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Simple Summary: In the past two years, the COVID-19 incidence curves and reproduction number
Rt have been the main metrics used by policy makers and journalists to monitor the spread of
this global pandemic. However, these metrics are not always reliable in the short term, because of
a combination of delay in detection, administrative delays and random noise. In this article, we
present a complete model of COVID-19 incidence, faithfully reconstructing the incidence curve and
reproduction number from the renewal equation of the disease and precisely estimating the biases
associated with periodic weekly bias, festive day bias and residual noise.

Abstract: The sanitary crisis of the past two years has focused the public’s attention on quantitative
indicators of the spread of the COVID-19 pandemic. The daily reproduction number Rt, defined by
the average number of new infections caused by a single infected individual at time t, is one of the best
metrics for estimating the epidemic trend. In this paper, we provide a complete observation model for
sampled epidemiological incidence signals obtained through periodic administrative measurements.
The model is governed by the classic renewal equation using an empirical reproduction kernel, and
subject to two perturbations: a time-varying gain with a weekly period and a white observation noise.
We estimate this noise model and its parameters by extending a variational inversion of the model
recovering its main driving variable Rt. Using Rt, a restored incidence curve, corrected of the weekly
and festive day bias, can be deduced through the renewal equation. We verify experimentally on many
countries that, once the weekly and festive days bias have been corrected, the difference between
the incidence curve and its expected value is well approximated by an exponential distributed white
noise multiplied by a power of the magnitude of the restored incidence curve.

Keywords: incidence curve; pandemic; COVID-19; reproduction kernel; time dependent reproduc-
tion number; administrative noise; exponential distribution; renewal equation; variational inversion
method

MSC: 92C60; 92C55; 45Q05; 65K10

1. Introduction

The renewal equation, first formulated for birth-death processes in a 1907 note of
Alfred Lotka [1], establishes a model for epidemic propagation based on the individual
infectiousness. The infectiousness of individuals at time t is characterized by the reproduc-
tion number Rt, defined as the average number of cases generated by an infected person at
time t, and by the generation time [2,3] defined as the probability distribution of the time
between infection of a primary case and infections in secondary cases. This probability
distribution depends on the incubation time (a permanent biological factor) and on the
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detection time (which we assume stationary). For these reasons, the distribution of the
generation time is supposed to be independent of t. In practice, the generation time is
replaced by the observable serial interval Φs which represents the time distribution of the
delay of the onset of symptoms between primary and secondary cases. In Figure 1, we show
the serial interval obtained in [4] using 689 observed pairs of primary and secondary cases.-5 0 2 0 0 a b
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Figure 1. The serial interval Φs obtained by [4]. The bars represent the observed number of cases in
function of the number of days between the onset of symptoms in primary and secondary cases. The
dotted line is its approximation by a scaled and shifted log-normal distribution.

The case renewal Equation [5,6] is a classic equation linking Rt, Φ and the incidence it
of new daily cases,

it = ∑
s

it−sRt−sΦs for t = 0, . . . , tc, (1)

where tc is the current time. This equation does not account for several strong perturbations
of it. Government statistics of the observed incidence curve are indeed affected by changes
in testing and polling policies and by weekend reporting delays. These recording delays
and subsequent rash corrections result in impulse noise, and in a strong weekly periodic
bias observable on the observed incidence curve i0t . In [3] this bias is corrected by a seven
days sliding average and in [7] it is corrected by multiplying i0t by a 7-day periodic factor
qt. These bias correcting coefficients qt are learned by a variational method that we describe
below. Our first purpose in this note is to resolve the festive day problem. We denote by F
the set of festive days t, at which the i0t curve is strongly affected by the reduction in the
number of registered cases. This reduction is compensated by an increase in the number
of registered cases the following days. No model has been proposed so far to address this
problem, which creates strong impulse noise in any estimation of it and Rt. We tackle
this problem by a variational method computing Rt, where both it and Rt are considered
unknown on festive days and in the next few days. To that purpose, we shall denote by F+

the union of festive days and the ones following them affected by the festive day (typically
2 or 3 days after the festive day).

Our second purpose is to provide a noise model for the difference ît − irt between the
signal ît corrected of the week-end and festive effects, and its restored version irt using the
renewal equation, defined by

irt = ∑
s

ît−sRt−sΦs. (2)
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We provide strong experimental evidence that the relation between ît and irt , can be empiri-
cally modeled by

ît = irt + εt(irt)
a, (3)

where a > 0 and εt is a white noise.
This leads us to propose a signal processing version of the renewal equation model

taking into account noise and bias and justifying a posteriori the variational method. The
proposed observation model linking the observed signal i0t to the ground truth incidence
it is

qti0t = it + εt(it)a for t ∈ [0, tc] \ F+, (4)

where qt is a quasi-periodic gain with period 7, εt is a white noise. The exponent a can
be estimated for each country and varies between 0.6 and 0.9. The exceptional set F+

is introduced because festive days provoke perturbations of the observation model (4).
Specifically, the 7 days period of qt is broken for these groups of days.

We shall verify experimentally on 38 countries (and detail the results on USA, France
and Germany) that the normalized error εt is indeed a white noise with a distribution that
is well described by an exponential distribution. This a posteriori noise model contradicts
the classic a priori stochastic formulation of the renewal equation where the first member it
of Equation (1) is assumed to be a Poisson variable, and the second member of this equation
is interpreted as the expectation of this Poisson variable. Using this Poisson model leads
maximum likelihood estimation strategies to compute Rt [3,8–10]. As we shall see, the
Poisson model is not verified. Indeed, as we mentioned, the empirically observed standard
deviation of the noise follows a power law with exponent a significantly larger than 0.5,
which is incompatible with the Poisson model.

The proposed observation model (4) of the pandemic’s incidence curve provides a
simple framework enabling:

1. a computation of the reproduction number Rt;
2. a correction of the weekend and festive days bias on it;
3. a verification that the difference between the observed incidence curve after bias

correction and its expected value using the renewal equation is a white noise, the
parameters of which can be estimated.

Paper organization:

In Section 2, we describe an anterior variational method [7] and point out its main
three limitations: its weekly bias correction is strongly periodic, which does not work on
long periods; the festive days cause strong perturbations in the inversion, finally no residual
noise model is proposed. We therefore modify its variational formulation. In Section 3, we
present the results of the statistical analysis of the residual noise on many countries. These
examples lead to specify the noise model and to validate a posteriori the proposed inversion
model. In Section 4, we discuss the a priori noise models proposed in the literature. Finally,
in Section 5, we present the conclusions of this work.

Timely estimates of restored versions of it and Rt are extremely useful to tame a
pandemic. The proposed restoration and inversion algorithm can be run through an online
demo [11] for every day in every country and U.S. state. The demo plots the objects of
this paper, namely the incidence curve i0t , its bias corrected version ît, its fully restored
version irt , finally the main pandemic index, the time-dependent reproduction number
Rt. Figure 2 illustrates the application of the variational method of Section 2 to USA on
1 February 2022, as displayed by the online demo. Figure 3 compares the results of this
inversion method, applied with and without festive day bias correction, obtained for France
on 6 January 2022.
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Figure 2. Illustration of the online inversion method [11]. On the left in red, the obtained reproduction
number Rt and in black its estimate obtained by the classic EpiEstim method. On the right in green,
the original incidence curve it of new cases, in blue the incidence curve ît corrected of the weekend
and festive biases, and in red the final reconstructed incidence curve irt obtained from Rt by the
application of the renewal equation. Estimate obtained for USA on 1 February 2022.

Figure 3. Incidence curve (in green) of France up to 6 January 2022. In blue, the incidence corrected
of the weekly bias, in cyan the incidence corrected of the weekly and festive day. The Christmas
holidays introduce a distortion in the weekly bias corrected incidence that is corrected by the festive
day bias correction.

We can summarize the main contributions of this paper in the following way:

1. Based on the case renewal equation, we propose a new variational model which
estimate:

• A time varying reproduction number Rt
• A restored incidence curve with the weekly and festive day biases corrected.
• The weekly seasonality profile of the incidence curve.

2. We verify experimentally, on many countries, that, once the weekly and festive days
biases have been corrected, the difference between the incidence curve and its expected
value using the renewal equation is well approximated by an exponential distributed
white noise multiplied by a power of the magnitude of the restored incidence curve.

2. The Proposed Variational Model

The EpiInvert method proposed in [7] is a deconvolution + denoising procedure to
solve the functional Equation (1) using the Tikhonov–Arsenin [12,13] variational approach.
EpiInvert estimates both Rt and a restored it corrected for the weekend bias. To remove the
weekend effect, it computes a 7-day periodic multiplicative factor
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q = (q0, q1, q2, q3, q4, q5, q6). From the observed incidence curve and the serial interval,
Rt and q are jointly estimated by minimizing

E(R, q)=
tc

∑
t=0

(
qt%7i0t−∑sRt−si0t−sq(t−s)%7Φs

median(t−τ,t](i0)

)2

+ w
tc

∑
t=1

(Rt−Rt−1)
2 (5)

where t%7 denotes the remainder of the Euclidean division of t by 7 and median(t−τ,t](i0)
is the median of i0t in the interval (t− τ, t] used to normalize the energy with respect to the
size of it (the value of τ is fixed to 21 (3 weeks) in the experiments). The total number of
cases is preserved by adding to (5) the constraint on qt:

tc

∑
t=tc−T+1

i0t =
tc

∑
t=tc−T+1

qt%7i0t , (6)

where T is a period of analysis empirically fixed to T = 56 days. The minimization of the
above energy yields estimates of Rt, q and a restored incidence curve.

One limitation of using a 7-day periodic formulation to model the weekend effect is
that it does not take into account the variation over time of the seasonal profile. To deal
with this issue, we consider qt for t = 0, . . . , tc allowing different correction factors qt for
every day but keeping the values qt − qt−7 small which forces qt to be quasi-periodic. A
regularity assumption for the seasonality is commonly used in the study of time series as it
is the case of the standard Holt–Winters’ seasonal method [14].

In addition to the weekend bias, festive days can introduce a strong bias in the inci-
dence values. On a festive day t ∈ F, a sharp decrease in the number of registered incident
cases is generally observed. This is compensated by increased incidence numbers in the
next few days. Assuming that each festive day, t ∈ F, mainly affects the value of the inci-
dence curve in the festive day and in the next Mt days (where Mt is an algorithm parameter
(by default we fix Mt = min{2, tc − t})), we consider the values of i0t , i0t+1, . . . , i0t+Mt

as
unknown. We denote by F+ the union of the festive days t ∈ F and the Mt days following
them. We set i f

t = i0t for t /∈ F+ and consider the values (i f
t )t∈F+ as unknowns. Then the

new proposed inversion functional is

E(R, q, (i f
t )t∈F+)=

tc

∑
t=0

(
qti

f
t −∑s Rt−si f

t−sqt−sΦs

median(t−τ,t](i0)

)2
+ wR

tc

∑
t=1

(Rt−Rt−1)
2+

∑
t∈F

λt

∑Mt
k=0 i f

t+k −∑Mt
k=0 i0t+k

median(t−τ,t](i0)

2

+ wq

tc

∑
t=7

(qt−qt−7)
2, (7)

The values i f
t for t ∈ F+ are set free in the minimization. Yet the third term in the

functional ensures that the overall number of cases in the affected days remains unchanged.
For each t ∈ F, λt ≥ 0 represents the weight we assign to this constraint for each festive
day. We fix, experimentally, λt = 2tc−t−2 if tc > t and λt = 0 if tc = t. In other terms, the
value of λt is adjusted according to the number of days that have passed since the festive
day. To keep a smooth seasonality we add to the energy a regularization term where we
penalize high values of qt − qt−7. The parameters wR and wq are regularization weights
with default values wR = wq = 5. Their values are proven in [7] to be nearly optimal for
COVID-19 incidence curves.

By minimizing this energy we obtain the reproduction number Rt, the seasonality qt

and i f
t , which corresponds to the original incidence i0t but with the optimized values in the

festive days. The bias corrected incidence ît defined in model (3) is given by ît = qti
f
t .

The estimated incidence curve must preserve the number of cases. In the original
EpiInvert formulation this constraint is enforced by (6) on its analysis interval (tc − T, T].
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In the new formulation, the interval time of analysis is the whole time interval [0, tc]. Extra
conditions are required to keep i0t close to ît and irt . Therefore, to preserve the number of
cases we add to the energy (7) the constraints on qt:

tc

∑
t=0

i f
t =

tc

∑
t=0

qti
f
t ;

tc−14k

∑
tc−14(k+1)

i f
t =

tc−14k

∑
tc−14(k+1)

qti
f
t for k = 0, 1, 2, . . . . (8)

The first constraint corresponds to a global preservation of the number of cases in the
whole period and the second one corresponds to a local preservation of the number of cases
every 2 weeks. In particular, the second constraint ensures a good agreement between the
epidemiological indicator given by the accumulated number of cases in the last 14 days
of the original incidence curve and the estimated ones using the proposed method. This
indicator is currently widely used to evaluate the current epidemic transmission.

The minimization of the energy (7) is obtained by alternating steps computing in turn
Rt, qt, and then i f

t (for t ∈ F+) until convergence. The above constraints are added to the
minimization by the Lagrange multiplier technique.

3. Results

We used the incidence data published in [15] for France, [16] for Germany, [17] for
Spain and [18] for the rest of countries. We checked the observation model and its inversion
on the 626 daily incidence data from 24 March 2020 to 9 December 2021 for 38 countries
and will detail the results for France, Germany, and the USA. In general, for the festive
days we fixed Mt = 2, so the method estimated the incidence value of the festive day and
of the next 2 days. However, not all festive days disturb the incidence in the same way.
Parameter Mt allows us to adapt the number of days affected. To illustrate this option
we set Mt = 5 for Thanksgiving in the USA in 2021 because this festive day causes in
2021 a longer perturbation in the number of registered cases. Figures 4, A1 and A2 show
the minimization results for the energy (7). They display for each country (i) the original
incidence curve i0t , (ii) the incidence curve after bias correction ît, (iii) the restored incidence
curve irt using the renewal Equation (1), (iv) the weekly bias correction factors qt, (v) the
reproduction number estimation Rt and (vi) the normalized error defined by

εt =
ît − irt
(irt )a . (9)

The power a was obtained through log-log linear regression. Indeed, if |ît − irt | is
proportional to (irt)

a, then log(|ît − irt |) ≈ a · log(irt) + b, and a and b can be estimated by a
linear regression between log(|ît− irt |) and log(irt). Its results are illustrated for 38 countries
in Figure 5 and Table A2. The Pearson correlation p-values in this table confirm the linear
relation. The estimated exponent a varies between 0.7 and 0.9, and the constant coefficient
b varies between −0.11 and −2.6. For the world we have a = 0.76 and b = −1.16.

We performed a control test on a Brownian motion simulated by starting from 10,000
and sampling it+1 − it ' N (0, 100). The obtained exponent a is negative (a = −1.01) and
we have b = 13.4. Both values are far away from the group of coefficients of real incidence
curves. The p-value for the control is anyway non significant (0.0844), compared to the
extremely small p-values for the real incidence curves. Figure A3 shows the results of the
variational inversion method on the Brownian control. For this control, both Rt and the
weekly seasonality correction coefficients stay very close to 1 as should be expected, with
means 1.001 and 1.00002, and standard deviations 1.7% and 0.3% respectively.

Next, we looked for a stochastic model of the normalized error εt defined by (9).
Figures 4, A1 and A2 visually support a stationarity assumption for εt in France, Germany
and USA.

In Figure 6 we show the autocorrelation function for these three countries. For most
non-zero shifts, its value stays inside the 95% confidence interval for the stationarity
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assumption. (This interval is indicated by horizontal blue lines in the plot.) Similar results
were obtained on 33 more countries, as illustrated in Figure A5. These results support a
white noise assumption for εt.
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Figure 4. From top to bottom: (i) the original incidence curve i0t of France, (ii) the incidence curve
after bias correction ît, (iii) the restored incidence curve using the renewal equation irt , (iv) the weekly
bias correction factors qt, (v) the reproduction number estimation Rt and (vi) the normalized error
εt = (irt − ît)/(irt )

a, where a is the optimal exponent obtained by regression (see Table A2).
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Figure 5. Worldwide log-log correlations between restored incidence irt and the residual |ît − irt |
(defined as restored incidence - bias-corrected incidence). The plot presents the log(error) as a function
of the log(incidence). The regression parameters were computed through robust linear regression
by the R package MASS. (A): Correlation in France, Germany, and USA, with festive day correction.
(B): Spread of the values for 38 countries, without festive corrections. (C): Robust linear regression
curves for all countries. The linear regression coefficients a and b can be found in Table A2. The
worldwide coefficients are a = 0.76 and b = −1.16.
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Figure 6. For France, Germany and USA, autocorrelation of the normalized error εt, using the festive
day correction, obtained with the R-software functionalities (acf() function). The orange dotted line
provides the 95% confidence interval for non-correlation. Similar plots for the same countries and
33 more countries, without using the festive day correction, are displayed in Figure A5.
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We finally estimated the parameters of the distribution of εt assuming an exponential
power distribution with density

β

2αΓ(1/β)
e−
(
|x−µ|

α

)β

, (10)

where µ is the location, α the scale and β the shape. These parameters to approximate εt by
an exponential power distribution were estimated by the R-package normalp [19].

In Figure 7, we plot for these three countries the histogram of the distribution of εt and
its approximation by a normal (β = 2) and by the obtained optimal exponential distribution.
We display the same result for 33 more countries in Figure A4.
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−1.0 −0.5 0.0 0.5 1.0
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2 4

Figure 7. For France, Germany and USA, histogram of the normalized error εt, using the festive day
correction, its normal approximation (blue line) and its optimal approximation using an exponential
distribution (red line) (we use the R-package normalp to approximate εt by an exponential distribution).
See Figure A4 for the results for the same countries and 33 more countries without using the festive
day correction.

Table A1 provides the results for all countries. Columns 5 to 8 in the table provide
the parameters of the optimal exponential law: location, scale, shape. In all cases the
exponent remains close to 1. Figure 8 displays a quantile-quantile plot comparing εt
with the estimated exponential distribution for three countries: France, Germany, USA.
The linear fit is excellent, and this goodness of fit is confirmed for 33 more countries in
Figure A6.
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Figure 8. Quantile-quantile plot with France, Germany and the USA comparing εt, using the festive
day correction, with the optimal exponential distribution using the R-package normalp.

4. Discussion of Previous Models
4.1. The Fraser Renewal Equation

In our proposed incidence model, we used the general integral Equation (1), which is
a functional equation in Rt. Integral equations have been previously used to estimate Rt:
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in [20], the authors estimate Rt as the direct deconvolution of a simplified integral equation
where it is expressed in terms of Rt and it in the past, without using the serial interval. A
simpler functional equation than (1) was proposed in Fraser [21] (Equation (9)),

it = Rt ∑
s

it−sΦs. (11)

This equation is derived from the general case renewal Equation (1) by assuming that
Rt is constant in the serial interval support. It computes the “instantaneous reproduction
number” and represents the number of secondary cases arising from an individual showing
symptoms at a particular time, assuming that conditions remain identical after that time,
in contrast with the case renewal Equation (1). This last equation applied to the incidence
curve is coherent if Φs denotes the serial interval between two cases, which can have
negative dates, because an infectious may be detected after the infection cases she caused.
Using (11) requires that Φs only has positive dates. This explains why [22] proposed to
estimate the generation time, namely the (always positive) time between two infections,
before using it in (11). The advantage of Equation (11) is that Rt is estimated at time t from
the past incidence values it−s by a simple division, provided that Φs = 0 for s < 0:

Rt =
it

∑s it−sΦs
. (12)

4.2. Deterministic Implementations Using Fraser’s Renewal Equation and Other Models

Many papers estimating Rt use the deterministic causal renewal Equation (11). This
is the case of [23–25]. This last paper also involves the Wallinga–Teunis formulation [2],
also based on the renewal equation but only allowing a backward estimate of Rt (see the
discussion in [7]). Some papers such as [26] propose a simplified version of (11). See
also [27], who use this equation but estimate the probability distribution Φs by a maximum
entropy method. A few papers use another deterministic model, the Wallinga–Teunis
formulation, to compute Rt [28], or a SIR model, such as in [29], where the time variable
parameter β(t) of the three ODE’s of a SIR model is estimated from incidence data in a
seven days sliding window.

4.3. Stochastic Observation Models for it and Rt

The renewal Equation (11) is often endowed with an a priori stochastic Poisson
model as

it = P
(

Rt ∑
s

it−sΦs

)
. (13)

In this stochastic formulation, the first member it of Equation (11) is assumed to be a
Poisson variable, and the second member of this equation is interpreted as the expectation
of this Poisson variable. This leads to a maximum likelihood estimation strategy to compute
Rt (see [3,8–10,30]). This form of the renewal equation is proposed and used in [3] and
in the EpiEstim software. It is highly recommended in a recent review [31] signed by
representatives from ten different epidemiological labs from several continents. Many
papers dedicated to the computation of Rt use this model, for example [32–34], who also
assume that Rt is a Poisson variable, and [35] who also assume that Rt also is a random
variable following a Gamma distribution. In [36], the authors use the stochastic form of
the renewal Equation (13) where they call Φs causal serial interval. Then Rt is estimated
jointly on all regions of a country by a variational model containing a spatial total variation
regularization to ensure that Rt is piecewise constant, and the L1 norm of its time Laplacian
to ensure time regularity. The functional also penalizes outliers, typically Sundays and
holidays by assuming a sparse structure of such events. See also [37] for an exposition of
the application of this method.

In [38], the method Epifilter is introduced as an extension of EpiEstim and of the
Wallinga–Teunis formulation. Epifilter has been applied in practical studies such as [39].
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The core of Epifilter is again the causal renewal equation in Poisson form (13). Yet, the
author proposes a doubly stochastic model, as Rt is assumed to follow a recursive discrete
Brownian motion of the sort

Rt = Rt−1 + η
√

Rt−1εt−1, (14)

where ε ' N (0, 1) and η is a user parameter, that we can interpret as a regularity control
on Rt. Then (Rs)s≤t is computed from the incidence data (it)s≤t by recursive filtering. The
method is complemented by Bayesian (backward) recursive smoothing that brings a better
estimate on low incidence periods.

Similarly, in [40], a parametric model with a stochastic multiplicative term is proposed
for Rt where the stochastic term is a Gamma law with prescribed standard deviation. The
parameters are estimated in several prefectures in interaction to provide the best fit to
incidence data linked to Rt through the causal renewal Equation (11).

A few papers assume a negative binomial a priori for the incidence [41]. Nevertheless,
the equations given in the paper indicate the adoption of the renewal Equation (11) and put
the stochastic process on Rt by assuming Rt ' Rt−1GP where GP is a squared exponential
kernel. The very same model is used in [42], and is based on the authors’ software EpiNow2.
Similarly in [43], incidence it and reproduction number Rt are linked through the classic SIR
model; a parametric piecewise linear model for Rt is estimated by fitting the parameters to
real incidence data. Here, the daily incidence data are modeled as a negative binomial, with
mean given by the deterministic solution of the SIR equations and unknown dispersion.

In [44], a direct stochastic model is proposed for Rt, assuming that its log derivative is
Brownian, namely

d(log(β(t)) = νdB(t)

where ν is the volatility of the Brownian process to be estimated. Then we have

Rt = Cβ(t)s(t),

where C is a constant depending on steady transmission characteristics and s(t) is the
proportion of the population that is susceptible. The case incidence is then estimated
through an SEIR model. We refer to [45] for a still more complex stochastic model for Rt,
depending on three stochastic parameters.

5. Conclusions

In [7], we have proven extensively by simulations and experiments on live worldwide
COVID-19 incidence data that using the simplified causal renewal Equation (11) incurs in
a five days delay in the estimation of Rt, compared to the Nishiura renewal Equation (1).
This is why we used here this second model.

All of the stochastic models mentioned in Section 4.3 are formulated a priori. To the
best of our knowledge, no there has been no a posteriori verification of their noise models
on it or Rt. In contrast, we have proposed to learn the noise model from data and to verify
a posteriori that the noise model is correct. Our experiments show that the weekly and
festive administrative perturbations are more important than the noise. Hence, they must
be corrected first to enable a proper noise analysis.

These experiments seem to confirm the validity of the observation model (4). As we
saw, this model can be inverted by minimizing the energy (7). This minimization yields
three signals: a restored incidence on the festive days, the administrative bias correcting
coefficients qt that are quasi-periodic with period 7, and the time varying reproduction
number Rt, arguably the pandemic’s most useful control parameter. Last but not least,
the renewal equation deduces a restored incidence irt by (2) from the bias compensated
incidence ît. The modeling loop was closed by verifying that the normalized error defined
by (9) is a white noise. We also found that this noise follows an exponential distribution.
This analysis discards the Poisson model for the pandemic’s case count it. A pure case count
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should be a Poisson noise, but we saw that the main perturbation was an administrative bias
which, once compensated, leaves behind a noise with standard deviation proportional to a
power larger than 0.5 of the case count it. Under the Poisson model this standard deviation
would have been equal to the square root of it.

In summary, based on the renewal equation inversion, this work contributes to a better
understanding of the dynamic of the registered administrative observation of the incidence
curve, its weekly seasonality, the influence of the festive days and the expected noise model
in the observation of the incidence curve.
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Appendix A
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Figure A1. From top to bottom: (i) the original incidence curve of Germany i0t , (ii) the incidence curve
after bias correction ît, (iii) the restored incidence curve using the renewal equation irt , (iv) the weekly
bias correction factors qt, (v) the reproduction number estimation Rt and (vi) the normalized error
εt = (irt − ît)/(irt )

a, where a is the optimal exponent obtained by regression (see Table A2).
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Figure A2. From top to bottom: (i) the original incidence curve i0t of USA, (ii) the incidence curve
after bias correction ît, (iii) the restored incidence curve using the renewal equation irt , (iv) the weekly
bias correction factors qt, (v) the reproduction number estimation Rt and (vi) the normalized error
εt = (irt − ît)/(irt )

a, where a is the optimal exponent obtained by regression (see Table A2).
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Figure A3. Control test, from top to bottom: (i) the test incidence curve i0t which is a Brownian
motion, (ii) the test curve after bias correction ît, (iii) the restored incidence curve using the renewal
equation irt , (iv) the weekly bias correction factors qt, (v) the reproduction number estimation Rt and
(vi) the relative error (irt − ît)/irt . Both Rt and the weekly seasonality correction coefficients stay very
close to 1, with means 1.001 and 1.00002, and standard deviations 1.7% and 0.3% respectively.
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Table A1. Table with the mean and standard deviation of εt and the parameters of the best fit to the
exponential distributions for 36 countries. The data of starred countries in the first three rows have
undergone the festive bias correction.

Country Mean Std Location Scale Shape (β)

Exponential Exponential Exponential

FRA * −0.0283 0.8290 −0.0286 0.5394 1.0000

DEU * −0.0178 0.4785 −0.0135 0.3433 1.0144

USA * −0.0044 0.2169 −0.0059 0.1537 1.0000

FRA 0.0109 1.0024 −0.0316 0.6026 1.0000

DEU 0.0091 0.5143 0.0050 0.3458 1.0000

USA 0.0032 0.4779 −0.0097 0.3003 1.0000

ARG 0.0025 0.4430 −0.0286 0.3153 1.0000

AUT 0.0419 1.1030 −0.0041 0.9035 1.2701

BEL 0.0413 1.2175 −0.0366 0.8304 1.0000

BRA −0.0018 0.4825 −0.0368 0.3312 1.0000

CAN 0.0068 1.2720 −0.0252 0.8290 1.0000

CHL 0.0019 0.2960 −0.0082 0.2138 1.0252

COL −0.0026 0.2006 −0.0107 0.1490 1.0751

CZE 0.0116 0.5671 −0.0415 0.3755 1.0000

DNK 0.0278 1.2446 −0.0298 0.8126 1.0000

GRC 0.0218 1.2764 −0.0410 0.8847 1.0000

HUN 0.0069 0.6600 −0.0267 0.4410 1.0000

IND 0.0419 0.9891 −0.0084 0.6786 1.0000

IDN −0.0015 0.3374 −0.0140 0.2607 1.1466

IRL 0.0030 1.1778 −0.0748 0.8252 1.0000

ITA 0.0368 1.1441 0.0141 0.7130 1.0000

JPN 0.0243 0.6647 −0.0254 0.4515 1.0000

MEX −0.0318 1.7329 −0.0955 1.1091 1.0000

NPL 0.0035 0.8994 0.0005 0.5652 1.0000

NLD 0.0437 0.7185 −0.0404 0.4910 1.0000

PHL −0.0196 2.0401 −0.0930 1.4011 1.0000

POL −0.0017 0.1911 −0.0043 0.1268 1.0000

ROU 0.0063 0.9465 −0.0011 0.5798 1.0000

RUS 0.0107 0.3383 0.0066 0.2270 1.0000

SRB 0.0675 1.0140 0.0758 0.7932 1.1728

SVK 0.0024 1.3671 −0.0778 0.8194 1.0000

ZAF 0.0139 0.9110 −0.0320 0.7059 1.1497

ESP 0.0637 1.6068 −0.0047 1.0840 1.0000

CHE 0.0528 1.2228 0.0017 0.8667 1.0000

THA 0.0299 1.3738 −0.0312 0.9374 1.0000

TUN 0.0123 1.3033 −0.0845 0.9224 1.0000

UKR 0.0034 0.4117 −0.0215 0.2586 1.0000

ARE 0.0108 0.4192 −0.0127 0.3265 1.1588

GBR 0.0085 0.3304 −0.0171 0.2163 1.0000
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Table A2. Coefficients a and b for 38 countries of the log-log linear regression ax + b between restored
incidence irt and the residual |ît − irt | as displayed in Figure 5. The Pearson correlation p-values given
by the stats R package confirm a linear relation. The exponent a varies between 0.7 and 0.9. Stars
* indicate countries with festive correction. The pvalues are slightly better with festive correction
than without. The last row shows the results on the control curve, simulated as a Brownian process.
Its large p-value discards a linear log-log relation, and the estimated values of a and b also stand far
away from the estimated values for real incidence curves.

Country a b p-Value Country a b p-Value

FRA * 0.8074272 −1.164141 2.01 × 10−75 FRA 0.8136197 −1.1710322 2.76 × 10−71

DEU * 0.8233846 −1.496739 5.99 × 10−95 DEU 0.8235076 −1.5057318 3.01 × 10−92

USA * 0.9076139 −2.264255 3.16 × 10−42 USA 0.8638492 −1.7287377 6.37 × 10−37

ARG 0.8340299 −1.5574878 1.71 × 10−101 AUT 0.6628437 −0.5661912 3.45 × 10−86

BGD 0.9104934 −2.5672893 6.14 × 10−56 BEL 0.7184413 −0.6589731 3.65 × 10−61

BRA 0.8906214 −1.536314 1.03 × 10−58 CAN 0.7240632 −0.6726824 2.96 × 10−44

CHL 0.8349688 −1.9543089 2.64 × 10−40 COL 0.9175985 −2.2638884 3.03 × 10−112

CZE 0.8520268 −1.4708978 2.88 × 10−133 DNK 0.6900743 −0.6284769 2.78 × 10−68

GRC 0.6555842 −0.5683038 2.58 × 10−102 HUN 0.7838904 −1.3618843 4.47 × 10−142

IND 0.7042499 −0.8457334 8.20 × 10−68 IDN 0.8406915 −1.7674138 5.30 × 10−97

IRL 0.7043354 −0.5484242 1.35 × 10−89 ITA 0.6964125 −0.8659193 2.53 × 10−71

JPN 0.7222903 −1.2445353 5.65 × 10−85 MEX 0.725394 −0.4661005 1.76 × 10−32

NPL 0.7548857 −1.0559482 1.42 × 10−55 NLD 0.7494921 −1.1280471 3.35 × 10−96

PHL 0.6715338 −0.1103984 1.90 × 10−47 POL 0.9306078 −2.6041615 3.02 × 10−133

ROU 0.6920366 −1.0282145 4.11 × 10−77 RUS 0.7212814 −2.0048746 4.05 × 10−26

SRB 0.628712 −0.65103 6.76 × 10−92 SVK 0.7381511 −0.7853881 8.53 × 10−164

ZAF 0.7275793 −0.7811203 9.48 × 10−69 ESP 0.6806819 −0.3916179 2.03 × 10−42

CHE 0.6138378 −0.5491828 1.38 × 10−75 THA 0.7110685 −0.4672682 1.63 × 10−222

TUN 0.7539949 −0.503523 3.03 × 10−163 TUR 0.8998264 −2.658924 1.32 × 10−68

UKR 0.8172308 −1.8996555 1.75 × 10−70 ARE 0.7511088 −1.5460453 3.80 × 10−52

GBR 0.8705096 −1.9395546 1.70 × 10−96 World 0.7631129 −1.1389749 0.00

Brownian −1.0155743 13.3969412 0.0844
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Figure A4. Fit of exponential distributions for 36 countries. In red, the best fitting exponential
distribution with shape larger or equal to 1. In black, the best fitting normal law.
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Figure A5. Autocorrelation of the normalized error εt using the R-software functionalities (acf()
function) for 36 countries. The dotted lines give the 95% confidence interval for non-correlation.
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Figure A6. Quantile-quantile plot with 36 countries comparing εt (without using the festive day
correction) with the optimal exponential distribution using the R-package normalp. In the horizontal
axis we show the theoretical quantiles and in the vertical axis, the sample quantiles. Note that the
exponential distribution shape parameter β, indicated on the graphs can have values >1.
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