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Abstract 1

2

State-space models are widely used in ecology to infer hidden behaviors. This study develops an extensive
numerical simulation-estimation experiment to evaluate the state decoding accuracy of four simple state-
space models. These models are obtained by combining different Markovian specifications (Markov and
semi-Markov) for the hidden layer with the absence (model AR0) and presence (AR1) of auto-correlation for
the observation layer. Model parameters are issued from two sets of real annotated trajectories. Three met-
rics are developed to help interpret model performance. The first is the Hellinger distance between Markov
and semi-Markov sojourn time probability distributions. The second is sensitive to the overlap between the
probability density functions of state-dependent variables (e.g., speed variables). The third quantifies the
deterioration of the inference conditions between AR0 and AR1 formulations. It emerges that the most sen-
sitive model choice concerns the auto-correlation of the random processes describing the state-dependent
variables. Opting for the absence of auto-correlation in themodel while the state-dependent variables are ac-
tually auto-correlated, is detrimental to state decoding performance. Regarding the hidden layer, imposing
a Markov structure while the state process is semi-Markov (with negative Binomial sojourn times) does not
impair the state decoding performances. The real-life estimates are consistent with our experimental find-
ing that performance deteriorates when there are significant temporal correlations that are not accounted
for in the model. In light of these findings, we recommend that researchers carefully consider the structure
of the statistical model they suggest and confirm its alignment with the process being modeled, especially
when considering the auto-correlation of observed variables.
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Introduction 23

The analysis of tracking data reveals information about the behavior underlying the movement patterns. 24

This might for instance concern the detection of fishing activities (e.g. Bertrand et al., 2007; Bez et al., 2011; 25

Gerritsen and Lordan, 2011; Gloaguen et al., 2015; Vermard et al., 2010), as in the present study, or the identi- 26

fication of exploratory versus encamped activities of wildlife animals, e.g. elks (Morales et al., 2004) or bisons 27

(Langrock et al., 2012). After establishing the principle of representing behavior with a few meaningful states, 28

segmentation methods can be used to estimate the states (Edelhoff et al., 2016). The commonly used seg- 29

mentation methods includes filtering or thresholding (Gerritsen and Lordan, 2011), mixedture models (Owen- 30

Smith et al., 2010), K-means (Schwager et al., 2007), and hiddenMarkovmodels (HMM) or hidden semi-Markov 31

models (HSMM) (Jonsen et al., 2013; Joo et al., 2013; Morales et al., 2004). This paper focuses on the two lat- 32

ter that allow time dependency to be considered (however, it is generally limited to first order, whereas data 33

can have long temporal memories), and that are hierarchical models. Typically, they are composed of two 34

layers: one to model the dynamics of the unobserved state process (also called the hidden process) and one 35

to model the observed variables along the track (see, Zucchini and MacDonald, 2009 or McClintock, Langrock, 36

et al., 2020 for didactic descriptions). Each of these layers can be flexible in their specifications (Gloaguen 37

et al., 2015; Langrock et al., 2012; McClintock, King, et al., 2012; Morales et al., 2004). For example, one could 38

use a Markov or semi-Markov hidden process to model the sequence of hidden states, and/or a correlated or 39

uncorrelated random walk for the observed state-dependent variables. 40

41

When the states are known by direct or indirect observations (supervised cases), it is possible to infer prop- 42

erly the structure and the parameters of a segmentation model on a labeled training set, and to use the 43

calibrated model to predict the states for a new unlabeled dataset. Learning methods, e.g., random forests 44

(Sur et al., 2017; Thums et al., 2008) can also be used in these situations. However, when it comes to the 45

most common unsupervised frameworks, model specification flexibility comes at a cost. Histograms for state- 46

dependent variables and sojourn times in different states cannot be access to. As a result, one cannot infer 47

the probabilistic laws they follow. In such cases, the type of probability density functions (PDF) of the state- 48

dependent variables and the type of probabilitymass functions (PMF) of the sojourn times in the various states 49

are not empirically grounded. They cannot be formally verified (Auger-Méthé, Clair, et al., 2011; Avgar et al., 50

2013; Pohle et al., 2017). However, postulating that the hidden process is Markov (HMM), with no time depen- 51

dence in the observed state-dependent variables (AR0), may have a negative impact on the state decoding 52

accuracy if the data do not conform with these choices. This study aims to assess the implications of some 53

standard model specification choices. 54

55

In the absence of ground truth (unsupervised situations), amodel can be evaluated against competingmod- 56

els using penalized maximum likelihood criteria such as AIC or BIC (Auger-Méthé, Newman, et al., 2021; Joo et 57

al., 2013; Langrock et al., 2012; Pohle et al., 2017). Based on likelihood, selection is made from the standpoint 58

of the visible side of themodel, i.e., the observation layer. The hidden layers are not explicitly considered, even 59

though they are the estimation’s target. Another challenge is that several hidden state sequences can result 60

in the same likelihood, making it difficult to select models based on likelihood. Zucchini and MacDonald, 2009 61

suggest to compare pseudo-residuals and the conditional probabilities to observe one particular observation 62

knowing all observations, except the current one, in aNormal-Normal scales. Similarly Auger-Méthé, Newman, 63

et al., 2021 use probability integral transform (PIT). However, these approaches only evaluate model consis- 64

tency regarding the observed state-dependent variables. They do not permit evaluating model performance 65

in terms of state estimations, which is the primary goal of these models. Simulation-estimation experiments 66

are widely used in unsupervised situations to understand and evaluate the strengths and weaknesses of mod- 67

els (e.g., for the HMM context, McClintock, 2021). They are especially suitable for evaluating state decoding 68

accuracy. Simulation-estimation entails assuming a true model, i.e., a model type and its parameters, which 69

3



are then used to simulate sequences of states as well as realizations of the dependent variables (simulation 70

step). The simulated dependent variables are then used as in real life unsupervised situations to re-estimate 71

the parameters of the model, the real one or another model, and the states (estimation step). 72

73

The use of state-space models in fisheries is motivated by the fact that a significant proportion of vessels 74

are required by regulation to be equipped with GPS systems that allow for the observation of their trajectory 75

at regular time steps. However, we don’t know when they’re fishing. The use of state-space models proved to 76

be efficient to estimate where and when a vessel is fishing knowing its trajectories, and thus tomonitor fishing 77

pressure on certain fish stocks (Bez et al., 2011; Vermard et al., 2010). This results however in uncontrolled 78

estimation precision and underlines the need for an evaluation of the state decoding performances of such 79

models. We were fortunate to have access to a few fishing vessel tracks where the fishing operations were 80

meticulously documented. In this paper, we conduct simulation-estimation experiments with four types of 81

models, the parameter values of which are derived from these sets of real trajectories, and compare the esti- 82

mation of the states with the real ones. In addition to the fact that behavioral state durations must be longer 83

than the observation time step, understanding an individual’s behavior from his or her trajectory depends on 84

the model’s time step. This often coincides with the observation time step of the trajectory, which influences 85

the temporal scope of correlations. Consequently, the ability of models to infer behavior is time-dependent, 86

so it is useful to investigate the sensitivity of model performance to their temporal resolutions. 87

88

This study aims to assess state-decoding accuracy or the models’ ability to recover true hidden states. Fol- 89

lowing a general introduction to the main characteristics of hidden Markov and semi-Markov models and to 90

the three metrics defined in this study to compare them, we focus on four types of models by combining 91

two Markovian structures for the hidden layer (Markov or semi-Markov) with two auto-regressive orders for 92

the observation layer (AR0 or AR1). In line with the literature dealing with model skill assessment, i.e., on the 93

ability to assess the fidelity of model behavior to truth (Allen and Somerfield, 2009; Lynch et al., 2009), we 94

assess different facets of state decoding accuracy simulation-estimations experiments. We perform a Model 95

Skill Assessment (MSA), where the model used for the simulation and the estimation is the same. Then, we 96

carry out a Model Robustness Assessment (MRA) where the model used for estimation is one of all the possi- 97

ble models except the model used for simulation. Thanks to the ground-truther fishing behavior associated 98

with the vessel trajectories, we finally complete the analyses by checking the model assumptions and, more 99

importantly, evaluating the ability of the four types of models to recover the known states. 100

101

Material and methods 102

Definition of the simulation models 103

Hidden Markov (HMM) and hidden semi-Markov models (HSMM) are two similar state-space models for- 104

mulated and implemented here in discrete regular-time frameworks. Table 2 lists all notations. 105

The hidden layer hosts a random process 𝑆𝑡 , indexed on time 𝑡, taking 𝑁𝑆 discrete possible values that
can be considered as a Markov (resp. semi-Markov) process for HMM (resp. HSMM) state-space models.
Given that we want to estimate one specific behavioral state rather than all of them, we consider two states
(𝑁𝑆 = 2), a targeted state and the others. This is also consistent with the data that are used to define the
models’ settings. In general, HMM cannot be considered a particular case of HSMM. As explained below, the
only case in which an HMM can be considered a subset of an HSMM is when the probability mass functions
(PMFs) for the HSMM’s sojourn time are chosen from the negative binomial distributions. The sojourn times
in the various states are constraint to last at least 1 time unit. Knowing that the process enters, say, state 𝑠, at
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time 𝑡 + 1, the distribution of the sojourn time 𝑇𝑠 in this state is defined as
𝑃
(

𝑇𝑠 = 𝑘
)

= 𝑃
(

𝑆𝑡+𝑘+1 ≠ 𝑠, 𝑆𝑡+𝑘 = 𝑠, ..., 𝑆𝑡+2 = 𝑠|𝑆𝑡+1 = 𝑠, 𝑆𝑡 ≠ 𝑠
)

, for 𝑘 ≥ 1, 𝑠 = 1,… , 𝑁𝑆

106

The eventuallymultiple observation layers host the state-dependent variables. Twoobserved state-dependent107

variables are considered here (𝑁𝑉 = 2) corresponding to the average persistent and rotation speeds asso- 108

ciated with a pair of consecutive locations and located by convention on the first of these points (Figure 1, 109

Gloaguen et al., 2015). Formally, the properties of the average velocity are strongly dependent on the time 110

delay between observations, so it is recommended in practice to take regular time steps. It also leads us to 111

investigate model performance as a function of time resolution. 112

113

Figure 1. Directed acyclic graph for HMM and HSMM. The black arrows indicate conditional dependencies.
Conditional independence is thus reflected by the absence of an arrow. In HSMM, the time duration is an
outcome of a random variable. The four tested models (m = 1,...,4) get one hidden layer with a two states
(𝑁𝑆 = 2) variable and one observation layer with two variables (𝑁𝑉 = 2) whose definition is indicated on the
top-left panel. Circles represent the two states (white for State 1 and plain for State 2) states. The observation
layer is made of two random variables depicted by squares and triangles. Conditionally on the state, the
variables of the observation layer can follow an AR0 (no arrow between them) or an AR1 (arrows). The number
of parameters needed by layer assumed a shifted-negative binomial PMF for the sojourn times in the HSMM
formulation and a Gaussian PDF for the state-dependent variables. 𝑁𝐻 and 𝑁𝑂 represent the number of
parameters required to parameterize the hidden and the observation layers, respectively.

Definition and characterization of the hidden layers 114

For HMMs, The Markov property (of order 1) the state process 𝑆𝑡 is Markov which implies that 𝑆𝑡+1 is 115

independent of (𝑆1, 𝑆2,… , 𝑆𝑡−1) conditionally on 𝑆𝑡, which means that : 116

(((((((((((((((((((

[𝑆𝑡+1|𝑆𝑡 = 𝑠𝑡,… , 𝑆1 = 𝑠1] = [𝑆𝑡+1|𝑆𝑡 = 𝑠𝑡]
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117

𝑃
(

𝑆𝑡+1 = 𝑠𝑡+1|𝑆𝑡 = 𝑠𝑡,… , 𝑆1 = 𝑠1
)

= 𝑃
(

𝑆𝑡+1 = 𝑠𝑡+1|𝑆𝑡 = 𝑠𝑡
)

,∀𝑡 ≥ 1

where, [𝑋|𝑌 = 𝑦] stands for the probability density function (PDF) of the random variable 𝑋, knowing that
the random variable 𝑌 equals 𝑦. The stationary PMF of the sojourn times in the different states is defined by
where 𝑠𝑡 is the outcome of 𝑆𝑡. The temporal random process is thus characterized by the transition matrix
whose elements 𝑝𝑠𝑠′ are the probabilities to switch from state 𝑠 to state 𝑠′ when going from one time step to
the next:

𝑝𝑠𝑠′ = 𝑃 (𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠) ,∀𝑡

Following this equation, 𝑝𝑠𝑠 is the probability of remaining in state 𝑠 when going from one time step to the 118

next, and where 𝑞𝑠 = 1 − 𝑝𝑠𝑠 is the probability to leave state 𝑠. 119

A consequence of the conditional independence is that the distribution of the sojourn time 𝑇𝑠 in each
possible state 𝑠 = 1,… , 𝑁𝑆 follows a geometric PMF:

𝑇𝑠 ∼ (𝑞𝑠)

In the present work, the sojourn times last at least 1 time step so that: 120

𝑃 (𝑇𝑠 = 𝑘) = 𝑔𝑠(𝑘) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑘 = 0

(1 − 𝑞𝑠)𝑘−1𝑞𝑠 if 𝑘 ≥ 1

The first two moments are fully determined by 𝑞𝑠 as: 121

𝔼(𝑇𝑠) =
1
𝑞𝑠

𝕍 (𝑇𝑠) =
1 − 𝑞𝑠
𝑞2𝑠

and the number of free parameters required to specify the hidden layer of an HMM is𝑁𝐻 = 𝑁𝑆 (𝑁𝑆 − 1). 122

123

For HSMMs, the hidden layer itself can be decomposed into two sub-layers (R Core Team (2022), Figure 1). 124

The first sub-layer corresponds to a Markov chain, not indexed on time, defined by a transition matrix that 125

drives the realization of the states’ sequence (the transition matrix gets a zero diagonal and lines summing 126

to one so that it gets 𝑁𝑆 = (𝑁𝑆 − 2) elements). The second sub-layer specifies the PMF for the sojourn 127

times in each state, not necessarily geometric and not necessarily parametric even though non-parametric 128

formulations are rare (Johnson and Willsky, 2013; Sonia Malefaki and Limnios, 2010). In parametric cases, the 129

hidden layer of an HSMM is defined by𝑁𝐻 = 𝑁𝑆 (𝑁𝑆 − 2) +𝑁𝑆𝑁𝑝𝑆 parameters, where𝑁𝑝𝑆 represents the 130

number of parameters defining the PMFs of the sojourn time. In this work, the PMFs for the sojourn time are 131

chosen to be shifted negative binomial functions (𝑁𝑝𝑆 = 3): - 132

HSMM have a Markov property, with the difference that the memoryless property does not act on time but
on the jumps between the state process (Barbu and Limnios, 2008). In HSMM, the states follow a Markov
chain 𝑆̃𝑛, 𝑛 ∈ ℕ, not indexed on time (hence the term chain rather than process.), so that:

𝑃
(

𝑆̃𝑛+1 = 𝑠𝑛+1|𝑆̃𝑛 = 𝑠𝑛,⋯ , 𝑆̃1 = 𝑠1
)

= 𝑃
(

𝑆̃𝑛+1 = 𝑠𝑛+1|𝑆̃𝑛 = 𝑠𝑛
)

,∀𝑛

The Markov chain is characterized by the transition probabilities
𝑝̃𝑠𝑠′ = 𝑃 (𝑆̃𝑛+1 = 𝑠′|𝑆̃𝑛 = 𝑠)

The transition matrix gets a zero diagonal 𝑝̃𝑠𝑠 = 0, and lines sum to one, so that it requires 𝑁𝑆 (𝑁𝑆 − 2)
free parameters (note that in the case 𝑁𝑆 = 2, the matrix has no free parameters). The hidden layer of an
HSMM is naturally indexed on the jumping times defined by the successive time points 𝐽𝑛, 𝑛 ∈ ℕ of states’
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changes (Barbu and Limnios, 2008; Figure 1). A semi-Markov process is such that the future visited state and
the sojourn time in the present state depend only on the present state. In this case, the semi-Markov kernel
is given by :

𝑝̃𝑠𝑠′ (𝑘) = 𝑃 (𝑆̃𝑛+1 = 𝑠′, 𝑇̃𝑛+1 = 𝑘|𝑆̃𝑛 = 𝑠) = 𝑝̃𝑠𝑠′ ⋅ 𝑃 (𝑇̃𝑛+1 = 𝑘)

where 𝑇̃𝑛+1 is the sojourn time after the 𝑛𝑡ℎ jump, i.e. starting at the 𝑛𝑡ℎ jumping time 𝐽𝑛. The relation betweenthe (non Markov) stochastic process 𝑆𝑡 and the Markov chain 𝑆̃𝑛 is given by
𝑆𝑡 = 𝑆̃𝑁(𝑡)

where𝑁(𝑡) ∶= 𝑚𝑎𝑥(𝑛 ∈ ℕ|𝐽𝑛 ≤ 𝑡) is the discrete-time counting process of the number of jumps in [1, 𝑡]. The
state sequence over time is no longer a Markov chain, which relaxes the constraint on the PMF of the sojourn
time which no longer needs be geometric. Non-parametric formulations are rare (Johnson and Willsky, 2013;
Sonia Malefaki and Limnios, 2010) and are costly in terms of number of parameters. In this work, the PMFs
for the sojourn time are chosen to be shifted negative binomial

𝑇𝑠 ∼ (shift𝑠, 𝑛𝑠, 𝑞𝑠)

defined by 𝑁𝑝𝑆 = 3 state specific parameters, the shift (shift𝑠) corresponding to the minimum sojourn time,
and the two standard parameters of the negative binomial PMF (𝑛𝑠, 𝑞𝑠). For 𝑛𝑠 ∈ ℝ+, the PMF is given by:

𝑃 (𝑇𝑠 = 𝑘) = 𝑏𝑠(𝑘) =

{

0 if 0 ≤ 𝑘 < shift𝑠
Γ(𝑘′+𝑛𝑠)
𝑘′!Γ(𝑛𝑠)

𝑞𝑛𝑠𝑠 𝑝𝑘′𝑠 if 𝑘 ≥ shift𝑠 and where 𝑘′ = 𝑘 − shift𝑠 ,

where Γ(⋅) is the gamma function. Expectation and variance are given by 133

𝔼(𝑇𝑠) = shift𝑠 + 𝑛𝑠
1 − 𝑞𝑠
𝑞𝑠

,

𝕍 (𝑇𝑠) = 𝑛𝑠
1 − 𝑞𝑠
𝑞2𝑠

.

The rationale for using such PMF is twofold. First, in practice, sojourn times last at least one time step and 134

cannot be null (shift ≥ 1). It is also common practice to obtain tracking data at a finer resolution than the 135

duration of the states so that the smallest stay in a state is likely to be equivalent to a certain number of 136

time steps (shift > 1 or >> 1). Secondly, geometrical PMFs, i.e. PMFs of the sojourn times in HMM cases, 137

are particular cases of negative binomial PMFs (𝑛𝑠 = 1). The 𝑞𝑠 parameter of the negative binomial PMF is 138

related, but, in general, not equal to the equivalent parameter of the geometrical PMF. They are equal when 139

𝑛𝑠 = 1 in which case, if the shift is also set to 1, the two PMFs are similar ((1, 1, 𝑞𝑠) = (𝑞𝑠)). The hidden 140

layer of an HSMM is thus defined by𝑁𝐻 = 𝑁𝑆 (𝑁𝑆 − 2) +𝑁𝑆𝑁𝑝𝑆 parameters. 141

Under this formulation, the HMM models are thus nested in the HSMM models (HMM ⊂ HSMM). This 142

is not true in general for other HSMM specifications, i.e., for PMFs different from the family of the negative 143

binomial functions. The distance between a shifted negative binomial PMF and its equivalent geometric PMF 144

is evaluated by the Hellinger distances between the two PMFs (Hellinger, 1909). For each state 𝑠 = 1, ..., 𝑁𝑆 , 145

the Hellinger distance 𝑑𝑇𝑠 is given by: 146

𝑑𝑇𝑠 =

√

√

√

√1 −
∞
∑

𝑘=0

√

𝑔𝑠(𝑘) ⋅ 𝑏𝑠(𝑘)

Thus, the overall measure of distance between an HMM and an HSMM is: 147

𝑑𝑇 =
∑

𝑠
Π𝑠𝑑𝑇𝑠

where Π𝑠 = 𝔼(𝑇𝑠)∕
∑

𝑠′ 𝔼(𝑇𝑠′ ) is the probability of being in state 𝑠 given by the stationary (i.e. invariant) 148

distribution of the Markov chain. 149
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Definition and characterization of the observation layer 150

Probability density functions As in standard practice, we consider that the state-dependent random vari- 151

ables 𝑉𝑖, 𝑖 = 1, 2, are mutually independent(𝑉1,𝑡 ⟂ 𝑉2,𝑡′ ,∀𝑡, 𝑡′)conditionally to the state sequence with PDFs 152

defined conditionally to the hidden process. In the present work, the two state-dependent variables are cho- 153

sen uni-variate Gaussian (𝑁𝑝𝑂 = 2): 154

[𝑉𝑖,𝑡|𝑆𝑡 = 𝑠] ∼  (𝜇𝑖,𝑠, 𝜎𝑖,𝑠)���= 𝑖,𝑠 .

Their PDFs defined conditionally to the hidden process are thus denoted: 155

𝑓𝑉𝑖|𝑆𝑡=𝑠(𝑣) = 𝑖,𝑠(𝑣)

156

Discrimination between PDFs The estimation of the hidden states is a priori all the easier when the speed
distributions per state have no or low overlaps. As an alternative to a direct measure of overlap or distance
between PDFs, the discrepancy between the PDFs is quantified here with regard to the quality of the state pre-
diction they potentially permit (the larger, the better). It corresponds to the state decoding accuracy achieved
when ignoring the hidden layer, i.e. when considering a mixedture model (Figure 2). Indeed, in this simple
case, state is no longer considered as a stochastic process but as a random variable 𝑆 and state estimationor
𝑆̂ entails selecting the most likely state based on speed values, following the classical Bayes rule. Then, when
all parameters are known, the state estimator derived from a given velocity 𝑉 = (𝑣1, 𝑣2) is given by:

𝑆̂ = argmax
𝑠

(

Π𝑠1,𝑠(𝑣1)2,𝑠(𝑣2)
)

For each 1 ≤ 𝑠 ≤ 𝑁𝑆 , we define𝑠 =
{

𝑉 = (𝑣1, 𝑣2), such that 𝑆̂ = 𝑠
}, i.e., the region of ℝ2 where the state 157

is estimated as 𝑠. The state decoding accuracy when considering both variables, considered independent in 158

the current case derived from the overlap between the PDFs of the speed velocities under a mixture model 159

is then defined as: 160

𝑑𝑚𝑜𝑑𝑉 =
∑

𝑠
𝑃 (𝑆̂ = 𝑠, 𝑆 = 𝑠)

=
∑

𝑠
Π𝑠𝑃 (𝑆̂ = 𝑠|𝑆 = 𝑠)

=
∑

𝑠
Π𝑠 ∫𝑠

1,𝑠(𝑣1)2,𝑠(𝑣2)𝑑𝑣1𝑑𝑣2 .

When using labeled data, one can compute the empirical speed frequency distribution for variable 𝑖 in state 161

𝑠 histograms of both speed variables by state and compute the following empirical equivalent: 162

163

𝑑𝑒𝑚𝑝𝑉 =
∑

𝑠
𝜋𝑠

∑

(𝑣1,𝑣2)∈𝑟𝑠

ℎ1,𝑠(𝑣1)ℎ2,𝑠(𝑣2) ,

where 𝜋𝑠 represents the empirical proportion of time effectively spent in state 𝑠, 𝜋𝑠 = #{𝑠𝑡=𝑠}1…𝑇
𝑇 , and 𝑟𝑠 is 164

the empirical version of𝑠. 165

These metrics, ranging from 0 to 1, will be used as summary statistics for the observation layers of the 166

various real cases and models used in this study. 167

Auto-regressive process of order 0 (AR0) It is also standard to consider that, conditionally to the state, 𝑉𝑖,𝑡 168

and 𝑉𝑖,𝑡+1 are not temporally correlated (auto-regressive process of order 0; AR0): 169

𝑐𝑜𝑟(𝑉𝑖,𝑡, 𝑉𝑖,𝑡+1|𝑆𝑡 = 𝑆𝑡+1 = 𝑠) = 𝜏𝑖,𝑠 = 0

The number of parameters characterizing the PDF of the state-dependent variables, the observation layer of 170

an AR0, is defined by𝑁𝑂 = 𝑁𝑆𝑁𝑉 𝑁𝑝𝑂 parameters. 171

8



Figure 2. Overlap between PDFs and accuracy of state decoding assuming a simple mixedture model with
one single state-dependent variable. Each PDF is Gaussian. Knowing the variable value, the probability of
getting the correct state corresponds to the PDF that is maximum weighted by the probability of being in the
corresponding state.

Auto-regressive processes of order 1 (AR1) A natural extension is to consider auto-regressive processes 172

of order 1 (AR1) for 𝑉𝑖,𝑡 (Gloaguen et al., 2015; McClintock, Langrock, et al., 2020; Poritz, 1982). Conditionally 173

to a given state, say 𝑆𝑡 = 𝑆𝑡+1 = 𝑠, the auto-regressive processes can be formulated as follow: 𝑉𝑖,𝑡+1 = 174

𝜂𝑖,𝑠 + 𝜏𝑖,𝑠𝑉𝑖,𝑡 + 𝜎𝑖,𝑠𝜖𝑡, where 𝜖𝑡 ∼  (0, 1) so that 175

[𝑉𝑖,𝑡+1|𝑆𝑡+1 = 𝑆𝑡 = 𝑠] ∼  (𝜇𝑖,𝑠 =
𝜂𝑖,𝑠

1 − 𝜏𝑖,𝑠
, 𝜎𝑖,𝑠)

For AR1, the number of parameters characterizing the PDFof the state-dependent variables is𝑁𝑂 = 𝑁𝑆𝑁𝑉 (𝑁𝑝0+176

1). The extra parameter corresponds to the auto-regressive coefficient. AR0 being a particular case of AR1 177

(AR0 ⊂ AR1), it is possible to estimate an AR1 on the basis of AR0 data expecting that the coefficient of corre- 178

lation will be 0 (𝜏𝑖,𝑠 = 0), while the reverse is unwise. 179

The discrete auto-correlation function of an AR1 writes 𝜌(𝑡) = 𝜏𝑡. The correlation time (Yaglom, 1987) or 180

the integral range (Lantuéjoul, 1991) is defined by 𝐴 =
∑∞

𝑡=0 𝜏
𝑡. It is homogeneous to a time duration and 181

characterizes the intrinsic temporal scale of a process (𝐴 = 1 unit of time for a nugget effect, 𝐴 = 2 when 182

𝜏 = 0.5 and 𝐴 = 10 when 𝜏 = 0.9). In terms of prediction, it contributes to define if a given observation 183

time window can be regarded as large enough (resp. too low) for the mean of one realization to represent a 184

precise prediction the mean of the process. This says that the time window of observation must be 10 times 185

larger for an AR1 with 𝜏 = 0.9 than for an AR0 to get the same level of precision when estimating the mean of 186

the process. Reversely, when the time window is fixed, the precision deteriorates with increasing correlation 187

coefficients. 188

The metric used to measure the difference between the AR1 and AR0 formulations is defined as the dif- 189

ference between the ratio of the integral range to the mean time duration of the various states. For an AR0 190

state-space model, the integral range is 1, and the ratio is simply 1∕𝔼(𝑇𝑠). The unit-less differences by vari- 191

able and state (𝑑𝐴𝑅𝑖,𝑠
), by variable state (𝑑𝐴𝑅𝑠

) and for all variables and states (𝑑𝐴𝑅) between AR1 and AR0 192

formulations of a given state-space models are defined in this study by: 193

𝑑𝐴𝑅𝑖,𝑠
=

𝐴𝑖,𝑠 − 1
𝔼(𝑇𝑠)

𝑑𝐴𝑅𝑠
= 1

𝑁𝑉

∑

𝑖
𝑑𝐴𝑅𝑖,𝑠

𝑑𝐴𝑅 =
∑

𝑠
𝜋𝑠𝑑𝐴𝑅𝑠

9



Definition of the simulation models 194

Four model types Four types of models are investigated (Figure 1) by crossing the two types of Markov 195

structures with the two types of observation processes: 196

𝑚1 = HMM-AR0 𝑚2 = HMM-AR1
𝑚3 = HSMM-AR0 𝑚4 = HSMM-AR1

The number of parameters (𝑁𝜃 = 𝑁𝐻 +𝑁𝑂) ranges from 10 to 18 depending on the model. 197

Model parameters and time resolutions Parameters are set using ground-truthed tracks from two differ- 198

ent fishing vessels with distinct fishing behaviors. Vessel 1 is a trawler operating in the North-East Atlantic with 199

onboard sensors that detect fishing operations using GPS acquisition at 0.001 Hz (every 15 minutes). Vessel 200

2 is a purse seiner fishing in the Indian Ocean, with observers on board who record when the vessel is fishing 201

and GPS acquisition at 0.003 Hz (every 5 minutes). For both vessels, the reported states are non-fishing (State 202

1) and fishing (State 2). Persistent and rotation speeds are calculated at four different time resolutions by de- 203

grading observations at 30 minutes, 1 hour, and 2 hours for Vessel 1 and 15 minutes, 30 minutes, and 1 hour 204

for Vessel 2, respectively. To facilitate model comparison and gain generality, the resolution is expressed as 205

the average number of time steps in the fishing state (i.e., State 2). For example, for Vessel 2, if a fishing op- 206

eration lasts an hour and a half on average, the four resolutions correspond to 18, 6, 3, and 1.5 observations 207

per average fishing operation. 208

For simulation-estimation experiments, parameter coherence across the four model types is critical. For 209

the AR1 formulations, the parameters 𝜂𝑖,𝑠 are deduced from 𝜏𝑖,𝑠 and 𝜇𝑖,𝑠 ensuring that the expected values 210

and variances of the respective PDFs are the same in AR0 and AR1 for a given resolution. For the sojourn time 211

PMFs, the parameters of the shifted negative binomial PMFs (shift,𝑛,𝑝) are evaluated by maximum likelihood 212

based on observed tracking data. The HMM formulation’s parameters are then deduced to ensure that the 213

mean durations are the same in both frameworks: 214

𝑝𝑠𝑠 = 1 − 1
shift𝑠 + 𝑛𝑠

1−𝑝𝑠
𝑝𝑠

The variance is automatically deduced. The variances in state durations between the HSMM and HMM formu- 215

lations may thus differ. Settings 1 (resp. 2) denote the sets of model parameters estimated from the tracks of 216

Vessel 1 (resp. 2). Tables 3 and 4 list the model parameters. 217

Simulation-estimation experiments 218

Dimensions of the numerical experiments 219

Simulation-estimation experiments (Figure 3) assess the accuracy and robustness of state decoding under 220

controlled conditions for: 221

2 settings × 4 resolutions × 4 model types = 32 different cases
For each model case, 100 simulation-estimation experiments are run. In each experiment, synthetic data 222

(states and speeds) are simulated, and themodel parameters (𝜃̂) and states are re-estimatedusing expectation- 223

maximization algorithms (refer to below). Each simulation lasts long enough to produce 250 state changes. 224

We also carried out experiments with 50 alternations. 225

Maximum likelihood inference 226

Inferences are made by maximizing the likelihood using Expectation-Maximization (EM) algorithms (see
Dempster et al., 1977 for HMM and Guédon, 2003 in the context of HSMM). EM algorithms are iterative and

10



Figure 3. Workflow illustrated for one case study (grey panels represent the workflow for one particular
resolution). Upper left panels: observed time series in its original high-frequency resolution (r=1) and in three
levels of up-scaling (r = 2,3,4). Upper right panels: computation of persistent and rotational speeds (𝑣1, 𝑣2) foreach resolution and estimation by maximum likelihood procedures of models’ parameters and settings (𝜃).
BottomRight panels: the simulation-estimation experiments. For each testedmodel structure (𝑚1, 𝑚2, 𝑚3 and
𝑚4), 100 data simulations are produced. For each simulation, the estimation is made using the EM algorithm
with the samemodel (model skill assessments-MSA) or with a different model (model robustness assessment-
MRA). Experiments get 250 or 50 alternations of states 1 and 2. Bottom left panel: estimation from the
annotated real data with model structure 𝑚4.

converge to the (possibly local) maximum likelihood. When the shape of the likelihood is unknown, it is rec-
ommended to run the algorithm from a variety of starting points. Inferences were made using starting values
equal to ¼, ½, 1, 2, or 4 times the input parameter values used in simulations. Convergence occurred at the
same values regardless of starting values, indicating that, in our case, the likelihood was unimodal, with a
tractable optimum free of local and detrimental holes. To avoid mixing states, label switching (assigning State
1 to slow speed instead of large speed, and vice versa) is resolved prior to analyzing the results. The state esti-
mate representsis the one that insure the maximum a posteriori likelihood of the state knowing the speeds
at each time step:

𝑠𝑡 = argmax
𝑠

𝑃
(

𝑆𝑡 = 𝑠|𝑉11…𝑇
= 𝑣11…𝑇

, 𝑉21…𝑇
= 𝑣21…𝑇

)

Alternatively, the Viterbi algorithm (Rabiner, 1989) can reconstruct the most likely sequence of states 227

{𝑠𝑡}𝑡=1…𝑇 = argmax
𝑠1…𝑠𝑇

𝑃
(

𝑆1 = 𝑠1,… , 𝑆𝑇 = 𝑠𝑇 |𝑉11…𝑇
= 𝑣11…𝑇

, 𝑉21…𝑇
= 𝑣21…𝑇

)

228

Consistent with Hoek and Elliott, 2018 (p. 129), in the current study, the transition matrix gets no 0 values 229

explaining why both outputs are very similar. So we only present the former. 230

State decoding accuracies 231

General definition The capacity to recover the model parameters (𝜃) is investigated using the box-plots of
the hundred estimations of each of the model parameters. However, the performance is mainly based on
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state decoding accuracies as the objectives of the recourse to these models are to estimate states. Decoding
accuracy is defined by the probability of correctly estimating the states (proportions of true positives and true
negatives) proportion of correct estimations :

accuracy = 𝑝(𝑠̂ = 𝑠) =
#{𝑠̂𝑡 = 𝑠𝑡}𝑡=1⋯𝑇

𝑇

232

((((((((((((((((((((

accuracy = 𝑃 (𝑆̂ = 𝑆) =
∑

𝑠
𝜋𝑠𝑃 (𝑆̂ = 𝑠|𝑆 = 𝑠)

Two facets of the accuracy are considered (Figure 3). 233

Model skill assessment (MSA) In sensitivity analysis (Allen and Somerfield, 2009), model skill assessment
refers to scenarios where the simulation and estimation models are identical. This allows evaluating accuracy
in the ideal conditions, that is when the data and model type are completely consistent (best case scenario):

MSA(𝑚𝑖, 𝑚𝑖) = 𝑝(𝑠̂ = 𝑠|simulation model = 𝑚𝑖, estimation model = 𝑚𝑖)

Model robustness assessment (MRA) In reference to the above MSA, the model robustness assessment
(MRA) considers accuracies when the estimation model differs from the model used for simulation:

MRA(𝑚𝑖, 𝑚𝑗) = 𝑝(𝑠̂ = 𝑠|simulation model = 𝑚𝑖, estimation model = 𝑚𝑗)

For instance, if data are simulated according to 𝑚4 = HSMM-AR1, estimations are performed with each of
the three other possible model types, one by one (𝑚1, 𝑚2, or 𝑚3). An analysis of the impact of discrepancies
between theMarkov property of the hidden layer and/or the AR properties of the state-dependent layer allows
testing which of the two discrepancies affects the most the percentage of loss of accuracy when using model
𝑚′ instead of model 𝑚:

𝑙𝑜𝑠𝑠(𝑚𝑖, 𝑚𝑗) =
𝑀𝑅𝐴(𝑚𝑖, 𝑚𝑗) −𝑀𝑆𝐴(𝑚𝑖, 𝑚𝑖)

𝑀𝑆𝐴(𝑚𝑖, 𝑚𝑖)
=

𝑀𝑅𝐴(𝑚𝑖, 𝑚𝑗)
𝑀𝑆𝐴(𝑚𝑖, 𝑚𝑖)

− 1

Real case state decoding performance 234

HSMM-AR1, the most flexible model type, is fitted to two sets of real annotated trajectories (Figure 3) at
different time resolutions. Real states are used to calculate the associated accuracy. The most likely order of
auto-regressive processes used to model the speed time series per state is an important piece of information
for interpreting real-world decoding performance. To test if 𝜌𝑘 the various (partial) coefficient of correlationof order 𝑘 (Saporta, 1990, p. 137) are null, the appropriate Student test statistics  is:

𝜌𝑘
√

1−𝜌2𝑘
𝑛−𝑘−2

∼ 𝑛−𝑘−2

where 𝑛 represents the number of observations so that 𝑛 − 𝑘 represents the number of pairs of data 𝑘 apart 235

in time. 236

In this study, the time series are interrupted by each change of state, and the lengths of each section are 237

variables (Figure 4). So the number of data available to test the value of partial coefficients of correlation of 238

order 𝑘 is rather 𝑛𝑘, the number of pairs of observations available at time distance 𝑘 accounting for the gaps 239

in the time series. For each state-dependent variable and each state, the order of the auto-regressive process 240

is estimated as the smallest order for which the empirical partial correlation falls within the 90% confidence 241

intervals of an  (𝑛𝑘 − 2). 242

243
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Figure 4. Adaptation of the Student  -test to account for the effective number of available data 𝑛𝑘 for eachtested order 𝑘 for an auto-regressive process. Squares represent a variable of the observation layer (e.g.
speed variable 𝑉1,𝑡) with padding indicating the state.

Results 244

Characteristics of the simulation models 245

Comparing settings 246

Figure 5 depicts the features that distinguish the two settings. In both settings, 𝑑𝑇 and 𝑑𝐴𝑅 are co-linear, 247

and they increasewhen the resolutions decrease (up to the exception of 𝑑𝑇 for Settings 2, which is between the 248

two highest resolutions). In other words, deviations from the HMM reference situation result in proportional 249

deviations from the AR0 reference situation, which are significantly larger for Settings 1 than for Settings 250

2. Fitting an HMM-AR0 model to data simulated with an HSMM𝑠-AR1 model is expected to be challenging, 251

especially at high resolutions. The reverse is not a problembecause AR0 and/or HMMmodels are special cases 252

of AR1 and/or HSMM𝑠 models. The proportions of time spent in states 1 and 2 are strongly unbalanced, 253

with opposite dominance between settings. The state-specific characteristics of the various settings are thus 254

weighted in the opposite direction. The average sojourn time in the various states also differs significantly 255

between the two settings. In State 1, the average duration is ten times shorter in Settings 1 than in Settings 256

2 (regardless of resolution). When compared to State 2, it is 1.5 times larger. Despite the similarity of the 257

correlation coefficients, the observed difference in 𝑑𝐴𝑅 can be attributed to this significant difference between 258

the two settings. In State 1, the average correlation coefficients and integral ranges are very similar for the two 259

settings (Figure 6, right column). We are using averages to explain the overall patterns; it is worth noting that 260

the coefficients of correlation increase with increasing resolution. Despite similar coefficients of correlation, 261

the distance 𝑑𝐴𝑅1
for Settings 1 is 10 times larger due to their longer sojourn times. The picture for state 262

two is different. Coefficients of correlation and integral ranges are slightly smaller in Settings 2. The slightly 263

longer sojourn time results in a smaller 𝑑𝐴𝑅2
for Settings 2. Therefore, 𝑑𝐴𝑅1

and 𝑑𝐴𝑅2
are larger for Settings 1. 264

The unbalanced states’ proportions between settings resulted in a larger 𝑑𝐴𝑅 for Settings 1 but reduced the 265

difference. 266

Finally, given the overlaps between the PDFs of the speed variables by states, and the expected values of 267

the different sojourn times, the expected state decoding capacities when using mixedture models (𝑑𝑉 ) are 268

larger for Settings 2 than for Settings 1 (Figure 5), with 95% of good predictions for the largest resolution for 269

Settings 2 as opposed to 80% for Settings 1 (Figure 9). All of these statements point to disappointing decoding 270

accuracy for Settings 1 and decreasing resolutions in general. This latter statement suffers one exception: 271

for Settings 1; the accuracy appears slightly better for the lowest resolution than the penultimate resolution 272

(Figure 9). The expected values of the PMFs are equal in HMM and HSMM𝑠 formulations, but the standard 273

deviations differ. For Settings 1 and 2, the standard deviations are co-linear between the two types of Markov 274
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Figure 5. Graphical representation of themodel settings. Settings 1 and 2 are summarized by 𝑑𝑇 the Hellingerdistances between the shifted-negative binomial (HSMM) and the geometric (HMM) PMF formulations for the
sojourn time on the x-axis, by 𝑑𝐴𝑅 the difference between AR1 and AR0 formulations on the y-axis, and by
𝑑𝑚𝑜𝑑𝑉 the state decoding accuracies in case of mixedture model through the surface area of the circles. The
proportions of time spent in each state are also represented by two half discs within the circle. The arrows in
each setting indicate the path towards decreasing resolution.

formulations but are generally larger in the HMMs (Figure 7). It also appears that, for Settings 1, the standard 275

deviations of state durations in States 1 and 2 are of the same order of magnitude, whereas for Settings 2, 276

they are one order of magnitude larger in State 1 than in State 2. 277

MSA (estimation model = simulation model) 278

Parameter estimation 279

In general, parameter estimates under MSA conditions are unbiased and symmetrically distributed around 280

the target value (Figure 8). One notable exception is the variance of the Gaussian PDF for 𝑉1,2 for Settings 281

2 when using an HSMM𝑠-AR0 model. When the target value is 1.26, 50% of the estimations fall between 282

𝑄25% = 1.25 and 𝑄75% = 1.44, indicating a minor issue. The variance of the shifted negative binomial at 283

high resolution appears to be slightly positively biased as well (the mean of the estimation is slightly larger 284

than the target value). Finally, for a given parameter, setting, and degradation, the ranges of fluctuations of 285

the estimations change with the model used. This is to the disadvantage of HSMM𝑠 frameworks (larger 286

inter-quantile intervals). 287
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Figure 6. Auto-correlation coefficients for state-dependent variables in AR1models, plotted against resolution.
The average coefficients, regardless of resolution, appear in the right marginal column.

Figure 7. The decimal logarithm of standard deviations of the sojourn time PMFs for the various settings. The
x-axis represents the time duration of HSMM cases with shifted negative binomial PMFs. The y-axis refers to
HMM cases with geometric PMFs.
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Settings 1
resolution

Settings 2
resolution
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Figure 8. Simulation-estimation experiments: box-plots of the 100 parameter estimation when the model
used for the estimation is the same as the model used for the simulation (MSA experiments with 250 states
alternations). Each panel represents a settings × a degradation. The sequence of the box-plots is always the
same: HMM-AR0, HMM-AR1, HSMM-AR0, HSMM-AR1. For each parameter, the y-axis is set to be consistent
across all four resolutions for given settings. A horizontal line represents the simulation model parameter’s
(reference) value. The shift for the 𝑠 PMF is not represented.
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Figure 9. Accuracies (y-axis) of state estimations as a function of the resolution (x-axis expressed as the
average number of time steps in State 2). Simulation-estimation experiments (with 250 states alternations):
in a row, the simulation models, and in the column, the estimation models. The light-colored envelopes are
built on the basis of the 25% and 75%quantiles of the accuracies obtained over the 100 simulations performed
for Settings 1 (blue) and 2 (red). The white extra transparent envelopes correspond to the 10% and 90%
quantiles. The white diagonal panels correspond to model skill assessment - MSA (estimation model equals
the simulation model). The grey panels correspond to the model robustness assessment - MRA (estimation
model equals all but the simulation model). Model characteristics: the thick and coloured continuous lines
indicate the expected accuracies when considering amixedturemodel (𝑑𝑉 ). Real case accuracies: the dashedlines in the bottom right panel correspond to the accuracies for real data estimationswhen using anHSMM-AR1.
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State decoding accuracies 288

Figure 9 (diagonal panels) shows that state decoding accuracy is higher in Settings 2 compared to Settings 289

1, regardless of the model. In both cases, increasing the resolution (or the number of observations per state) 290

improves accuracy. There is no difference between the model types. The state decoding accuracy is similar 291

for themost complexmodels (HSMM-AR1) to the simplest ones (HMM-AR0), which outperform by around 10% 292

what would be expected under a more simple mixedture model framework. The AR1 process, when present 293

in the data and model structure, serves as a source of improvement. It’s worth noting that the results are 294

consistent with those obtained usingmixed turemodels. For Settings 1, performance improves whenmoving 295

from the smallest to the penultimate smallest resolution. Across the 100 simulations, the accuracy values are 296

very similar. This is obvious for Settings 2 at all resolutions, demonstrating no difference between simulations. 297

For Settings 1, some variations occur at low resolutions but remain small, with an average accuracy equal to 298

80%. These results serve as the baseline for state decoding performance because they are obtained under 299

the most favorable conditions, with the estimation model equal to the simulation model. It is thus expected 300

that performance will suffer in less favorable situations. 301

MRA (estimation model = all but the simulation model) 302

In MRA situations (non-diagonal panels of Figure 9 taken in a row), the overall picture remains the same: 303

the accuracies are systematically larger for Settings 2 and get larger when the resolution increases. The largest 304

changes in performances appear when the simulation model is AR1 and the estimation model is AR0 (Figure 305

9, panels of lines 2 and 4). The range of fluctuations of the accuracies remains similar to MSA conditions (very 306

small for Settings 2 and small for Settings 1). As a result, average values in each numerical experiment provide 307

a good summary of accuracy. The average relative accuracy losses (Figure 10) are shown below. The overall 308

average loss is 1.2%. However, this average loss conceals contrasting situations, as follows. 309

310

Using the correct Markov structure (panels of the middle line), estimation with an AR1 has no impact (av- 311

erage loss equal to 0), which is consistent with the fact that an AR1 can capture an AR0 as a special case (AR0 312

⊂ AR1). However, in the reverse situation (AR1 => AR0), accuracies deteriorate on average and significantly 313

more for Settings 1. The loss of accuracy is linearly related to the distance between AR1 and AR0 formulations: 314

the larger the distance 𝑑𝐴𝑅, the greater the loss of accuracy (Figure 11). 315

316

Using the correct AR structure (panels of the middle column), an estimation with a HSMM when the 317

data is generated with an HMM has little impact. Accuracies are, however, slightly tampered with for Set- 318

tings 2, whose 𝑑𝑇 values are nevertheless smaller than those for Settings 1 (Figure 5). A geometric PMF is a 319

particular case of a shifted negative binomial PMF ((𝑞) = (shift = 1, 𝑛 = 1, 𝑞)). However, the PMF for 320

the (shifted) negative binomial PMF gets three parameters when the geometric PMF gets only one parameter. 321

This certainly hampers inferences. In practice, a HSMM can tend to an HMM but might not reach it totally. 322

Inferences might also be thwarted by the fact that the 𝑛 parameter of the negative binomial PMF is not an 323

integer, but a real. So it can tend to 1 without being equal 1. Looking at the 𝑛 parameter values obtained 324

when fitting a HSMM while the data are HMM (in supplementary material) allows evaluating the capacity of 325

the EM algorithm to end up with 𝑛 = 1 (Figure 15). It happens that 𝑛 does fluctuate around 1 with alternate 326

behavior (above/under) given the state. The state that lasts the shortest, i.e. state 1 for settings 1 and state 327

2 for settings 2, is the one with 𝑛 smaller than one (and vice versa). The fluctuations in 𝑛 increases when 328

the data resolution increases, with larger fluctuations for settings 1 where 𝑞75% = 2 and where 𝑛 sometimes 329

equals 5. Finally, there is no difference in the output when using ARO or AR1 structures for the speed variables. 330

These results support the idea that an HSMM can capture an HMM as a special case (HMM ⊂ HSMM). 331

The most interesting output is that the situation remains the same the other way round (HSMM => HMM) 332

contrary to expectations. One particular case of Settings 1 is particularly harmful, while the rest have no effect. 333
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334

Estimating with an AR1 structure when the data is AR0 does not affect the state decoding accuracy (left 335

column). The most significant impacts occur when estimating using an AR0 structure while the true process is 336

an AR1 (right column panels), and the value case is when also forcing the estimation to be HMMwhile the data 337

are HSMM (average loss equals 3.6%). Changing from HSMM to HMM is only a concern when there is 338

a negative change in the AR structure of the estimating model (i.e. AR0 instead of AR1). In this worst case, 339

a fine inspection of the parameters’ re-estimations when simulating with an HSMM-AR1 and estimating with 340

one of the three other models (Figure 12) shows that nearly all some but not all parameters are impacted 341

by this bi-layers discrepancy between the simulating and estimating model. Parameters corresponding to 342

the first moments of the speed PDFs (e.g. 𝜇 or 𝜏) are not significantly impacted in the sense that their re- 343

estimations are similar to those obtained in MSA conditions. What is also clear is that the main impact occurs 344

when the state-dependent variables are modeled using the AR0 structure. For example, when an HMM-AR0 345

or an HSMM-AR0 is used to estimate the variance parameters of the Gaussian PDFs of 𝑉1, there is a significant 346

bias. Expected values of sojourn time are also significantly affected. However, the most significant effects are 347

observed when an HMM formulation is used for the estimation model. 348
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Figure 10. Model robustness assessment-MRA (with 250 states alternations). The percentage of state estima-
tion accuracy lost when using a different estimation model than the one used to simulate the data. The boxes
show the ranges of fluctuations. Points are jittered for better readability. The black dots on the right of each
panel represent the overall mean of each case (blue and red for Settings 1 and 2, respectively). The changes
in model structures between simulation and estimation are shown in the left and top margins. Columns rep-
resent a possible change in the auto-regressive characteristics of the speed distributions, e.g., “AR0 => AR1”
means simulating with AR0 and re-estimating with AR1. Rows correspond to a possible change of the Markov
property of themodel, e.g., “HMM=>HSMM”means: simulating with HMM and re-estimating with HSMM.The central panel corresponding to the MSA situation is not considered.
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Figure 11. Simulation-estimation analyses-MRA (experiments with 250 states alternations) . where simula-
tions are performed with AR1 models and estimations with AR0 models. Loss of accuracy of state estimations
when simulating with an AR1 model vs. estimating with an AR0 model as a function of the distance between
AR1 and AR0 formulations 𝑑𝐴𝑅 for Settings 1 (blue) and 2 (red).
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Figure 12. Simulation-estimation experiments: box-plots of the 100 parameter estimation when the model
used for the estimation equals all but the HSMM-AR1 model used for the simulation (MRA experiments with
250 states alternations). Each panel represents a settings × a degradation. The sequence of the box-plots is
always the same: HMM-AR0, HMM-AR1, HSMM-AR0, HSMM-AR1 (the first three in color correspond to MRA
conditions; the last one in white corresponds to MSA situations.) The (reference) value of the parameter of
the simulation model is represented by a horizontal line. The shift for the  PMF is not represented.
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Figure 13. Data characteristics for Vessel 1 (blue) and Vessel 2 (red). State 1 (non-fishing) is in open symbols,
and State 2 (fishing) is in plain symbols.
Top panels: real trajectories with centered coordinates for data resolution of 1 h. The histograms of the
sojourn time are provided below.
Middle panels: correlation plots of the persistent (𝑉𝑝) and the rotation (𝑉𝑟) speeds. The marginal histograms
represent the uni-variate distribution per state.
Bottom panel: summary metrics for the two vessels as a function of the data resolutions:
⋅ G : The Hellinger distances between the sojourn time histograms and a geometric PMF
⋅ sNB : The Hellinger distances between the sojourn time histograms and a a shifted negative binomial PMF
⋅ 𝑑𝑒𝑚𝑝𝑉 : the discrimination coefficient between speed histograms
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Real cases 349

Choosing a model structure and describing its main characteristics 350

Figure 13 shows the general characteristics of two sets of real tracks. As the sequences of true behavioral 351

states are known, it is possible to select the best model by evaluating parametric assumptions for both the 352

hidden state variables and the state-dependent variables. However, given a large number of observations 353

(from several hundred to a few thousand depending on resolution), any minor difference between model 354

and data characteristics results in low p-values for null hypothesis testing, even at low-risk levels (“large N 355

problem”). 356

Hidden layer : testing the Markov and semi-Markov hypotheses 357

For Vessel 1, the Hellinger distances between the histograms of sojourn time duration in each state and 358

either of the two possible PMFs to model the state process (i.e. geometric and shifted negative binomial) 359

indicate that the most appropriate model is always an HSMM (Figure 13). For Vessel 2, this could be less 360

relevant because the distances are greater. But choosing a geometric PMF would even be worth it. 361

Observation layer : testing the AR hypothesis 362

The state-dependent variables exhibit temporal auto-correlation at lag 1 (Figure 6). Among the four struc- 363

tures tested in this work, the most appropriate model structure is an HSMM - AR1, which is also the most 364

flexible one with regards to inference objectives as it can converge down to an HMM - AR0 if necessary. How- 365

ever, in the framework of auto-regressive processes, which is an assumption itself, the orders of the AR pro- 366

cesses of the speed variables are likely larger than 1 (Figure 14). This is very clear for Vessel 1, which has 367

auto-regressive processes with an order greater than 1 in half of the cases (9/16), as opposed to 5/16 cases 368

for Vessel 2, and has a larger partial auto-correlation than Vessel 2. The correlation plots show that the persis- 369

tent and rotation speeds are not independent given the state (except for Vessel 2 in State 2 , Figure 13) which 370

contradicts the model’s assumptions. Finally, Vessel 1 has strong mixing (respectively small 𝑑𝑉 ) between the 371

empirical histograms of the speed in different states, particularly for the rotation speed (Figure 13), indicating 372

poor state decoding performance. 373

State decoding performances 374

HSMM - AR1 models and speed-based filters are applied to the speeds time series available for the two 375

vessels at the four different time resolutions (Figures 3) to estimate the (known but removed) states. Given 376

the number of fishing operations (corresponding to State 2 by convention here) observed along each trajec- 377

tory (N = 276 for Vessel 1 and N = 31 for Vessel 2; Figure 13), real state decoding accuracy is compared to 378

the simulation-estimation experiments based on 250 and 50 alternations for Settings 1 and 2 respectively. 379

Real-case estimates (Figure 9) perform worse than simulation-estimation experiments. This is especially true 380

for Vessel 1 at high resolution where the real-case state decoding performances clearly depart from the 381

simulation-estimation experiment (70% of good state estimation for the HSMM - AR1 model, compared 382

to 90% for the simulation-estimation experiment). Although not shown in this paper, these models surpass 383

the conventional filtering approach based on a speed threshold to routinely identify behavior for fisheries 384

management. 385

24



Figure 14. Partial auto-correlations of state-dependent variables. For each variable, vessel, resolution, and
state, the partial auto-correlation coefficients are represented up to the point when they are no longer statis-
tically different from 0. The inner panel summarizes the order obtained in each case with a reference being
order 1.

Discussion 386

Scope of the benchmarking 387

The current study’s benchmark includes four model types (some with nesting properties) and two sets of 388

contrasted settings. We chose to focus on these restricted configurations rather than following an experi- 389

mental design crossing parameter values over a wider range. Such a comprehensive experimental design 390

would have required a significant amount of computing time. Instead, we defined the parameters of the four 391

types of models using two sets of real fishing vessel trajectories that provided ground truth on the sequence 392

of states. While this likely limits the overall generalizability of the results, it allows for useful recommenda- 393

tions for various real-world situations involving other natural foragers than fishers. According to Nettle et al., 394

2013, the growing interest in human behavioral ecology presents a significant opportunity to bridge the gap 395

between natural and social sciences. Regarding fisheries science, Bertrand et al., 2007 show that fishermen 396

follow similar patterns as natural top predators. In this context, specifying the models using annotated vessel 397

trajectories places the study in a broader, more relevant ecological context. Without being too general, the 398

scope of this work is quite broad. The model parameters are sufficiently contrasted to distinguish first-order 399
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auto-regressive processes from their AR0 counterparts and HSMMs from their HMM counterparts. So, the 400

model parameters cause a significant contrast between the four model types. 401

402

The four model structures investigated in the experiments are reasonably simple (two hidden states with 403

two independent observed variables). Most models in movement ecology (including fisheries) adopt simple 404

modeling frameworks (e.g. Bez et al., 2011; Langrock et al., 2012; Vermard et al., 2010) that are still recom- 405

mended in more recent studies (Auger-Méthé, Newman, et al., 2021; McClintock, 2021). The number of states 406

and the identification of a specific state among them are sometimes the primary goals of using state space 407

models, particularly in behavioral ecology. The goal of this analysis is not to infer the possibility of correctly 408

estimating the number of states but rather to quantify the state decoding accuracy of hidden Markov mod- 409

els under controlled conditions. If you are interested in this issue, we recommend reading the pragmatical 410

approach proposed by Pohle et al., 2017. Others sources of possible biases coming from temporal misalign- 411

ment between model and observations are also not considered (Glennie et al., 2023). Although not shown, 412

two intriguing side outputs are worth noting. First, the Estimation-Maximization (EM) algorithm produced reli- 413

able estimates of maximum likelihood, i.e., not impacted by changes in initialization values. Second, the most 414

probable state sequences (Viterbi) were equal to marginal estimates, implying that the Viterbi algorithm is 415

unnecessary in these cases. 416

No best model in model skill assessment conditions 417

The bestmodel performances are obtained frommodel skill assessments, which occurwhen the simulation 418

and estimationmodels are identical. This is consistent with the fact that, given a fixed number of observations, 419

one cannot expect to achieve higher accuracy when the data and model are no longer consistent. Given fa- 420

vorable inference situations (i.e., 250 state alternations), all four model types, including the most complex 421

(e.g., HSMM-AR1), achieve similar state decoding accuracies and very good parameter estimations. This is 422

not an exceptional situation; one of our two case studies shows the same amount of state alternation. This 423

means that there is no optimal model type under MSA conditions. Model parameters and settings (including 424

resolution) control performance rather than the model structure itself. The following examples illustrate this 425

statement. In both settings, the variances of the sojourn times are greater in HMM formulation than in HSMM 426

formulation (Figure 7). 427

428

The only distinction between the two is that, for Settings 2, the variance of the sojourn time is an order of 429

magnitude greater in State 2 than in State 1, while the proportion of time spent in State 2 is quite small (𝜋2=0.15, 430

𝜋1=0.85). This could have been detrimental to the fittings with Settings 2. However, we observe the opposite. 431

The difference in performances is driven by the two metrics (𝑑𝑉 and 𝑑𝐴𝑅) that are clearly in favor of Settings 432

2 (Figure 5) and that explain strongly the shapes and levels of the different accuracies (Figure 9). Regardless 433

of model type, the characteristics of the observation layer (more favorable for Settings 2 than for Settings 1) 434

explain the performance better than those of the hidden layer. Under MSA conditions, state-space models 435

consistently outperform mixedture models (Figure 9). This finding suggests that the structures introduced by 436

temporal state processes facilitate state estimation, at least as long as the estimation model agrees with the 437

simulation model. Consider applying this result to real-world situations: in that case, the ability to select the 438

true temporal process will have a greater impact on state inference quality than the change state assumption. 439

Auto-correlation deteriorates the state decoding accuracy 440

The numerical experiments revealed that the deterioration in accuracy is primarily due to auto-correlation 441

in the observation layers rather than the hidden layer’s Markovian structure. Although 𝑑𝑇 (hidden layer) 442

and 𝑑𝐴𝑅 (observation layer) are co-linear in the settings with potential confounding effects, the current work 443

demonstrates that the modeling choices related to the observation layer are of primary importance for state 444
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decoding performances. This finding is supported by both simulation-estimation experiments and real-data 445

estimation. 446

Simulation-estimation experiments 447

The HSMM - AR1 model structure is the most robust to discrepancies between model hypotheses and 448

data characteristics when retrieving hidden states, according to model robustness assessment (MRA). While 449

the accuracy in state estimation deteriorates in 90% of cases when using a model structure different from the 450

one used to simulate data, the relative loss is small (0.92% on average). Imposing no auto-correlation in the 451

estimating model while allowing some for state-dependent variables has a negative impact on state decoding 452

performance. The loss of accuracy is well explained by 𝑑𝐴𝑅, which is the distance between AR1 and AR0 453

formulations. This is not true for the hidden layer, where imposing an HMM structure while the state process 454

is semi-Markov has no negative impact on the state decoding performance. This finding has direct practical 455

implications. It demonstrates that it is preferable to concentrate on the hypothesis choices of the observation 456

layer rather than the hidden layer. In some ways, this is reassuring, as only the observation layer contains 457

empirical data. Even though, in theory, the time dependence of the observed processes or the distinction of 458

the PDFs should be evaluated conditionally on the hidden states (which is impossible in practice because the 459

states are, by definition, hidden), we recommend conducting exploratory analyses of the observed process 460

data to define help setting as much as possible relevant auto-correlation hypotheses as performed on our 461

real cases. However, this step requires access to (a sample) of trajectories with observations of the (normally 462

hidden) states along the trajectories. If modeling is envisaged at the time of data collection, we recommend 463

building up such a sample during a trajectory collection phase. 464

Real cases 465

The analysis of model performance on real cases is consistent with the simulation results, indicating that 466

discrepancies between the properties of the observations and the model’s hidden layer assumptions do not 467

affect performance. Both data sets demonstrate a visual deviation from the various model assumptions. 468

However, even though the differences in residence time for Vessel 2 are greater, the model’s performance 469

improves. The most robust model (HSMM𝑠 - AR1) results in lower state decoding performance for Vessel 470

1 and higher performance for Vessel 2. For Vessel 1, the most robust model (HSMM - AR1) produces 471

state decoding performances that, in most cases, under-perform the simulation experiments and the mix- 472

ture model. However, for vessel 2, it produces performances between the simulation experiments and the 473

mixturemodel. Interestingly, Vessel 2’s performances do not deteriorate stronglywith the resolution, whereas 474

Vessel 1’s do (Figure 9). The two primary differences in favor of Vessel 2 concern the speed variables: 475

• The discriminating power between the speed distributions measured through the integrated metric 𝑑𝑉 476

is low, respectively large, for Vessel 1 and Vessel 2 (Figure 13). This contributes to the low accuracies 477

obtained for Vessel 1. 478

• In most cases, the partial autocorrelation of observed speed is greater than one (the model’s assumed 479

autocorrelation), particularly for Vessel 1. Not only are the auto-correlations of order 1 larger, but the 480

most likely order of the auto-regressive process modeling the speed variable is greater than 1. 481

Beyond these considerations about the value of coefficients of auto-correlation and the orders of the auto- 482

regressive processes, the observations may not be consistent with an auto-regressive process at all. In partic- 483

ular, auto-regressive processes assume that the relationship between successive observations is linear, which 484

may not be the case. As an example, we provide the cross-plots between successive speed components (Ad- 485

ditional Figure 16), which violate linear relationships over time. To form the correct hypotheses about the 486

observation process, start by ensuring that the data are consistent with an auto-regressive process. The vio- 487

lation of this assumption corresponds to a structural error process that is rarely evaluated. Before discussing 488
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the order of the AR, consider the more fundamental choice of using an AR formulation for the observation 489

layer (Gloaguen et al., 2015; Joo et al., 2013; Morales et al., 2004). Second, within the context of auto-regressive 490

processes, the data may not correspond to a zero or first AR order (AR0 or AR1). This second type of violation 491

is caused by mis-specification and can be more easily controlled by evaluating the model’s goodness of fit. 492

Increasing the resolution: a tricky solution? 493

As expected, model characteristics are linked to data resolution. This affects not only the averages of the 494

sojourn times, which are directly impacted because they are expressed in a series of time steps but also their 495

distributions. This also affects the variability of the speeds (both persistent and rotational), their time de- 496

pendencies, and the overlap of speed PDFs between states. The multidimensional nature of data resolution 497

precludes statistical investigation of its effect on estimation performance, all other things being equal. Sev- 498

eral authors (e.g., McClintock, King, et al., 2012; Vermard et al., 2010) have pointed out that time steps must 499

be chosen to match the scale at which behavioral decisions are made using expert knowledge. Katara and 500

Silva Katara and Silva, 2017 examined the mismatch between the temporal resolution of position records and 501

the timescale of fishing activity. The authors investigated the effect of time resolution (from 10 minutes to 2 502

hours) on bias and errors in identifying fishing operations for vessels (Portuguese purse seiners) with charac- 503

teristics similar to those of vessel 2. The results (7% of missed fishing sets with 2h time interval compared to 504

10 minutes) align with the estimated increase in accuracy with time scale resolution for Vessel 2. 505

506

Similar results were obtained for other vessels, emphasizing the importance of high-resolution time data 507

Edelhoff et al., 2016; Mendo et al., 2019. Interestingly, when using data that were consistent with a given 508

model’s assumptions, such as in simulation-estimation experiments, increasing the resolution of simulated 509

data resulted in higher accuracy. This was less obvious for real data, where the results differed between the 510

two case studies and were not linear with data resolution. There is a contradiction between the need for 511

high-frequency data to track short-term states or to get as close as possible to the tracked individual’s actual 512

behavior and the ability to model this behavior using a random decision. If we suppose that memory and/or 513

inertia play a role in behavioral changes at high frequencies, in this case, it is clear that a state is dependent 514

not only on previous states but also on multiple previous ones. As a result, a compromise must be made 515

between the pursuit of better statistical conditions and a realism threshold to achieve an optimal level of data 516

resolution. 517

518

In conclusion, in silico, when data characteristics are controlled by and consistent with model characteris- 519

tics, simulation-estimation experiments show that a change in Markov property for the estimation model has 520

no negative impact on state decoding performance unless one forces the state-dependent variable to be AR0 521

when they are indeed AR1. This aligns with the fact that HSMM and AR1 formulations are generalizations 522

of the usual HMM and AR0 formulations. This study also shows that model performance is more sensitive 523

to the auto-regressive characteristics of the state-dependent variables than to the Markov properties of the 524

hidden states. This is somewhat satisfactory because, in practice, one may have access to some aspects of 525

the observation layer but not to the hidden, unobserved layer. This allows for empirical controls on what 526

appear to be key model assumptions in terms of state decoding performance. However, in real cases, the 527

robustness of HSMM - AR1 appears low, with instances where its state decoding performances are worse 528

than simple filtering. The confusion between the distributions of state-dependent variables in different states, 529

whether observable (usually not possible) or more realistically speculated, is the most important factor influ- 530

encing state decoding performance in real-world scenarios. Blind applications of state-space models in the 531

absence of prior knowledge about the processes lead to radical errors and poor state-decoding performance. 532

Given that HMMs are a popular choice in ecology due to their ease of use, we believe there is a need for 533

serious consideration of the consequences of the numerous potential deviations between data and model 534

assumptions. 535

28



Appendices 536

Supplementary figures 537

Figure 15. SUPPLEMENTARY. Boxplots of 𝑛 parameter values of the  PMFs obtained when the simulation
model is HMM (with AR0 or AR1 structures for the speed variables) and the estimation model is HSMM (with
the same AR structures as that used for simulation ). Settings 1 (blue) and settings 2 (red). The white boxes
correspond to state 1 while the coloured boxes are for state 2. Data resolution, is represented along the x-
axis.
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Figure 16. SUPPLEMENTARY. Delayed correlation plots for Vessel 1 (left, blue panels) and Vessel 2 (right, red
panels). The axes correspond to the speeds at time 𝑡 (x-axis) and 𝑡+1 hour (y-axis). This corresponds to the
third and the fourth degradation for vessel 1 and 2 respectively. Persistent speed is in squares, and rotation
speed is in triangles. State 1 is in empty symbols, and State 2 is in plain. Linear regressions for which p-value
< 5% are represented.
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Figure 17. SUPPLEMENTARY. Settings 1. Evolution of the log-likelihood of each EM under MSA conditions
(estimation model = simulation model). Rows correspond to the different model types. Columns correspond
to the different resolutions. On each panel, the evolution of the log-likelihood during each of the 100 es-
timations is represented. The log-likelihood is normalized between the value for the initialization and the
value obtained after convergence. The x-axis represents the number of iterations (different for each experi-
ment). Tick marks represent the number of iterations reached at each estimation. When the EM reaches the
maximum possible number of iterations, the output is represented by a black curve (which never happens as
the numerical settings have been chosen so that this does not happen).The EM never reached the maximum
possible number of iterations set to 200 for HMM and 150 for HSMM.
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Figure 18. SUPPLEMENTARY. Settings 2. Same caption as before.
Additional information: On two occasions, the estimation of the shift for the shifted negative binomial PMFs
causes a decreasing evolution of the likelihood. In these cases, we changed the seed to recover the normal
behavior of the convergence. These cases correspond to experiment 𝑛𝑜 4 - simulation 𝑛𝑜72, and to experiment
𝑛𝑜 12 - simulation 𝑛𝑜73. See the code to get details (https://github.com/nicobez/H-S-MM_MSA).
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Model simulations and states’ estimations are done within R version 4.3.1 "Beagle Scouts" (R Core Team, 578

2022) using the package mhsmm (O’Connell and Højsgaard, 2011), which allows performing EM inferences 579

with several realizations of the same underlying model. Modifications of the mhsmm package were, however, 580

required. We extended the package: 581

• to the case of AR1 for the state-dependent variables that were not in the package, 582

• to the case of shifted negative binomial PMF for the sojourn time that was not fully implemented, 583

• to force independence between the state-dependent variables during the inference process (by default, 584

a correlation is re-estimated during the EM procedure). 585

When considering 250 alternations of State 1 and 2, the 32 MSA experiments corresponding to the 2 set- 586

tings × 4 degradations × 4model types are fully reproducible from https://doi.org/10.5281/zenodo.10678877. 587

Tolerances for stopping the iterative search of the maximum likelihood in the EM algorithm are adapted to 588

avoid very long searches associated with teeny tiny marginal improvements of the likelihood (the iterative 589

procedure stops when the gain in log-likelihood is smaller than the tolerance). The tolerance is reduced to 590

10−04 for HMM, and to 10−03 for HSMM when the default values were 10−08 for HMM, and 10−04 for HSMM. 591

Meanwhile, the maximum number of iterations is also adapted to ensure that the convergence is reached, 592

at least with regard to the chosen tolerance. The maximum number of iterations is reduced to 200 for HMM 593

(instead of 1000 by default) but increased to 150 for HSMM (instead of 100 by default). With these numerical 594

settings, convergence is systematically reached before the maximum possible number of iterations (Figures 595

17 and 18). 596

With these numerical settings, the full MSA experiments last 10 hours and 20 minutes on an i7 PC which 597

probably ruins their fluid and rapid full reproduction. This certainly does for the MRA procedures that are 598

3 times longer. Thus, the MRA simulation-estimation experiments have been performed remotely using the 599

computational resources of a super-computer (DATARMOR, http://www.ifremer.fr/pcdm). All the simulation- 600

estimation outputs have been stored and the paper is reproducible based on this stored and open-access 601

information. The code to re-run all the MRA simulations is, however, available on demand. After the upload 602

of all the outputs of the simulation-estimation experiments, all the analyses and figures are reproducible 603

from https://doi.org/10.5281/zenodo.10679448. For anonymity concerns, the coordinates of the trajectories 604

are centered and standardized. 605
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Table 1. Definition of the notations
𝑡 Discrete time step

Hidden 𝑁𝑆 Number of possible states
layer 𝑠 State code number ; 𝑠 = 1, ..., 𝑁𝑆

𝑠𝑡 , 𝑆𝑡 (HMM) State at time step 𝑡 (lower case: observed; upper case: random variable); 𝑆𝑡 ∼Markov process
𝑠𝑛 , 𝑆𝑛 (HSMM) 𝑛𝑡ℎ visited state (lower case: observed; upper case: random variable); 𝑆𝑡 ∼Markov chain
𝑡𝑠 , 𝑇𝑠 Sojourn time in state 𝑠 (lower case: observed; upper case: random variable)
𝑝𝑠𝑠′ (HMM) probability to switch from state 𝑠 to state 𝑠′ when moving from 𝑡 to 𝑡 + 1
𝑝𝑠𝑠′ (HSMM) probability to switch from state 𝑠 to state 𝑠′ when leaving state 𝑠; 𝑝𝑠𝑠 = 0
𝑞𝑠 (HMM) probability to leave state 𝑠 when moving from 𝑡 to 𝑡 + 1

(HSMM) Third parameter of the  PMF for state 𝑠. Corresponds to the 𝑞𝑠 parameter of the HMM case when shift𝑠 = 1 and when 𝑛𝑠 = 1.
, Geometric (HMM) and shifted negative binomial (HSMM) PMFs of 𝑇𝑠(shift𝑠, 𝑛𝑠, 𝑞𝑠) (HSMM) Parameters of the shifted negative binomial PMF of 𝑇𝑠
𝑑𝑇𝑠 Hellinger distance between the geometric and the shifted negative binomial PMFs of 𝑇𝑠
𝑑𝑇 Mean Hellinger distance between the geometric and the shifted negative binomial PMFs over all possible states

𝜋𝑠,Π𝑠 Probability to be in state 𝑠 (lower case: empirical; upper case: model)
𝑁𝑝𝑆 Number of parameters of the PMFs of the sojourn time
𝑁𝐻 Number of parameters defining the hidden layer

Observation 𝑁𝑉 Number of state-dependent variables
layer 𝑣𝑖 , 𝑉𝑖 State-dependent variable number 𝑖 (lower case: observed; upper case:random variable); typically, (𝑉𝑝, 𝑉𝑟), the persistent and rotation speeds

𝑉𝑖,𝑡 Random process for state-dependent variables
 (𝜇𝑖,𝑠, 𝜎𝑖,𝑠) Uni-variate Gaussian PDFs of the state-dependent variable 𝑖 for state 𝑠: [𝑉𝑖,𝑡|𝑆𝑡 = 𝑠] ∼  (𝜇𝑖,𝑠, 𝜎𝑖,𝑠)
𝑖,𝑠(𝑣) PDF of the state-dependent variable given the state 𝑠: 𝑓𝑉𝑖|𝑆𝑡=𝑠(𝑣) = 𝑖,𝑠(𝑣)
𝜇𝑖,𝑠, 𝜎2𝑖,𝑠 Expected value and variance of 𝑉𝑖,𝑡 knowing the state: 𝜇𝑖,𝑠 = 𝔼(𝑉𝑖,𝑡|𝑆𝑡 = 𝑠), 𝜎2𝑖,𝑠 = 𝕍 (𝑉𝑖,𝑡|𝑆𝑡 = 𝑠)
𝑁𝑝0 Number of parameters of the PDFs of the state-dependent variables
𝑁𝑂 Number of parameters for the observation layer

𝑠, 𝑟𝑠 Region of ℝ2 where the state is estimated as 𝑠 in a mixture model: 𝑠 =
{

𝑉 = (𝑣1, 𝑣2), such that 𝑆 = 𝑠
} (𝑟𝑠 its empirical version)

𝑑𝑒𝑚𝑝𝑉 , 𝑑𝑚𝑜𝑑𝑉 Discrimination coefficient between PDFs (𝑒𝑚𝑝: based on empirical speed histograms; 𝑚𝑜𝑑 : based on PDFs)
𝜏𝑖,𝑠 Coefficient of correlation for auto-regressive processes of order 1 for state-dependent variable 𝑖 in state 𝑠
𝜂𝑖,𝑠 𝜇 = 𝑒𝑡𝑎

1−𝑡𝑎𝑢
𝐴 Integral range of AR1 process

𝑑𝐴𝑅𝑖,𝑠
Difference between AR0 and AR1 formulations for state-dependent variable 𝑖 and state 𝑠

𝑑𝐴𝑅𝑠
Difference between AR0 and AR1 formulations for state-dependent variables in state 𝑠

𝑑𝐴𝑅 Difference between AR0 and AR1 formulations
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Table 2. Definition of the notations (continue)
Models 𝑚1 HMM-AR0

𝑚2 HMM-AR1
𝑚3 HSMM-AR0
𝑚4 HSMM-AR1
𝜃 , 𝜃 Random vector of parameters and its estimator
𝑁𝜃 Number of model parameters𝑁𝜃 = 𝑁𝐻 +𝑁0
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Table 3. Statistics for Vessel 1. For the sojourn time in the various states, the parameters of the PMFs in the
model settings (e.g. 𝑝𝑠,𝑠, 𝑛𝑠, 𝑝𝑠) are deduced from them according to the equations provided in the method
section. The statistics for the sojourn time are provided in the number of time steps. For the speed variables,
they are expressed in knots.

Resolution 15 min Resolution 30 min Resolution 60 min Resolution 120 min
(N=9506) (N=4748) (N=2370) (N=1171)

𝑇
𝑇1 𝑇2 𝑇1 𝑇2 𝑇1 𝑇2 𝑇1 𝑇2

𝐸[𝑇𝑠] 11 24 5.7 12 2.9 6.1 1.6 3.5
𝜎[𝑇𝑠] 7.4 11 3.9 5.7 2 3 1.1 2.1
shift𝑠 2 1 1 1 1 1 1 1

𝑉1 = 𝑉𝑝
𝑉1,1 𝑉1,2 𝑉1,1 𝑉1,2 𝑉1,1 𝑉1,2 𝑉1,1 𝑉1,2

𝜇1,𝑠 4.5 3 3.8 2.4 2.7 1.4 1.8 0.3
𝜎1,𝑠 4.6 1.6 4.9 2.0 5.1 2.4 4.7 2.2
𝜏1,𝑠 0.60 0.34 0.46 0.15 0.43 0.17 0.41 0.30

𝑉2 = 𝑉𝑟
𝑉2,1 𝑉2,2 𝑉2,1 𝑉2,2 𝑉2,1 𝑉2,2 𝑉2,1 𝑉2,2

𝜇2,𝑠 0.07 0.13 0.11 0.24 0.08 0.22 0.12 0.009
𝜎2,𝑠 1.7 1.4 2 1.5 2.2 1.4 2.3 1.3
𝜏2,𝑠 0.15 0.52 0.11 0.50 0.07 0.43 -0.008 0.27

Table 4. Statistics for Vessel 2. For the sojourn time in the various states, the parameters of the PMFs in the
model settings (e.g. 𝑝𝑠,𝑠, 𝑛𝑠, 𝑝𝑠) are deduced from them according to the equations provided in the method
section. The statistics for the sojourn time are provided in the number of time steps. For the speed variables,
they are expressed in knots.

Resolution 5 min Resolution 15 min Resolution 30 min Resolution 60 min
(N=6181) (N=2011) (N=968) (N=446)

𝑇
𝑇1 𝑇2 𝑇1 𝑇2 𝑇1 𝑇2 𝑇1 𝑇2

𝐸[𝑇𝑠] 104 22 41 7.4 20 4.4 11 2.3
𝜎[𝑇𝑠] 112 4.4 45 1.9 22 1.8 12 1.2
shift𝑠 4 15 1 4 1 1 1 1

𝑉1 = 𝑉𝑝
𝑉1,1 𝑉1,2 𝑉1,1 𝑉1,2 𝑉1,1 𝑉1,2 𝑉1,1 𝑉1,2

𝜇1,𝑠 9.3 0.46 8.3 0.43 7.3 0.41 6.5 0.32
𝜎1,𝑠 4.7 1.2 5.2 0.9 5.5 1.3 5.5 1.6
𝜏1,𝑠 0.70 0.56 0.49 0.27 0.44 0.12 0.35 0.20

𝑉2 = 𝑉𝑟
𝑉2,1 𝑉2,2 𝑉2,1 𝑉2,2 𝑉2,1 𝑉2,2 𝑉2,1 𝑉2,2

𝜇2,𝑠 0.13 -0.08 -0.03 0.11 -0.24 0.20 -0.31 0.20
𝜎2,𝑠 2.9 0.80 3.8 0.80 4.3 1.3 4.6 1.6
𝜏2,𝑠 0.17 -0.10 0.12 -0.04 0.07 -0.09 0.04 -0.07
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