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Abstract

Timely up-to-date land use/land cover (LULC) maps play a pivotal role in support-

ing agricultural territory management, environmental monitoring and facilitating

well-informed and sustainable decision-making. Typically, when creating a land

cover (LC) map, precise ground truth data is collected through time-consuming

and expensive field campaigns. This data is then utilized in conjunction with satel-

lite image time series (SITS) through advanced machine learning algorithms to get

the final map. Unfortunately, each time this process is repeated (e.g., annually over

a region to estimate agricultural production or potential biodiversity loss), new

ground truth data must be collected, leading to the complete disregard of previ-

ously gathered reference data despite the substantial financial and time investment

they have required. How to make value of historical data, from the same or similar

study sites, to enhance the current LULC mapping process constitutes a signifi-

cant challenge that could enable the financial and human-resource efforts invested
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in previous data campaigns to be valued again. Aiming to tackle this important

challenge, we here propose a deep learning framework based on recent advances

in domain adaptation and generalization to combine remote sensing and reference

data coming from two different domains (e.g. historical data and fresh ones) to

ameliorate the current LC mapping process. Our approach, namely REFeD (data

Reuse with Effective Feature Disentanglement for land cover mapping), lever-

ages a disentanglement strategy, based on contrastive learning, where invariant

and specific per-domain features are derived to recover the intrinsic information

related to the downstream LC mapping task and alleviate possible distribution

shifts between domains. Additionally, REFeD is equipped with an effective su-

pervision scheme where feature disentanglement is further enforced via multiple

levels of supervision at different granularities. The experimental assessment over

two study areas covering extremely diverse and contrasted landscapes, namely

Koumbia (located in the West-Africa region, in Burkina Faso) and Centre Val de

Loire (located in centre Europe, France), underlines the quality of our framework

and the obtained findings demonstrate that out-of-year information coming from

the same (or similar) study site, at different periods of time, can constitute a valu-

able additional source of information to enhance the LC mapping process.

Keywords: Satellite Image Time Series (SITS), Land Cover (LC) Mapping,

Domain Adaptation, Contrastive Learning, Data-Centric Artificial Intelligence

(AI).

1. Introduction

The unprecedented availability of Earth observation (EO) information regu-

larly acquired through modern public and private EO Programmes and Missions
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(e.g. ESA Copernicus, NASA Landsat and PlanetScope to cite a few) opens the

opportunity to collect satellite image time series (SITS) over the same study area

to characterize and study the underlying spatio-temporal dynamics. Such rich in-

formation has been demonstrated to be largely beneficial in a variety of different

fields, such as ecology (Kolecka et al., 2018), agriculture (Ienco et al., 2017),

forestry (Wulder et al., 2012), environmental monitoring (Huang et al., 2023)

and facilitating well-informed and sustainable decision-making policies (Kavvada

et al., 2020). SITS are commonly exploited in conjunction with in situ ground

truth data, acquired via costly and labor-intensive field campaigns, in order to de-

rive timely up-to-date land cover (LC) maps over a specific region (Gómez et al.,

2016).

Typically, for the creation of LC maps over a region at a certain period of time,

ground truth data are collected at a particular moment through expensive and time-

demanding field campaigns. These data are then utilized in conjunction with SITS

information through advanced machine learning algorithms (Zhong et al., 2019)

to get the final LC map. While the access to high resolution EO data is no longer a

major constraint, collecting up-to-date ground truth data constitutes a consumable

(neither enduring nor lasting) effort. Once served its purpose, ground truth data

will be disregarded loosing any further relevance. Furthermore, when the process

is repeated (e.g., estimate agricultural production or potential biodiversity loss for

a new year for the same or a related study site), new field campaigns must be

afforded again with, in general, no way to profit from previous efforts.

Recently, endeavors related to the systematic and effective exploitation of

available high-quality data have been increasing in both machine learning and

computer vision communities. To this end, research actions in this direction have
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been proposed under the umbrella of data-centric Artificial Intelligence (AI) (Zha

et al., 2023). Under this movement, the attention of researchers and practitioners

is gradually shifting from advancing model design (model-centric AI) to enhanc-

ing the quality and quantity of the data (data-centric AI).

Considering geospatial and EO data, the data-centric AI perspective is even

more important since it can steer the community towards developing methodolo-

gies to provide further improvements related to the generalization ability with im-

pact on real-world relevant problems and applications (Roscher et al., 2023). Nev-

ertheless, the two perspectives (model-centric and data-centric AI) play a comple-

mentary role in the larger machine learning deployment cycle since standard ap-

proaches still struggle to manage and exploit valuable data coming from different

and heterogeneous distributions like, for instance, in the case of combining histor-

ical and up-to-date reference data for the downstream task of LC mapping (Gao

et al., 2023) where distribution shifts can be related to the different environmental

and/or climatic factors that determine the acquisition conditions.

When data from different distributions are combined together under the same

learning framework, challenges related to distribution shifts can impede the effec-

tive training of machine learning models (Ben-David et al., 2010). To cope with

this issue, the most widely studied setting is Unsupervised Domain Adaptation

(UDA) (Wilson and Cook, 2020) where the main goal is to learn a model over a

labelled source domain and transfer it to an unlabelled target one. Recent UDA ad-

vances predominantly concentrate on deriving features that are domain-invariant.

This is achieved through either aligning domains via data transformation (Sun

and Saenko, 2016) or employing adversarial training (Long et al., 2018), aiming

to minimize the distribution gap between the source and target domains. In the
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context of remote sensing, early research have focused on devising UDA strate-

gies tailored for high spatial resolution imagery (Tuia et al., 2016). Only recently,

strategies have begun to emerge to analyse SITS data for spatial (Nyborg et al.,

2022) and temporal transfer tasks (Capliez et al., 2023).

Despite the efforts invested in designing and implementing UDA techniques,

these approaches typically assume the complete absence of reference data for the

target domain. However, for the LC mapping task, it is often reasonable to as-

sume access to a certain amount of ground truth target data. Moreover, the suc-

cess of UDA depends largely on the discrepancy between the source and target

distributions, making these methods susceptible to potential pitfalls and limited

generalizability. In scenarios where a limited amount of labeled data is available

for the target domain, the paradigm shifts to Semi-Supervised Domain Adaptation

(SSDA). Current SSDA approaches generally aim to align the target data with the

labeled source data with feature space mapping and self-training assignments us-

ing pseudo-labels (Yu and Lin, 2023). Although the SSDA setting holds potential

for various real-world problems, it remains largely unexplored when dealing with

SITS data (Lucas et al., 2023) in the context of LC mapping. Another related

setting is Domain Generalization (DG) (Jo and Yoon, 2023; Chen et al., 2023)

wherein the objective is to learn classification models over a set of diverse la-

belled source domains that can generalize over new unseen target data. To the

best of our literature survey, no DG frameworks have been proposed for EO data

analysis. While DG and domain adaptation settings are closely related, DG op-

erates inductively, assuming that target data are not available during the training

stage. Conversely, in our problem setting, where the goal is to exploit together

both historical and recent EO data along with reference data to enhance LC map-
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ping, target data and their associated labels are already accessible.

In addressing the significant challenge outlined above, we present a novel

framework, namely REFeD, rooted on recent advances in the field of domain

adaptation/generalization. REFeD adopts a model-centric AI perspective, aiming

to fulfill a data-centric AI objective related to the effective exploitation of EO and

reference data coming from two different domains (e.g. historical data and recent

ones) with the aim to give value again to historical and/or overlooked reference

data, and enhance the accuracy of the recent LC mapping result.

More precisely, REFeD is a deep learning framework built upon a pseudo-

siamese network with unshared parameters that, given a sample, extracts simulta-

neously domain-invariant and domain-specific features, using the former to make

the final decision. The objective is to disentangle useful information for the down-

stream LC mapping task while isolating and discarding domain specific features

that can hinder the learning process in the presence of data belonging to mul-

tiple domains with unaligned data distributions. The disentanglement process

is achieved by shaping a representation manifold, via contrastive learning, that

jointly structures both domain-invariant and domain-specific features. In addition,

REFeD integrates an effective supervision strategy (Mohammadi et al., 2023) that

further enforces the disentanglement process via multiple levels of supervision at

different granularities.

Extensive experimental evaluations are carried out to assess the behavior of

REFeD considering both baseline and domain adaptation/generalization approaches.

To assess the behaviour of our method we perform both quantitative and qualita-

tive evaluations considering two study sites covering extremely diverse and con-

trasted landscapes, namely Koumbia (located in the West-Africa region, in Burk-
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ina Faso) and Centre Val de Loire (located in centre Europe, France). For the

former study site we consider a LC mapping task where data covering exactly

the same geographical area are available for two different years (2020 and 2021)

while, for the latter study site, we consider a crop type mapping task where data

covering two closely related areas are available for the agricultural seasons 2018

and 2021.

This manuscript is organized as follows: Section 2 introduces the proposed

framework based on feature disentanglement and contrastive learning to enhance

LC mapping combining multiple reference data. Study sites and the associated

information are described in Section 3. The experimental evaluation and the re-

lated findings are reported and discussed in Section 4, while Section 5 draws the

conclusions of this paper.

2. Proposed Deep Learning Framework

2.1. Problem Formulation and Notations

The proposed deep learning framework aims at improving the accuracy of LC

mapping results obtained on recently acquired satellite data, i.e., target domain,

by using pre-existing reference data coming from a different yet correlated do-

main, i.e., source domain. Typically, the source domain could consist of some

readily-available historical or out-of-year data, for instance. Differences in cli-

mate, weather and other environmental conditions can lead to non-negligible dis-

tribution shifts within SITS data from the different domains. These shifts may

prevent the full exploitation of the source data as a naive direct enrichment of

the target data in a classic supervised learning setup (Bruzzone and Marconcini,

2009). Moreover, in case the source data is more abundant, the learned classifier
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may likely be biased toward the source domain. Differently from the literature,

the ultimate goal of REFeD is to maximize the classification performance in the

target domain while taking full advantage of all the reference data available.

In this work, we suppose we are given a set of Nt labeled samples from a target

domain Dt = {(xt
i, y

t
i)}Nt

i=1, for which we want to train a classifier. Moreover,

we dispose of additional labelled data (say Ns samples) from a source domain

Ds = {(xs
i , y

s
i )}Ns

i=1 that we aim to exploit in order to improve the performance of

our classifier on the target domain.

In our case, each sample xi ∈ RT×C is the content of a pixel’s C spectral bands

from a SITS defined over T timestamps. In the considered experimental setup, we

assume that the source and target SITS have the same number of T timestamps.

The corresponding label yi ∈ {1, . . . , K} is given by one of K existing classes,

shared between source and target domains — i.e., a closed-set scenario (Kundu

et al., 2020). Depending on the considered classification task, the classes could be,

for instance, different crop and/or LC types. Let us also define as y′i ∈ {s, t} the

binary label associated to all the available labeled samples {(xi, y
′
i)}Ns+Nt

i=1 , which

specify from which domain each spectral samples xi belongs, i.e., Dt or Ds.

2.2. REFeD: Overview

Figure 1 shows an overview of the proposed deep learning framework, by

depicting the data sources needed during the training and inference stages. In the

first stage, the supervised classifier is trained using the reference data from both

Ds and Dt. To take full advantage of reference data coming from distinct domains,

we propose to disentangle the information carried by the labeled input data into

two parts: 1) domain-specific information, and 2) domain-invariant information

(i.e., useful discriminative information for the subsequent classification task). The
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Figure 1: Overview of the proposed framework. Training and inference stages are distinguished:

while the former is performed on data coming from both domains, the latter is done exclusively

on target data and uses only the domain-invariant branch (ginf , f ) of the learned model.
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former is closely related to the domain to which the data belong, thus potentially

hindering the learning model’s ability to generalize. The second contains semantic

information associated with the underlying classes, thus usable knowledge that

can be exploited later for the classification process.

To this end, we take inspiration from current literature in domain generaliza-

tion (Chen et al., 2023), even though in their setting the target domain is con-

sidered to be unseen, i.e., they consider an inductive setting while in our case

we have a transductive setup. In particular, in the training stage we leverage two

branches with separate encoders to generate the feature vectors, i.e., gspe and ginv.

Dedicated losses, Lcl, Ldom and Lcon (detailed in section 2.3) are employed to ef-

fectively disentangle domain-specific from domain-invariant information in each

of the two obtained embeddings, by training a domain classifier f ′(·) and task

classifier f(·), respectively. This condition allows us to benefit from the labeled

samples available in all domains, taking into account the domain to which each

labeled sample belongs.

To maximize the classification results obtained in the target domain, in the in-

ference stage, the domain-specific encoder gspe is discarded and only the domain-

invariant encoder ginv is considered. In particular, we generate the LC map of the

target domain using ginv for generating the feature representation to be classified

along with the task classifier f(·) trained in the previous stage on the whole set of

reference data. In the following, details are given.

2.3. Feature disentanglement

Figure 2 depicts the pseudo-siamese network with unshared parameters used

for feature disentanglement. The two encoders, denoted gspe and ginv : RT×C →

RD for domain-specific and domain-invariant, respectively, share the same ar-
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Figure 2: Architecture of the proposed pseudo-siamese network used in the training stage and

composed of two independent branches which disentangle the domain-invariant information (top

branch) from domain-specific information (bottom branch). Class (Lcl) and domain (Ldom) dis-

crimination losses used respectively on the top and bottom branches, while a multi-level con-

trastive loss (Lcon) is used to intermediate features at different depths from both branches. At

inference time, only the domain-invariant encoder is used for classifying the target domain.

chitecture but are learned independently with unshared weights via different loss

functions.

In the domain-invariant branch, a task classifier f(·) is applied to the domain-

invariant features extracted by ginv. In the domain-specific branch, the domain-

specific features obtained via gspe are fed to a domain classifier f ′(·) which en-

courages the domain-discriminant information to be channeled to this branch.
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Domain classifier. The domain classifier aims to accurately predict domain labels

y′i ∈ {s, t}, i.e., determine if each sample xi belongs either to the source or the

target domain, by minimizing a cross-entropy loss ℓce as follows:

Ldom =
1

Ns +Nt

Ns+Nt∑
i=1

ℓce (f
′ ◦ gspe(xi), y

′
i) (1)

Task classifier. In its turn, the task classifier f : RD → {1, . . . , K} maps the

domain-invariant features onto one of the K classes of interest guided by the fol-

lowing cross-entropy loss:

Lcl =
1

Ns +Nt

Ns+Nt∑
i=1

ℓce (f ◦ ginv(xi), yi) (2)

Contrastive learning. To further decouple of the two separate branches, we em-

ploy contrastive loss which has shown promising results for feature disentangle-

ment in previous works (Chen et al., 2023). In our case, since we have access

to both the class labels and domain labels, we can employ the supervised version

of the InfoNCE contrastive loss proposed by Khosla et al. (2020), where the pos-

itive pairs are given by all samples sharing the same label. However, here, the

application is not straightforward since we have two separate label spaces (class

and domain labels). To address this issue, we adopt a mixed label space Ymix

composed of 3K classes, where the domain-invariant features are mapped onto

the K first labels while the last 2K are reserved to the domain-specific features –

more specifically, K for the source domain and K for target domain. This leads

to Ymix = {1, . . . , K, s1, . . . , sK, t1, . . . , tK}.1

Denoting z the extracted embeddings (features) ginv(x) and gspe(x), we con-

sider an augmented batch I of size 2B containing both ginv(xi) and gspe(xi) fea-

1More generally, we define Ymix = Y ∪ (Y×Y ′) with a total of |Ymix|=(|Y ′|+1)|Y| classes.
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tures for each i ∈ {1, . . . , B} in the original batch. The resulting supervised

contrastive loss is defined as follows:

Lcon = −
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈I\{i} exp(zi · za)/τ
(3)

where P (i) := {p ∈ I\{i} : yp = yi} with cardinality |P (i)| is the set of positive

examples w.r.t. the current anchor i ∈ I := {1, . . . , 2B} and τ ∈ R+ is a scalar

temperature parameter. Therefore, the goal of this loss is to push together, in

the feature space, the embeddings corresponding to the same category (positive

examples) while repelling them from the rest (negative examples). The positive

examples here correspond to those that share simultaneously: 1) the same class,

among the K existing ones and 2) same domain type, among three options: source

or target (for domain-specific features), or domain-invariant.

2.4. Multi-level supervision

To further enforce the feature disentanglement, we propose to perform con-

trastive learning not only at the level of the encoder’s output, but at multiple depths

within the network architecture.

Then, the loss function described in (3) is actually also applied to intermediate

features at different depths of the network. For that matter, we denote Ll
con the

contrastive loss (3) applied to the intermediate features zl at depth l, as depicted

in Figure 2. Specifically, in our case, we use three levels of supervision with:

l = 0 for the encoder’s last internal layer; l = 1 for the encoder’s output features;

l = 2 for the output of the classifier’s first fully-connected layer. Note that Ll
con

applies exclusively to features at depth l, which share the same space dimension,

and, thus, features at different depths are never mixed together.
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2.5. Model summary and training

The resulting loss is given by:

L = Lce + Ldom +
∑

lL
l
con

Empirically, we observed that weighting the different losses did not have a

conclusive impact on the final model performance. For this reason, we used a

simple unweighted sum of the three terms as described above.

The proposed approach is completely agnostic to the encoder (ginv, gspe) and

classifier modules architecture, but in this particular work we leverage the Tempo-

ral Convolutional Neural Network architecture (TempCNN) proposed by Pelletier

et al. (2019) for pixel-based SITS classification tasks. The encoder part consists

on three 1D-convolutional layers with 64 channels each. The classifier is com-

posed of a fully-connected layer with 256 hidden units, batch normalisation and

ReLU activation, followed by a linear output layer with Softmax activation.

3. Satellite Data and Ground Truth

The first study site covers an area around the town of Koumbia, in the Province

of Tuy, Hauts-Bassins region, in the south-west of Burkina Faso. This area has

a surface of about 2 338 km2, and is situated in the sub-humid sudanian zone.

The surface is covered mainly by natural savannah (herbaceous and shrubby) and

forests, interleaved with a large portion of land (around 35%) used for rainfed

agricultural production (mostly smallholder farming). The main crops are cereals

(maize, sorghum and millet) and cotton, followed by oleaginous and leguminous.

Several temporary watercourses constitute the hydrographic network around the

city of Koumbia.
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Figure 3 presents the study site with the 2020 reference data (ground truth)

superposed on a Sentinel-2 image. A more detailed view corresponding to the red

box in the overview is also depicted on the bottom right of the figure. A specific

analysis of the ground truth is provided in Section 3.2.

Legend:

Cereals

Cotton

Oleag./Legum.

Grassland

Shrubland

Forest

B. Soil/Built-up

Water

N

Figure 3: View and location of Koumbia study site. The ground truth data coming from the 2020

year is superposed to a Sentinel-2 image covering the whole area. In the red box (bottom right) a

more detailed view of the study site is depicted.

The second study site covers two areas in the Centre Val de Loire region lo-

cated in the center of France. This region of France is characterized by an in-

tensive agricultural activity with agricultural surfaces representing around 70% of

the whole region with cereals and oleaginous as major crops. The two areas have

a cumulative surface of about 840 km2.

Figure 4 presents the two areas related to the Centre Val de Loire study site

depicting reference (ground truth) data for year 2018 and 2021 superposed on

a Sentinel-2 image. On the right of the figure, a detail for each of the areas is
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proposed, in red for 2018 and in blue for 2021. A specific analysis of the ground

truth is provided in the Section 3.2.

Figure 4: View and location of the Centre Val de Loire study site. The ground truth data coming

from the 2018 and 2021 year area superposed to a Sentinel-2 image. On the right, a detail for each

of the areas is proposed, in red for 2018 and in blue for 2021.

3.1. Satellite Image Time Series

For each study area and each considered year, we collected satellite image

time series of Sentinel-2 imagery spanning an entire year via the Microsoft Plan-

etary Computer platform 2 that allows to access level-2A Sentinel-2 products. We

consider all bands at 10 m and 20 m of spatial resolution for a total of 10 bands

2https://planetarycomputer.microsoft.com/
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per image. We have conducted resampling of the SWIR 20 m bands to 10 m

resolution, as well as image time series gap filling of cloudy pixels using multi-

temporal linear interpolation as explained in Inglada et al. (2015) and gap-filled

images were generated at a regular 10-day frequency resulting in a sequence of 72

images for each study area and year.

3.2. Ground truth data

For the Koumbia study site, the ground truth data for 2020 and 2021 has been

derived from a large agricultural LULC data set available online (Jolivot et al.,

2021), mainly consisting of field data collected by local experts on several sites

all over the tropics. For the Koumbia study site, the field surveys were conducted

around the growing peak of the cropping season. The ground truth data cover the

exact same surface for the two reference years.

For the Centre Val de Loire study site, the ground truth data for the first area,

related to 2018, was obtained through the EuroCrop dataset (Schneider et al.,

2023) while the ground truth data for the second area, related to 2021, are gath-

ered from the RPG (Registre Parcellaire Graphique), the French land parcel iden-

tification system. The data covers only agricultural areas in order to set up a crop

type mapping task. This second dataset covers a problem that implies both spatial

and temporal transfer at the same time.

For both study sites, ground truth has been assembled in a Geographic In-

formation System (GIS) vector file, containing a collection of polygons, each at-

tributed with a LC or crop type category based on information reported in the

original database – see Tables 1 and 2 for statistics about ground truth data distri-

bution.
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Table 1: Ground truth statistics for year 2020 and 2021 on the Koumbia study site.

Class Name Class ID. 2020 2021

# Polygons # Pixels # Polygons # Pixels

Cereals 1 230 9731 268 11435

Cotton 2 139 6971 121 6575

Oleaginous / Leguminous 3 281 7950 263 7316

Grassland 4 122 12998 113 11100

Shrubland 5 83 22546 90 24324

Forest 6 82 17435 82 16984

Bare soil / Built-up 7 51 1125 51 1022

Water 8 10 1205 10 1205

Total 998 79961 998 79961

4. Experiments

In this section, we report and discuss the experimental evaluation carried out

on the study sites presented in Section 3. Our objective is to evaluate the perfor-

mance of REFeD across various dimensions. First, we undertake a quantitative

assessment comparing the performance of REFeD against baselines and compet-

ing approaches. Second, we conduct a qualitative examination of the land cover

maps generated by REFeD. Lastly, we inspect the internal representations learned

by our model, visually comparing them to those of some of the top-performing

competitors.
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Table 2: Ground truth statistics for year 2018 and 2021 on the Centre Val de Loire study site.

Class Name Class ID. 2018 2021

# Polygons # Pixels # Polygons # Pixels

Soft wheat 1 1048 9388 1341 9268

Maize 2 198 9442 264 9437

Barley 3 674 9345 527 9222

Other cereals 4 421 9288 360 9473

Oleaginous / Proteaginous 5 842 9222 775 9168

Winter Fallows 6 413 8390 611 7396

Leguminous 7 5 3418 12 4753

Fodder 8 255 9350 105 7422

Meadow 9 4132 8254 127 6030

Other crops 10 184 8183 355 9681

Total 8172 84280 12649 81850

4.1. Competing methods

With the goal to assess the performance of REFeD w.r.t. baselines and strate-

gies coming from SSDA and DG literature, we consider:

• Only Source: this strategy trains a model only considering source data and,

then, the obtained classifier is directly deployed on the target data. The main

purpose of this method is to have an empirical estimate about the distribu-

tion shift between source and target domains. We implement this baseline

considering both Random Forest and TempCNN (Pelletier et al., 2019) as

classifiers.
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• Only Target: this strategy trains a model only considering the target labelled

data and, then, the obtained classifier is employed to classify the remaining

target samples. The main purpose of this method is to provide the reference

performances without the use of historical or out-of-year data. We imple-

ment this baseline considering both Random Forest and TempCNN (Pel-

letier et al., 2019) as classifiers.

• Source+Target: this strategy trains a model over both source and target la-

belled data. Then, the obtained classifier is employed to classify the re-

maining target samples. Here, the data coming from different distributions

are mixed together constituting a multi-domain training dataset. We imple-

ment this baseline considering both Random Forest and TempCNN (Pel-

letier et al., 2019) as classifiers.

• Fine Tuning: this strategy trains a model over the labelled source domain

and, then, the resulting model is fine tuned on target labelled samples. This

is an alternative way to combine both source and target data. We imple-

ment this baseline considering only the TempCNN (Pelletier et al., 2019)

approach.

• Sourcerer (Lucas et al., 2023): this recent SSDA approach has been pro-

posed to cope with the analysis of SITS data for the downstream task of

LULC mapping. Sourcerer is a bayesian-inspired, deep learning-based frame-

work, that internally exploits the TempCNN model as backbone, similarly to

REFeD. The technique leverages a deep learning model trained on a source

domain and then fine-tunes the model on the available target domain via a

regularizing term that automatically adjusts the degree to which the model
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weights are modified to fit the target data.

• POEM (Jo and Yoon, 2023): this recent DG approach learns domain-invariant

and domain-specific representations via a pseudo-siamese network with un-

shared weights and it enforces polarization via orthogonality constraints.

This approach was primarily introduced for image classification. In order

to transfer it on SITS data, also for this competitor we employ the Tem-

pCNN model as a backbone.

4.2. Experimental settings

For all the competing approaches, labelled source data are entirely employed

while, for the target domain, data are split into three parts: training, validation

and test sets following a proportion of 50%, 20% and 30% of the original target

data set, respectively. Regarding the Only Source baseline, the model is trained

considering only the labelled source data. Furthermore, with the aim to avoid

possible spatial bias in the evaluation procedure (Karasiak et al., 2021), we impose

that all the pixels belonging to the same object will be exclusively associated to

one of the data partitions (training, validation or test). The splitting procedure is

repeated five times and the average results are reported.

Concerning the evaluation tasks, according to the data presented in Section 3,

we set up two transfer tasks per benchmark. Each transfer task is denoted as (Ds +

Dt →Dt) where the right arrow indicates the transfer direction from the combined

source/target labelled training dataset (Ds + Dt) to the test target (Dt) dataset. For

the Koumbia study site, we consider as transfer tasks (2020 + 2021 → 2021) and

(2021 + 2020 → 2020) and for the Centre Val de Loire study site, we consider the

transfer tasks (2018 + 2021 → 2021) and (2021 + 2018 → 2018).
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The values of the SITS benchmarks were scaled per year and per band consid-

ering the 2nd and 98th percentile of the data distribution as minimum and max-

imum values. The assessment of the model performances was done considering

the following metrics: Weighted F1-score (simply indicated with F1-score) and

Accuracy (global precision).

Implementation details: For the neural network approaches, the training

stage has been conducted for 200 epochs. For methods based on fine-tuning, we

used 100 epochs for the initial training and 100 epochs for the fine-tuning stage.

For all methods, we adopt a learning rate of 10−4, the AdamW (Loshchilov and

Hutter, 2019) optimizer and a batch size of 256. Regarding REFeD, based on re-

cent literature on contrastive learning (Chen et al., 2022), we set the temperature

hyperparameter τ to 0.07 and we consider a batch size of 512 since it has been

noted that contrastive loss benefits from larger batch sizes. The drop out value is

set to 50%. Considering Random Forest classifiers, we optimize the model via the

tuning of one parameter: the number of trees in the forest. We vary this parameter

in the range {100, 200, 300, 400, 500}. The optimization of this parameter is

based on the validation set.

Experiments are carried out on a workstation with a dual Intel (R) Xeon (R)

CPU E5-2667v4 (@3.20GHz) with 256 GB of RAM and four TITAN X (Pascal)

GPU. All the deep learning methods are implemented using the Pytorch deep

learning library. All the models run on a single GPU. The Random Forest is

implemented using the Python Scikit-learn library (Pedregosa et al., 2011).

4.3. Quantitative results

Tables 3 and 4 summarize the results obtained for the two study areas, Koumbia

and Centre Val de Loire respectively by reporting the average F1-score and the
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Strategy Method 2020 + 2021 → 2021 2021 + 2020 → 2020

F1-Score Accuracy F1-Score Accuracy

Only Source
RF 72.40 ± 3.94 72.25 ± 4.08 71.98 ± 3.54 71.81 ± 3.63

TempCNN 64.54 ± 4.32 65.25 ± 4.14 69.54 ± 4.88 69.95 ± 5.00

Target domain
RF 77.56 ± 2.82 77.45 ± 2.90 76.78 ± 3.53 76.65 ± 3.54

TempCNN 76.59 ± 2.94 76.63 ± 2.91 75.54 ± 5.04 75.47 ± 5.09

Source+Target
RF 77.49 ± 3.90 77.30 ± 3.93 78.42 ± 4.02 78.32 ± 4.03

TempCNN 78.60 ± 2.94 78.48 ± 3.03 78.95 ± 4.27 78.92 ± 4.27

Fine Tuning TempCNN 78.04 ± 2.75 78.00 ± 2.78 78.56 ± 3.63 78.55 ± 3.64

Sourcerer 76.72 ± 2.63 76.54 ± 2.64 76.34 ± 3.94 76.24 ± 3.99

POEM 78.35 ± 3.43 78.27 ± 3.41 78.41 ± 4.63 78.35 ± 4.66

REFeD 79.23 ± 3.33 79.17 ± 3.27 82.15 ± 3.65 82.09 ± 3.67

Table 3: Overall performances (F1 scores) on Koumbia
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Strategy Method 2018 + 2021 → 2021 2021 + 2018 → 2018

F1-Score Accuracy F1-Score Accuracy

Only Source
RF 69.66 ± 1.64 72.35 ± 1.07 59.31 ± 3.19 62.36 ± 2.56

TempCNN 47.96 ± 1.23 46.26 ± 0.76 43.10 ± 2.46 41.68 ± 3.31

Target domain
RF 79.95 ± 2.45 80.70 ± 1.78 70.63 ± 3.05 71.86 ± 2.55

TempCNN 82.60 ± 1.15 80.61 ± 1.41 73.39 ± 3.12 71.46 ± 3.46

Source+Target
RF 79.00 ± 2.24 79.83 ± 1.60 68.94 ± 2.66 70.45 ± 2.31

TempCNN 83.46 ± 1.40 81.54 ± 2.07 75.17 ± 3.61 74.17 ± 3.71

Fine Tuning TempCNN 82.94 ± 2.04 83.51 ± 1.75 74.43 ± 3.78 75.70 ± 3.29

Sourcerer 82.76 ± 1.69 83.49 ± 1.29 74.02 ± 3.36 74.93 ± 2.90

POEM 82.89 ± 1.71 83.51 ± 1.31 74.28 ± 3.11 75.14 ± 2.80

REFeD 84.45 ± 1.61 84.86 ± 1.35 77.60 ± 3.15 78.02 ± 2.90

Table 4: Overall performances (F1 scores) on Centre Val de Loire (CVL)
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Accuracy considering the different combination of methods and strategies. As ex-

pected, regardless of the dataset, for both the RF and TempCNN classifiers, the

lowest accuracy is obtained when only source-labeled data are considered, while

the highest classification results are obtained when training data from both do-

mains are used.

By focusing our attention on the TempCNN architecture, the F1-scores ob-

tained using only the source-labeled data are 64.54 and 69.54 in Koumbia on EO

data acquired in 2021 and 2020, respectively, and 47.96 and 43.10 in Centre Val

de Loire on EO data acquired in 2021 and 2018, respectively. Although valuable,

the historical reference data may not be completely representative of the recently

acquired EO data. Moreover, the class statistical distributions of SITS acquired

over different years can severely shift. Using only the target-labeled data the ob-

tained accuracy increases, i.e., F1 scores of 76.59 and 75.54 in Koumbia on EO

data acquired in 2021 and 2020, respectively, and 82.60 and 73.39 in Centre Val

de Loire on EO data acquired in 2021 and 2018, respectively. It is worth noting

that the importance of using labeled data from the target domain is even more

visible in the Centre Val de Loire dataset since the source and target domains are

different from both the spatial and temporal viewpoints. The joint use of source

and target labeled data has a positive impact on the classification performances,

leading to F1 scores of 78.60 and 78.95 in Koumbia on EO data acquired in 2021

and 2020, respectively, and 83.46 and 75.17 in Centre Val de Loire on EO data

acquired in 2021 and 2018, respectively.

These results further improve when using SSDA and DG methods, which bet-

ter combine source and target information. However, the highest classification ac-

curacies are obtained by the proposed approach REFeD which achieves F1 scores
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of 79.23 and 82.15 in Koumbia on EO data acquired in 2021 and 2020, respec-

tively, and 84.45 and 77.60 in Centre Val de Loire on EO data acquired in 2021

and 2018, respectively.

4.3.1. Per-class analysis

Per-class performances are detailed in Tables 5 and 6 for the Koumbia study

site and in Tables 7 and 8 and Centre Val de Loire respectively.

Concerning the Koumbia benchmark, Tables 5 and 6, we can observe that, no

matter the transfer task, REFeD achieves the best performances in terms of F1-

Score on all the agricultural land cover classes. This is of particular interest since

such classes are characterized by strong shifts from one cultural year to another

one due to crop rotations related to the underlying agricultural practices. A notable

improvement, related to the proposed method, can also be noted on the Forest land

cover class, especially for the transfer task (2021 + 2020 → 2020). Regarding all

the other land cover classes, REFeD achieves comparable results w.r.t. to all the

other competing methods with, for all these cases, less than a point of difference

in terms of F1-score.

Regarding the Centre Val de Loire benchmark, Tables 7 and 8, we can note

that, REFeD obtains a systematic improvement, in terms of F1-Score, for the fam-

ily of cereal classes (Soft wheat, Maize, Barley and Other cereals), regardless of

the transfer task. Notably, the most significant enhancement is observed in the

Leguminous crop class, where REFeD attains an improvement between 6 and 10

points of F1-Score compared to the best competing approach. This is even inter-

esting since the Leguminous class is the most underrepresented crop type in the

considered benchmark in terms of number of samples. This point further under-

scores the quality of the proposed approach demonstrating its ability to handle
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Class TempCNN Sourcerer POEM REFeD

(Source+Target)

Cereals 74.06 70.79 72.48 75.73

Cotton 75.77 72.79 76.04 77.87

Oleaginous 64.18 60.22 64.24 66.96

Grassland 78.58 75.62 78.11 77.61

Shrubland 78.90 76.47 78.32 77.90

Forest 84.27 85.06 84.78 86.05

Bare soil 83.45 80.11 82.83 83.04

Water 100.0 100.0 100.0 100.0

Table 5: Per-class average F1 scores for Koumbia scenario (2020 + 2021 → 2021).

scenarios characterized by significant class imbalances, a common situation in

real-world applications. Finally, still regarding the Centre Val de Loire bench-

mark, we can underline that for the transfer task (2021 + 2018 → 2018), REFeD

achieves the best performances for all the crop type classes.

4.4. Visual analysis

In this part of the experimental assessment, we provide qualitative analyses

to further evaluate the behaviour of REFeD considering the Koumbia site, in the

transfer task (2021 + 2020 → 2020). To this end, in addition to our framework, we

also consider the top-performing competitors: POEM, Sourcerer and TempCNN

(Source + Target). We first inspect some extracts from the obtained land cover

maps and, then we visually examine the internal representations learned by the

different methods by means of the t-SNE (van der Maaten and Hinton, 2008)
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Class TempCNN Sourcerer POEM REFeD

(Source+Target)

Cereals 77.48 74.25 76.39 79.38

Cotton 78.10 75.48 77.18 82.96

Oleaginous 72.91 69.93 71.69 75.14

Grassland 85.22 82.68 84.14 86.38

Shrubland 77.31 74.64 77.29 81.38

Forest 77.03 74.97 77.33 81.94

Bare soil 79.55 77.61 76.78 78.71

Water 100.0 100.0 100.0 100.0

Table 6: Per-class average F1 scores for Koumbia scenario (2021 + 2020 → 2020).

Class TempCNN Sourcerer POEM REFeD

(Source+Target)

Soft wheat 91.35 91.53 90.52 91.91

Maize 94.91 92.72 94.73 96.14

Barley 94.94 94.71 94.75 95.58

Other cereals 85.55 85.84 84.36 87.54

Oleaginous 86.76 88.56 86.87 86.43

Winter Fallows 73.82 71.98 73.22 73.87

Leguminous 55.26 52.26 54.93 61.63

Fodder 74.31 73.04 72.11 75.82

Meadow 74.35 71.33 73.92 73.48

Other crops 84.16 83.88 84.06 83.92

Table 7: Per-class average F1 scores for Centre Val de Loire scenario (2018 + 2021 → 2021).
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Class TempCNN Sourcerer POEM REFeD

(Source+Target)

Soft wheat 85.55 85.23 84.21 85.80

Maize 85.65 85.48 86.23 87.04

Barley 94.28 94.34 93.63 94.63

Other cereals 73.35 73.87 71.35 73.79

Oleaginous 72.49 70.01 73.02 76.98

Winter Fallows 74.79 74.24 73.78 75.13

Leguminous 54.77 46.51 53.05 65.15

Fodder 70.47 68.24 66.91 72.07

Meadow 72.99 71.62 71.34 73.04

Other crops 57.40 57.76 57.66 64.06

Table 8: Per-class average F1 scores for Centre Val de Loire scenario (2021 + 2018 → 2018).
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SPOT6/7 Image TempCNN Sourcerer POEM REFeD

Figure 5: Extracts from the provided land cover maps per method. Ground truth areas outlined

over the extracts using the same color codes of Fig. 3.

dimensionality reduction technique.

4.4.1. Land cover maps

In order to give a further insight into the performances of the proposed method,

we performed a qualitative analysis of the land cover maps provided by each of

the competing methods. In Fig. 5 we report some examples for the (2021 + 2020

→ 2020) transfer scenario over the Koumbia study site. As easily observable, the

Sourcerer method tend to generate much noisier maps with respect to the com-

petitors, which seems to be the main factor limiting its global performances. The

other methods provide maps of comparable spatial characteristics, with REFeD

significantly outperforming the competitors on classes related to natural vegeta-
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tion with different densities (like the Forest class on the first row - bottom/right of

the clip). More occasionally, REFeD also seem to retrieve the correct crop class to

whole fields within the cropland which are entirely misclassified by other methods

(e.g. second row, for the big Cereal field in the middle). Otherwise, the system-

atic improvement of REFeD over its best competitors mainly occurs at the finest

scales, like for the fields in the example on the last row of Fig. 5, where most of

the “holes” generated by TempCNN and POEM appear as properly filled.

4.4.2. Visualisation of internal model representations

In this last stage of our experimental evaluation, we provide a visual inspec-

tion of the internal feature representation learned by REFeD, POEM, Sourcerer

and TempCNN (Source + Target). To this end, we randomly chose 50 samples per

land cover class from the target domain and we extracted the corresponding fea-

ture representation per method. Subsequently, we applied t-SNE (van der Maaten

and Hinton, 2008) to reduce the feature dimensionality for visualisation purposes.

Results are depicted in Figure 6. We can note that all the methods well separate

samples coming from the Water and Baresoil classes from the rest of the data.

However, while competing approaches clearly mix samples from all other land

cover classes together, REFeD partially alleviates clutter issues on the remaining

classes providing a better visual behaviour in terms of cluster structure, on the

considered subset of target data. This can be noted, for instance, regarding both

the agricultural (Cereals, Cotton and Oleaginous/Leguminous) and natural veg-

etation (Grassland, Shrubland and Forest) classes. Overall, the visualisation of

internal features representation is coherent with the quantitative as well as quali-

tative findings we previously discussed.
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REFeD
Cereals
Cotton
Olea/Legu
Grassland
Shrubland
Forest
Bare Soil
Water

POEM

Sourcerer TempCNN (Source+Target)

Figure 6: t-SNE results for the proposed approach (top left) and three different baselines: POEM

(top right), Sourcerer (bottom left) and TempCNN (Source+Target) (bottom right).
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5. Conclusion

In this work we have presented REFeD, a novel deep learning framework that

enhances the accuracy of the current LC mapping process by combining together

EO and reference data coming from two different domains (e.g. historical data

and recent ones) with the aim to give value again to historical and/or overlooked

reference data under a data-centric perspective.

REFeD is based on a pseudo-siamese architecture with unshared weights and

it relies on contrastive learning to disentangle invariant and specific per-domain

features to recover the intrinsic information related to the downstream LULC map-

ping task. Furthermore, REFeD is equipped with an effective supervision scheme

where feature disentanglement is further enforced via multiple levels of supervi-

sion.

The obtained results on two study areas covering extremely diverse and con-

trasted landscapes have highlighted the quality of our framework regarding both

quantitative and qualitative analyses with respect to all considered competitors.

Most importantly, REFeD systematically outperforms models that only exploit

target data paving the way to the reuse of historical and/or overlooked reference

data for the LULC mapping task taking as input satellite image time series data.

Potential future extensions related to our framework may include extending

REFeD to encompass a multi-source remote sensing setting where the two do-

mains are described by different sensors (e.g. Sentinel-2 and Landsat). Addi-

tionally, we could contemplate a scenario where multiple historical or out-of-year

datasets are available further advancing the effective reuse of overlooked and/or

neglected efforts related to past resource-intensive field campaigns conducted on

the same or related study areas.
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