
HAL Id: hal-04547233
https://hal.science/hal-04547233v1

Submitted on 15 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Approach of Formal Verification of Web
Service Composition

Mohamed Graiet, Mourad Kmimech, Lazhar Hamel, Mohamed Tahar Bhiri,
Walid Gaaloul, Raoudha Maraoui

To cite this version:
Mohamed Graiet, Mourad Kmimech, Lazhar Hamel, Mohamed Tahar Bhiri, Walid Gaaloul, et al..
Towards an Approach of Formal Verification of Web Service Composition. International Journal On
Advances in Intelligent Systems, 2011. �hal-04547233�

https://hal.science/hal-04547233v1
https://hal.archives-ouvertes.fr

332

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards an Approach of Formal Verification of Web Service Composition

Mohamed Graiet
MIRACL,ISIMS

Sfax, Tunisia
mohamed.graiet@imag.fr

Mourad Kmimech
MIRACL,ISIMS

Sfax, Tunisia
mkmimech@gmail.com

Lazhar Hamel
MIRACL,ISIMS

Sfax, Tunisia
lazhar.hamel@gmail.com

Mohamed Tahar Bhiri
MIRACL,ISIMS

Sfax, Tunisia
tahar bhiri@yahoo.fr

Raoudha Maraoui
MIRACL,ISIMS

Sfax, Tunisia
maraoui.raoudha@gmail.com

Walid Gaaloul
Computer Science Department Telecom SudParis

Paris, France
walid.gaaloul@it-sudparis.eu

Abstract—Web services can be defined as self-contained
modular programs that can be discovered and invoked across
the Internet. Web services are defined independently from
any execution context. A key challenge of Web Service (WS)
composition is how to ensure reliable execution. Due to their
inherent autonomy and heterogeneity, it is difficult to reason
about the behavior of service compositions especially in case of
failures. Therefore, there is a growing interest for verification
techniques which help to prevent service composition execution
failures. In this paper, we present a proof and refinement
based approach for the formal representation, verification and
validation of Web Services transactional compositions using the
Event-B method.

Keywords-Web service; transactional; composition; Event-B;
verification; proof;

I. INTRODUCTION

Web services are emergent and promising technologies for
the development, deployment and integration of applications
on the internet. One interesting feature is the possibility to
dynamically create a new added value service by composing
existing web services, eventually offered by several compa-
nies. Due to the inherent autonomy and heterogeneity of
web services, the guarantee of correct composite services
executions remains a fundamental problem issue. An exe-
cution is correct if it reaches its objectives or fails properly
according to the designer’s requirement or users needs. To
deal with the web services heterogeneity we proposed in
[1] a formalisation of web service composition mediation
with the ACME ADL(Architecture Description Language).
The problem, which we are interested in, is how to ensure
reliable web services compositions. By reliable, we mean a
composition for which all executions are correct.

Our work deals with the formal verification of the transac-
tional behavior of web services composition. In this paper,
we propose to address this issue using proof and refine-
ment based techniques, in particular the Event-B method
[2] [3] used in the RODIN platform [4]. Our approach
consists on a formalism based on Event-B for specifying
composite service (CS) failure handling policies. This formal

specification is used to formally validate the consistency of
the transactional behavior of the composite service model
at design time, according to users’ needs. We propose
to formally specify with Event-B the transactional service
patterns. These patterns are formally specified as events and
invariants rule to check and ensure the transactional consis-
tency of composite service at design time. Most previous
work is based on the model checking technique and does
not support the full description of transactional web services.
Refinement and proof techniques offered by Event-B method
are used to explore it and in Section 6 we discuss this
approach.

This paper is organized as follows. Section 2 presents a
summary of related work on this topic, i.e. on approaches
for modeling the behavior of web services. In Section 3
we introduce a motivating example. Section 4 presents
the Event-B method, its formal semantics and its proof
procedure and introduces our transactional CS model. In
Section 5, we present how we specify a pattern-based of
the transactional behavior using the Event-B. An overview
of the validation methodology is given in Section 6.

II. RELATED WORKS

Some web services are used in a transactional context,
for example, reservation in a hotel, banking, etc.; the
transactional properties of these services can be exploited
in order to answer their composition constraints and the
preferences made by designers and users. However, current
tools and languages do not provide high-level concepts for
express transactional composite services properties [5]. The
execution of composite service with transactional properties
is based on the execution of complex distributed transactions
which eventually implements compensation mechanisms. A
compensation is an operation which goal is to cancel the
effect of another transaction that failed to be successfully
completed. Several transactions models previously proposed
in databases, distributed systems and collaborative environ-
ments but these models face problems of integration and

333

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transaction management. When a service is integrated into
the composition, it is probable that its transaction manage-
ment system does not meet the needs of the composition.
In order to manage with this focus many specifications
proposed to response to this aspects. Many research in this
field, WS-Coordination [6], WS-AtomicTransaction [7] and
WS-BusinessActivity [8].), aiming for instance to guarantee
that an activity is cancelable and / or compensable. The veri-
fication step will help ensure a certain level of confidence in
the internal behavior of an orchestration. Several approaches
have been proposed in this direction, based on work related
to the transition system [9], process algebras [10], or the
temporal theories [11].

LTSA-WS [12] is an approach allowing the comparison
of two models, the specification model (design) and im-
plementation model in order to specify and verify the web
service composition. In case of no coherence (consistency)
of executions traces of the model generated by the visual
tool LTSA , the implementation is fully resume: as a weak
point in this approach is the verification phase is too late.

The approach presented in [9] formalizes some operators
used for orchestration of Web services as a Petri net and
enabling some checks. Petri nets provide mechanisms for
analyzing simulation process but do not allow execution.
The temporal theories have emerged through the application
of logic in Artificial Intelligence. The work presented in
[11] is based on one of these theories: Event Calculus. First,
the approach allows the verification of functional and non-
functional properties. Second, it allows the verification of
BPEL4WS orchestration at a static level (prior to execu-
tion) and all along the execution of an orchestration. The
translation phase between BPEL4WS and its formalization
language is presented as in other approaches, which leads to
the same restrictions, namely the potential loss of semantics.

In last work [1] [13], SOA (Service Oriented Architecture)
defines a new Web Services cooperation paradigm in order
to develop distributed applications using reusable services.
The handling of such collaboration has different problems
that lead to many research efforts. We addresses in these
works the problem of Web service composition. Indeed,
various heterogeneities can arise during the composition.
The resolution of these heterogeneities, called mediation, is
needed to achieve a service composition. Then, we propose a
sound approach to formalize Web services composition me-
diation with the ADL (Architecture Description Language)
ACME [14]. To do so, we, first, model the meta-model of
composite service manager and mediation. Then we specify
a semi formal properties associated with this meta-model
using OCL (Object Constraint Language) [15]. Afterwards,
we formalize the mediation protocol using Armani [16],
which provides a powerful predicate language in order to
ensure service execution reliability.

The approach presented in [17] consists in extracting an
Event-B model from models expressing service composi-

tions and description. These models expressed with BPEL.
This approach consists in transforming a BPEL process into
an Event-B model in order to check the relevant properties
defined in the Event-B models by the services designers
The verification of an orchestration before its execution
can theoretically limit any undesired behavior, or current
work introduces one or more phases of translation between
the description and formalization of the orchestration. It is
therefore not possible to affirm that what is verified is exactly
what is described. In addition, BPEL4WS has no formally
defined operational semantics, it is not possible to affirm
that what is executed is exactly what is described. That is
essentially what we will try to solve in our approach of
verifying services compositions.

III. MOTIVATING EXAMPLE

In this section, we present a scenario to illustrate our
approach we consider a travel agency scenario (Figure 1).
The client specifies its requirement in terms of destinations
and hotels via the activity ”Specification of Client Needs”
(SCN). After SCN termination, the application launches
simultaneously two tasks ”Flight Booking” (FB) and ”Hotel
Reservation” (HR) according to customer’s choice. Once
booked, the ”Online Payment” (OP) allows customers to
make payments. Finally travel documents (air ticket and
hotel reservations are sent to the client via one of the
services ”Sending Document by Fedex” (SDF) ,”Sending
Document by DHL” (SDD) or ” Sending Document by
TNT” (SDT). To guarantee outstanding reliability of the
service the designers specify that services FB, OP and
SDT will terminate with success. Whereas on failure of the
HR service, we must cancel or compensate the FB service
(according to his current state) and in case of failure of the
SDF, we have to activate the SDD service as an alternative.

Figure 1. Motivating example

The problem that arises at this level is how to check /
ensure that the specification of a composite service ensures
reliable execution in accordance with the designer’s require-
ments. To do so, the verification process should cover the

334

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

composite service lifecycle. Basically, at design time the
designer should respect the transactional consistency rules.
For instance, one has to verify that there is no cancel-
lations dependencies between no concurrent services (for
instance, SDD, SDT, SDF), as a cancellation dependency
can intrinsically exist only between services executed at the
same time. Indeed, discovering and correcting such kind
of senseless and potentially costly behavior improve the
composite service design. In the other side, after runtime
one can discover that in reality the users express the need
to cancel or compensate the FB service in failure of the HR
service. Starting from this observation, we should propose
a technique to discover these discrepancies between the
initially designed model and users’ evolution needs. Indeed,
taking in account this new transactional behavior improves
composite service reliability.

IV. FORMALIZING TRANSACTIONAL COMPOSITE
SERVICE WITH EVENT-B

To better express the behavior of web services we have
enriched the description of web services with transactional
properties. Then we developed a model of Web services
composition. In our model, a service describes both a
coordination aspect and a transactional aspect. On the one
hand it can be considered as a workflow services. On the
other hand, it can be considered as a structured transaction
when the services components are sub-transactions and inter-
actions are transactional dependencies. The originality of our
approach is the flexibility that we provide to the designers
to specify their requirements in terms of structure of control
and correction. Contrary to the ATMs [18] [19], we start
from designers specifications to determine the transactional
mechanisms to ensure reliable compositions according to
their requirements. We show how we combine a set of
transactional service to formally specify the transactional CS
model in Event-B.

The work presented in [20] uses Event Calculus to specify
models of web services. Event calculus uses a languages of
predicates that requires verification. However Event Calculus
are not backed by verification tools. Therefore verification
and validation of these models become more complex.

Compared to [20] the big advantage of Event-B is the
RODIN platform, which is based on Eclipse. RODIN stores
templates in a database and provides new powerful provers
which can be manipulated using a graphical interface.
Another interesting aspect is the possibility of extending
RODIN using plug-ins. Another advantage is ProB tool [21]
which, allows the animation and model checking of Event-
B specifications. In other words, ProB can visualize the
dynamic behavior of a machine B and one can systematically
explore all accessible states of an Event-B machine. With
this plug-ins RODIN becomes a platform where the user
can edit, animate and proving models.

Event-B uses successive refinement to verify that a system
satisfies the requirements of a specification; it can repair
errors during the development. The complexity of the system
is distributed; the step by step proofs are easier. Event-
B offers more flexibility and expressivity than the input
languages of model checkers.

A. Event-B
B is a formal method based on he theory of sets, enabling

incremental development of software through sequential
refinement. Event-B is a variant of B method introduced
by Abrial to deal with reactive system. An Event-B model
contains the complete mathematical development of a dis-
crete system. A model uses two types of entities to describe
a system: machines and contexts. A machine represents the
dynamic parts of a model. Machine may contain variables,
invariants, theorems, variants and events whereas contexts
represent the static parts of a model .It may contain car-
rier sets, constants, axioms and theorems. Those constructs
appear on Figure 2.

Figure 2. Event-B constructs and their relationships

A machine is organized in clauses:
• VARIABLES represent the state variable of the model.
• INVARIANTS represents the invariance properties of

the system, must allow at least the typing of variables
declared in the VARIABLES clause.

• THEOREMS contain properties that can be derived
from properties invariance.

• EVENTS clause contains the list of events of the model.
An event is modeled with a guarded substitution, is
fired when its guards evaluated to true. The events
occurring in an Event-B model affect the state described
in VARIABLES clause.

Each event in the EVENTS clause is a substitution, and its
semantics is the calculation of Dijkstra’s weakest precon-
ditions. An event consists of a guard and a body. When
the guard is satisfied, the event can be activated. When the
guards of several events are satisfied at the same time, the
choice of the event is to enable deterministic. An Event-B
model may refer to a context.

335

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A context consists on the following clauses:
• SETS describe a set of abstract and enumerated types.
• CONSTANTS represent the constants of the model.
• AXIOMS contain all the properties of the constants and

their types.
• THEOREMS contains properties deduced from the

properties present in the clause AXIOMS.
Refinement: The concept of refinement is the main feature
of Event-B. it allows incremental design of systems. In any
level of abstraction we introduce a detail of the system mod-
elled. A series of proof obligations must be discharged to
ensure the correction of refinement as the proof obligations
of the concrete initialization, the refinement of events, the
variant and the prove that no deadlock in the concrete and
the abstract machine.

Correctness checking: Correctness of Event-B machines
is ensured by proving proof obligations (POs); they are
generated by RODIN to check the consistency of the model.
For example: the initialization should establish the invariant,
each event should be feasible (FIS), each given event should
maintain the invariant of its machine (INV), and the system
should ensure deadlock freeness (DLKF). The guard and
the action of an event define a before-after predicate for
this event. It describes relation between variables before the
event holds and after this. Proof obligations are produced
from events in order to state that the invariant condition is
preserved.

Let M be an Event-B model with v being variables, carrier
sets or constants. The properties of constants are denoted by
P(v), which are predicates over constants, and the invariant
by I(v). Let E be an event of M with guard G(v) and
before-after predicate R(v, v’). The initialization event is a
generalized substitution of the form v : init(v). Initial proof
obligation guarantees that the initialization of the machine
must satisfy its invariant: Init(v)⇒ I(v). The second proof
obligation is related to events. Each event E, if it holds, it
has to preserve invariant. The feasibility statement and the
invariant preservation are given in these two statements [22]
[23].
• I(v) ∧G(v) ∧ P (v)⇒ ∃v′R(v, v′)
• I(v) ∧G(v) ∧ P (v) ∧R(v, v′)⇒ I(v′)

An Event-B model M with invariants I is well-formed,
denoted by M � I only if M satisfies all proof obligations.

B. Transactional web service model
By Web service we mean a self-contained modular pro-

gram that can be discovered and invoked across the Internet.
Each service can be associated to a life cycle or a statechart.
A set of states (initial, active, cancelled, failed, compen-
sated, completed) and a set of transitions (activate(), cancel
(), fail(), compensate (), complete()) are used to describe the
service status and the service behavior.

A service ts is said to be retriable(r) if it is sure to
complete after finite number of activations. ts is said to

be compensatable(cp) if it offers compensation policies to
semantically undo its effects. ts is said to be pivot(p) if
once it successfully completes, its effects remain and cannot
be semantically undone. Naturally, a service can combine
properties, and the set of all possible combinations is r; cp;
p; (r; cp); (r; p)[24].

The initial model includes the context ServiceContext and
the machine ServiceMachine. The context ServiceContext
describes the concepts SWT which represents all transac-
tional web services and STATES represents all the states of
a given SWT. These states are expressed as constants.
• A set named STATES is defined in the SETS clause

which represents the states that describe the behavior
of such a service.

• A set named SWT is defined in the SETS clause which
represents all transactional web services.

• A subset named SWT C is defined in the VARIABLES
clause which represents the compensable transactional
services.

• A subset named SWT R is defined in the VARIABLES
clause which represents the retriable transactional ser-
vices.

• A subset named SWT P is defined in the VARIABLES
clause which represents the transactional services pivot.

• The service state which is represented by a functional
relation service state defined in VARIABLES clause
gives the current state of such a service.

CONTEXT ServiceContext
SETS
SWT
STATES
CONSTANTS
active
initial
aborted
cancelled
failed
completed
compensated
AXIOMS
Axm1:STATES = {active, initial, aborted,
cancelled, failed, completed, compensated}
END

The transactional behavior of a transactional web service
is modeled by a machine. Inv1 the invariant specifies that
service state is a total function, and that each service has a
state.

In our model, transitions are described by the event. For
instance the activate event changes the status of a service and
pass it from initial status to active. The compensate event
enables to compensate semantically the work of a service
and pass it from completed status to compensated. The retry
event changes the status of a service and activate it after his

336

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

failure and pass it from failed status to active. The complete
event enables to finite the execution of a service with success
and pass it from active status to completed.

MACHINE ServiceMachine
SEES ServiceContext
VARIABLES
service state
SWT C
SWT P
SWT R
INVARIANTS
Inv1: service state ∈ SWT → STATES
Inv2: SWT C ⊂ SWT
Inv3: SWT R ⊂ SWT
Inv4: SWT P ⊂ SWT
EVENTS
activate ,
ANY
s
WHERE
grd1 : s ∈ SWT
grd2 : service state(s) = initial
THEN
act1 : service state(s) := active
END
compensate ,
ANY
s
WHERE
grd1 : s ∈ SWT
grd2 : service state(s) = completed
THEN
act1 : service state(s) := compensated
END
Retry ,
ANY
s
WHERE
grd1 : s ∈ SWT R
grd2 : service state(s) = failed
THEN
act1 : service state(s) := active
END
complete ,
ANY
s
WHERE
grd1 : s ∈ SWT
grd2 : service state(s) = active
THEN
act1 : service state(s) := completed
END

C. Transactional composite service
A composite service is a conglomeration of existing Web

services working in tandem to offer a new value-added
service [25]. It orchestrates a set of services, as a composite
service to achieve a common goal. A transactional composite
(Web) service (TCS) is a composite service composed of
transactional services. Such a service takes advantage of the
transactional properties of component services to specify
failure handling and recovery mechanisms. Concretely, a
TCS implies several transactional services and describes the
order of their invocation, and the conditions under which
these services are invoked.

To formally specify in Event-B the orchestration we intro-
duced a new context CompositionContext which extends the
context ServiceContext that we have previously introduced.

The first refinement includes the context Composition-
Context and the machine CompositionMachine which refine
the machine introduced at the initial model. In this section
we show how formally the interactions between CS are
modeled. We introduce the concept of dependencies(depA,
depANL, depCOMP, etc.).

Dependencies are specified using Relations concept. It is
simply a set of couples of services. For example depA rep-
resents the set of couples of services that have an activation
dependency.

CONTEXT CompositionContext
EXTENDS ServiceContext
CONSTANTS
depA
depAL
depANL
depABD
depCOMP
AXIOMS
Axm1 : depA ∈ SWT ↔ SWT
Axm2 : depAL ∈ SWT ↔ SWT
Axm3 : depANL ∈ SWT ↔ SWT
Axm4 : depABD ∈ SWT ↔ SWT
Axm5 : depCOMP ∈ SWT ↔ SWT
END

These dependencies express how services are coupled and
how the behavior of certain services influences the behavior
of other services. Dependencies can express different kinds
of relationships (inheritance, alternative, compensation, etc.)
that may exist between the services. We distinguish be-
tween ”normal” execution dependencies and ”exceptional”
or ”transactional” execution dependencies which express
the control flow and the transactional flow respectively.
The control flow defines a partial services activations order
within a composite service instance where all services are
executed without failing cancelled or suspended. Formally,
we define a control flow as TCS whose dependencies are
only ”normal” execution dependencies.

337

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The transactional flow describes the transactional de-
pendencies which specify the recovery mechanisms ap-
plied following services failures (i.e. after fail() event).
We distinguish between different transactional dependencies
types(compensation, cancelation and alternative dependen-
cies). Alternative dependencies (depAL) allow us to de-
fine forward recovery mechanisms. A compensation depen-
dency (depCOMP) allows us to define a backward recovery
mechanism by compensation. A cancellation dependency
(depANL) allows us to signal a service execution failure
to other service(s) being executed in parallel by canceling
their execution. It exists an abortion dependency (depABD)
between a service s1 and a service s2 if the failure, the
cancellation or the abortion of s1 can fire the abortion of
s2.

MACHINE CompositionMachine
REFINES ServiceMachine
SEES CompositionContext
activate, REFINES activate
ANY
s
WHERE
grd1 : s ∈ SWT
grd2 : service state(s) = initial
grd3 : (∀s0.s0 ∈ SWT ∧ s0 7→ s ∈ depA ⇒
service state(s0) = completed)
∨(∃s0.s0 ∈ SWT ∧ s0 7→ s ∈ depAL⇒
service state(s0) = failed)
THEN
act1 : service state(s) := active
END
compensate, REFINES compensate
ANY
s
WHERE
grd1 : s ∈ SWT C
grd2 : service state(s) = completed
grd3: ∃s0.s0 ∈ SWT ∧ s0 7→ s ∈ depCOMP
⇒ ((service state(s0) = failed)∨
(service state(s0) = compensated))
THEN
act1 : service state(s) := compensated
END

Activation dependencies (depA) express a succession re-
lationship between two services s1 and s2. But it does not
specify when s2 will be activated after the termination of
s1. The guard added to the activate event which refines the
activate event of the initial model expresses when the service
will be active as a successor to other (s) service (s) (only
after the termination of these services).

For example, our motivating example defines an activation
dependency from HR and FB; to OP such that OP will be
activated after the completion of HR and FB. That means

there are two normal dependencies: from HR to OP and from
FB to OP. At this level the refinement of the compensate
event is a strengthening of the event guard to take into
consideration the condition of compensation of a service
when a service will be compensated.

The guard grd4 in the compensate event expresses that
the compensation of a service s is triggered when a service
s0 failed or was compensated and there is a compensation
dependency from s to s0. Therefore compensate allows to
compensate the work of a service after its termination, the
dependency defines the mechanism for backward recovery
by compensation, the condition added as a guard specifies
when the service will be compensated.

The guard grd4 in the activate event expresses when a
service will it be activated as a successor of other (s) service
(s) (i.e. only after termination of these services) or when will
be activated as an alternative to other (s) service (s) (i.e. only
after the failure other (s) service (s)).

V. TRANSACTIONAL SERVICE PATTERNS

The use of workflow patterns [26] appears to be an
interesting idea to compose Web services. However, current
workflow patterns do not take into account the transactional
properties (except the very simple cancellation patterns cat-
egory [27]). It is now well established that the transactional
management is needed for both composition and coordina-
tion of Web services. That is the reason why the original
workflow patterns were augmented with transactional de-
pendencies, in order to provide a reliable composition [28].
In this section, we use workflow patterns to describe TCS’s
control flow model as a composition pattern. Afterwards, we
extend them in order to specify TCS’s transactional flow, in
addition to the control flow they are considering by default.
Indeed, the transactional flow is tightly related to the control
flow. The recovery mechanisms (defined by the transactional
flow) depend on the execution process logic (defined by the
control flow).

The use of the recovery mechanisms described throw the
transactional behavior varies from one pattern to another.
Thus, the transactional behavior flow should respect some
consistency rules(INVARIANT) given a pattern. These rules
describe the appropriate way to apply the recovery mecha-
nisms within the specified patterns. Recovering properly a
failed composite service means: trying first an alternative to
the failed component service, otherwise canceling ongoing
executions parallel to the failed component service, and
compensating the partial work already done. The trans-
actional consistency rules ensure transactional consistency
according to the context of the used pattern. In the following
we formally specify these patterns and related transactional
consistency rules using Event-B.

Our model introduces a new context And-patternContext
which extends the context CompositionContext and a ma-
chine transactionalpatterns which refines the machine Com-

338

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Studied patterns

positionMachine. To extend these patterns we introduce
new events that can describe them. For example, to extend
the pattern AND-split the machine introduces a new event
AND-split which defines the pattern AND-split. Due to the
lack of space, we put emphasis on the following three
patterns AND-split, AND-join and XOR-split to explain and
illustrate our approach, but the concepts presented here can
be applied to other patterns.

An AND-split pattern defines a point in the process where
a single thread of control splits into multiple threads of
control which can be executed in parallel, thus allowing
services to be executed simultaneously or in any order. The
SWToutside represent the set of services (s1,..,sn) and s0 is
represented by S0.

AND-split ,
ANY
S0
SWToutside
WHERE
grd1 : SWToutside ⊂ SWT AS
grd2 : S0 ∈ SWT AS \ SWToutside
grd3 : service state(S0) = completed
THEN
act1 : SWToutstate := activated
END

The Event-B formalization of this pattern indicates that all
SWToutside services will be activated when S0 is success-
fully completed and this is ensured by adding a theorem
indicating that SWToutstate is activated is equal to all the
services from this subset is in the active state. The SWT AS
subset represents the AND-split services and covers all
SWToutside and S0 services.

To verify the transactional consistency of these patterns
we add predicates in the INVARIANT clauses. These in-
variants ensure transactional consistency according to the
context of use. These rules are inspired from [29] which
specifies and proves the potential transactional dependencies
of workflow patterns. The transactional consistency rules of
the AND-split pattern support only compensation dependen-
cies from SWToutside (Inv 23).
• Inv 23: ∀s.s ∈ SWToutside ⇒ sAS 7→ s 6∈

depCOMP

The compensation dependencies can be applied only over
already activated services. The transactional consistency
rules supports only cancellation dependencies between only
the concurrent services. Any other cancellation or alternative
or compensation dependencies between the pattern’s services
(Inv 11, 12) are forbidden.
• Inv 11: ∀s.s ∈ SWT AS ⇒ s 7→ sAS 6∈ depANL
• Inv12: ∀s, s1.s ∈ SWT AS∧s1 ∈ SWT AS ⇒ s 7→

s1 6∈ depAL

Our example illustrates the application of AND-split pattern
to the set of services (SCN, HR, FB) and specifies that
exist a dependency of compensation from HR to FB and a
cancellation dependency also from HR to FB. The guard of
the AND-split event represents the conditions of activation
of the pattern. In our example SCN must terminates its work
before activating the pattern. In order to ensure a normal
execution of the event an invariant must be preserved by
AND-split event that express that all SWToutside services
have an activation dependency from S0
• Inv 13: ∀s.s ∈ SWToutside⇒ sAS 7→ s ∈ depA

An AND-join pattern defines a point in the process where
multiple parallel subprocesses/services converge into one
single thread of control, thus synchronizing multiple threads.
To extend the pattern AND-join, the machine introduces a
new event AND-join which defines the control flow of the
AND-join pattern.

AND-join ,
ANY
S0
SWToutside
WHERE
grd1 : SWToutside ⊂ SWT AJ
grd2 : S0 ∈ SWT AJ \ SWToutside
grd3 : ∀s.s ∈ SWToutside⇒ service state(s) =
completed
THEN
act1 : service state(S0) := active
END

The Event-B formalisation of this pattern indicates that
S0 will be activated after the termination with success
of all SWToutside services. The SWT AJ subset represents
the AND-join services and covers all SWToutside and S0
services.

The transactional consistency rules of the AND-join pat-
tern supports only compensation dependencies for SWTout-
side, S0 can not be compensated by SWToutside services as
they are executed after (inv 24).
• Inv 24: ∀s.s ∈ SWToutside ⇒ s 7→ S0 ∈

depCOMP

The transactional consistency rules of the AND-join pattern
support also cancellation dependencies between only the

339

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concurrent services. Any other cancellation or alternative or
compensation dependencies between the pattern’s services
are forbidden.

• Inv25: ∀s.s ∈ SWToutside⇒ s 7→ S0 ∈ depANL

Our example illustrates the application of AND-join pat-
tern to the set of services (HR, FB, OP). The guard of the
AND-join event represents the conditions of activation of
the pattern. HR and FB must terminates its work before
activating the pattern. The termination of HR is necessary
and not efficient to activate the pattern. All SWToutside , HR
and FB, services must complete their work.

An XOR-split pattern defines a point in the process where,
based on a decision or control data, one of several branches
is chosen. To extend the pattern XOR-split, the machine
introduces a new event XOR-split which defines the pattern
XOR-split.

XOR-split ,
ANY
S0
SWToutside
sw
WHERE
grd1 : SWToutside ⊂ SWT XS
grd2 : S0 ∈ SWT XS \ SWToutside
grd3 : service state(S0) = completed
grd4 : sw ∈ SWToutside
THEN
act1 : service state(sw) := active
END

The Event-B formalization of this pattern indicates that sw
will be activated after the termination of S0. The SWT XS
subset represents the XOR-split services and covers all
SWToutside and S0 services.

The XOR-split pattern supports alternative dependencies
between only the services SWToutside, as the alternative de-
pendencies can exist only between parallel and non concur-
rent flows. The XOR-split pattern support also compensation
dependencies from SWToutside to sXS.

• Inv18: ∀s.s ∈ SWT XS \ sXS ⇒ s 7→ s0 ∈
depCOMP

Any other cancellation or alternative or compensation de-
pendencies between the pattern’s services are forbidden.

• Inv15: ∀s.s ∈ SWT XS ⇒ s 7→ s0 6∈ depAL
• Inv22: ∀s.s ∈ SWT XS \ sXS ⇒ s0 7→ s ∈

depCOMP

Our example illustrates the application of XOR-split pattern
to the set of services (OP, SDD, SDF, SDF) and specifies
that exist an alternative dependency from HR to FB. The
guard of the XOR-split event represents the conditions
of activation of the pattern. The execution of OP service

must be completed for activate XOR-split pattern. After the
activation one service from (SDD, SDF, SDF) will be active.

VI. VALIDATION

The hierarchy of web services model obtained by the
development process described in the last two sections
contains the different contexts and specific machine model.
We present it in three levels:
• The first level expresses the transactional behavior of

web services in terms of events and states.
• The second level represents the combinations of a

set of services to offer a new value-added service. It
introduces the dependency concept between services
to express the relation that can exist between services
and expresses how the behavior of certain services
influences the behavior of other services.

• The third level presents the concept of composition
patterns and introduces two machines and contexts. We
extend them in order to specify TCS’s transactional
flow. We add transactional consistency rules in IN-
VARIANTS clause to check the consistency of used
patterns.

In the previous section, we showed how to formally specify a
TCS using Event-B. The objective of this section is to show
how we verify and validate our model using proof and ProB
animator.

In the abstract model the desired properties of the system
are expressed in a predicate called invariant, it has to prove
the consistency of this invariant compared to system events
by a proof. We find many proof obligations (Figure 4).
Each of them has got a compound name for example, ”evt
/ inv / INV”. A green logo situated on the left of the proof
obligation name states that it has been proved (an A means
it has been proved automatically).

Axm1: SWT =
{SCN,HR,FB,OP, SDD,SDF, SDT}

INITIALISATION ,
service state = {SCN 7→ initial,HR 7→
initial, FB 7→ initial, OP 7→ initial, SDF 7→
initial, SDD 7→ initial, SDT 7→ initial}
SWT C = {SCN,FB}
SWT P = {OP, SDT}
SWT AS = {SCN,HR,FB}
SWT AJ = {HR,FB,OP}
SWT XS = {OP, SDD,SDF, SDT}
depA = {SCN 7→ FB, SCN 7→ HR,HR 7→
OP,FB 7→ OP,OP 7→ SDF,OP 7→
SDD,OP 7→ SDT}
depCOMP = {HR 7→ FB,HR 7→ SCN}
depAL = {SDF 7→ SDD}
depANL = {HR 7→ FB}
END

340

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In our case shown in Figure 4 the tool generates the
following proof obligations ”activate / inv1 / INV” and
”compensate / inv1 / INV”. This proof obligation rule
ensures that the invariant inv1 in the CompositionMachine is
preserved by events activate and compensate. Figure 4 show
also the proof obligations ”compensate / grd2 / WD”. This
proof obligation rule ensures that a potentially ill-defined
guard is indeed well defined.

Figure 4. Proof obligations

Our work is proof oriented and covers the transactional
web services. All the Event-B models presented in this paper
have been checked within the RODIN platform. The proof
based approaches do not suffer from the growing number
of explored states. However, the proof obligations produced
by the Event-B provers could require an interactive proof
instead of automatic proofs.

Concerning the proof process within the Event-B method,
the refinement of transactional web services Event-B models
can be performed. This refinement allows the developer to
express the relevant properties at the refinement level where
they are expressible. The refinement is a solution to reduce
the complexity of proof obligations.

In our example the designer can initially specify, as
CS transactional behavior, that FB will be compensated or
cancelled if HR fails, SDD is executed as alternative of
SDF failure. The Event-B formalization of our motivating
example defines a cancellation dependency and compensa-
tion dependency from HR to FB and alternative dependency
from SDF to SDD.

For example, by checking the compensation dependency
between SCN and HR the RODIN platform mentioned that
the proof obligations has not been discharged (Figure 5).

As HR is executed after, it can not exist a compensation
dependency from SCN to HR. A red logo with a ”?” appear
in the proof tree and it means that is not discharged. This
basic example shows how it is possible to formally check
the consistency of transactional flow using Event-B. To
repair this error we can refer to the initialization of the
machine and verify the compensation dependencies. After

Figure 5. A red logo indicates that the proof obligations is not discharged

the initialization of the ServiceMachine the compensate
event is disabled and after the termination of the execution
of a service the event will be enabled. ProB offer to the
developer which parameter is used in the animation by
clicking right on the event (Figure 6). In the development

Figure 6. Animation with the ProB animator

of our model some proof obligations are not discharged but
the specifications is correct according to our work in [20]
which is specified and validated using Event Calculus. To
do so, we use ProB animator to verify our specification of

341

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transactional web services. This case study has shown that
the animation and model-checking are complementary to the
proof, essential to the validation of Event-B models. In other
case, many proved models (proof obligations are discharged)
still contain behavioral faults, which are identified with the
animators. The main advantage of Event-B develop that can
repair errors during the development. It allows the backward
to correct specification. With refinement, the complexity of
the system is distributed; the step by step proofs are more
readily. Event-B offers more flexibility and expressivity than
the input languages of model checkers.

VII. CONCLUSION

The paper addresses the formal specification, verification
and validation of the transactional behavior of services
compositions within a refinement and proof based approach.
The described work uses Event-B method, refinement for
establishing proprieties. This paper presented our model of
Web service, enriched by transactional properties to better
express the transactional behavior of web services and to
ensure reliable compositions. Then we describe how we
combine a set of services to establish transactional compos-
ite service by specifying the order of execution of composed
services and recovery mechanisms in case of failure. Finally
we introduced the concept of composition pattern and how
we uses it to specify a transactional composite service.

In our future works we are considering the following
perspectives:
• Using automation approach of MDE type to verify

transactional behavior of services compositions.
• We extend this work to consider the dynamic evolution

of a composite service. By controlling the dynamic of
a composition, we preserve the architectural and com-
portemental properties of a composite service during its
evolution and not lead configurations that may damage
the operation of the composite service.

REFERENCES

[1] R. Maraoui, M. Graiet, M. Kmimech, M.T. Bhiri and
B. Elayeb, Formalisation of protocol mediation for web service
composition with ACME/ARMANI ADL, Service Computation
IARIA 2010-Lisbon-Portugal, Nov 2010.

[2] J.R. Abrial, The B Book: Assigning programs to meanings,
Cambridge University Press, 1996.

[3] J.R. Abrial, Modeling in Event-B: System and Software Engi-
neering, cambridge edn. Cambridge University Press, 2010.

[4] J.R. Abrial, M. Butler and S. Hallerstede, An open exten-
sible tool environment for Event-B, ICFEM06, LNCS 4260,
Springer, p. 588-605, 2006.

[5] M. Dumas and M.C. Fauvet, Les services web. intergiciel et
construction d’applications reparties, ICAR, 2006.

[6] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T. Fre-
und, J. Johnson,S. Joyce, C. Kaler, J. Klein, D. Langworthy,
M. Little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson,
J. Shewchuk, and T. Storey. Web servicescoordination(ws-
coordination), 2005.

[7] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T. Fre-
und, J. Johnson,S. Joyce, C. Kaler, J. Klein, D. Langworthy,
M. Little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson,
T. Storey, and S. Thatte. Web services atomic transaction
(wsatomictransaction), 2003.

[8] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T. Fre-
und, S. Joyce, J. Klein, D. Langworthy, M. Little, F. Ley-
mann, E. Newcomer, D. Orchard, I. Robinson, T. Storey,
and S. Thatte. Web services business activity framework(ws-
businessactivity), 2003.

[9] R. Hamadi and B. Benatallah, A petri net-based model for
web service composition. Fourteenth Australasian Database
Conference (ADC2003), 2003.

[10] G. Salaun, A. Ferrara, and A. Chirichiello, Negotiation
among web services using lotos/cadp. European Conference
on Web Services (ECOWS 04), 2004.

[11] M. Rouached, W. Gaaloul, W.M.P. van der Aalst, S. Bhiri, and
C. Godart, Web service mining and verification of properties:
An approach based on event calculus. OTM Confederated
International Conferences, 2006.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions, IEEE Automated
Software Engineering (ASE), 2003.

[13] M. Graiet, R. Maraoui, M. Kmimech, M.T. Bhiri and
W. Gaaloul, Towards an approach of formal verification of
mediation protocol based on Web services, 12th International
Conference on Information Integration and Web-based Ap-
plications & Services (iiWAS2010), Paris-France, November
2010.

[14] D. Garlan, R. Monroe and D. Wile, ACME: Architectural
Description of Component-Based Systems. Foundations of
Component-Based Systems, Leavens G.T, and Sitaraman M.
(Eds.), Cambridge University, Press, 2000.

[15] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML, Addison-Wesley, 1998.

[16] D. Garlan, R. Monroe and D. Wile, ACME: Architectural
Description of Component-Based Systems. Capturing software
architecture design expertise with Armani, Technical Report
CMU-CS-98–163, Carnegie Mellon University School of Com-
puter Science, 2001.

[17] I. Ait-Sadoune and Y. Ait-Ameur, From BPEL to Event-B,
International Workshop on Integration of Model-based Meth-
ods and Tools IM FMT’09 at IFM’09 Conference, Dsseldorf
Germany, Fevruary , 2009.

[18] A. K. Elmagarmid, Ed., Database transaction models for
advanced applications, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc., 1992.

342

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] W. M. P. van der Aalst and K. M. van Hee, Workflow Manage-
ment: models, methods and tools, ser. Cooperative Information
Systems, J. W. S. M. Papazoglou and J. Mylopoulos, Eds.
MIT Press, 2002.

[20] W. Gaaloul, S. Bhiri and M. Rouached, Event-Based Design
and Runtime Verification of Composite Service Transactional
Behavior, IEEE Transactions on Services Computing, 02 Feb.
2010, IEEE computer Society Digital Library, IEEE Com-
puter Society.

[21] M. Leuschel and M. Butler, ProB: A Model Checker for B ,
in K. Araki, S. Gnesi, D. Mandrioli (eds), FME 2003: Formal
Methods, LNCS 2805, Springer-Verlag, pp. 855-874, 2003.

[22] C. Metayer, J. Abrial, and L. Voisin , Event-B Language.
Technical Report D7, RODIN Project Deliverable, 2005.

[23] L. Jemni Ben Ayed and F. Siala, Event-B based Verification
of Interaction Properties In Multi-Agent Systems, in Journal of
Software, Vol 4, No 4 (2009), pp.357-364, Jun 2009.

[24] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz, A
transaction model for multidatabase systems, in ICDCS, pp.
56-63, 1992.

[25] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu
and A. K. Elmagarmid, Business-to-business interactions: is-
sues and enabling technologies, The VLDB Journal, vol. 12,
no. 1, pp. 59-85, 2003.

[26] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hof-
stede and B. Kiepuszewski, Advanced Workflow Patterns in
5th IFCIS Int. Conf. on Cooperative Information Systems
(CoopIS’00), ser. LNCS, O. Etzionand P. Scheuermann, Eds.,
no. 1901. Eilat, Israel: Springer-Verlag, September 6-8, pp. 18-
29, 2000.

[27] W. M. P. van der Aalst and A. H. M. ter Hofstede,Yawl: yet
another workflow language Inf. Syst., vol. 30, no. 4, pp. 245-
275, 2005.

[28] S. Bhiri, C. Godart and O. Perrin, Transactional patterns for
reliable web services compositions, in ICWE, D. Wolber, N.
Calder, C. Brooks, and A. Ginige, Eds. ACM, pp. 137-144,
2006.

[29] S. Bhiri, O. Perrin and C. Godart, Extending workflow pat-
terns with transactional dependencies to define reliable com-
posite web services, in AICT/ICIW. IEEE Computer Society,
p. 145, 2006.

