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Abstract. In their celebrated 1984 article, Denef and Lipshitz provide
an algorithm for deciding whether a finite system of ordinary differential
polynomials has formal power series solutions. This algorithm has never
been implemented. In this paper, we describe some key algorithmic tools
for transforming this decision result into practical software.

1 Introduction

We are concerned with [10, Theorem 3.1] which provides an algorithm for decid-
ing whether a finite system of ordinary differential polynomials, with coefficients
in Q[x] has formal power series solutions in F [[x]] where F stands for C, R
or Qp.

The problem belongs to differential algebra, which is an algebraic theory
for systems of ordinary or partial polynomial differential equations, founded by
Joseph Fels Ritt in the first half of the former century [26, 27] and developed by
Ellis Robert Kolchin [18].

The addressed problem is more difficult than deciding whether 1 belongs to
the differential ideal generated by the input differential polynomials, which is
solved by differential elimination methods in both the ordinary and the partial
case [6]. Indeed differential elimination methods solve the existence problem of
formal power series solutions in F [[x−x0]] where x0 stands for some unspecified
expansion point (or initial value) while Denef and Lipshitz Theorem addresses
the existence problem of formal power series solutions, in the ordinary case, for
a given expansion point x0. In the partial case, the same problem turns out to
be algorithmically undecidable [10, Theorem 4.11].

The proof of [10, Theorem 3.1] is difficult. It is remarkable that it solves the
more general (and interesting!) problem of deciding whether a finite system of or-
dinary differential polynomials has formal power series solutions the coefficients
of which satisfy polynomial constraints.

This second problem is important since it contains as a particular case the
existence problem of formal power series solutions for given initial values. Con-
sider any Runge-Kutta scheme [14, 15]: the entries of the Butcher tableaux are
obtained by identifying the coefficients of the formal power series solution of the
initial value problem under consideration (which is thus assumed to exist and



be unique) with the ones of the Taylor expansion of the Runge-Kutta scheme.
The same observation holds for all classical numerical integration schemes.

In this paper, we provide basic algorithmic tools, based on the theories of
regular chains and regular differential chains, for solving key issues arising in the
proof of [10, Theorem 3.1] and describe a partial implementation available in
the recent Python DifferentialAlgebra package. By lack of time, it was not
possible to finish a general algorithm solving the addressed problem. However,
readers who would compare our text to the original one will guess that the
structure of the proof of this general algorithm is very likely to be quite different
from the one of Denef and Lipshitz (though all essential theoretical tools are
given in [10]). In particular, we address the uniqueness problem of formal power
series solutions (see subcase 3.1 of Section 5).

In Section 2, we provide some mathematical background including an original
interesting example (Example 2) and a related undecidability result. Section 3 is
almost completely borrowed from [10] with a slight generalization of [10, Lemma
2.3] (our Lemma 2). Section 4 is a synthesis of known results on regular chains
and does not contain any new result. Section 5 shows how to apply the results
given in Section 3 to the context of formal power series the coefficients of which
are taken modulo squarefree regular chains. The content of this whole section is
new. Section 6 is new also: it explains how to easily solve an algorithmic problem
raised in Section 3. The fact that the content of this section is easy is good news.
Indeed, the corresponding step in [10, page 227], does not look that simple at
first sight (it is actually related to the step which does not generalize well to the
partial case). Let us quote it (here, V denotes a general algebraic variety and Ii
a family of multivariate polynomials): compute (by elimination theory over an
algebraically closed field)

E = {q ∈ N | ∃i∀t ∈ V, Ii(q, t) = 0} .

Related work. On the symbolic computing side, the results of [10] we are deal-
ing with are known by the differential algebra community. In particular, they
have been used for deciding whether expressions depending on power series are
zero [24, 30]. They have recently gained a renewal of interest because of their
relationship with tropical differential algebraic geometry [13, 11, 1, 12]. On the
numerical side, they should be related to the computation of the numerical index
of DAE [15] and to the problem of numerically integrating differential-algebraic
equations (DAE) by computing Taylor series coefficients, which is solved by the
DAETS software starting from a structural analysis of the DAE [25, 23]. Note
that the recent [32] has pointed out weaknesses in the structural analysis stage of
DAETS, for specific values of the DAE parameters. However, all these works do
not mention the results of Denef and Lipshitz, probably because of the very alge-
braic nature of [10]. A precise compared analysis of all these works still remains
to be done.



2 Mathematical Background

On the one hand, [10, Theorem 3.1] is concerned with formal power series solu-
tions of systems of non autonomous ordinary differential polynomial equations
i.e. differential polynomials which explicitely depend on the unique independent
variable x, assuming that differentiations are performed with respect to x. On the
other hand, classical Ritt-Kolchin differential algebra only considers autonomous
differential polynomials with coefficients in a field. There is no fundamental dif-
ference between these two approaches as long as non autonomous equations have
polynomial coefficients in x since it is always possible to reduce the framework
of [10] to the one of Ritt and Kolchin by performing a change of derivation
d/dx = d/dξ, viewing the former independent variable x occuring in the coeffi-
cients as a new differential indeterminate subject to ẋ = 1 and transforming the
expansion point x0 of the sought formal power series into an initial value for x(ξ).
This being understood, we will often consider non autonomous equations within
Ritt-Kolchin theory.

Let F be an algebraically closed ordinary differential field of characteristic
zero (we do not consider the case of F being R or Qp but we admit the case of
F being the algebraic closure of Q), F{y1, . . . , yν} be an ordinary differential
polynomial ring in ν differential indeterminates over F and Σ ⊂ F{y1, . . . , yν}
be a system of differential polynomials. We are concerned by the existence and
uniqueness problem of formal power series solutions ¯̄y1, . . . , ¯̄yν of Σ in F [[x−x0]]
for some prescribed initial values, where x0 denotes a prescribed expansion point.
To simplify notations, we assume that x0 is the origin and seek solutions in
F [[x]].

In principle, the computation of a formal power series solution of some dif-
ferential polynomial f ∈ F{y} can be achieved by the following process. Assign
unknown coefficients ¯̄yi to the sought formal power series

¯̄y = ¯̄y0 + ¯̄y1 x+
¯̄y2
2

x2 + · · · (1)

Assume f has order n in y so that f = f(x, y, ẏ, . . . , y(n)). Given any non-
negative integer p, beware to distinguish f (p)(x, ¯̄y, ¯̄y′, . . . , ¯̄y(n+p)) which is the
formal power series obtained by evaluating the pth derivative of f at y = ¯̄y from
f (p)(0, ¯̄y0, ¯̄y1, . . . , ¯̄yn+p) which is a polynomial of F [¯̄y0, ¯̄y1, . . . , ¯̄yn+p] obtained by
renaming each derivative y(i) as ¯̄yi and replacing x by 0 (the expansion point)
in f (p). The next formula is well-known (see [28, Lemma, page 160])

f(x, ¯̄y, ¯̄y′, . . . , ¯̄y(n)) =

∞∑
p=0

1

p!
f (p)(0, ¯̄y0, ¯̄y1, . . . , ¯̄yn+p)x

p .

The unknown coefficients ¯̄yi must then be chosen so that they annihilate the
infinite polynomial system f (p)(0, ¯̄y0, ¯̄y1, . . . , ¯̄yn+p) = 0 for p ≥ 0.

Let us now give two examples illustrating the issues raised by our problem.



Example 1. Consider the following system:

x ẏ = a y ,
ȧ = 0 .

(2)

The second equation tells us that a is a constant. Concerning y, one of the formal
power series solutions is y = 0 (the zero function). However, if a ∈ N, another
formal power series solution is the monomial y = xa which has its a first coef-
ficients in common with the zero function. Developing this example and using
Matiiassevitch negative answer [20] to Hilbert’s Tenth Problem, Singer [29, pages
89-90] (see also [10, Proposition 3.3]) proved that the following problem is algo-
rithmically undecidable: determine whether a finite system Σ with coefficients
in Q[x] has a nonzero formal power series solution.

Example 2. Consider the following equation with coefficients in Q[x]:

f(x, y, ẏ, ÿ) = x y ÿ + ẏ + y2 + 1 = 0 . (3)

It has a formal power series solution in F [[x]] (which is then uniquely defined) if
and only if its initial value (we denote yi rather than ¯̄yi for legibility) y0 ̸= −1/a
for all a ∈ N∗. Moreover, if y0 = −1/a then f(x, y, ẏ, ÿ) = 0 mod xa admits
a solution. This can easily be seen by considering the polynomial system to be
solved in order to have a formal power series solution:

f(0, y0, y1, y2) = y1 + y20 + 1

f ′(0, y0, . . . , y3) = (y0 + 1) y2 + 2 y0 y1

f ′′(0, y0, . . . , y4) = (2 y0 + 1) y3 + (2 y1 + 2 y0) y2 + 2 y21

f (3)(0, y0, . . . , y5) = (3 y0 + 1) y4 + (6 y1 + 2 y0) y3 + 6 y1 y2 + 3 y22
...

Given any y0, there exists a unique value for y1 which annihilates the first equa-
tion. If y0 ̸= −1/a for all a ∈ N∗ then the leading coefficients of the equations
do not vanish and the polynomial system has a unique solution. If y0 = −1/a
for some a ∈ N∗ then the leading coefficient of fa = f (a)(0, y0, . . . , ya+2) van-
ishes. By considering the signs of the monomials, it is easy to see that the first a
equations force y1, . . . , ya to have negative values while fa forces ya to have a
positive value: the system is inconsistent.

An undecidability result. In the differential polynomial ring in ν differential
indeterminates y1, . . . , yν , introduce ν copies fi(x, yi, ẏi, ÿi) of the differential
polynomial f introduced in the above example, for i = 1, . . . , ν. Consider the
differential equation (the product of the fi):

f1 f2 · · · fν = 0 , (4)



in the differential indeterminates y1, . . . , yν subject to the following polynomial
system on the initial values y1,0, . . . , yν,0 and ν other indeterminates a1, . . . , aν :

yi,0 (ai + 1) = −1 (i = 1, . . . , ν) ,
p(a1, . . . , aν) = 0 .

(5)

Assume (a1, . . . , aν) ∈ Nν is a zero of the polynomial p. Then the differential
equation (4) has no formal power series solutions. Conversely, assume (a1, . . . , aν)
is a zero of p such that (say) a1 /∈ N. Then there exists a formal power series ¯̄y1
with initial value y1,0 which annihilates the first factor f1 of (4). Thus the tuple
of series (¯̄y1, ¯̄y2, . . . , ¯̄yν) where ¯̄yk is any formal power series with initial value yk,0
for k = 2, . . . , ν, is a formal power series solution of the differential equation (4).

Summarizing, the differential equation (4) has formal power series solutions
for all solutions of the polynomial system (5) if and only if p(a1, . . . , aν) has no
zero in Nν . By Matiiassevitch’s Theorem, the following problem is thus unde-
cidable: determine if a differential polynomial system Σ with coefficients in Q[x]
whose initial values are subject to a polynomial system Ω with coefficients in Q
has formal power series solutions for all solutions of Ω.

3 The Prolongation Bounds

This section aims at presenting and slightly generalizing the part of Denef and
Liphitz paper which is important for our problem. This part is a subset of [10,
Lemma 2.2 to Theorem 3.1].

The key result is the following Lemma, due to Adolf Hurwitz [17, pages
328-329]. It is restated in [10, Lemma 2.2]. For a better relationship with these
articles, we keep in this section, the somewhat unusual notation fn for the sep-
arant.

Lemma 1. Let f be a differential polynomial of order n in F{y}. Let k ∈ N.
Then

f (2 k+2) = y(n+2 k+2) fn + y(n+2 k+1) fn+1 + y(n+2 k) fn+2

+ · · ·+ y(n+k+2) fn+k + fn+k+1 , (6)

where the fj are differential polynomials of order at most j in y for all in-
dices j = n, n+ 1, . . . , n+ k + 1 and fn = ∂f/∂y(n). The differential polynomi-
als fn+1, fn+2, . . . , fn+k+1 depend on k but fn does not.

Let now q ∈ N. Differentiating q more times formula (6) we get

f (2 k+2+q) = y(n+2 k+2+q) fn + y(n+2 k+2+q−1) [fn+1 + q f ′
n]

+ · · ·+ y(n+2 k+2+q−r)

[
fn+r + q f ′

n+r−1 + · · ·+
(
q

r

)
f (r)
n

]
+ · · ·+ y(n+2 k+2+q−k)

[
fn+k + q f ′

n+k−1 + · · ·+
(
q

k

)
f (k)
n

]
+ hn+k+q+1 , (7)

where hn+k+q+1 has order at most n+ k + q + 1 in y.



We will apply Lemma 1 in the differential polynomial ring F{y1, . . . , yν}
equipped with a ranking [18] which is a total ordering over the infinite set of
the derivatives of the differential indeterminates y1, . . . , yν . In this setting, the
derivative denoted y(n) in Lemma 1 is the leading derivative of f i.e. the highest
derivative occuring in f with respect to the ranking and the differential polyno-
mial fn is the separant of f . Assume the leading derivative of f is a derivative
of (say) y1. Lemma 1 will be applied with y = y1 and the differential polynomial
ring F{y2, , . . . , yν} (more accurately, its field of fractions) in place of the base
field F .

In the sequel, we will apply the Lemma for the following value of k. The two
next definitions and Lemma 2 form a slight generalization of [10, Lemma 2.3].

Definition 1. (definition of k and c0)
Let f(x, y, . . . , y(n)) be a differential polynomial of order n and ȳ ∈ F [[x]] be

a formal power series which does not annihilate the separant fn of f . Then one
defines k as the valuation of fn(ȳ) i.e. the nonnegative integer such that

fn(x, ȳ, ȳ
′, . . . , ȳ(n)) = c0 x

k + c1 x
k+1 + · · · (c0 ̸= 0)

Denote ȳi the coefficients of the “initial value” encoding series ȳ.

ȳ = ȳ0 + ȳ1 x+
ȳ2
2

x2 + · · · (8)

Evaluate (7) at (x, y, ẏ, . . .) = (0, ȳ, ȳ′, . . .). Then f
(k)
n (0, ȳ0, ȳ1, . . . , ȳn+k) =

c0 ̸= 0. Thus the last term of (7) evaluates to a nonzero value. This remark
allows us to state the next definition.

Definition 2. (definition of r and A(q))
Let f, ȳ, k be as in Definition 1. One defines r (0 ≤ r ≤ k) as the smallest

integer such that[
fn+r + q f ′

n+r−1 + · · ·+
(
q

r

)
f (r)
n

]
(0, ȳ0, ȳ1, . . .) ̸= 0 . (9)

The left hand side of (9) is a nonzero polynomial of F [q], denoted A(q).

The next Lemma is more precise than [10, Lemma 2.3] which does not state
that the series ¯̄y is unique.

Lemma 2. Let f, ȳ, k be as in Definition 1. Let r and A(q) be as in Definition 2.
Let γ ∈ N be bigger than any integer root of A(q). Denote β = 2 k + 2 + γ + r
and δ = n+ 2 k + 2 + γ. Suppose

f(x, ȳ, ȳ′, . . . , ȳ(n)) = 0 (mod xβ) . (10)

Then there exists a unique formal power series ¯̄y ∈ F [[x]] such that

¯̄y = ȳ (mod xδ) , (11)

and

f(x, ¯̄y, ¯̄y′, . . . , ¯̄y(n)) = 0 . (12)



Proof. The existence of ¯̄y is proved by [10, Lemma 2.3]. Let us address the
uniqueness. In the proof of [10, Lemma 2.3] it is written that ¯̄y is determined as
follows for q ≥ γ + r (we use our notations inroduced in (1) and (8))

¯̄yi = ȳi (i = 0, . . . , δ − 1) , (13)

A(q) ¯̄yn+2 k+2+q−r = Bq (14)

where the polynomial Bq depends on ¯̄yj for j < n+2 k+2+ q− r only. Observe
that q ≥ γ + r implies that n + 2 k + 2 + q − r ≥ δ. From (11) and (13), the
coefficients ¯̄yi of ¯̄y for i = 0, . . . , δ−1 are uniquely defined. The other coefficients
are uniquely defined by (14).

Remark. The series ȳ satisfies condition (10) if and only if its coefficients form
a zero of the following system of β polynomial equations:

f(0, ȳ0, . . . , ȳn) = · · · = f (β−1)(0, ȳ0, . . . , ȳδ−1) = 0 . (15)

3.1 An approximation Lemma

The following Lemma 3 is a version of [10, Lemma 2.9] slightly simplified to fit
our needs.

Lemma 3. Let F0 be a finitely generated subfield of F . Let p be a prime ideal
of F0[x1, . . . , xr] and Wj(x1, . . . , xr), where j ∈ N, be a collection of polynomials
over F0 of bounded degree. Let V be the algebraic variety of p with coordinates
in F . Suppose that, for every j ∈ N there exists (x1, . . . , xr) ∈ V such that
Wj(x1, . . . , xr) ̸= 0 and that there exists a nonsingular point (a1, . . . , ar) ∈ V .

Then there exists a point (b1, . . . , br) ∈ V such that Wj(x1, . . . , xr) ̸= 0 for
all j ∈ N.

3.2 Examples

Example 3. We consider the following ODE arising from the brachistochrone
and the tautochrone problems. The general solution is a cycloid generated by
a circle of diameter 1. For ȳ0 = 0 it has no formal power series (but a formal
Puiseux series) solution. For ȳ0 = 1, it has two formal power series solutions
(one for the cycloid and one for the singular solution y(x) = 1 which touches the
cycloid at this point).

f = y ẏ2 + y − 1 .

We have n = 1 and fn(x, y, ẏ) = 2 y ẏ. First consider the case ȳ0 = 0. In order
to secure k, assume ȳ1 ̸= 0. Then fn(x, y, ẏ) = 2 ȳ21 x+ · · · and k = 1. Since the
equation is autonomous, we have r = k = 1 and A(q) = 2 ȳ21 q + 9 ȳ21 + 1. The
polynomial A(q) has no nonnegative integer root. We can thus choose γ = 0
which gives us β = δ = 5. The polynomial f(0, ȳ0, ȳ1) is equal to 1. Thus (15) is



inconsistent, proving that no formal power series solution exists. This example
shows that the bounds β and δ may be pessimistic.

Consider the case ȳ0 = 1. Looking at the polynomials f (i)(0, ȳ0, . . .) for
i = 0, . . . , 4, we see that only two choices are possible for the 5 first coeffi-
cients ȳ0, . . . , ȳ4 which are (1, 0, 0, 0, 0) or (1, 0,− 1

2 , 0,−
1
2 ). We cannot apply

Lemma 2 for the first choice since k = ∞ (the separant fn vanishes). Let us
consider the second choice. In this case, we find k = r = 1 and A(q) = −q − 3.
Since A(q) has no nonnegative integer roots, we may choose γ = 0 and we get
β = δ = 5. Applying Lemma 2, we conclude that the ODE has a single formal
power series solution starting as follows.

¯̄y = 1− x2

4
− x4

48
+ · · ·

Example 4. Consider again (2). We have n = 1. The separant fn = x does not
depend on y thus, for any series ȳ we have k = r = 1 and A(q) = q + 4− a. If a
is not an integer or a = 0, 1, 2, 3 then A(q) has no nonnegative integer root and
we may choose γ = 0, leading to β = δ = 5.

For values of a which are not nonnegative integers, the polynomial system
which must be satisfied by ȳ is ȳ0 = · · · = ȳ4 = 0 and ¯̄y = 0 is the unique
corresponding series solution.

For nonnegative integer values of a less than 4 (say) a = 3, the polynomial
system which must be satisfied by ȳ is ȳ0 = ȳ1 = ȳ2 = ȳ4 = 0. The coefficient ȳ3
may be any number and ¯̄y = ȳ3 x

3/6 is the unique corresponding series solution.
Observe that this case includes the zero solution.

For nonnegative integer values of a greater than or equal to 4, the least value
we may choose is γ = a−3 which leads to β = δ = a+2. The polynomial system
which must be satisfied by ȳ imposes ȳi = 0 for i = 0, . . . , a − 1, a + 1. The
coefficient ȳa may be any number and ¯̄y = ȳa x

a/a! is the unique corresponding
series solution. Again, this case includes the zero solution.

Example 5. Consider again (3). We have n = 2. The separant fn(x, y) = x y.
First consider the case ȳ0 = 0. Looking at the ODE, we see that ȳ1 = −1
necessarily. This leads us to k = 2, r = 1 and A(q) = 1. Choosing γ = 0 we get
β = 7 and δ = 8. The polynomial system which must be satisfied by ȳ admits
the unique following solution. The corresponding series ¯̄y exists and is unique.

(ȳ2, . . . , ȳ7) = (0,−2,−12,−160,−3400,−106160) .

Consider now the case ȳ0 ̸= 0. Then k = r = 1 and A(q) = ȳ0 q + 4 ȳ0 + 1.
If ȳ0 ̸= −1/a for every nonnegative integer a or a = 1, 2, 3 then A(q) has no
nonnegative integer root and we may choose γ = 0, leading to β = 5 and δ = 6.
The polynomial system which must be satisfied by ȳ is inconsistent if a = 1, 2, 3
else it admits a unique solution. In the latter case, the corresponding series ¯̄y
exists and is unique.

If ȳ0 = −1/a for some nonnegative integer a ≥ 4 then the least value we may
choose is γ = a− 3 leading to β = a+ 2 and δ = a+ 3. The polynomial system



which must be satisfied by ȳ is necessarily inconsistent (see the analysis of (3))
proving that there does not exist any series ¯̄y.

4 Basic notions on regular chains

In the sequel, we will consider systems mixing differential polynomials and reg-
ular polynomials (expressing constraints on the series coefficients). Since a reg-
ular polynomial can always be viewed as a differential polynomial of order zero,
strictly speaking, we do not need to distinguish regular polynomials from differ-
ential ones. However, though we consider that we are working in some differential
polynomial ring F{y1, . . . , yν} endowed with a ranking [18, chap. II, sect. 8], we
will perform the distinction, for a better legibility.

We consider a system

f1, . . . , fρ, g1, . . . , gσ (16)

where the fi are differential equations and the gi are polynomial equations. The
leading derivatives of the fi are derivatives of ρ different differential indeter-
minates y1, . . . , yρ for which we seek formal power series solutions ¯̄y1, . . . , ¯̄yρ.
Moreover, the fi are pairwise partially reduced with respect to each other, so
that {f1, . . . , fρ} forms a triangular set of pairwise partially autoreduced differ-
ential polynomials. The polynomials gi provide constraints on the coefficients
¯̄yi,j where i = 1, . . . , ρ and j ≥ 0 of the formal power series. The fi and the gj
thus depend on disjoint sets of symbols and may be considered separately.

We assume that the set C = {g1, . . . , gσ} forms a squarefree regular chain
(see [2] or the more recent [7, Definitions 6 and 24]).

The regular chain C defines a radical ideal a = (C) : I∞C which is the sat-
uration of the ideal (C) generated by C by the multiplicative family generated
by the initials of the gi. The ideal a is radical because C is squarefree (see [19,
21], [16, Proposition 7.6] or [7, Proposition 25]). The ideal a is distinct from the
unit ideal because C is a regular chain (see [7, Proposition 19] and references
therein).

Given any polynomial p, the regular chain C permits to compute the pseu-
doremainder of p by C which is defined as follows (the leading variable of gi is
denoted xi):

prem(p, C) =

{
prem(p, g1, x1) (σ = 1)
prem(prem(p, gσ, xσ), C

′) (C ′ = C \ {gσ})

and the resultant of p by C, which is defined as follows:

res(p, C) =

{
res(p, g1, x1) (σ = 1)
res(res(p, gσ, xσ), C

′) (C ′ = C \ {gσ})

The next proposition is a well-known property of regular chains. See [2, The-
orem 6.1].



Proposition 1. Let p be a polynomial and C be a regular chain defining an
ideal a. Then p ∈ a if and only if prem(p, C) = 0.

The next proposition was proved in [8, Lemma 4] in the zerodimensional
case. A variant of it is [31, Proposition 5.3]. See [7, Theorem 21, 1 ⇒ 4].

Proposition 2. Let p be a polynomial and C be a regular chain defining an
ideal a. Then p is a zerodivisor modulo a if and only if res(p, C) = 0.

The splitting cases mechanism. Since a is radical, it is equal to the intersection
of its associated prime ideals a = p1 ∩ · · · ∩ pπ. If prem(p, C) = 0 then p belongs
to all the associate prime ideals. If res(p, C) = 0 then p belongs to at least one
of the associated prime ideals. If prem(p, C) ̸= 0 and res(p, C) = 0 then it is
possible to decompose a as an intersection a0 ∩ a1 where a0 (represented by a
squarefree regular chain C0) is the intersection of the associated prime ideals
which contain p and a1 (represented by a squarefree regular chain C1) is the
intersection of the other ones. This splitting cases mechanism is at the core of
regular chain decomposition methods such as the one described in [22]. See also
[4, Fig. 3]. Starting from a given regular chain C, it can only be performed
finitely many (less than π) times.

On the variables the resultants depend on. Denote v1, . . . , vκ the variables occur-
ing in res(p, C). By the equidimensionality property of ideals defined by regular
chains (this is actually even true for general triangular sets), these variables are
algebraically independent modulo p where p is any associated prime ideal of a.
See [7, section 5] and references therein.

5 The case of series depending on parameters

In this section we focus on the case of a single squarefree regular chain C =
{g1, . . . , gσ}. This regular chain is supposed to arise from a general system Ω,
simplified through a regular chain decomposition algorithm such as the one de-
scribed in [22] and implemented in the Maple RegularChains package or the
RosenfeldGroebner of the Maple and Python DifferentialAlgebra packages.

This general system Ω from which C is supposed to be computed involves
two types of equations:

1. prolongation equations i.e. polynomial equations obtained by differentiation
and evaluation of the differential polynomials f1, . . . , fρ,

2. other polynomial equations introducing further constraints on the coefficients
of the formal power series.

Let us focus on the prolongation equations. Assume that the leading deriva-

tive of each fi is y
(ni)
i for i = 1, . . . , ρ. Denote µ1, . . . , µρ the prolongation bounds

used to build the general system Ω so that the prolongation equations of Ω are
the following ones, for i = 1, . . . , ρ:

f
(pi)
i (0, ȳi,j) , pi = 0, . . . , µi .



Assumption on prolongation bounds. The overall management of the prolonga-
tion bounds µ1, . . . , µρ is a complicated issue, which is not addressed in this
paper. In the sequel, we are sometimes going to assume that µ1, . . . , µρ are
“large enough” without any further details, to avoid the description of a general
decomposition algorithm.

Denote ȳi the initial value encoding formal power series (with coefficients
ȳi,j) for i = 1, . . . , ρ and consider Definition 1. We apply it over the differential
polynomials fi with separants si, for i = 1, . . . , ρ (we rename these separants,
denoted fn in the Definition, for legibility) modulo the ideal a defined by the
squarefree regular chain C = {g1, . . . , gσ}.

We assume each si(x, ȳj) to be nonzero modulo a (we are using here the
assumption that the prolongation bounds are “large enough” so that C contains
all the relevant prolongation equations). We moreover assume that the first co-
efficient ci,0 of each si(x, ȳj) is regular modulo a.

Thus the valuations ki (see Definition 1) are well defined and the polynomi-
als Ai(q) (see Definition 2) are not identically zero modulo a. The nonnegative
integer ri is well defined also.

We assume that all polynomials Ai(q) are regular modulo a i.e. that they have
at least one coefficient regular modulo a. Thanks to the splitting cases mechanism
and the regularity assumption on the coefficients ci,0, this assumption is easy to
satisfy.

Fix some i = 1, . . . , ρ. Denote Pi = prem(Ai(q), C) and Ri = res(Ai(q), C).
These polynomials depend on q and some other variables constrained by the
regular chain C. The fact that Ai(q) is regular modulo a implies that they are
not identically zero.

Denote V the algebraic variety of the ideal a, with coordinates in the alge-
braically closed field F . Since C is a regular chain, the ideal a is distinct from
the unit ideal and, since we are solving equations in an algebraically closed field,
the algebraic variety V is nonempty.

Case 1. Assume that Pi(q
∗) = 0 and that q∗ ∈ N is the maximum nonneg-

ative integer root of Pi. Thanks to the specifications of the pseudo-remainder
algorithm, there exists a power product h of initials of elements of C such that
hAi(q) = Pi(q) modulo a. Since the elements of C do not depend on q, we see
that the assumption Pi(q

∗) = 0 is equivalent to Ai(q
∗) ∈ a. Thus for all tuples of

initial values (ȳj,k) ∈ V , the defining equation (14) of ¯̄yi,ni+2 ki+2+q∗−ri vanishes
identically. Let us assume that the prolongation bounds are large enough in the
sense that µi ≥ ni+2 ki+2+q∗−ri. Then, using the fact that V is nonempty and
unless the regular chain C contains a dedicated equation for ¯̄yi,ni+2 ki+2+q∗−ri ,
we see that this coefficient can be chosen freely: the differential system has in-
finitely many formal power series solutions.

Case 2. Assume that Ri(q
∗) = 0 and that q∗ ∈ N is the maximum nonnegative

integer root of Ri. There exists some polynomial u such that uAi(q) = Ri(q) (see
[3, Lemma 4.14]). Since the elements of C do not depend on q, we see that u does



not either and the assumption Ri(q
∗) = 0 is equivalent to res(Ai(q

∗), C) = 0 i.e.
is equivalent to Ai(q

∗) is a zerodivisor modulo a. Thanks to the splitting cases
mechanism, this case is easily reduced to the other cases.

Case 3. Assume that Ri(q) has no nonnegative integer root.

Subcase 3.1. If Ri(q) only depends on q so that Ri(q) ∈ F for each q ∈ N then
any tuple of initial values (ȳj,k) ∈ V can be prolongated to a unique formal
power series solution of the differential system.

Subcase 3.2 If Ri(q) depends on some coefficients ȳj,k (at least one) then these
coefficients lie in a positive dimension algebraic subvariety of V (see “On the
variables the resultant depends on” in Section 4). Thus this subvariety contains
nonsingular points. According to Lemma 3 (the polynomials Wj and the prime
ideal p of the Lemma correspond to the polynomials Ai(q) for q ∈ N and any
associated prime ideal of a), some tuples of initial values (ȳj,k) ∈ V — but
possibly not all of them — can be prolongated to formal power series solutions
of the differential system.

6 Computation of the nonnegative integer roots

The various cases of the above section require the computation of the nonneg-
ative integer roots of the polynomials Pi(q) and Ri(q) for i = 1, . . . , ρ. These
polynomials belong to F [Y ][q] where Y denotes a finite set of variables ȳj,k.
Let P (q) be any of them. Decompose

P (q) = a1 m1 + · · ·+ aτ mτ

where the mj are pairwise distinct power products of variables in Y and the aj
are polynomials in F [q].

Proposition 3. A nonnegative integer annihilates P (q) if and only if it anni-
hilates all the polynomials aj(q) for j = 1, . . . , τ hence their gcd.

The computation of the gcd is algorithmic thanks to the Euclidean algorithm
in F [q]. We are thus reduced to the problem of computing the nonnegative
integer roots of a univariate polynomial G(q). If G(q) has complex coefficients,
its real roots are the common roots of the two polynomials ℜ(G(q)) and ℑ(G(q)),
which have real coefficients. The nonnegative integer roots of a polynomial with
real coefficients can be computed by a real root isolation algorithm, based on
sign variations, such as [9].

Observe that this algorithm may be optimized by stopping the isolation pro-
cess over any interval which is small enough (e.g. has length less than 1). The
integer roots in such intervals can then easily be determined by evaluation (this
optimization is important since it avoids the cost of isolating roots belonging to
a tiny cluster).



Another optimization consists in evaluating some of the variables belonging
to Y before the real root isolation process (this can even be done before the
computation of the pseudo-remainder or the resultant). One then obtains an
overset of the set of the sought roots. The irrelevant roots of the overset can
then be discarded by evaluation.

7 Implementation

A prototype software is implemented in the Python DifferentialAlgebra (ver-
sion 4.1) package [5] which can be installed using the standard pip Python pack-
age installing facility, on Linux and MacOS platforms. The following commands
investigate our Example 2 from Section 2 using it. First load the package (which
relies on the Python/sympy package).

[1]: from sympy import *

from DifferentialAlgebra import *

init_printing ()

The symbol x encodes the independent variable. The symbol q will be used
later. The symbol y is used for the differential indeterminate.

[2]: x,q = var ('x,q')
y = indexedbase ('y')

The symbols yi are used for denoting the coefficients of the initial value
encoding series ȳ.

[3]: params = [q] + [y[i] for i in range (9, -1, -1)]

params

[3]: [q, y9, y8, y7, y6, y5, y4, y3, y2, y1, y0]

[4]: ybar = Add (*[y[i]*x**i/factorial(i) for i in range (0,5)])

ybar

[4]: x4y4
24

+
x3y3
6

+
x2y2
2

+ xy1 + y0

When designing software for the problem addressed in this paper, in which
many different symbols are needed, it is not straightforward to establish the rela-
tionship between the differential indeterminates and the coefficients of the formal
power series. The design we have adopted consists in using Python dictionaries.
The variable point associates one initial value encoding series (hence their coef-
ficients) to each differential indeterminate. It lets also users decide whether they
want to divide these coefficients by the factorials or not. The dictionary permits
also to specify the expansion point.

[5]: point = { x:0, y:ybar }

point



[5]:
{
x : 0, y :

x4y4
24

+
x3y3
6

+
x2y2
2

+ xy1 + y0

}
The next command defines the differential polynomial ring with respect to

which computations are going to be performed. It is Q[x, y0, . . . , y9, q]{y}. The
symbols q and the yi are defined as constants: their derivatives are zero.

[6]: R = DifferentialRing (derivations = [x], blocks = [y, params],

parameters = params, notation = 'jet')

Let us assign to f the ODE (3) in the “jet” notation.

[7]: f = x*y*y[x,x] + y[x] + y**2 + 1

f

[7]: xyx,xy + yx + y2 + 1

The next command defines the system (16) associated to our problem: it con-
tains the ODE and one (simple) algebraic equation, assigning to y0 the value − 1

5 .
Such a system actually forms a regular differential chain C.

[8]: C = RegularDifferentialChain ([f, 5*y[0] + 1], R)

The next command computes the prerequisite data needed before prolongat-
ing the ODE and investigating the existence and uniqueness of formal power
series solutions. It returns a tuple (u, n, k, r, c0, A(q)) where u = ÿ is the leading
derivative of the ODE, n = 2 is its order and the other components are defined
in Lemmas 1 and 2. The last argument edo=f permits to compute the data
for a specified element of C. Without this optional argument, a list of tuples is
returned: one per ODE in C.

[9]: u, n, k, r, c0, A = C.prolongation_prerequisites (q, point, edo=f)

u, n, k, r, c0, A

[9]: (yx,x, 2, 1, 1, y0, qy0 + 4y0 + 1)

The returned polynomial A(q) is not simplified with respect to C (as is, it
has no positive integer root). Let us compute its pseudo-remainder P (q) with
respect to C (the reduction process involves the algebraic constraints of C only).

[10]: P = C.prem (A)

P

[10]: 1− q

The next computation is not really needed: it permits us to show that the
positive integer root algorithm described in Section 6 is implemented.

[11]: R.positive_integer_roots (P, q)

[11]: [1]



The above data permit to take γ = 2 and define β = 2 k + 2 + γ + r = 7
and δ = n + 2 k + 2 + γ = 8 which permit to eventually prove the absence of
formal power series solutions. We do not give the corresponding computations
because this part of the software is not implemented.
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VI, France (1997)

22. Moreno Maza, M.: On Triangular Decompositions of Algebraic Varieties. Tech.
rep., NAG Ltd, Oxford, UK (2000), presented at the MEGA2000 conference. Tech-
nical Report TR 4/99. http://www.csd.uwo.ca/~moreno

23. Nedialkov, N.S., Pryce, J.D.: Solving Differential-Algebraic Equations by Taylor
Series (I): Computing Taylor Coefficients. BIT 45(3), 561–591 (2005)
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