R(ρ)
and S(ρ). First note that from (15), we get for all ρ ∈ P

H(ρ) = TB′(ρ). (18)

Therefore, H(ρ) will be determined once T is chosen.
Parameterization is made by using the general solution
of (14) and (16). First, from (14) and (16), one obtains for
all ρ ∈ P, (

N(ρ) J(ρ)
R(ρ) S(ρ)

)(
TE′

C ′

)
=

(
TA′(ρ)

I

)
. (19)

The equation (19) is solvable if and only if for all ρ ∈ P,

rank

 TE′

C ′

TA′(ρ)
I

 = rank

(
TE′

C ′

)
= 7, (20)

which is satisfied in our case. Let Υ be an arbitrary matrix
of full row rank such that

rank

(
Υ
C ′

)
= rank

(
TE′

C ′

)
= 7. (21)

Then there always exists a parameter matrix K such that(
TE′

C ′

)
=

(
I −K
0 I

)(
Υ
C ′

)
⇐⇒ TE′ = Υ−KC ′

⇐⇒ (T K)

(
E′

C ′

)
= Υ. (22)

A solution for (22) is given by (T K) = ΥΣ+ where

Σ =

(
E′

C ′

)
. This is equivalent to

T = ΥΣ+

(
I
0

)
, K = ΥΣ+

(
0
I

)
. (23)

Note that it is required that rankΣ = 7 (Delshad et al.,
2016), which is satisfied in our case. The family of solutions
of (19) is given by(

N(ρ) J(ρ)
R(ρ) S(ρ)

)
=

(
TA′(ρ)

I

)(
TE′

C ′

)+

+

(
Z1(ρ)
Z2(ρ)

)(
I −

(
TE′

C ′

)(
TE′

C ′

)+
)
, (24)

where

(
Z1(ρ)
Z2(ρ)

)
is an arbitrary matrix of appropriate

dimension. This is equivalent to

N(ρ) = TA′(ρ)α1 +Z1(ρ)β1, (25)

J(ρ) = TA′(ρ)α2 +Z1(ρ)β2, (26)

R(ρ) = α1 +Z2(ρ)β1, (27)

S(ρ) = α2 +Z2(ρ)β2, (28)

with

α1 =

(
TE′

C ′

)+(
I
0

)
, β1 =

(
I −

(
TE′

C ′

)(
TE′

C ′

)+
)(

I
0

)
,

α2 =

(
TE′

C ′

)+(
0
I

)
, β2 =

(
I −

(
TE′

C ′

)(
TE′

C ′

)+
)(

0
I

)
.

System (17) is now re-written as{
ϵ̇ = A(ρ)ϵ+W(ρ)∆Φ′ + B(ρ)ω
e = C(ρ)ϵ+ D(ρ)ω, (29)



where

A(ρ) = N(ρ) = A1(ρ) +Z1(ρ)A2, (30)

W(ρ) = −TB′(ρ), (31)

B(ρ) = J(ρ)D′
n − TD′

r = B1(ρ) +Z1(ρ)B2, (32)

C(ρ) = R(ρ) = C1 +Z2(ρ)C2, (33)

D(ρ) = S(ρ)D′
n = D1 +Z2(ρ)D2, (34)

whereA1(ρ) = TA′(ρ)α1,A2 = β1,B1(ρ) = TA′(ρ)α2D
′
n−

TD′
r, B2 = β2D

′
n, C1 = α1, C2 = β1, D1 = α2D

′
n, and

D2 = β2D
′
n. Note that all the matrices A1(ρ), A2, B1(ρ),

B2, C1, C2, D1, and D2 are known.

Therefore, the observer design problem is reduced to find-
ing Z1(ρ) and Z2(ρ), which is discussed in the following
part. Then, the observer matrices are computed from (18)
and (25)-(28).

4. LMI-BASED OBSERVER DESIGNS

4.1 Polytopic Design

In this part, a reduced-order observer is proposed for
system (9) following the polytopic method. In this method,
the observer matrices are solved only at the vertices of
the polytope formed by the variation of ρ in P. Theorem
1 below proposes an LMI framework for the polytopic
observer design.

Theorem 1. The polytopic reduced-order observer design
problem is solved if given some κ > 0, there exist matrices
X = X⊤ > 0, Y (ϱi), and Z2(ϱi) minimizing γ2 such that
for all the vertices ϱi, i = 1, 2, 3, 4 of the polytope formed
by the variation of ρ in P,

Ω11(ϱi) XW(ϱi) Ω13(ϱi) Ω14(ϱi) Ω15(ϱi)
⋆ −κI 0 0 0
⋆ ⋆ −γ2I Ω34(ϱi) Ω35(ϱi)
⋆ ⋆ ⋆ −I 0
⋆ ⋆ ⋆ ⋆ −κI

 < 0, (35a)

where

Ω11(ϱi) = A⊤
1 (ϱi)X +XA1(ϱi)

+A⊤
2 Y

⊤(ϱi) + Y (ϱi)A2, (35b)

Ω13(ϱi) = XB1(ϱi) + Y (ϱi)B2, (35c)

Ω14(ϱi) = C⊤
1 C⊤

w + C⊤
2 Z⊤

2 (ϱi)C
⊤
w , (35d)

Ω15(ϱi) = κ(C⊤
1 Γ′⊤ + C⊤

2 Z⊤
2 (ϱi)Γ

′⊤), (35e)

Ω34(ϱi) = D⊤
1 C

⊤
w +D⊤

2 Z
⊤
2 (ϱi)C

⊤
w , (35f)

Ω35(ϱi) = κ(D⊤
1 Γ

′⊤ +D⊤
2 Z

⊤
2 (ϱi)Γ

′⊤). (35g)

Then, Z1(ρ) at each vertex is Z1(ϱi) = X−1Y (ϱi), i =
1, 2, 3, 4.

Proof. Consider the Lyapunov function V (ϵ) = ϵ⊤Xϵ,
where X = X⊤ > 0. Differentiating V along the solutions
of (29) and denoting η = (ϵ,∆Φ′, ω) yield

V̇ (η, ρ) = ϵ⊤
(
A⊤(ρ)X +XA(ρ)

)
ϵ+ ϵ⊤XW(ρ)∆Φ′

+∆Φ′⊤W⊤(ρ)Xϵ+ ϵ⊤XBω + ω⊤B⊤Xϵ

= η⊤

(
Ω11(ρ) XW(ρ) Ω13(ρ)

⋆ 0 0
⋆ ⋆ 0

)
η,

where, by using A(ρ) = A1(ρ)+Z1(ρ)A2 then introducing
the intermediate variable Y (ρ) = XZ1(ρ), we obtain

Ω11(ρ) = A⊤
1 (ρ)X + XA1(ρ) + A⊤

2 Y
⊤(ρ) + Y (ρ)A2 and

Ω13(ρ) = XB1(ρ) + Y (ρ)B2. The condition (10) gives

∆Φ′⊤∆Φ′ ≤ ϵ⊤C⊤(ρ)Γ′⊤Γ′C(ρ)ϵ, ∀ρ ∈ P. (36)

This condition (independent of ω) is then re-written
as η⊤Q(ρ)η ≤ 0 for all ρ ∈ P, where Q(ρ) =−C⊤(ρ)Γ′⊤Γ′C(ρ) 0 −C⊤(ρ)Γ′⊤Γ′D(ρ)

⋆ I 0
⋆ ⋆ −D⊤(ρ)Γ′⊤Γ′D(ρ)

.

The H∞ condition imposes that

V̇ (η, ρ) + e⊤f ef − γ2ω⊤ω < 0, ∀ρ ∈ P.

Using the S-procedure (Boyd et al., 1994), this is satisfied
if there exists a scalar κ > 0 such that for all ρ ∈ P,
V̇ (η, ρ) + e⊤f ef − γ2ω⊤ω − κ(η⊤Q(ρ)η) < 0, which is
equivalent toΩ′

11(ρ) XW(ρ) Ω′
13(ρ)

⋆ −κI 0
⋆ ⋆ Ω′

33(ρ)

 < 0, ∀ρ ∈ P, (37)

where we use Ω′
11(ρ) = Ω11(ρ) + C⊤(ρ)C⊤

wCwC(ρ) +
κC⊤(ρ)Γ′⊤Γ′C(ρ), and Ω′

13(ρ) = XB1(ρ) + Y (ρ)B2 +
C⊤(ρ)C⊤

wCwD(ρ) + κC⊤(ρ)Γ′⊤Γ′D(ρ), and Ω′
33(ρ) =

D⊤(ρ)C⊤
wCwD(ρ)− γ2I + κD⊤(ρ)Γ′⊤Γ′D(ρ).

The Schur’s lemma is applied to this inequality, which
corresponds to the LMI (35) (when κ is fixed).

It is worth noting that this LMI problem is infinite-
dimensional due to the dependence on the full parameter
vector ρ. To make it tractable, the LMI problem (35) is
to be solved only at the vertices ϱi, i = 1, 2, 3, 4 of the
polytope formed by the variation of ρ in P, obtaining the
observer matrices at these vertices denoted O(ϱi). This is
possible since system S ′(ρ) in (9), thanks to A′(ρ) and
B′(ρ) being affine in ρ, can be expressed as a convex
combination of its vertex values as

S ′(ρ) =

4∑
i=1

σi(ρ)S ′(ϱi), σi(ρ) ≥ 0,

4∑
i=1

σi(ρ) = 1, (38)

where σi, i = 1, 2, 3, 4 are scheduling functions.

Finally, the H∞ performance is implied from (37), which
is ∥ef (t)∥2L2

< γ2∥ω(t)∥2L2
for all ρ ∈ P. ■

Remark 4. In the implementation stage, the matrices of
observer O(ρ) in (11) are scheduled accordingly as the
convex combinations:

O(ρ) =

4∑
i=1

σi(ρ)O(ϱi), σi(ρ) ≥ 0,

4∑
i=1

σi(ρ) = 1. (39)

Moreover note that, while here parameter-dependent ma-
trices Z1(ρ) and Z2(ρ) are chosen for generality, they can
be more conservatively taken as constants as long as the
LMI in Theorem 1 is satisfied. In this case, the observer
does not depend on the parameter vector.

4.2 Grid-based Design

We now propose an alternative design using gridding,
or grid-based LMI solving and implementation. In this
approach, the LMIs are not solved at the vertices of the
polytope formed by ρ, but instead simply solved at the
gridded values of ρ ∈ P. The argument following (Wu,
1995) is that, if the rate of ρ is bounded, satisfying the
LMIs at a high enough finite number of grid points implies



satisfying them at all the infinite number of points in P.
A parameter-dependent Lyapunov function can then be
used, which helps relax conservativeness. For this method,
the following assumption on the parameter’s variation rate
is needed (Wu, 1995).

Assumption 1. Assume that there exist constants ν1 > 0
and ν2 > 0 such that |ρ̇1| ≤ ν1 and |ρ̇2| ≤ ν2 at all times.

Theorem 2 below proposes an LMI framework for the grid-
based observer design.

Theorem 2. Suppose Assumption 1 holds. The grid-based
reduced-order observer design problem is solved if given
some κ > 0, there exist matrices X(ρ) = X⊤(ρ) > 0,
Y (ρ), Z2(ρ), all continuous on P, minimizing γ2 such that
for all grid points ϱi ∈ P, i = 1, 2, . . . , n for some finite
sufficiently large n,

Ω11,±(ϱi) X(ϱi)W(ϱi) Ω13(ϱi) Ω14(ϱi) Ω15(ϱi)
⋆ −κI 0 0 0
⋆ ⋆ −γ2I Ω34(ϱi) Ω35(ϱi)
⋆ ⋆ ⋆ −I 0
⋆ ⋆ ⋆ ⋆ −κI

 < 0,

(40a)
where

Ω11,±(ϱi) = A⊤
1 (ϱi)X(ϱi) +X(ϱi)A1(ϱi) +A⊤

2 Y
⊤(ϱi)

+ Y (ϱi)A2 ±
(
ν1

∂X

∂ρ1
(ϱi) + ν2

∂X

∂ρ2
(ϱi)

)
,

(40b)

Ω13(ϱi) = X(ϱi)B1(ϱi) + Y (ϱi)B2, (40c)

Ω14(ϱi) = C⊤
1 C⊤

w + C⊤
2 Z⊤

2 (ϱi)C
⊤
w , (40d)

Ω15(ϱi) = κ(C⊤
1 Γ′⊤ + C⊤

2 Z⊤
2 (ϱi)Γ

′⊤), (40e)

Ω34(ϱi) = D⊤
1 C

⊤
w +D⊤

2 Z
⊤
2 (ϱi)C

⊤
w , (40f)

Ω35(ϱi) = κ(D⊤
1 Γ

′⊤ +D⊤
2 Z

⊤
2 (ϱi)Γ

′⊤). (40g)

Then, Z1(ρ) at each grid point is Z1(ϱi) = X−1(ϱi)Y (ϱi).

Sketch-of-proof. We consider the parameter-dependent
Lyapunov function V (ϵ, ρ) = ϵ⊤X(ρ)ϵ, where X(ρ) =
X⊤(ρ) > 0 for all ρ ∈ P. We then proceed similarly to the
proof of Theorem 1. Note that when taking the derivative
of V (ϵ, ρ), the time variation of ρ appears in the form of
ρ̇, and under Assumption 1, it is sufficient to consider in
the LMIs in Theorem 2 the bounds ν1, ν2 in place of ρ̇1
and ρ̇2, respectively (Wu, 1995). ■

Implementation-wise, the observer matrices can be sched-
uled using lookup tables as in (Tran et al., 2022), from
their gridded values computed from (18) and (25)-(28) by
the obtained gridded values of Z1(ρ).

5. OBSERVER SYNTHESIS AND SIMULATION

The two observers in Section 4 are designed for the SA sus-
pension described in Section 2. Note that the parameters
correspond to GIPSA-Lab’s 1/5th-scale testbed (Pham
et al., 2019). Note also that the grid-based design in
Section 4.2 comes with an extra Assumption 1, so it cannot
be justified when ρ varies infinitely fast, for example when
a Skyhook controller is used (see scenario 2 below). For

grid-based LMI solving, the range P :=
[

1
ms

, 1
ms

]
× [0, 1]

is evenly gridded into 5 points for each parameter, so 25
points in total. In simulation, we use a sampling time of

Ts = 0.005s, therefore we take ν1 =
(

1
m

s
− 1

ms

)
/Ts =

7.5758kg−1s−1 and ν2 = (1− 0)/Ts = 200s−1.

5.1 Frequency-domain Analysis

In Figure 3, we show the Bode plots of only the last
component of the error (29), frozen at the 25 grid points
of the grid-based design, which corresponds to damper
fault estimation with respect to żr. Similar plots for the
polytopic design, taken at the four vertices of P, are shown
in Figure 4. It is seen that both designs provide satisfactory
attenuation of the disturbance (below −50dB). Without
any rigorous proof, the grid-based one is more effective
in LMI solving since the parameter-dependent Lyapunov
function helps to reduce conservativeness.

10-1 100 101 102 103
-160

-150

-140

-130

-120

-110

-100

M
a

g
n

it
u

d
e

 (
d

B
)

Frequency  (rad/s)

Fig. 3.
∣∣∣ f−f̂

żr
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5.2 Time-domain Simulations with the Polytopic Design

In this part, we provide some simulation results, assuming
that the fault f = αFd where α ∈ [0, 1) is the loss-of-
efficiency factor (see Remark 2). Only the polytopic design
is shown since the grid-based design cannot be applied to
the case when ρ2 = u may vary infinitely fast (as the
SkyHook control in the second scenario), since it violates
Assumption 1. Two scenarios are illustrated as follows.

Scenario 1: Constant sprung mass and control input

• The road profile zr is sinusoidal;
• The mass ms is constant at 2.27kg;
• The control u is constant at u = 0.3;
• The factor α increases from 0.1 to 0.5 at 5s.
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Fig. 5. Fault estimation results in scenario 1.

Scenario 2: Varying sprung mass and control input

• The road profile zr is an ISO 8608 one of type C;
• The mass ms increases from 2.32kg to 2.35kg at 3s;
• The control u is given by a Skyhook controller. Here,
u varies infinitely fast, justifying the polytopic design;

• The factor α increases from 0.2 to 0.4 at 7s.
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Fig. 6. Fault estimation results in scenario 2.

From Figures 5 and 6, we see that our observer provides
satisfactory estimation performance. Here, the fault varies
quite fast in time, so the PI observers are not justifiable.

6. CONCLUSION

This paper extends fault estimation observer designs,
namely the polytopic and grid-based designs of the
reduced-order descriptor observer, for the SA suspension
in the case of a varying sprung mass that is highly prac-
tical. The designs are analyzed via Bode plots and time
simulations. These results illustrate the effectiveness of
the polytopic design for damper fault estimation. Future
work is to take uncertainty in vehicle mass measure-
ment/estimation into account for even higher practicality.
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