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April 15, 2024

Abstract

We prove the well-posedness of weak entropy solutions of a scalar non-local traffic flow
model with time delay. Existence is obtained by convergence of finite volume approxi-
mate solutions constructed by Lax-Friedrich and Hilliges-Weidlich schemes, while the L1

stability with respect to the initial data and the delay parameter relies on a Kružkov-type
doubling of variable technique.
Numerical tests are provided to illustrate the efficiency of the proposed schemes, as well
as the solution dependence on the delay and look-ahead parameters.
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1 Introduction

Non-local traffic flow models [3, 6, 7, 11] have been recently introduced in the literature as
extensions of classical macroscopic descriptions, to account for short / long range interactions
among vehicles and overcome some drawbacks of local dynamic descriptions, such as the
display of infinite acceleration. They are based on the assumption that drivers adapt their
speed to a weighted mean of the downstream traffic density or velocity, thus resulting in
integral dependencies of the flux function on the unknown. It has been shown that such models
inherit the main properties of the original (local) equations, such as the maximum principle
and finite, anisotropic, propagation speed of information, while gaining in regularity, which
in turn provides other desirable features, such as the previously mentioned finite acceleration.
In particular, the non-local interaction range can be used to model connected autonomous
vehicle dynamics. On the purely mathematical side, the gain in regularity provides well-
posedness results for problems whose local counterpart misses analytical results, as in the
case of multi-class models [8].

The effect of delay, accounting for drivers’ reaction time, on traffic flow dynamics has been
investigated in literature both using microscopic and macroscopic models [4, 12], showing that
local delayed models are able to reproduce stop-and-go waves at a macroscopic level. The
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delay has been included in several forms such as in the negative part of the diffusion term in
a diffusively corrected Lighthill-Whitham-Richard model [16, 20], or in the relaxation terms
in second order models [17]. Modeling properly this phenomenon is crucial for developing
techniques aimed at reduce traffic instabilities.

More recently, Keimer and Pflug [14] proved the existence and uniqueness of solutions
for a scalar non-local traffic model with time delay, whose local counterpart is still not fully
understood [4, 18, 20]. The authors’ approach of choosing a priori a time delay parameter
representing the reaction time seems to be more suitable for applications and data-driven
modeling, with respect to the space-time non-locality considered in [10]. They also investi-
gated the behavior of the solution for the delay approaching zero, showing that it converges in
the L1-norm to the solution of the associated non-delayed model. Unlike the well-posedness
result, this convergence holds only on a sufficiently small time horizon.

Entropy solutions of classical (local and non-delayed) scalar conservation laws are known
to satisfy a strict maximum principle. In particular, in traffic flow applications, such property
ensures that the vehicles density never exceeds the maximum capacity of the considered road.
While non-local models without time delay satisfy the maximum principle [3, 7], the local
[12] and non-local delayed models [14] introduced fail to ensure that the traffic density stays
bounded by the maximal one, also for small times.

To address the above mentioned drawbacks, in this paper we propose a non-local scalar
model with time delay for which a positivity property and the maximum principle are fulfilled.
We also succeed in providing uniform BV bounds, well-posedness results and convergence to
the non-delayed associated model, without any restriction on the time horizon, unlike [14].

1.1 Modeling

We fix a constant τ > 0 representing the human reaction time, and we consider the following
non-local traffic flow model with time delay

∂tρ(t, x) + ∂x

(
ρ(t, x)f(ρ(t, x))v((ρ ∗ ω)(t− τ, x))

)
= 0, (1.1)

where ρ : R+×R→ [0, R] is the vehicle density, v : [0, R]→ [0, V ] is the mean traffic speed and
ω : [0, L] → R+ is a convolution kernel. The positive constants R, V and L are respectively
the maximal traffic density, the maximal speed and the look-ahead distance of drivers.

We remark that, if the function f : [0, R] → [0, 1] is chosen to be constantly equal to 1,
then the equation (1.1) coincides with the model considered in [14], that is

∂tρ(t, x) + ∂x

(
ρ(t, x)v((ρ ∗ ω)(t− τ, x))

)
= 0. (1.2)

Here, f is introduced to play the role of a saturation function (see e.g. [7, 11, 19]), to serve
as an indicator of the free space available on the road, whose properties are detailed later.

Due to the delayed time dependence, equation (1.1) needs to be coupled with an initial
condition defined on the interval [−τ, 0]. In certain modelling applications it might only be
possible to gather the traffic data at a given initial time t = 0. Thus, we couple (1.1) with an
initial condition obtained as a constant extension of the initial datum ρ(0, x) = ρ0(x) ∈ [0, R],
meaning that we assume

ρ(t, x) = ρ0(x), ∀(t, x) ∈ [−τ, 0]× R. (1.3)
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For this particular choice of past-time data, the problem can be read as a classical Cauchy
problem.

Unlike similar non-local equations, we underline again that the model (1.1) is characterized
by the presence of a delay in time, which makes general theoretical results [7] inapplicable
as such. To obtain the well-posedness of the Cauchy problem (1.1), (1.3), we require the
following assumptions.

Assumption 1. For any T > 0, it holds:

• v ∈ C2([0, R]; [0, V ]), v′ ≤ 0, v(0) = V and v(R) = 0;

• f ∈ C1([0, R]; [0, 1]), f ′(ρ) ≤ 0, f(0) = 1 and f(R) = 0;

• ω ∈ C1([0, L];R+), ω′(x) ≤ 0 and∫ L

0
ω(s) ds = J0 = 1. (1.4)

We extend the kernel ω(x) = 0 for x > L, and the saturation function f(ρ) = 0 for ρ > R,
and f(ρ) = 1 for ρ < 0.

Remark 1. The assumption on the velocity function v is classical, but it can probably
be weakened in some of the following results. For instance, in [14] the weaker condition
v ∈ W 1,+∞

loc (R+) is taken, which is sufficient to prove existence and uniqueness of solutions
to (1.2), even if just on a sufficiently small time horizon. Also, the less restrictive hypothesis
on the interaction kernel ω ∈W 1,∞(R,R+) is used. We need the regularity and monotonicity
of v and ω to derive the BV estimate for the approximate solutions. Moreover, it is physically
reasonable to suppose that ω is a non-increasing function of the distance, since this means
that the drivers assign greater importance to closer vehicles.

Remark 2. For simplicity, we assume
∫ L

0 ω(s) ds = 1, thus avoiding to extend v beyond R.
Anyway, the following results can be generalized to any positive interaction strength J0 > 0.

Under the above hypothesis, we prove the existence and stability of weak entropy solutions
of (1.1), (1.3) defined as follows [15].

Definition 1 (Entropy weak solution). Given ρ0 ∈ L1(R; [0, R]), a function ρ ∈ L1([0, T ]×
R;R) is an entropy weak solution of the Cauchy problem (1.1)-(1.3) if for every test function
ϕ ∈ C1

c([0, T )× R;R+) and κ ∈ R∫ T

0

∫
R

(
|ρ− κ|∂tϕ+ sgn(ρ− κ)(ρf(ρ)− κf(κ))v((ρ ∗ ω)(t− τ, x))∂xϕ

− sgn(ρ− κ)κf(κ)∂xv((ρ ∗ ω)(t− τ, x))ϕ
)

dxdt

+

∫
R

∣∣∣ρ0(x)− κ
∣∣∣ϕ(0, x)dx ≥ 0 .

Observe that the introduction of the saturation function f guarantees that a weak maxi-
mum principle holds, unlike the case of equation (1.2), see [14, Corollary 4.4]. Indeed, since
the constants 0 and R are solutions of (1.1), by comparison we have 0 ≤ ρ(t, x) ≤ R for all
(t, x) ∈ R+×R. On the other hand, F (ρ) := ρf(ρ) being nonlinear, it prevents the use of the
approach based on characteristics and fixed point theorem exploited in [14], which provides
uniqueness of weak solutions without enforcing entropy conditions. Therefore, in this work
we need to refer to entropy weak solutions as in Definition 1.
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1.2 Structure of the contribution

The rest of the paper is organized as follows. Sections 2 and 3 are devoted to the construction
of two types of finite volume approximate solutions and the derivation of the corresponding
uniform compactness estimates. Their convergence towards a global entropy weak solution
is proved in Section 4, where we provide the existence in Theorem 1, together with with the
maximum principle, the bound on the total variation and the L1 stability in time, and the
stability in Theorem 2. As a consequence, we show in Corollary 3 the L1 convergence to the
associated non-delayed model as the time delay parameter τ goes to zero. We stress that our
results hold on every finite time horizon, which is one of the improvements with respect to
the results on the non-local model with time delay proposed in [14]. A numerical study of
the solution properties is deferred to Section 5, with a particular focus on the capability of
the saturation function f in guaranteeing the maximum principle, and on the influence of the
delay on the increase of the total variation of the solution. Some technical details about the
proofs are reported in Appendix A.

2 Finite volume approximations

We take a space step ∆x such that for the size of the kernel support we have L = N∆x for
some N ∈ N holds, and a time step ∆t such that the time delay parameter is τ = h∆t for
some h ∈ N. We discretize (1.2) on a fixed grid made up of the cell centers xj = (j − 1

2)∆x,
the cell interfaces xj+ 1

2
= j∆x for j ∈ Z, and the time mesh tn = n∆t, n ∈ N. We

want to build a finite volume approximate solution, denoted as ρ∆x(t, x) = ρnj for (t, x) ∈
[tn, tn+1)× [xj− 1

2
, xj+ 1

2
). In order to do this, first we approximate the initial datum ρ0 with

the piecewise constant function

ρ0
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

ρ0(x) dx , j ∈ Z,

and we set ρ−nj = ρ0
j for j ∈ Z and n = 1, . . . , h, consistently with (1.3). Similarly, for the

kernel, we define

ωk :=
1

∆x

∫ (k+1)∆x

k∆x
ω(x) dx , k ∈ N0 = N ∪ {0},

so that from (1.4) we get ∆x
∑+∞

k=0 ω
k = ∆x

∑N−1
k=0 ωk = J0, where the sum is finite since

ωk = 0 for k ≥ N sufficiently large. Then, we denote

V n
j := v

∆x

+∞∑
k=0

ωkρnj+k

 = v

∆x

N−1∑
k=0

ωkρnj+k

 ,

which involves a quadrature formula to approximate the convolution term. Thus, as in [7],
we consider the following Lax-Friedrichs (LF) numerical flux

(FLF )n
j+ 1

2

=
1

2

(
F (ρnj )V n−h

j + F (ρnj+1)V n−h
j+1

)
− α

2

(
ρnj+1 − ρnj

)
,
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with λ = ∆t/∆x and F (ρ) = ρf(ρ), which leads to the following numerical scheme

ρn+1
j = ρnj +

λα

2

(
ρnj+1 − 2ρnj + ρnj−1

)
− λ

2

(
F (ρnj+1)V n−h

j+1 − F (ρnj−1)V n−h
j−1

)
, (2.1)

being α the numerical viscosity coefficient. Moreover, following [5, 8, 11], we consider the
following Hilliges-Weidlich (HW) type scheme [13]

ρn+1
j = ρnj − λ

(
ρnj f(ρnj+1)V n−h

j+1 − ρ
n
j−1f(ρnj )V n−h

j

)
, (2.2)

with numerical flux
(FHW )n

j+ 1
2

= ρnj f(ρnj+1)V n−h
j+1 .

To prove the convergence of the corresponding approximate solutions, we report the state-
ments for both the schemes and detailed calculations for the LF scheme, while the proofs
regarding the HW scheme involve simpler calculations and are sometimes only sketched. In
Section 1, we propose a numerical comparison between these schemes, showing that the HW
scheme is less diffusive than the widely used LF scheme.
We start providing some important properties of the LF scheme.

Lemma 1 (Positivity). For any T > 0, if

α ≥ V and λ ≤ 1

α
, (2.3)

then the LF scheme (2.1) is positivity preserving on [0, T ]× R.

Proof. Let us assume that ρn−lj ≥ 0 for all j ∈ Z and l = 0, . . . , h. Then, using (2.1) we have

ρn+1
j = (1− λα)ρnj +

λ

2

(
α− f(ρnj+1)V n−h

j+1

)
ρnj+1 +

λ

2

(
α+ f(ρnj−1)V n−h

j−1

)
ρnj−1 ≥ 0,

since all the coefficients are non-negative. �

Lemma 2 (L1-bound). For any n ∈ N, under the CFL condition (2.3) the approximate
solutions constructed by the LF scheme (2.1) satisfy

‖ρn‖1 =
∥∥∥ρ0
∥∥∥

1
,

where ‖ρn‖1 := ∆x
∑

j

∣∣∣ρnj ∣∣∣ denotes the L1-norm of ρ∆x(n∆t, ·).

Proof. Thanks to Lemma 1, we have∥∥∥ρn+1
∥∥∥

1
=∆x

∑
j

ρn+1
j = ∆x

∑
j

ρnj − λ∆x
∑
j

(
(FLF )n

j+ 1
2

− (FLF )n
j− 1

2

)
= ∆x

∑
j

ρnj = ‖ρn‖1.

�
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In the sequel, we use the compact notation ‖·‖ for ‖·‖∞.

Lemma 3 (L∞-bound / weak maximum principle). If ρ0
j ∈ [0, R] for all j ∈ Z and the

condition

α ≥ V
(

1 +R
∥∥f ′∥∥) and λ ≤ 1

α
(2.4)

holds, then the numerical solution given by the LF scheme (2.1) satisfies ρnj ∈ [0, R] for all
j ∈ Z, n ∈ N.

Proof. We can rewrite the scheme (2.1) in the form ρn+1
j = H(ρnj−1, ρ

n
j , ρ

n
j+1, ρ

n−h
j−1 , . . . , ρ

n−h
j+N ),

being

H(ρnj−1, ρ
n
j , ρ

n
j+1, ρ

n−h
j−1 , . . . , ρ

n−h
j+N ) := ρnj +

λα

2

(
ρnj+1 − 2ρnj + ρnj−1

)
− λ

2

(
F (ρnj+1)V n−h

j+1 − F (ρnj−1)V n−h
j−1

)
.

We suppose that ρnj ≤ R for j ∈ Z, and we define

Rnj = (ρnj−1, ρ
n
j , ρ

n
j+1, ρ

n−h
j−1 , . . . , ρ

n−h
j+N ),

Rnmax = (R,R,R, ρn−hj−1 , . . . , ρ
n−h
j+N ).

Since H(Rnmax) = R, by applying the mean value theorem between the points Rnj and Rnmax,
we get

ρn+1
j = H(Rnj ) = H(Rnmax) + 〈∇H(Rξ),Rnj −Rnmax〉

= R+ 〈∇H(Rξ),Rnj −Rnmax〉,

with Rξ = (1− ξ)Rnmax + ξRnj , for some ξ ∈ [0, 1]. It is now enough to observe that

∂H

∂ρnj−1

=
λ

2

(
α+ F ′(ρnj−1)V n−h

j−1

)
≥ 0, (2.5)

∂H

∂ρnj
= 1− λα ≥ 0, (2.6)

∂H

∂ρnj+1

=
λ

2

(
α− F ′(ρnj+1)V n−h

j+1

)
≥ 0, (2.7)

and that F ′(ρ) = f(ρ)+ρf ′(ρ). The inequalities (2.5) and (2.7) holds thanks to the hypothesis
on α, while (2.6) is due to the CFL condition. Thus, we conclude

〈∇H(Rξ),Rnj −Rnmax〉 =
N+5∑
k=1

∇H(Rξ)k(Rnj −Rnmax)k

=
∂H

∂ρnj−1

(Rξ)(ρnj−1 −R) +
∂H

∂ρnj
(Rξ)(ρnj −R) +

∂H

∂ρnj+1

(Rξ)(ρnj+1 −R) ≤ 0,

and therefore the statement. �
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Remark 3 (Properties of the HW scheme). It is easy to show that the properties which
we proved in Lemma 1 and Lemma 2 hold also for the HW scheme. Thus, under the CFL
condition λ ≤ 1/V the numerical solution given by (2.2) is such that

ρnj ≥ 0, for all j ∈ Z, n ∈ N.

Under the stronger condition

λ ≤ 1

V
(
1 +R‖f ′‖

) ,
then also the weak form of the maximum principle ρnj ∈ [0, R] holds, and this can be proven
exactly as in the proof of Lemma 3 by defining

H(ρnj−1, ρ
n
j , ρ

n
j+1, ρ

n−h
j , . . . , ρn−hj+N ) := ρnj − λ

(
ρnj f(ρnj+1)V n−h

j+1 − ρ
n
j−1f(ρnj )V n−h

j

)
,

and taking

Rnj = (ρnj−1, ρ
n
j , ρ

n
j+1, ρ

n−h
j , . . . , ρn−hj+N ),

Rnmax = (ρnj−1, R,R, ρ
n−h
j , . . . , ρn−hj+N ).

3 Compactness estimates

In [1, 7, 9] it is shown that, for non-local equations with no delay in time, the approximate
solutions constructed using the adapted LF numerical scheme have uniformly bounded total
variation. In the following, we derive original global BV estimates for our delayed model (1.1),
for both the LF and the HW schemes. We will use such estimates to prove the convergence
of the schemes in Section 4.

Assuming the stronger CFL condition

α ≥ V
(

1 +R
∥∥f ′∥∥) and λ ≤ 1

α+ V
(
1 +R‖f ′‖

) , (3.1)

we start with the BV estimate in space for the LF scheme. We remark that we intend
BV ⊂ L1.

Proposition 1 (Spatial BV-bound for the LF scheme). Let Assumption 1 and the CFL
condition (3.1) hold. Then, for any ρ0 ∈ BV(R; [0, R]), the numerical solution ρ∆x(t, ·) given
by the LF scheme (2.1) has bounded total variation for t ∈ [0, T ], uniformly in ∆x, for every
time horizon T > 0.

Proof. Let us set ∆n
j+ 1

2

:= ρnj+1 − ρnj . Using the mean value theorem, we obtain

∆n+1
j+ 1

2

= ∆n
j+ 1

2

+
λα

2

(
∆n
j+ 3

2

− 2∆n
j+ 1

2

+ ∆n
j− 1

2

)
− λ

2

[
F (ρnj+2)V n−h

j+2 − F (ρnj+1)V n−h
j+1 − F (ρnj )V n−h

j + F (ρnj−1)V n−h
j−1

]
= ∆n

j+ 1
2

+
λα

2

(
∆n
j+ 3

2

− 2∆n
j+ 1

2

+ ∆n
j− 1

2

)
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− λ

2

[
F ′(ρ̃n

j+ 3
2

)V n−h
j+2 ∆n

j+ 3
2

+ F (ρnj+1)
(
V n−h
j+2 − V

n−h
j+1

)]
+
λ

2

[
F ′(ρ̃n

j− 1
2

)V n−h
j ∆n

j− 1
2

+ F (ρnj−1)
(
V n−h
j − V n−h

j−1

)]
= (1− λα)∆n

j+ 1
2

+
λ

2

(
α− F ′(ρ̃n

j+ 3
2

)V n−h
j+2

)
∆n
j+ 3

2

+
λ

2

(
α+ F ′(ρ̃n

j− 1
2

)V n−h
j

)
∆n
j− 1

2

− λ

2

[
F (ρnj+1)

(
V n−h
j+1 − V

n−h
j

)
− F (ρnj−1)

(
V n−h
j − V n−h

j−1

)]
− λ

2
F (ρnj+1)

[(
V n−h
j+2 − V

n−h
j+1

)
−
(
V n−h
j+1 − V

n−h
j

)]
= (1− λα)∆n

j+ 1
2

+
λ

2

(
α− F ′(ρ̃n

j+ 3
2

)V n−h
j+2

)
∆n
j+ 3

2

+
λ

2

(
α+ F ′(ρ̃n

j− 1
2

)V n−h
j

)
∆n
j− 1

2

− λ

2

(
F ′(ρ̃n

j+ 1
2

)∆n
j+ 1

2

+ F ′(ρ̃n
j− 1

2

)∆n
j− 1

2

)(
V n−h
j − V n−h

j−1

)
− λ

2
F (ρnj+1)

[(
V n−h
j+1 − V

n−h
j

)
−
(
V n−h
j − V n−h

j−1

)]
− λ

2
F (ρnj+1)

[(
V n−h
j+2 − V

n−h
j+1

)
−
(
V n−h
j+1 − V

n−h
j

)]
=

[
1− λα− λ

2
F ′(ρ̃n

j+ 1
2

)
(
V n−h
j − V n−h

j−1

)]
∆n
j+ 1

2

+
λ

2

(
α− F ′(ρ̃n

j+ 3
2

)V n−h
j+2

)
∆n
j+ 3

2

+
λ

2

[
α+ F ′(ρ̃n

j− 1
2

)V n−h
j − F ′(ρ̃n

j− 1
2

)
(
V n−h
j − V n−h

j−1

)]
∆n
j− 1

2

− λ

2
F (ρnj+1)

[(
V n−h
j+1 − V

n−h
j

)
−
(
V n−h
j − V n−h

j−1

)]
(3.2)

− λ

2
F (ρnj+1)

[(
V n−h
j+2 − V

n−h
j+1

)
−
(
V n−h
j+1 − V

n−h
j

)]
︸ ︷︷ ︸

=(∗)

, (3.3)

with ρ̃n
j+ 1

2

between ρnj and ρnj+1 for all j ∈ Z. The term (∗) in (3.3) can be estimated as

(∗) =
(
V n−h
j+2 − V

n−h
j+1

)
−
(
V n−h
j+1 − V

n−h
j

)
= v′(ξj+ 3

2
)∆x

+∞∑
k=0

ωkρn−hj+k+2 −
+∞∑
k=0

ωkρn−hj+k+1


− v′(ξj+ 1

2
)∆x

+∞∑
k=0

ωkρn−hj+k+1 −
+∞∑
k=0

ωkρn−hj+k


= v′(ξj+ 3

2
)∆x

+∞∑
k=1

(ωk−1 − ωk)ρn−hj+k+1 − ω
0ρn−hj+1


8



− v′(ξj+ 1
2
)∆x

+∞∑
k=1

(ωk−1 − ωk)ρn−hj+k − ω
0ρn−hj


=

[
v′(ξj+ 3

2
)− v′(ξj+ 1

2
)
]

∆x

+∞∑
k=1

(ωk−1 − ωk)ρn−hj+k+1 − ω
0ρn−hj+1


+ v′(ξj+ 1

2
)∆x

+∞∑
k=1

(ωk−1 − ωk)
(
ρn−hj+k+1 − ρ

n−h
j+k

)
− ω0

(
ρn−hj+1 − ρ

n−h
j

) ,

with ξj+ 3
2

between ∆x
∑+∞

k=0 ω
kρn−hj+k+2 and ∆x

∑+∞
k=0 ω

kρn−hj+k+1 and ξj+ 1
2

between ∆x
∑+∞

k=0 ω
kρn−hj+k+1

and ∆x
∑+∞

k=0 ω
kρn−hj+k . Thus, we can write

(∗) = v′′(ξ̃j+1)
[
ξj+ 3

2
− ξj+ 1

2

]
∆x

+∞∑
k=1

ωk−1∆n−h
j+k+ 1

2

+

+ v′(ξj+ 1
2
)∆x

+∞∑
k=1

(ωk−1 − ωk)∆n−h
j+k+ 1

2

− ω0∆n−h
j+ 1

2

 ,

where ξ̃j+1 is between ξj+ 3
2

and ξj+ 1
2
. For some ϑ, µ ∈ [0, 1], we compute

ξj+ 3
2
− ξj+ 1

2
= ϑ∆x

+∞∑
k=0

ωkρn−hj+k+2 + (1− ϑ)∆x

+∞∑
k=0

ωkρn−hj+k+1

− µ∆x
+∞∑
k=0

ωkρn−hj+k+1 − (1− µ)∆x
+∞∑
k=0

ωkρn−hj+k

= ∆x
+∞∑
k=1

[
ϑωk−1 + (1− ϑ)ωk − µωk − (1− µ)ωk+1

]
ρn−hj+k+1

+ ∆x

[
(1− ϑ)ω0ρn−hj+1 − µω

0ρn−hj+1 − (1− µ)
(
ω0ρn−hj + ω1ρn−hj+1

)]
.

Taking the absolute values and using Lemma 3, we get

∣∣∣ξj+ 3
2
− ξj+ 1

2

∣∣∣ ≤ ∆x

+∞∑
k=1

[
ϑωk−1 + (1− ϑ)ωk − µωk − (1− µ)ωk+1

]
+ 4ω0

R
≤ ∆x

+∞∑
k=1

[ωk−1 − ωk+1] + 4ω0

R ≤ 6∆x‖ω‖R, (3.4)

where we used the monotonicity of ω to get ‖ω‖ = ω0 and

ϑωk−1 + (1− ϑ)ωk − µωk − (1− µ)ωk+1 ≥ 0.

Therefore, we obtain the bound∑
j

(|(3.2)|+ |(3.3)|) ≤ ∆tH
∑
j

∣∣∣∣∆n−h
j+ 1

2

∣∣∣∣, (3.5)

9



for H = R‖ω‖
(

6
∥∥v′′∥∥J0R+ 2

∥∥v′∥∥). Thus, taking the absolute values and summing on j ∈ Z
in the bound of ∆n+1

j+ 1
2

at the beginning of the proof, we get

∑
j

∣∣∣∣∆n+1
j+ 1

2

∣∣∣∣ ≤ ∑
j

[
1− λ

(
α+

1

2
F ′(ρ̃n

j+ 1
2

)
(
V n−h
j − V n−h

j−1

))] ∣∣∣∣∆n
j+ 1

2

∣∣∣∣
+
λ

2

∑
j

[
α− F ′(ρ̃n

j+ 3
2

)V n−h
j+2

] ∣∣∣∣∆n
j+ 3

2

∣∣∣∣
+
λ

2

∑
j

[
α+ F ′(ρ̃n

j− 1
2

)V n−h
j − F ′(ρ̃n

j− 1
2

)
(
V n−h
j − V n−h

j−1

)] ∣∣∣∣∆n
j− 1

2

∣∣∣∣
+ ∆tH

∑
j

∣∣∣∣∆n−h
j+ 1

2

∣∣∣∣,
where all the coefficients are positive thanks to the CFL condition and the hypothesis on the
coefficient α. Due to some cancellations, this becomes∑

j

∣∣∣∣∆n+1
j+ 1

2

∣∣∣∣ ≤ ∑
j

[
1 +

λ

2
F ′(ρ̃n

j+ 1
2

)
(
V n−h
j−1 − V

n−h
j

)] ∣∣∣∣∆n
j+ 1

2

∣∣∣∣
+
λ

2

∑
j

F ′(ρ̃n
j+ 1

2

)
(
V n−h
j − V n−h

j+1

) ∣∣∣∣∆n
j+ 1

2

∣∣∣∣+ ∆tH
∑
j

∣∣∣∣∆n−h
j+ 1

2

∣∣∣∣
≤
∑
j

[
1 +

λ

2
F ′(ρ̃n

j+ 1
2

)
(
V n−h
j−1 − V

n−h
j+1

)] ∣∣∣∣∆n
j+ 1

2

∣∣∣∣+ ∆tH
∑
j

∣∣∣∣∆n−h
j+ 1

2

∣∣∣∣.
Using the mean value theorem, the monotonicity of ω and Lemma 3, one can bound∣∣∣V n−h

j−1 − V
n−h
j+1

∣∣∣ ≤ ∣∣∣V n−h
j−1 − V

n−h
j

∣∣∣+
∣∣∣V n−h
j − V n−h

j+1

∣∣∣
≤

∥∥v′∥∥∆x

∣∣∣∣∣∣ω0ρn−hj−1 +
+∞∑
k=1

(ωk − ωk−1)ρn−hj+k−1

∣∣∣∣∣∣
+
∥∥v′∥∥∆x

∣∣∣∣∣∣ω0ρn−hj +
+∞∑
k=1

(ωk − ωk−1)ρn−hj+k

∣∣∣∣∣∣ (3.6)

≤ 4
∥∥v′∥∥‖ω‖R∆x. (3.7)

It follows that ∑
j

∣∣∣∣∆n+1
j+ 1

2

∣∣∣∣ ≤ (1 + ∆tG)
∑
j

∣∣∣∣∆n
j+ 1

2

∣∣∣∣+ ∆tH
∑
j

∣∣∣∣∆n−h
j+ 1

2

∣∣∣∣, (3.8)

being G = 2
∥∥v′∥∥‖ω‖R(1 +R

∥∥f ′∥∥).

Setting TVn :=
∑

j

∣∣∣∣∆n
j+ 1

2

∣∣∣∣ and observing that TV−h = · · · = TV−1 = TV0, from (3.8) we

get

TV1 ≤ (1 + ∆tG) TV0 + ∆tHTV0 ,

10



TV2 ≤ (1 + ∆tG) TV1 + ∆tHTV0

≤ (1 + ∆tG)2 TV0 + ∆tH(1 + (1 + ∆tG)) TV0 ,

...

TVh ≤ (1 + ∆tG)h TV0 + ∆tHTV0
h−1∑
k=0

(1 + ∆tG)k

≤ (1 + ∆tG)h TV0 +
[
(1 + ∆tM)h − 1

]
TV0 ,

with

M := max{H,G} = 2 ‖ω‖R
(∥∥v′∥∥+Rmax

{
3
∥∥v′′∥∥J0,

∥∥v′∥∥∥∥f ′∥∥}) . (3.9)

Recalling that h = τ/∆t and passing to the limit as ∆t→ 0, we obtain

TV
(
ρ∆x(k∆t, ·)

)
≤
(
eGτ + eMτ − 1

)
TV (ρ0) ≤

(
2eMτ − 1

)
TV (ρ0), k = 0, . . . , h.

Iterating the above argument for k = (n− 1)h+ 1, . . . , nh, we get

TV
(
ρ∆x(k∆t, ·)

)
≤
(

2eMτ − 1
)n

TV (ρ0),

and, in general, setting T = t+ bT/τcτ

TV
(
ρ∆x(T, ·)

)
≤
(

2eMt − 1
)(

2eMτ − 1
)bT/τc

TV (ρ0). (3.10)

Observe that

lim
τ→0

(
2eM(T−bT/τcτ) − 1

)(
2eMτ − 1

)bT/τc
= e2MT ,

thus we recover the estimate for the non-delayed model [7, Proposition 2]. �

Remark 4 (Dependence on the parameters). The bound (3.10) clearly indicates that the big-
ger the productMτ is, the faster the total variation increases. We remark that the hypotheses
on the convolution kernel imply that the value of ‖ω‖ is linked to the look-ahead distance L.
Indeed, if ω ∈ C1([0, 1];R+), then we can choose a re-scaled kernel function such as

ωL(x) =
1

L
ω

(
x

L

)
.

Thus, by (3.9), we deduce that the positive constant M is dimensionally the inverse of time
and it is such that M∼ 1/L.

Now, we assume the CFL condition

λ ≤ 1

V
(
1 +R‖f ′‖

) , (3.11)

and, using the same notation as above, we prove that similar BV estimates hold for the HW
scheme.
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Proposition 2 (Spatial BV-bound for the HW scheme). Let Assumption 1 and the CFL
condition (3.11) hold. Then, for any ρ0 ∈ BV(R; [0, R]), the numerical solution ρ∆x(t, ·)
given by the HW scheme (2.2) has bounded total variation for t ∈ [0, T ], uniformly in ∆x, for
every time horizon T > 0.

Proof. Our aim is to prove that the sequence TVn =
∑

j

∣∣∣∣∆n
j+ 1

2

∣∣∣∣, given by (2.2), satisfies

the relation
TVn+1 ≤ (1 + ∆tG) TVn + ∆tHTVn−h

because, exactly as we did for the sequence (3.8) to obtain the bound (3.10), from this one
can prove that for any T = t+ bT/τcτ it holds

TV
(
ρ∆x(T, ·)

)
≤
(

2eMt − 1
)(

2eMτ − 1
)bT/τc

TV (ρ0).

Thus, from (2.2) and the mean value theorem we get

∆n+1
j+ 1

2

= ∆n
j+ 1

2

− λ
(
ρnj+1f(ρnj+2)V n−h

j+2 − 2ρnj f(ρnj+1)V n−h
j+1 + ρnj−1f(ρnj )V n−h

j

)
= ∆n

j+ 1
2

− λ
[(
ρnj+1f(ρnj+2)− ρnj f(ρnj+1)

)
V n−h
j+2 −

(
ρnj f(ρnj+1)− ρnj−1f(ρnj )

)
V n−h
j+1

]
− λ

[
ρnj f(ρnj+1)

(
V n−h
j+2 − V

n−h
j+1

)
− ρnj−1f(ρnj )

(
V n−h
j+1 − V

n−h
j

)]
= ∆n

j+ 1
2

− λ
[(
ρnj+1f(ρnj+2)− ρnj f(ρnj+1)

)
V n−h
j+2 −

(
ρnj f(ρnj+1)− ρnj−1f(ρnj )

)
V n−h
j+1

]
− λ

(
ρnj f(ρnj+1)− ρnj−1f(ρnj )

)(
V n−h
j+2 − V

n−h
j+1

)
− λρnj−1f(ρnj )

[(
V n−h
j+2 − V

n−h
j+1

)
−
(
V n−h
j+1 − V

n−h
j

)]
= ∆n

j+ 1
2

− λ
(
f(ρnj+2)∆n

j+ 1
2

+ ρnj f
′(ρ̃n

j+ 3
2

)∆n
j+ 3

2

)
V n−h
j+2

+ λ

(
f(ρnj+1)∆n

j− 1
2

+ ρnj−1f
′(ρ̃n

j+ 1
2

)∆n
j+ 1

2

)
V n−h
j+1

− λ
(
f(ρnj+1)∆n

j− 1
2

+ ρnj−1f
′(ρ̃n

j+ 1
2

)∆n
j+ 1

2

)(
V n−h
j+2 − V

n−h
j+1

)
− λρnj−1f(ρnj )

[(
V n−h
j+2 − V

n−h
j+1

)
−
(
V n−h
j+1 − V

n−h
j

)]
=

[
1− λ

(
f(ρnj+2)V n−h

j+2 − ρ
n
j−1f

′(ρ̃n
j+ 1

2

)V n−h
j+1

)]
∆n
j+ 1

2

(3.12)

− λρnj f ′(ρ̃nj+ 3
2

)V n−h
j+2 ∆n

j+ 3
2

+ λf(ρnj+1)V n−h
j+1 ∆n

j− 1
2

(3.13)
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− λ
(
f(ρnj+1)∆n

j− 1
2

+ ρnj−1f
′(ρ̃n

j+ 1
2

)∆n
j+ 1

2

)(
V n−h
j+2 − V

n−h
j+1

)
(3.14)

− λρnj−1f(ρnj )

[(
V n−h
j+2 − V

n−h
j+1

)
−
(
V n−h
j+1 − V

n−h
j

)]
. (3.15)

Thanks to the CFL condition (3.11) and some cancellations, we have∑
j

(∣∣(3.12)
∣∣+
∣∣(3.13)

∣∣) ≤ TVn .

Moreover, using Remark 3, as in (3.5) one can show that∑
j

∣∣(3.15)
∣∣ ≤ ∆tHTVn−h .

To conclude the proof, recalling that as in (3.7) we can prove for every j ∈ Z the bound

∣∣∣V n−h
j+1 − V

n−h
j

∣∣∣ ≤ ∥∥v′∥∥∆x

∣∣∣∣∣∣
+∞∑
k=1

(ωk−1 − ωk)ρn−hj+k − ω
0ρn−hj

∣∣∣∣∣∣ (3.16)

≤ 2
∥∥v′∥∥‖ω‖R∆x,

we write∑
j

∣∣(3.14)
∣∣ ≤ λ∑

j

∣∣∣V n−h
j+3 − V

n−h
j+2

∣∣∣∣∣∣∣∆n
j+ 1

2

∣∣∣∣+ λR
∥∥f ′∥∥∑

j

∣∣∣V n−h
j+2 − V

n−h
j+1

∣∣∣∣∣∣∣∆n
j+ 1

2

∣∣∣∣ ≤ ∆tG TVn .

�

To prove an estimate for the discrete total variation in space and time, we need the
following result.

Lemma 4 (L1 Lipschitz continuity in time). Let Assumption 1 and the CFL condition (3.1)
hold. Then, for any ρ0 ∈ BV(R; [0, R]), the approximate solution constructed via the LF
scheme (2.1) satisfies ∥∥∥ρ∆x(T, ·)− ρ∆x(T − t, ·)

∥∥∥
1
≤ K t (3.17)

for any T > 0 and t ∈ [0, T ], with K given by (3.21).

Proof. Let NT ∈ N be such that NT∆t < T ≤ (NT + 1)∆t. We recall from (2.1) that for
every j ∈ Z and n = 0, . . . , NT − 1

ρn+1
j − ρnj =

λα

2

(
ρnj+1 − 2ρnj + ρnj−1

)
− λ

2

[
F (ρnj+1)− F (ρnj−1)

]
V n−h
j+1 −

λ

2
F (ρnj−1)

(
V n−h
j+1 − V

n−h
j−1

)
=
λα

2

(
ρnj+1 − ρnj

)
− λα

2

(
ρnj − ρnj−1

)
− λ

2

[
F ′(ρ̃n

j+ 1
2

)
(
ρnj+1 − ρnj

)
+ F ′(ρ̃n

j− 1
2

)
(
ρnj − ρnj−1

)]
V n−h
j+1

13



− λ

2
F (ρnj−1)

(
V n−h
j+1 − V

n−h
j−1

)
=
λ

2

[
α− F ′(ρ̃n

j+ 1
2

)V n−h
j+1

](
ρnj+1 − ρnj

)
− λ

2

[
α+ F ′(ρ̃n

j− 1
2

)V n−h
j+1

](
ρnj − ρnj−1

)
+
λ

2
F (ρnj−1)

(
V n−h
j−1 − V

n−h
j+1

)
, (3.18)

with again ρ̃n
j+ 1

2

between ρnj and ρnj+1, and ρ̃n
j− 1

2

between ρnj−1 and ρnj . Thus, from (3.6), we

get ∣∣∣ρn+1
j − ρnj

∣∣∣
≤ λ

2

[
α+

(
1 +R

∥∥f ′∥∥)V ](∣∣∣ρnj+1 − ρnj
∣∣∣+
∣∣∣ρnj − ρnj−1

∣∣∣)

+
λ

2
R
∥∥v′∥∥∆x

ω0

(∣∣∣ρn−hj−1

∣∣∣+
∣∣∣ρn−hj

∣∣∣)+
+∞∑
k=1

(ωk−1 − ωk)
(∣∣∣ρn−hj+k−1

∣∣∣+
∣∣∣ρn−hj+k

∣∣∣)
 . (3.19)

Now, we fix t = m∆t, with m ≤ NT . Using the last inequality, Lemma 2 and Proposition 1,
we obtain∑

j

∆x
∣∣∣ρNT
j − ρNT−m

j

∣∣∣ ≤ NT−1∑
n=NT−m

∑
j

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣
≤
[
α+

(
1 +R

∥∥f ′∥∥)V ] NT−1∑
n=NT−m

∑
j

∆t
∣∣∣ρnj+1 − ρnj

∣∣∣
+R

∥∥v′∥∥ω0
NT−1∑

n=NT−m

∑
j

∆t∆x
∣∣∣ρn−hj

∣∣∣
+R

∥∥v′∥∥ N∑
k=1

(ωk−1 − ωk)
NT−1∑

n=NT−m

∑
j

∆t∆x
∣∣∣ρn−hj+k

∣∣∣
≤
[
α+

(
1 +R

∥∥f ′∥∥)V ] NT−1∑
n=NT−m

∆t
∑
j

∣∣∣ρnj+1 − ρnj
∣∣∣

+ 2R
∥∥v′∥∥ω0

NT−1∑
n=NT−m

∆t
∑
j

∆x
∣∣∣ρn−hj

∣∣∣,
≤ t

[
α+

(
1 +R

∥∥f ′∥∥)V ] sup
s∈[0,T ]

TV (ρ∆x(s, ·))

+ 2tR
∥∥v′∥∥‖ω‖ sup

s∈[0,T ]

∥∥∥ρ∆x(s, ·)
∥∥∥

1
≤ Kt, (3.20)

with

K :=

[
α+

(
1 +R

∥∥f ′∥∥)V ]C(T, ‖ω‖, τ) TV (ρ0) + 2R‖ω‖
∥∥v′∥∥∥∥∥ρ0

∥∥∥
1
, (3.21)

where the positive constant

C(T, ‖ω‖, τ) := sup
s∈[0,T ]

(
2eM(s−bs/τcτ) − 1

)(
2eMτ − 1

)bs/τc
14



=
(

2eM(T−bT/τcτ) − 1
)(

2eMτ − 1
)bT/τc

(3.22)

is given by (3.10). �

Remark 5. The L1 Lipschitz continuity in time holds also for the HW scheme under As-
sumption 1 and the CFL condition (3.11). This follows from the fact that using (2.2) we
get

ρn+1
j − ρnj =− λ

(
ρnj f(ρnj+1)V n−h

j+1 − ρ
n
j−1f(ρnj )V n−h

j

)
=− λ

[
ρnj f(ρnj+1)− ρnj−1f(ρnj )

]
V n−h
j+1 − λρ

n
j−1f(ρnj )

(
V n−h
j+1 − V

n−h
j

)
=− λf(ρnj+1)V n−h

j+1

(
ρnj − ρnj−1

)
− λρnj−1f

′(ρ̃n
j+ 1

2

)V n−h
j+1

(
ρnj+1 − ρnj

)
− λρnj−1f(ρnj )

(
V n−h
j+1 − V

n−h
j

)
,

with ρ̃n
j+ 1

2

defined as before. Thus, similarly to (3.20), we obtain∑
j

∆x
∣∣∣ρNT
j − ρNT−m

j

∣∣∣ ≤ Kt,
with

K := V
(

1 +R
∥∥f ′∥∥)C(T, ‖ω‖, τ) TV (ρ0) + 2R‖ω‖

∥∥v′∥∥∥∥∥ρ0
∥∥∥

1
, (3.23)

and C(T, ‖ω‖, τ) defined as in (3.22).

We can now provide an estimate for the discrete total variation in space and time. We
give the following proof using the LF scheme, but the result can be identically proven for the
HW scheme under the CFL condition (3.11) and for K given by (3.23).

Proposition 3 (BV estimates in space and time). Let Assumption 1 and the CFL condition
(3.1) hold. Then, for any ρ0 ∈ BV(R; [0, R]), the numerical solution ρ∆x has bounded total
variation on [0, T ]× R, uniformly in ∆x and ∆t, for any time horizon T > 0.

Proof. If T ≤ ∆t, then TV(ρ∆x) ≤ T ·TV(ρ0). For T such that NT∆t < T ≤ (NT + 1)∆t
with NT ∈ N, we have

TV (ρ∆x) =

NT−1∑
n=0

∑
j∈Z

∆t
∣∣∣ρnj+1 − ρnj

∣∣∣+ (T −NT∆t)
∑
j∈Z

∣∣∣ρNT
j+1 − ρ

NT
j

∣∣∣
+

NT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣.
The first two terms together are bounded by T supt∈[0,T ] TV (ρ∆x(t, ·)). The result follows
from Lemma 4 since, as in (3.20), one can bound the last term as

NT−1∑
n=0

∑
j

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣ ≤ KT.
�

15



4 Well-posedness of entropy weak solutions

In order to prove the existence of an entropy solution, following [7] we derive a discrete entropy
inequality for the approximate solution generated by the LF scheme (2.1), which is used to
prove that the limit of the LF approximations is indeed an entropy solution in the sense of
Definition 1. Let us denote

Gj+ 1
2
(u,w) =

1

2
F (u)V n−h

j +
1

2
F (w)V n−h

j+1 −
α

2
(w − u),

F κ
j+ 1

2

(u,w) = Gj+ 1
2
(u ∧ κ,w ∧ κ)−Gj+ 1

2
(u ∨ κ,w ∨ κ),

=
1

2
sgn(u− κ)

(
F (u)− F (κ)

)
V n−h
j

+
1

2
sgn(w − κ)

(
F (w)− F (κ)

)
V n−h
j+1

+
α

2

(
|w − κ| − |u− κ|

)
with a ∧ b = max{a, b} and a ∨ b = min{a, b}.

Proposition 4 (Discrete entropy inequality). Given Assumption 1, let ρnj , j ∈ Z, n ∈
{−h, . . . , 0} ∪ N, be given by (2.1). Then, if the CFL condition (3.1) is satisfied, we have∣∣∣ρn+1

j − κ
∣∣∣− ∣∣∣ρnj − κ∣∣∣+ λ

(
F κ
j+ 1

2

(ρnj , ρ
n
j+1)− F κ

j− 1
2

(ρnj−1, ρ
n
j )

)
+
λ

2
sgn(ρn+1

j − κ)F (κ)
(
V n−h
j+1 − V

n−h
j−1

)
≤ 0, (4.1)

for all j ∈ Z, n ∈ N0, and κ ∈ R.

Proof. The proof follows closely [7, Proposition 3.4]. We detail it below for sake of com-
pleteness. We set

H̃j(u,w, z) = w − λ
(
Gj+ 1

2
(w, z)−Gj− 1

2
(u,w)

)
,

that is monotone non-decreasing in all its variables, since the derivatives are

∂H̃j

∂u
=
λ

2

(
α+ F ′(u)V n−h

j−1

)
,

∂H̃j

∂w
= 1− λα,

∂H̃j

∂z
=
λ

2

(
α− F ′(z)V n−h

j+1

)
,

and they are all non-negative because of the CFL condition. We have the identity

H̃j(ρ
n
j−1 ∧ κ, ρnj ∧ κ, ρnj+1 ∧ κ)− H̃j(ρ

n
j−1 ∨ κ, ρnj ∨ κ, ρnj+1 ∨ κ)

=
∣∣∣ρnj − κ∣∣∣− λ(F κj+ 1

2

(ρnj , ρ
n
j+1)− F κ

j− 1
2

(ρnj−1, ρ
n
j )
)
.

By monotonicity and (2.1) we get

H̃j(ρ
n
j−1 ∧ κ, ρnj ∧ κ, ρnj+1 ∧ κ)− H̃j(ρ

n
j−1 ∨ κ, ρnj ∨ κ, ρnj+1 ∨ κ)
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= H̃j(ρ
n
j−1, ρ

n
j , ρ

n
j+1) ∧ H̃j(κ, κ, κ)− H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1) ∨ H̃j(κ, κ, κ)

=
∣∣∣H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

∣∣∣
= sgn

(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

)
·
(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

)
= sgn

(
ρn+1
j − κ+

λ

2
F (κ)

(
V n−h
j+1 − V

n−h
j−1

))
·
(
ρn+1
j − κ+

λ

2
F (κ)

(
V n−h
j+1 − V

n−h
j−1

))
≥ sgn(ρn+1

j − κ) ·
(
ρn+1
j − κ+

λ

2
F (κ)

(
V n−h
j+1 − V

n−h
j−1

))
=
∣∣∣ρn+1
j − κ

∣∣∣+
λ

2
sgn(ρn+1

j − κ)F (κ)
(
V n−h
j+1 − V

n−h
j−1

)
,

which gives (4.1). �

Given the entropy inequality and the BV estimates, we are able to propose a proof of
existence of solutions, following the steps of [8, Theorem 1.2]. The following result holds for
every time horizon T > 0.

Theorem 1 (Existence). Given Assumption 1, for any ρ0 ∈ BV(R; [0, R]) and T > 0 the
model (1.1)-(1.3) admits an entropy weak solution ρ in the sense of Definition 1, such that

ρ(t, x) ∈ [0, R] for a.e. x ∈ R, t ∈ [0, T ], (4.2)∥∥ρ(t, ·)
∥∥

1
= ‖ρ0‖1 for t ∈ [0, T ], (4.3)

TV (ρ(t, ·)) ≤
(

2eM(t−bt/τcτ) − 1
)(

2eMτ − 1
)bt/τc

TV (ρ0) for t ∈ [0, T ], (4.4)∥∥ρ(t1, ·)− ρ(t2, ·)
∥∥

1
≤ K|t1 − t2| for t1, t2 ∈ [0, T ], (4.5)

for constants M and K given in (3.9) and (3.21), respectively.

Proof. By Lemma 3 and Remark 3, we know that the the approximate solutions ρ∆x

constructed via the LF or HW schemes are uniformly bounded on [0, T ] × R. Moreover,
Proposition 3 guarantees that the numerical solutions also have uniformly bounded total
variation. Thus, from Helly’s Theorem we get that there exists a subsequence of the numerical
approximations, still denoted by ρ∆x, that converges in the L1

loc-norm to some ρ ∈ BV([0, T ]×
R; [0, R]) as ∆x ↘ 0. In the following, we apply the classical procedure of Lax-Wendroff
theorem to prove that the limit function ρ is an entropy weak solution of (1.1)-(1.3) in the
sense of Definition 1. Let ϕ ∈ C1

c([0, T [×R;R+) be a test function, and let us assume that
the grid for the approximation is such that NT∆t < T ≤ (NT + 1)∆t. By multiplying (4.1)
by ϕnj := ϕ(tn, xj) and summing on n = 0, . . . NT and j ∈ Z, we get

NT−1∑
n=0

∑
j

ϕnj

(∣∣∣ρn+1
j − κ

∣∣∣− ∣∣∣ρnj − κ∣∣∣)+ λ

NT−1∑
n=0

∑
j

ϕnj

(
F κ
j+ 1

2

(ρnj , ρ
n
j+1)− F κ

j− 1
2

(ρnj−1, ρ
n
j )

)

+ λ

NT−1∑
n=0

∑
j

ϕnj sgn(ρn+1
j − κ)F (κ)

V n−h
j+1 − V

n−h
j−1

2
≤ 0.

Then, summing by parts, we obtain

0 ≤
∑
j

ϕ0
j

∣∣∣ρ0
j − κ

∣∣∣+

NT−1∑
n=1

∑
j

(ϕnj − ϕn−1
j )

∣∣∣ρnj − κ∣∣∣
17



+ λ

NT−1∑
n=0

∑
j

(ϕnj+1 − ϕnj )F κ
j+ 1

2

(ρnj , ρ
n
j+1)− λ

NT−1∑
n=0

∑
j

sgn(ρn+1
j − κ)F (κ)

V n−h
j+1 − V

n−h
j−1

2
ϕnj

and multiplying by ∆x

0 ≤ ∆x
∑
j

ϕ0
j

∣∣∣ρ0
j − κ

∣∣∣+ ∆x∆t

NT−1∑
n=1

∑
j

ϕnj − ϕ
n−1
j

∆t

∣∣∣ρnj − κ∣∣∣ (4.6)

+ ∆x∆t

NT−1∑
n=0

∑
j

ϕnj+1 − ϕnj
∆x

[
F κ
j+ 1

2

(ρnj , ρ
n
j+1)− sgn(ρnj − κ)

(
F (ρnj )− F (κ)

)
V n−h
j

]
(4.7)

+ ∆x∆t

NT−1∑
n=0

∑
j

ϕnj+1 − ϕnj
∆x

sgn(ρnj − κ)
(
F (ρnj )− F (κ)

)
V n−h
j (4.8)

−∆x∆t

NT−1∑
n=0

∑
j

sgn(ρnj − κ)F (κ)
V n−h
j+1 − V

n−h
j−1

2∆x
ϕnj (4.9)

− 1

2
∆tF (κ)

NT−1∑
n=0

∑
j

[
sgn(ρn+1

j − κ)− sgn(ρnj − κ)
] (
V n−h
j+1 − V

n−h
j−1

)
ϕnj . (4.10)

Clearly, we have

(4.6)→
∫
R

∣∣∣ρ0(x)− κ
∣∣∣ϕ(0, x) dx+

∫ T

0

∫
R
|ρ− κ|∂tϕdx dt ,

(4.8)→
∫ T

0

∫
R

sgn(ρ− κ)
(
F (ρ)− F (κ)

)
v((ρ ∗ ω)(t− τ, x))∂xϕdx dt ,

and

(4.9)→ −
∫ T

0

∫
R

sgn(ρ− κ)F (κ)∂xv((ρ ∗ ω)(t− τ, x))ϕdx dt ,

as ∆x→ 0. Next, we need to prove that both (4.7) and (4.10) converge to zero. Let us first
focus on (4.7). Since from (3.7) it follows that V n−h

j+1 − V
n−h
j = O(∆x), and since the mean

value theorem guarantees the bound

1

2

∣∣∣∣sgn(ρnj+1 − κ)
(
F (ρnj+1)− F (κ)

)∣∣∣∣ ≤ 1

2

∥∥F ′∥∥∣∣∣ρnj+1 − κ
∣∣∣ ≤ 1

2

(
1 +

(
R ∧ |κ|

) ∥∥f ′∥∥) (R+ |κ|),

then we get

F κ
j+ 1

2

(ρnj ,ρ
n
j+1)− sgn(ρnj − κ)

(
F (ρnj )− F (κ)

)
V n−h
j =

=
1

2
sgn(ρnj − κ)

(
F (ρnj )− F (κ)

)
V n−h
j +

1

2
sgn(ρnj+1 − κ)

(
F (ρnj+1)− F (κ)

)
V n−h
j

+
1

2
sgn(ρnj+1 − κ)

(
F (ρnj+1)− F (κ)

)(
V n−h
j+1 − V

n−h
j

)
− sgn(ρnj − κ)

(
F (ρnj )− F (κ)

)
V n−h
j

18



+
α

2

(∣∣∣ρnj+1 − κ
∣∣∣− ∣∣∣ρnj − κ∣∣∣)

=
1

2
sgn(ρnj+1 − κ)

(
F (ρnj+1)− F (κ)

)
V n−h
j − 1

2
sgn(ρnj − κ)

(
F (ρnj )− F (κ)

)
V n−h
j

+
α

2

(∣∣∣ρnj+1 − κ
∣∣∣− ∣∣∣ρnj − κ∣∣∣)+O(∆x),

and this implies∣∣∣∣F κj+ 1
2

(ρnj , ρ
n
j+1)− sgn(ρnj − κ)

(
F (ρnj )− F (κ)

)
V n−h
j

∣∣∣∣
≤ 1

2
V

∣∣∣∣sgn(ρnj+1 − κ)
(
F (ρnj+1)− F (κ)

)
− sgn(ρnj − κ)

(
F (ρnj )− F (κ)

)∣∣∣∣
(4.11)

+
α

2

∣∣∣ρnj+1 − ρnj
∣∣∣+O(∆x)

≤ 1

2

[
α+

(
1 +

(
R ∧ |κ|

) ∥∥f ′∥∥)V ] ∣∣∣ρnj+1 − ρnj
∣∣∣+O(∆x),

where we used the following remarks:

• if sgn(ρnj+1 − κ) = sgn(ρnj+1 − κ), then

(4.11) =
1

2
V
∣∣∣F (ρnj+1)− F (ρnj )

∣∣∣ ≤ 1

2
V
(

1 +
(
R ∧ |κ|

) ∥∥f ′∥∥) ∣∣∣ρnj+1 − ρnj
∣∣∣;

• if sgn(ρnj+1 − κ) = − sgn(ρnj − κ), then

(4.11) ≤ 1

2
V
∣∣∣F (ρnj+1)− F (κ) + F (ρnj )− F (κ)

∣∣∣
≤ 1

2
V
∥∥F ′∥∥(∣∣∣ρnj+1 − κ

∣∣∣+
∣∣∣ρnj − κ∣∣∣)

≤ 1

2
V
(

1 +
(
R ∧ |κ|

) ∥∥f ′∥∥) ∣∣∣ρnj+1 − ρnj
∣∣∣.

We set X > 0 such that ϕ(t, x) = 0 for |x| > X and a couple of indexes j0, j1 ∈ Z such that
ϕnj = 0 if j is not in [j0, j1]. Thus, we conclude

|(4.7)| ≤ ∆x∆t‖∂xϕ‖
NT−1∑
n=0

j1∑
j=j0

∣∣∣∣F κj+ 1
2

(ρnj , ρ
n
j+1)− sgn(ρnj − κ)

(
F (ρnj )− F (κ)

)
V n−h
j

∣∣∣∣
≤ 1

2
∆x∆t‖∂xϕ‖

[
α+

(
1 + (R ∧ |κ|)

∥∥f ′∥∥)V ]NT−1∑
n=0

j1∑
j=j0

∣∣∣ρnj+1 − ρnj
∣∣∣+O(∆x)

= O(∆x),

which follows from the bound

∆t

NT−1∑
n=0

j1∑
j=j0

∣∣∣ρnj+1 − ρnj
∣∣∣ ≤ T sup

t∈[0,T ]
TV (ρ∆x(t, ·)) ≤ TC(T, ‖ω‖, τ) TV (ρ0),
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for C(T, ‖ω‖, τ) defined as in (3.22). Finally, we focus on (4.10), following [2]. Summing by
parts again yields

(4.10) =
1

2
∆tF (κ)

NT−1∑
n=1

∑
j

sgn(ρnj − κ)

[(
V n−h
j+1 − V

n−h
j−1

)
ϕnj −

(
V n−h−1
j+1 − V n−h−1

j−1

)
ϕn−1
j

]
+

1

2
∆tF (κ)

∑
j

sgn(ρ0
j − κ)

(
V −hj+1 − V

−h
j−1

)
ϕ0
j

=
1

2
∆tF (κ)

NT−1∑
n=1

∑
j

sgn(ρnj − κ)

[(
V n−h
j+1 − V

n−h
j−1

)
−
(
V n−h−1
j+1 − V n−h−1

j−1

)]
ϕn−1
j

+
1

2
∆t∆xF (κ)

NT−1∑
n=1

∑
j

sgn(ρnj − κ)
(
V n−h
j+1 − V

n−h
j−1

) ϕnj − ϕn−1
j

∆x

+
1

2
∆tF (κ)

∑
j

sgn(ρ0
j − κ)

(
V 0
j+1 − V 0

j−1

)
ϕ0
j . (4.12)

Using again that V n
j+1 − V n

j = O(∆x) for all n ≥ −h, then we get

(4.10) =
1

2
∆tF (κ)

NT−1∑
n=1

∑
j

sgn(ρnj − κ)

[(
V n−h
j+1 − V

n−h
j−1

)
−
(
V n−h−1
j+1 − V n−h−1

j−1

)]
ϕn−1
j

+O(∆x+ ∆t). (4.13)

Moreover, similarly to what we did in the proof of Proposition 1 for the term (∗), we have(
V n−h
j+1 −V

n−h
j−1

)
−
(
V n−h−1
j+1 − V n−h−1

j−1

)
= v′(ξn−hj )∆x

+∞∑
k=0

ωk
(
ρn−hj+k+1 − ρ

n−h
j+k−1

)
− v′(ξn−h−1

j )∆x
+∞∑
k=0

ωk
(
ρn−h−1
j+k+1 − ρ

n−h−1
j+k−1

)
= ∆x

[
v′(ξn−hj )− v′(ξn−h−1

j )
] +∞∑
k=0

ωk
(
ρn−hj+k+1 − ρ

n−h
j+k−1

)
+ ∆x v′(ξn−h−1

j )

+∞∑
k=0

ωk
[(
ρn−hj+k+1 − ρ

n−h
j+k−1

)
−
(
ρn−h−1
j+k+1 − ρ

n−h−1
j+k−1

)]

= ∆x v′′(ξ̄j)
[
ξn−hj − ξn−h−1

j

] +∞∑
k=0

ωk
(
ρn−hj+k+1 − ρ

n−h
j+k−1

)
+ ∆x v′(ξn−h−1

j )

[ N∑
k=1

(ωk−1 − ωk+1)
(
ρn−hj+k − ρ

n−h−1
j+k

)
− ω0

(
ρn−hj−1 − ρ

n−h−1
j−1

)
− ω1

(
ρn−hj − ρn−h−1

j

)]
, (4.14)

being ξn−hj between ∆x
∑+∞

k=0 ω
kρn−hj+k+1 and ∆x

∑+∞
k=0 ω

kρn−hj+k−1, and ξn−h−1
j between ∆x

∑+∞
k=0 ω

kρn−h−1
j+k+1

and ∆x
∑+∞

k=0 ω
kρn−h−1
j+k−1 , and for ξ̄j between ξn−hj and ξn−h−1

j . Regarding the first term, we
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remark that

+∞∑
k=0

ωk
∣∣∣ρn−hj+k+1 − ρ

n−h
j+k−1

∣∣∣ ≤ ‖ω‖ sup
t∈[0,T ]

TV (ρ∆x(t, ·)) ≤ ‖ω‖C(T, ‖ω‖, τ) TV (ρ0), (4.15)

and we underline that ξn−hj −ξn−h−1
j = O(∆x+∆t) (details in Appendix A). Moreover, using

the same notation as above, (3.18) implies

ρn−hj − ρn−h−1
j = λRnj

(
ρn−h−1
j+1 − ρn−h−1

j

)
− λLnj

(
ρn−h−1
j − ρn−h−1

j−1

)
+O(∆t),

for every j ∈ Z, being Rnj = 1
2 [α−F ′(ρ̃n−h−1

j+ 1
2

)V n−2h−1
j+1 ] and Lnj = 1

2 [α−F ′(ρ̃n−h−1
j− 1

2

)V n−2h−1
j+1 ].

Thus, we have(
V n−h
j+1 − V

n−h
j−1

)
−
(
V n−h−1
j+1 − V n−h−1

j−1

)
= O(∆x2 + ∆x∆t)

+ λ∆x v′(ξn−h−1
j )

[ N∑
k=1

Rnj+k(ωk−1 − ωk+1)
(
ρn−h−1
j+k+1 − ρ

n−h−1
j+k

)
− ω0Rnj−1

(
ρn−h−1
j − ρn−h−1

j−1

)
− ω1Rnj

(
ρn−h−1
j+1 − ρn−h−1

j

)]
− λ∆x v′(ξn−h−1

j )

[ N∑
k=1

Lnj+k(ωk−1 − ωk+1)
(
ρn−h−1
j+k − ρn−h−1

j+k−1

)
− ω0Lnj−1

(
ρn−h−1
j−1 − ρn−h−1

j−2

)
− ω1Lnj

(
ρn−h−1
j − ρn−h−1

j−1

)]
.

Since |Rnj |, |Lnj | ≤ 1
2 [α+ (1 +R

∥∥f ′∥∥)V ] for every j ∈ Z, and since

λ∆x∆t
N∑
k=1

(ωk−1 − ωk+1)

NT−1∑
n=1

∑
j

∣∣∣ρn−h−1
j+k+1 − ρ

n−h−1
j+k

∣∣∣ϕn−1
j

≤ 2λ∆x∆tω0‖ϕ‖
NT−1∑
n=1

j1+N∑
j=j0

∣∣∣ρn−h−1
j+1 − ρn−h−1

j

∣∣∣
≤ 2λ‖ω‖‖ϕ‖

∫ T

0

∫ X+L

−X

∣∣∣ρ∆x
(
t− (h+ 1)∆t, x+ ∆x

)
− ρ∆x

(
t− (h+ 1)∆t, x−∆x

)∣∣∣ dx dt

≤ 2‖ω‖‖ϕ‖C TV (ρ0)∆t,

where the positive constant C is given by Proposition 3, then from (4.13) we get

(4.10) = O(∆x+ ∆t),

and this clearly proves that (4.10) converges to zero as ∆x→ 0 ( and ∆t→ 0). �

By properly adapting the doubling of variables technique due to Kružkov, now we prove
a uniqueness result within the class of entropy solutions for the initial value problem. The
uniqueness follows from the Lipschitz continuous dependence of entropy solutions with respect
to initial data, that is asserted in the following Theorem.
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Theorem 2 (L1 stability). Given Assumption 1, let ρ and σ be two entropy weak solutions
of (1.1)-(1.3) as in Definition 1, with initial data ρ0, σ0 ∈ BV(R; [0, R]) and time delay
parameters τ1, τ2 > 0, respectively. Then, for any T > 0 there holds∥∥ρ(t, ·)− σ(t, ·)

∥∥
1
≤ eK1T

(
K3

∥∥∥ρ0 − σ0
∥∥∥

1
+K2|τ1 − τ2|

)
, ∀t ∈ [0, T ], (4.16)

with K1 > 0 given by (4.22), K2 > 0 by (4.23) and K3 > 0 by (4.24).

Proof. In this proof, we follow the steps of [9, Lemma 4 and Proof of Theorem 1]. The
functions ρ and σ are respectively entropy solutions of the equations

∂tρ(t, x) + ∂x

(
ρ(t, x)f(ρ(t, x))V(t− τ1, x)

)
= 0, V(t, x) := v((ρ ∗ ω)(t, x)),

∂tσ(t, x) + ∂x

(
σ(t, x)f(σ(t, x))U(t− τ2, x)

)
= 0, U(t, x) := v((σ ∗ ω)(t, x)),

and they fulfill the following initial conditions

ρ(t, x) = ρ0(x), for (t, x) ∈ [−τ1, 0]× R,
σ(t, x) = σ0(x), for (t, x) ∈ [−τ2, 0]× R.

Since ρ, σ ∈ L1([0, T ]×R, [0, R]), V and U are bounded measurable functions and are Lipschitz
continuous w.r.t. x. Thus, we have

‖Vx‖ ≤ 2‖ω‖
∥∥v′∥∥‖ρ‖ , ‖Ux‖ ≤ 2‖ω‖

∥∥v′∥∥‖σ‖,
where we recall that we are using the compact notation ‖·‖ for ‖·‖∞. Using Lemma 3 and
Kružkov’s doubling of variables technique, we obtain the following inequality:∥∥ρ(T, ·)− σ(T, ·)

∥∥
1
≤
∥∥∥ρ0 − σ0

∥∥∥
1

(4.17)

+
(

1 +R
∥∥f ′∥∥)∫ T

0

∫
R

∣∣∂xρ(t, x)
∣∣∣∣V(t− τ1, x)− U(t− τ2, x)

∣∣ dx dt

+R

∫ T

0

∫
R

∣∣f(ρ(t, x))
∣∣∣∣∂xV(t− τ1, x)− ∂xU(t− τ2, x)

∣∣ dx dt .

First, we can bound∣∣V(t− τ1, x)− U(t− τ2, x)
∣∣ ≤ ‖ω‖∥∥v′∥∥∥∥ρ(t− τ1, ·)− σ(t− τ2, ·)

∥∥
1
. (4.18)

Moreover, Lemma 2 ensures∫
R

∣∣∂xV(t− τ1, x)− ∂xU(t− τ2, x)
∣∣dx =

=

∫
R

∣∣v′((ρ ∗ ω)(t− τ1, x))(ρ ∗ ∂xω)(t− τ1, x)− v′((σ ∗ ω)(t− τ2, x))(σ ∗ ∂xω)(t− τ2, x)
∣∣ dx

≤
∥∥v′∥∥∫

R

∣∣(ρ ∗ ∂xω)(t− τ1, x)− (σ ∗ ∂xω)(t− τ2, x)
∣∣dx

+
∥∥v′′∥∥∫

R

∣∣(ρ ∗ ω)(t− τ1, x)− (σ ∗ ω)(t− τ2, x)
∣∣∣∣(σ ∗ ∂xω)(t− τ2, x)

∣∣ dx
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≤
∥∥v′∥∥‖∂xω‖1∥∥ρ(t− τ1, ·)− σ(t− τ2, ·)

∥∥
1

+
∥∥v′′∥∥∥∥σ(t− τ2, ·)

∥∥
1
‖∂xω‖‖ω‖1

∥∥ρ(t− τ1, ·)− σ(t− τ2, ·)
∥∥

1

=

(∥∥v′∥∥‖∂xω‖1 +
∥∥v′′∥∥∥∥∥σ0

∥∥∥
1
‖∂xω‖‖ω‖1

)∥∥ρ(t− τ1, ·)− σ(t− τ2, ·)
∥∥

1
. (4.19)

We suppose without loss of generality that τ1 ≥ τ2. Thus, plugging (4.18) and (4.19) into
(4.17), we get

∥∥ρ(T, ·)− σ(T, ·)
∥∥

1
≤
∥∥∥ρ0 − σ0

∥∥∥
1

+K1

∫ T

0

∥∥ρ(t− τ1, ·)− σ(t− τ2, ·)
∥∥

1
dt

≤
∥∥∥ρ0 − σ0

∥∥∥
1

+K1

∫ T

0

∥∥ρ(t− τ2, ·)− σ(t− τ2, ·)
∥∥

1
dt (4.20)

+K1

∫ T

0

∥∥ρ(t− τ1, ·)− ρ(t− τ2, ·)
∥∥

1
dt , (4.21)

being

K1 = ‖ω‖
∥∥v′∥∥(1 +R

∥∥f ′∥∥) sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
BV(R)

+R

(∥∥v′∥∥‖∂xω‖1 +
∥∥v′′∥∥∥∥∥σ0

∥∥∥
1
‖∂xω‖‖ω‖1

)
.

(4.22)

We remark that from Remark 4 it follows that K1 is dimensionally the inverse of time. On
the one hand,

(4.20) = K1

∫ T−τ2

−τ2

∥∥ρ(t, ·)− σ(t, ·)
∥∥

1
dt ≤ K1τ2

∥∥∥ρ0 − σ0
∥∥∥

1
+K1

∫ T

0

∥∥ρ(t, ·)− σ(t, ·)
∥∥

1
dt ,

where we used the initial conditions and the fact that ρ and σ are weak solutions, and so they
are defined for every time horizon [0, T ] because of Theorem 1. On the other hand, using the
L1 Lipschitz continuity in time stated in (4.5), we get

(4.21) ≤ K2|τ1 − τ2|,

with
K2 = K1KT, (4.23)

that has the same dimension of K that is the inverse of time, as we can understand from
(3.21). Thus,

∥∥ρ(T, ·)− σ(T, ·)
∥∥

1
≤ K3

∥∥∥ρ0 − σ0
∥∥∥

1
+K2|τ1 − τ2|+K1

∫ T

0

∥∥ρ(t, ·)− σ(t, ·)
∥∥

1
dt ,

where we have introduced the dimensionless constant

K3 = 1 +K1 min{τ1, τ2}. (4.24)

The statement follows from Gronwall’s lemma. �
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Theorem 2 also proves a stability property w.r.t. the delay τ , that we state as a corollary.
A similar convergence result was proved in [14, Theorem 4.3] for the delayed model (1.2). We
remark that our result is stronger since it holds for every time horizon T > 0.

Corollary 3 (Convergence for delay tending to zero). Let Assumption 1 hold. Given ρ0 ∈
BV(R; [0, R]), let ρτ ∈ L1([0, T ]×R;R) denote the solution of the Cauchy problem (1.1)-(1.3)
for τ > 0. Let also ρ ∈ L1([0, T ]× R;R) be the entropy solution of

∂tρ(t, x) + ∂x

(
ρ(t, x)f(ρ(t, x))v((ρ ∗ ω)(t, x))

)
= 0, (4.25)

with the same initial condition, as defined in [7, Definition 1.1]. Then, we have the conver-
gence ∥∥ρτ (t, ·)− ρ(t, ·)

∥∥
L1 → 0, ∀t ∈ [0, T ],

as τ ↘ 0.

Proof. The statement is a direct consequence of Theorem 2 and [7, Theorem 1.2]. �

5 Numerical tests

This section is devoted to present some numerical results concerning the nonlocal model with
time delay (1.1).

5.1 Comparison between HW and Lax-Friedrichs

In [11], the authors show the advantages of the HW scheme (2.2) with respect to the widely
used LF scheme (2.1). They underline that one of the major advantages of HW, unlike LF,
is that in (2.2) the numerical fluxes are always non-negative. Furthermore, HW is known to
be less diffusive, as confirmed by the following experiments.

Let us consider the space domain [0, 1] with free-flow boundary conditions and the follow-
ing Riemann-like initial conditions

ρ0(x) =

{
0.3 if x < 0.5,
1.5 if x ≥ 0.5,

and ρ0(x) =

{
1.5 if x ≤ 0.5,
0.3 if x > 0.5,

(5.1)

that correspond respectively to a shock and a rarefaction wave for the classical (i.e. local)
non delayed equation. For simplicity, we choose the Greenshields’ velocity function

v(ρ) = V

(
1− ρ

R

)
, with V = 0.9 and R = 1.7, (5.2)

while the saturation is given by the linear function

f(ρ) = 1− ρ

R
. (5.3)

We fix the look-ahead distance L = 0.015, the time delay parameter τ = 10−2 and we consider
a constant weight kernel ω(s) = 1

L . In Figure 1 we compare the numerical solutions at the
final time T = 0.5 obtained via LF and HW with ∆x = 5 · 10−3 as the space step and the
time step ∆t given by the CFL condition. We also represent a reference solution, which is
computed with LF and the small space step ∆x = 2.5 · 10−4. We can clearly see that HW is
closer to the reference solution in both cases.
In the rest of the section, we therefore perform all numerical tests using the HW scheme.
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Figure 1: Comparison between LF (2.1) and HW (2.2) schemes for ∆x = 5·10−3 corresponding
to initial data (5.1).

5.2 Space step tending to zero

As a consequence of the BV estimate (4.4), the entropy solution of the model (1.1) may
develop oscillations due to the delay in time. Obviously, we expect the numerical solution to
be able to capture such behavior. In the following, we report a study of the solution ρ∆x for
fixed values of τ = 0.1 and L = 0.15, and for ∆x ↘ 0. We consider the space domain [0, 5]
with again free-flow boundary conditions, and we choose the Greenshields’ velocity function
(5.2) as above. Instead of the linear function (5.3), let us consider the family of exponential
saturation functions

fε(ρ) = 1− e(ρ−R)/ε, for ε > 0. (5.4)

The above sequence converges quasi-uniformly to χ[0,R[ as ε ↘ 0, but fε(R) = 0 for all ε.
Anyway, we cannot let ε go to zero, since we need

∥∥f ′∥∥ to be bounded for the convergence
of the scheme to hold (see Assumption 1). Choosing the saturation term as in (5.4), with for
instance ε = 1/50, model (1.1) is expected to behave as (1.2) for density values sufficiently
smaller than the maximal density.
We consider the initial datum

ρ0(x) =

{
1.5 if 1 ≤ x ≤ 2,
0 otherwise,

(5.5)

and we fix a linear decreasing weight kernel ω(x) = 2
L

(
1− x

L

)
, which is a more reasonable

choice to describe human behavior with respect to the constant one, as we underlined in
Remark 1. In Figure 2 we compare the numerical solution at the final time T = 0.5 computed
with decreasing values of the space step ∆x and with a time step ∆t chosen in such a way that
the CFL condition (3.11) is fulfilled. We can see that, as ∆x diminish, the amplitudes (not
the number) of the oscillations increase and the numerical scheme is able to better capture
the properties of the entropy solution. We remark that the density cannot overtake the value
R, which means that the oscillations can amplify only up to that value.

5.3 The effect of the saturation

We recall that we introduced the saturation function in order to guarantee that solutions do
not exceed the maximum density R. Indeed, as noted in [14], the solution to equation (1.2)

25



Figure 2: Comparison between the solution to the model (1.1) associated to the initial datum
ρ0(x) = 3/2χ[1,2](x) and to the parameters τ = 0.1 and L = 0.15, with decreasing values of
the space step ∆x.

can exceed R, and thus the velocity could be negative. To avoid this, in their tests the authors
have chosen the cropped velocity function v(ρ) = 1−min{ρ, 1}. With this choice, the solution
to the delayed model (1.1) appears to be much smoother than the solution to the classical
delayed model (1.2), for every choice of the time delay parameter τ , but not exceeding R.
In Figure 3-4, we consider the initial conditions

ρ0(x) =
1

2
+

[
3

16
sin

(
8π
(
x− 2

5

))
− 1

16
sin

(
24π

(
x− 2

5

))]
χ[ 1140 ,

21
40 ](x), (5.6)

ρ0(x) = ρ̄+

[
3

8
cos

(
8π
(
x− 2

5

))
+

1

8
cos

(
24π

(
x− 2

5

))]
χ[ 2780 ,

37
80 ](x), ρ̄ ∈

{
1

4
,
1

2

}
. (5.7)

We choose again ∆x = 10−3 and we fix L = 0.1 and we compare the solutions at the final
time T = 0.5 of the classical delayed model (1.2) and our delayed model (1.1) associated to
the linear saturation function (5.3) and the exponential one (5.4) with ε = 1/50.
In all the cases, we consider the velocity function

v(ρ) = 1− ρ (5.8)

( i.e. V = R = 1) and a constant weight kernel ω(x) = 1/L for the sake of simplicity. We
remark that the presence of a saturation term guarantees that the solution is bounded by R
even if the velocity is not cropped, consistently with Theorem 3. This is true in both the
cases of a linear and an exponential decreasing saturation function. When choosing an f as
in (5.4), the stabilizing effect is way less visible, and the density appears to be just a bounded
form of the solution to the model with no saturation.
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Figure 3: Comparison between the solution to the model with no saturation (1.2), and the
solution to the model (1.1) with τ = 0.12, and with saturation functions (5.3)(5.4) . Two
top rows: initial datum (5.6); Two bottom rows: initial datum (5.7) with ρ̄ = 1/4.
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Figure 4: Comparison between the solution to the model with no saturation (1.2), and the
solution to the model (1.1) with saturation functions (5.3)(5.4), associated to the initial datum
(5.7) with ρ̄ = 1/2 and to the delay τ = 0.08.

5.4 Convergence to the non-delayed model

In the following examples, we illustrate the convergence of the solution for delay tending
to zero, which is stated in Corollary 3. We consider the space domain [0, 5] with free-flow
boundary conditions and we fix the space step ∆x = 5 · 10−3. In Figure 5, we compare the
numerical solutions of the delayed equation (1.1) associated to a constant look-ahead distance
L = 0.15 and different values of the time delay parameter τ , to the solution of the non-delayed
equation (4.25) at the same final time T = 0.5 and corresponding to the same initial data,
velocity function (5.8), linear decreasing weight kernel ω(x) = 2

L

(
1− x

L

)
and the exponential

saturation function (5.4) with again ε = 1/50:

• On the left, following [14, Section 5], we consider the initial datum

ρ0(x) =
1

2
+

[
3

16
sin

(
8π
(
x− 1

2

))
− 1

16
sin

(
24π

(
x− 1

2

))]
χ[ 1140 ,

21
40 ](x), (5.9)

which is chosen in order to show how a small oscillation in the initial condition affects
the evolution depending on the delay.

• On the right, we choose the initial condition

ρ0(x) =

{
3/4 if 1 ≤ x ≤ 2,
0 otherwise,

(5.10)

which is a normalized version of (5.5).
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Figure 5: Convergence of the delayed model (1.1) to the non-delayed one (1.2) with velocity
(5.8), linear decreasing kernel and exponential saturation function (5.4) with ε = 1/50, as
the time delay parameter τ approaches zero. Left: initial datum (5.9). Right: initial
condition (5.10).

Figure 6: Total variation of the tests in Figure 5. Left: initial datum (5.9). Right: initial
condition (5.10).

Our numerical simulations are consistent with what it is observed in [14]: the oscillations
increase as τ increases, denoting higher total variation in accordance with (4.4). As a further
proof, in Figure 6 we graph the total variation of the solution of the tests in Figure 5 as a
function of time, computed with the different values of the time delay parameter. We see
again higher values of the total variation for higher delays.
The delay also influences the traffic flow by causing the formation of the so-called stop and
go waves. In Figures 7-8 we propose some examples that are inspired by Keimer and Pflug’s
numerical tests, in which this phenomena is clealy visible. In each of these figures, in the two
top rows we show the numerical solution to their model (1.2), while in the two bottom rows
we plot the solutions to our model (1.1). In each couple of rows, the lower rightmost graph
shows the solution to the classical LWR model associated to the Riemann-like initial datum

ρ0(x) =

{
1/4 if x ≤ 0.2,
1/2 otherwise,

(5.11)

and to the same initial condition of Figure 4, which is given by (5.7) with ρ̄ = 1/2. The
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Figure 7: Two top rows: Keimer and Pflug’s delayed model (1.2), τ =
0.1, 0.08, 0.06, 0.04, 0.02 (as in [14, Figure 3]); Two bottom rows: delayed model (1.1),
same τ and exponential saturation function. The lower rightmost figure in both the couples
of rows is the solution to the LWR model with initial datum (5.11). For the other graphs, we
fix L = 0.1 and linear decreasing kernel.
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Figure 8: Two top rows: Keimer and Pflug’s delayed model (1.2), τ =
0.1, 0.08, 0.06, 0.04, 0.02 (as in [14, Figure 5]); Two bottom rows: delayed model (1.1),
same τ and exponential saturation function. The lower rightmost figure in both the couples
of rows is the solution to the LWR model with initial datum (5.7) with ρ̄ = 1/2. For the
other graphs, we fix L = 0.1 and linear decreasing kernel.
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other plots in the figures correspond to the numerical solutions associated to the same initial
data, linear decreasing kernel with L = 0.1, exponential saturation function (5.4) with again
ε = 1/50 and different values of τ ∈ {0.1, 0.08, 0.06, 0.04, 0.02}. The solutions are computed
with the space step ∆x = 2.3 · 10−3 in the space domain [0, 0.8]. We observe that the
convergence to the non-delayed model can still be seen in the sense that when τ → 0 these
clustering effects decrease in amplitude as well as the area on which they occur. The graphs
that we have just showed also clarify again how the saturation influences the solution.

6 Conclusions and perspectives

In this paper, we introduced and studied a non-local macroscopic traffic flow model with
time delay, which is able to model the nonzero reaction time that human-beings have in
their response to a stimulus. We showed the well-posedness of the model through both Lax-
Friedrichs and Hilliges-Weidlich numerical schemes, analyzing the limit of the approximate
solutions as the space step for the discretization tends to zero. We also proved a maximum
principle and the stability with respect to both the delay and the initial condition, which
provides the convergence to the limit model as the delay tends to zero. We recall that this
property in general does not hold for both the local [12] and the non-local [14] existing models
with time delay, meaning that in general ρ > R is possible.
We then proposed some numerical simulations to illustrate our results. We showed that
working with the Hilliges-Weidlich scheme is more convenient in terms of accuracy with
respect to the Lax-Friedrichs scheme. Additionally, the numerical experiments conducted in
this study reveal that the model is able to exhibit stop-and-go waves, which seem to be a
direct consequence of the delay in time.

The above mentioned results open several perspectives for future research. First of all,
it constitutes a very good basis to derive a multi-class model. Through this extension, we
intend to further investigate the interactions among several classes of vehicles with different
behaviors in terms of look-ahead distance and reaction time. In particular, we expect that we
can dissipate the traffic instabilities, and in particular stop-and-go waves, by introducing in the
environment a class of vehicles with a faster reaction and with the ability to look further ahead
of their current position, meaning by coupling different non-local delayed conservation laws as
the one introduced in this paper, see also [8]. Beyond the mathematical interest, the ultimate
goal of such modeling framework would be investigating the interaction between human-
driven and autonomous vehicles, and proving the stabilization of the traffic flow operated by
the latters. This in turn may reduce fuel consumption and pollutant emissions.

A Technical details

In the following, we give some details about the proof of the limit (4.10) → 0 for ∆x ↘ 0,
which is used in the proof of Theorem 1. Starting from (4.12), taking the absolute values and

using the bound
∣∣∣V n
j+1 − V n

j−1

∣∣∣ ≤ 4
∥∥v′∥∥‖ω‖R∆x, which is obtained as in (3.7) for all n ≥ −h,

we get

∣∣(4.10)
∣∣ ≤ 1

2
∆tκ

NT−1∑
n=1

∑
j

∣∣∣∣(V n−h
j+1 − V

n−h
j−1

)
−
(
V n−h−1
j+1 − V n−h−1

j−1

)∣∣∣∣∣∣∣ϕn−1
j

∣∣∣
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+
1

2
∆t∆xκ‖∂xϕ‖

NT−1∑
n=1

j1∑
j=j0

∣∣∣V n−h
j+1 − V

n−h
j−1

∣∣∣
+

1

2
∆tκ‖ϕ‖

j1∑
j=j0

∣∣∣V 0
j+1 − V 0

j−1

∣∣∣
≤ 1

2
∆tκ‖ϕ‖

NT−1∑
n=1

∑
j

∣∣∣∣(V n−h
j+1 − V

n−h
j−1

)
−
(
V n−h−1
j+1 − V n−h−1

j−1

)∣∣∣∣∣∣∣ϕn−1
j

∣∣∣
+ 4κ

∥∥v′∥∥‖ω‖RX (T‖∂xϕ‖∆x+ ‖ϕ‖∆t
)

=
1

2
∆tκ

NT−1∑
n=1

∑
j

∣∣∣∣(V n−h
j+1 − V

n−h
j−1

)
−
(
V n−h−1
j+1 − V n−h−1

j−1

)∣∣∣∣∣∣∣ϕn−1
j

∣∣∣ (A.1)

+ C1∆x+ C2∆t,

where we defined

C1 = 4κ
∥∥v′∥∥‖ω‖RXT‖∂xϕ‖,

C2 = 4κ
∥∥v′∥∥‖ω‖RX‖ϕ‖.

Taking the absolute values in (4.14) and using (4.15), we get∣∣∣(V n−h
j+1 − V

n−h
j−1

)
−
(
V n−h−1
j+1 − V n−h−1

j−1

) ∣∣∣ ≤ ∆x
∥∥v′′∥∥∣∣∣ξn−hj − ξn−h−1

j

∣∣∣‖ω‖C(T, ‖ω‖, τ) TV (ρ0)

+ ∆x
∥∥v′∥∥( N∑

k=1

(ωk−1 − ωk+1)
∣∣∣ρn−hj+k − ρ

n−h−1
j+k

∣∣∣
+ ω0

∣∣∣ρn−hj−1 − ρ
n−h−1
j−1

∣∣∣+ ω1
∣∣∣ρn−hj − ρn−h−1

j

∣∣∣).
For some ϑ, µ ∈ [0, 1], we compute

ξn−hj − ξn−h−1
j = ∆x

+∞∑
k=0

[
µωkρn−hj+k+1 + (1− µ)ωkρn−hj+k−1 − ϑω

kρn−h−1
j+k+1 − (1− ϑ)ωkρn−h−1

j+k−1

]
= ∆x

+∞∑
k=0

[
ϑωk

(
ρn−hj+k+1 − ρ

n−h−1
j+k+1

)
+ (1− ϑ)ωk

(
ρn−hj+k−1 − ρ

n−h−1
j+k−1

)]

+ ∆x

+∞∑
k=0

[
(µ− ϑ)ωkρn−hj+k+1 + [(1− µ)− (1− ϑ)]ωkρn−hj+k−1

]
= ∆x

N∑
k=1

(
ϑωk−1 + (1− ϑ)ωk+1

)(
ρn−hj+k − ρ

n−h−1
j+k

)

+ ∆x(µ− ϑ)

+∞∑
k=1

(ωk−1 − ωk+1)ρn−hj+k − ω
0ρn−hj−1 − ω

1ρn−hj


+ ∆x(1− ϑ)ω0

(
ρn−hj−1 − ρ

n−h−1
j−1

)
+ ∆x(1− ϑ)ω1

(
ρn−hj − ρn−h−1

j

)
.
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Since (3.19) implies that for every j ∈ Z∣∣∣ρn−hj − ρn−h−1
j

∣∣∣ ≤ λ

2

[
α+

(
1 +R

∥∥f ′∥∥)V ](∣∣∣ρn−h−1
j+1 − ρn−h−1

j

∣∣∣+
∣∣∣ρn−h−1
j − ρn−h−1

j−1

∣∣∣)
+ 2R2

∥∥v′∥∥‖ω‖∆t, (A.2)

then, similarly to (3.4), we get

∣∣∣ξn−hj −ξn−h−1
j

∣∣∣ ≤ 2∆x‖ω‖
N∑
k=1

∣∣∣ρn−hj+k − ρ
n−h−1
j+k

∣∣∣+ ∆xR

 N∑
k=1

(ωk−1 − ωk+1) + 4ω0


≤ ∆t‖ω‖

[
α+

(
1 +R

∥∥f ′∥∥)V ]
∑
k∈Z

∣∣∣ρn−h−1
k+1 − ρn−h−1

k

∣∣∣+
∑
k∈Z

∣∣∣ρn−h−1
k − ρn−h−1

k−1

∣∣∣


+ 4‖ω‖R2
∥∥v′∥∥‖ω‖∆t N∑

k=1

∆x+ 6‖ω‖R∆x

≤ C3∆x+ C4∆t,

with

C3 = 6‖ω‖R,

C4 = 2‖ω‖
[[
α+ (1 +R

∥∥f ′∥∥)V
]
C(T, ‖ω‖, τ) TV (ρ0) + 2‖ω‖R2

∥∥v′∥∥L] .
Thus, from (A.1) it follows

∣∣(4.10)
∣∣ ≤ 1

2
∆t∆xκ‖ϕ‖

∥∥v′′∥∥‖ω‖C(T, ‖ω‖, τ) TV (ρ0)

NT−1∑
n=1

j1∑
j=j0

∣∣∣ξn−hj − ξn−h−1
j

∣∣∣
+

1

2
∆t∆xκ

∥∥v′∥∥ N∑
k=1

(ωk−1 − ωk+1)

NT−1∑
n=1

∑
j

∣∣∣ρn−hj+k − ρ
n−h−1
j+k

∣∣∣∣∣∣ϕn−1
j

∣∣∣
+

1

2
∆t∆xκ

∥∥v′∥∥NT−1∑
n=1

∑
j

(
ω0
∣∣∣ρn−hj−1 − ρ

n−h−1
j−1

∣∣∣+ ω1
∣∣∣ρn−hj − ρn−h−1

j

∣∣∣) ∣∣∣ϕn−1
j

∣∣∣
+ C1∆x+ C2∆t

≤ 1

2
∆t∆xκ

∥∥v′∥∥ N∑
k=1

(ωk−1 − ωk+1)

NT−1∑
n=1

∑
j

∣∣∣ρn−hj − ρn−h−1
j

∣∣∣∣∣∣ϕn−1
j−k

∣∣∣
+

1

2
∆t∆xκ

∥∥v′∥∥ω0
NT−1∑
n=1

∑
j

∣∣∣ρn−hj − ρn−h−1
j

∣∣∣ (∣∣∣ϕn−1
j+1

∣∣∣+
∣∣∣ϕn−1
j

∣∣∣)
+ C5∆x+ C6∆t

≤ 2∆t∆xκ‖ϕ‖
∥∥v′∥∥‖ω‖NT−1∑

n=1

j1+N∑
j=j0−N

∣∣∣ρn−hj − ρn−h−1
j

∣∣∣
+ C5∆x+ C6∆t
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being

C5 = C1 + C3XTκ‖ϕ‖
∥∥v′′∥∥‖ω‖C(T, ‖ω‖, τ) TV (ρ0)

C6 = C2 + C4XTκ‖ϕ‖
∥∥v′′∥∥‖ω‖C(T, ‖ω‖, τ) TV (ρ0).

Now, applying again (A.2), one can bound∣∣(4.10)
∣∣ ≤ λ

[
α+

(
1 +R

∥∥f ′∥∥)V ]∆t∆xκ‖ϕ‖
∥∥v′∥∥‖ω‖

·
NT−1∑
n=1

j1+N∑
j=j0−N

(∣∣∣ρn−h−1
j+1 − ρn−h−1

j

∣∣∣+
∣∣∣ρn−h−1
j − ρn−h−1

j−1

∣∣∣)
+ 8(X + L)Tκ‖ϕ‖

∥∥v′∥∥2‖ω‖2R2∆t+ C5∆x+ C6∆t

≤ λ

[
α+

(
1 +R

∥∥f ′∥∥)V ]κ‖ϕ‖∥∥v′∥∥‖ω‖
·

(∫ T

0

∫ X+L

−(X+L)

∣∣∣ρ∆x
(
t− (h+ 1)∆t, x+ ∆x

)
− ρ∆x

(
t− (h+ 1)∆t, x

)∣∣∣dx dt

+

∫ T

0

∫ X+L

−(X+L)

∣∣∣ρ∆x
(
t− (h+ 1)∆t, x

)
− ρ∆x

(
t− (h+ 1)∆t, x−∆x

)∣∣∣dx dt

)
+ C5∆x+ C7∆t

≤ 2

[
α+

(
1 +R

∥∥f ′∥∥)V ]κ‖ϕ‖∥∥v′∥∥‖ω‖C TV (ρ0)∆t+ C5∆x+ C7∆t

≤ C5∆x+ C8∆t

where the positive constant C is given by Proposition 3 and

C7 = C6 + 8(X + L)Tκ‖ϕ‖
∥∥v′∥∥2‖ω‖2R2,

C8 = C7 + 2

[
α+

(
1 +R

∥∥f ′∥∥)V ]κ‖ϕ‖∥∥v′∥∥‖ω‖C TV (ρ0).

This proves that (4.10) converges to zero as ∆x→ 0 ( and ∆t→ 0).
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