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Abstract: Holographic recording and selective reconstruction and amplification of conical10

diffraction vector waves is demonstrated using a nonlinear photorefractive Sn2P2S6 crystal11

acting simultaneously as medium producing the conical diffraction effect and as holographic12

storage material. It is shown that upon propagation of the object wave along one of the optical13

axes of the biaxial crystal, the azimuthal spreading of the local linear polarizations across the14

conical diffraction ring allows its holographic recording with any combinations of the object15

and reference wave’s input polarizations, including mutually orthogonal ones. We discuss the16

dependence of the recording and read-out polarizations on the recovered and amplified patterns17

and provide a simplified model qualitatively accounting for all the main observed features. The18

approach permits a tailoring of the reconstructed or amplified vector waves in terms of intensity19

and polarization distributions and opens interesting perspectives for their static or dynamic20

manipulation.21

1. Introduction22

Internal conical diffraction (CD) is a natural optical effect that produces specific types of23

vector beams having a spatially-dependent polarization. This phenomenon is observable upon24

propagation of a focused beam along one of the optic axes of an optically biaxial crystal (BC)25

and gives rise to a slanted cone with circular base [1–3]. The latter represents the locus of the26

Poynting vectors associated to the wavevector propagation along the singular direction of the27

optic axis. Even for a homogeneously polarized input wave, different linear polarizations are28

found to spread azimuthally across the ring section of the cone. Despite a nearly 200 years29

history since Hamilton’s prediction [4], this phenomenon has seen a renewed interest in the last30

two decades. This has been enabled by a deeper theoretical understanding owing to a paraxial31

diffraction theory describing the CD vector waves [1, 5] and is motivated by both fundamental32

and applied aspects. In this context we may cite the interesting orbital angular momentum33

characteristics [6–10] and the new features allowed by novel configurations with a series of BC in34

cascade [11–15] that open new venues for the complex shaping of these vector beams, up to the35

case where the CD beams no longer possess the usual circular symmetry [16, 17]. Potential and36

recently demonstrated applications of CD include optical trapping of particles or Bose-Einstein37

condensates [18–20], free-space multiplexing for communication [21], beam shaping [15,16,22],38

polarimetry [9, 23, 24] or super-resolution imaging [25, 26].39

Conical diffraction is a manifestation of the linear optical properties of the crystal and the40

above mentioned investigations have all been performed in the linear regime with the BC acting as41

passive elements. Nevertheless, few studies have combined CD with nonlinear optics, where CD42

at the second-harmonic wavelength [27–29] or at the sum-frequency generation wavelength [30]43

have been studied. Properly doped BC of KGd(WO4)2 or KY(WO4)2 have also been employed as44



active elements within a cavity for realizing conical diffraction lasers with specific polarization45

properties [31–35].46

Some of the biaxial crystals giving rise to CD also show another nonlinear optical effect,47

the photorefractive effect [36]. This is an indirect effect leading to refractive index changes48

already upon low power light illumination. In this work we combine conical diffraction with49

photorefraction within the same medium to demonstrate conical diffraction holograms as well as50

the selective amplification of the CD wave via dynamic two-wave mixing. Section 2 describes51

briefly the experimental approach and the Sn2P2S6 (SPS) crystal used both as medium giving52

rise to CD and as nonlinear holographic recording material. Section 3 illustrates the major53

experimental results showing that propagation of the object wave along one of the optical axes of54

the BC is crucial and critical. Indeed, provided that the object wave propagates along the optical55

axis and gives rise to CD, holographic recording and two-wave mixing amplification can be56

efficiently achieved with any combination of the polarizations of the object and reference waves,57

including mutually orthogonal ones. The underlying physical phenomenon is highly complex and58

involves the physics of the photorefractive effect in strongly anisotropic configurations as well as59

the constraints associated to the propagation of light in singular directions within the BC. While60

a complete theory would require the knowledge of several still unknown material parameters, it61

is possible to qualitatively catch the main experimental features with a simplified model which is62

presented and discussed in Sect. 4. Finally, Sect. 5 gives brief remarks and conclusions.63

2. Crystal sample and experimental approach64

The BC used for the investigations is a nominally undoped ferroelectric SPS, which belongs to the65

monoclinic point group m at room temperature. SPS is an attractive nonlinear optical material66

owing to its transparency range extending from 530 to 8000 nm wavelength, its interesting67

electro-optical [37, 38] and nonlinear optical properties [39] and the high photorefractive68

sensitivity [40, 41]. The anisotropic optical properties and their dispersion were studied in detail69

in [42] and optical activity near the ferroelectric-paraelectric phase transition was evidenced70

in [43]. A summary of some of the most relevant material parameters is given in Ref. [41]. A71

11.2 mm-long SPS sample was cut from a crystal grown by the vapor transport method [44] and72

electrically polarized to insure a ferroelectric monodomain state. The sample was oriented with73

the parallel beam entrance and exit faces being nearly perpendicular to one of the two optic axes.74

A simplified scheme of the experimental arrangement for holographic recording and two-wave75

mixing is shown in Fig. 1. Figure 1(a) is for the holographic recording and read-out of the CD76

beam created in-situ by the object wave. A He-Ne laser beam at the wavelength of 632.8 nm77

is split into a reference and an object wave by taking care that the path lengths difference is78

within the coherence length of the laser. Their polarizations are initially left and right circular,79

respectively. Before each wave reaches the SPS crystal, the polarizations can be individually80

modified by polarization controllers (Pol-contr) in each path being composed of linear polarizers,81

wave-plates or adjustable liquid crystal retarders. The Gaussian input waves have initially an82

equal diameter and are focused by the spherical lenses L1 (focal length f = 200 mm) and L283

( f = 75 mm) towards the SPS crystal, where they interfere. The positions of the lenses are chosen84

in such a way that the reference wave has a slightly larger diameter than the object wave inside85

the crystal (≈ 2.1 mm vs. 1.5 mm). The focal plane of lens L2 corresponds to the focal image86

plane where the CD ring pattern formed by the object wave is the sharpest. The spherical lens87

L3 images this plane onto a CCD camera to observe the transmitted, amplified or reconstructed88

CD object wave with the corresponding power being detected in parallel by a photodiode. For89

holographic recording (but not for two-wave mixing) the input powers of the two beams are90

adjusted in such a way that the reference and object waves have nearly the same intensity inside91

the SPS crystal (I ≈ 30 mW/cm2). For holographic recording (Fig. 1(a)) shutter S1 on the object92

wave is kept open during 90 seconds. This allows to record a photorefractive grating composed93
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Fig. 1. Scheme of experimental arrangement for the holographic recording and read-out
of the CD object wave (a) and for its amplification by two-wave mixing (b). SPS:
Sn2P2S6 biaxial crystal; S1, S2: shutters; L1, L2, L3: spherical lenses; Pol-contr.:
polarization controller; ND: neutral density filter. The optic axis of the SPS crystal
is aligned with the object wave (yellow shape). The dashed shape give an alternative
(misaligned) crystal orientation.

of a fast primary grating nearly fully compensated by a slow secondary grating, this behavior is94

typical for type I nominally undoped SPS crystals [41]. When the shutter S1 is being closed, the95

primary grating disappears quickly revealing the secondary grating that results in the diffraction96

of the reference wave into the reconstructed object wave. For the examples presented in the next97

section this reconstructed wave is observed 5 seconds after closing shutter S1.98

The situation for two-wave mixing (Fig. 1(b)) is similar, however with different boundary99

conditions. Here the object wave is first attenuated by a neutral density filter (ND) to an intensity100

less than 1/100 (inside the BC) with respect to the one of the reference. In this case, injection of101

the reference wave by opening shutter S2 leads to an amplification (or eventual depletion) of the102

CD object wave. Importantly, we recall that the object wave produces the CD vector beams only103

if it propagates along the optic axis (yellow orientation of SPS in Fig. 1). By misaligning the104

crystal (dashed orientation) CD no longer occurs and the behavior differs strongly, as discussed105

in the next section. In our experiments the horizontal laboratory plane is spanned by the optic106

axis of the crystal and by the x crystallo-physical axis of the orthogonal Cartesian system used to107

describe the tensorial properties of SPS. The convention taken is the same one as in Ref. [42]108

(see Fig. 1 therein), the x-axis is close to the crystallographic a-axis of the monoclinic SPS and109

to the direction of the spontaneous polarization. The examples given below are obtained for110

an external crossing angle of 31° between the two waves, what corresponds to a spatial grating111

period of Λ ≈ 1.2 µm, however other crossing angles give qualitatively similar results.112

3. Experiments113

As mentioned above, propagation along the optical axis leads to spreading of different linear114

polarizations across the CD ring pattern. If the input wave is circularly polarized, all the linear115

polarizations are equally important and the circular ring pattern is homogeneous in intensity.116

The polarization spreading can be easily visualized by filtering the output CD ring with a linear117

polarization analyzer placed before the observation CCD camera. This is shown in Fig. 2 which118

gives the transmitted CD object wave (with no reference wave) for circularly polarized input after119



Fig. 2. Polarization-filtered object wave with a linear polarizer (LP) placed before
the CCD camera and oriented in four different directions, i.e. (a) 0°, (b) 45°, (c)
90° and (d) 135°. The input object wave is circularly polarized. The nodes in the
intensity distribution correspond to the positions where the local polarization in the
output CD ring is perpendicular to the LP transmission direction. The arrows give the
corresponding local linear polarization directions. The grayscale bar gives the relative
intensity scale.

filtering with a polarization analyzer (LP) oriented at 0°, 45°, 90° or 135° in the laboratory frame.120

Clearly, upon filtering the local intensity depends on the azimuthal position on the ring because121

the locally transmitted intensity depends quadratically on the projection of the local polarization122

on the analyzer transmission axis. The positions of the nodes in Fig. 2(a)-(d) correspond thus123

to the azimuthal positions where the local polarization is perpendicular to the analyzer axis.124

It can be easily recognized that axially opposite points on the ring are associated to mutually125

orthogonal local polarizations, as generally expected in the case of CD. It is worth noticing that126

using a linearly rather than circularly polarized input, that is placing the linear polarizer before127

rather than after the BC, leads to the same type of crescent-like pattern as in Fig. 2, the full ring128

being obtained only if the input wave is polarized circularly. The above-discussed azimuthal129

polarization spreading is a remarkable property of the CD wave in view of the ability to record130

photorefractive holograms with any combinations of the input beam polarizations. It is indeed131

always possible to find ring sections of the object wave where the local polarization is such as to132

produce strong interference with a uniformly polarized reference wave.133

We illustrate first this mutual polarization versatility in the case of dynamic two-wave mixing134

(TWM). This is shown in Fig. 3 which represents the temporal build-up of the spatially integrated135

object wave amplification γ̄0 for various polarizations of the reference wave acting as a pump136

and a unique polarization of the object wave. The quantity γ̄0 is defined as the object wave total137

power in presence of the reference pump wave divided by the transmitted object wave power138

without the reference wave. For Fig. 3 the incident object wave is aligned to the optic axis139

of the BC and is kept right circularly polarized (RCP) while the reference wave polarization140

is either left circular (LCP) or linear at +45° or -45°. Clearly, upon injection of the reference141

wave at t = 0 [opening of shutter S2 in Fig. 1(b)], a significant amplification is observed for142

all polarization combinations, including the case where the two incident waves are mutually143

orthogonal (RCP and LCP). The amount of amplification differs slightly for the three cases as the144

strength of the underlying photorefractive gratings and the electro-optic coupling is a function of145

the wave polarizations. The dynamics seen in Fig. 3 shows the rise of the primary photorefractive146

grating in a time of the order of one second. Here the maximum of γ̄0 does not correspond to a147
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Fig. 3. Two-wave mixing amplification of the object wave as a function of time. The
input object wave is aligned to the crystal optic axis and is right circularly polarized.
Results for three different polarizations of the incident pumping reference wave are
shown: left circular polarization (solid black curve), linear polarization (LP) at +45°
(red dashed curve) and LP at -45° (blue dashed curve).

Fig. 4. Two-wave mixing amplification for interfering linearly polarized orthogonal
eigenwaves. (a) Transmitted CD object wave in absence of the reference pump wave.
(b) Amplified CD object wave. The arrows give the local linear polarization directions
at the output and the grayscale bar gives the relative intensity scale.

steady-state because, as mentioned above, for type I SPS crystals a secondary grating starts to148

compensate the primary one, resulting in the slight decrease of the amplification seen after the149

maximum. This compensation would be nearly complete after a time of ≈ 100 s. It is worth150

noting that the amplification γ̄0 shown in Fig. 3 is an average amplification over the CD ring151

as obtained by integrating all the power in the object wave using a photodiode. In reality the152

amplification differs for different sections of the ring, that correspond to different local linear153

polarizations of the CD wave. This point will be discussed below in connection with Fig. 4.154

Finally, we would like to point out that larger amplifications than those shown in Fig. 3 are155

possible for situations where the two input waves share a same polarization. This is the usual156

condition under which photorefractive two-wave mixing experiments are normally performed. By157

choosing a reference wave polarization corresponding to one of the two eigenwaves in SPS and158

the corresponding nearly parallel linear polarization for the input object wave, we have observed159

in separated experiments a maximum amplification γ̄0 ≈ 10.2, as compared to a maximum of160

γ̄0 ≈ 4.3 in Fig. 3.161

As mentioned above, the TWM amplification differs locally, what can be easily seen in Fig. 4.162

Here the reference wave polarization is linear and corresponds to one of the eigenpolarizations in163

the SPS crystal. The polarization of the object wave is linear too but is associated to the other164

(orthogonal) eigenpolarization when the crystal is slightly misaligned. Figure 4(a) shows the165



transmitted object wave for the aligned configuration in absence of the reference beam (shutter166

S2 in Fig. 1(b) closed). As expected, the observed CD ring pattern is inhomogeneous in intensity167

as a result of the linear input polarization. After amplification (Fig. 4(b), three seconds after168

opening shutter S2) one observes in this specific case a much stronger increase of intensity in the169

regions on the right side of the CD ring, that were initially weaker. The amplification for the left170

side of the ring is significantly less pronounced, what give rise to a kind of power equalization171

within the CD ring. Importantly, we have verified that the amplified CD conserves the same172

polarization distribution than the linearly transmitted one (see Fig. 4) , meaning that the light173

amplified by the nonlinear process respects the contraints given by the linear properties of the174

medium. Note also that in the present example the spatially averaged amplification is γ̄0 ≈ 4.5. It175

is interesting to compare this value with the one obtained under the same conditions except for the176

crystal being turned (misaligned) so that the the object wave no longer propagates along an optic177

axis. In this case the orthogonal eigenwaves prevent the creation of an efficient photorefractive178

grating. We have checked this case for an internal misalignment of ≈ 6°, finding that the object179

wave is essentially unaffected by the pumping with the reference beam, the amplification being180

less than 12% (γ̄0 ≈ 1.12).181

The same kind of behavior can be observed for grating diffraction at a photorefractive hologram182

recorded with orthogonal eigenwaves, as for the case of Fig. 4. Figure 5(a) shows the linear183

transmission of the object wave under CD conditions, while Fig. 5(b) shows the reconstructed184

CD wave after closing shutter S1 in Fig. 1(a) at the end of the recording. Clearly, also here a185

reconstructed CD vector wave (with same local polarization as the transmitted object wave) is186

being observed despite for the orthogonal eigenwaves associated to the object and reference187

beams. As for TWM, also here one observes a locally stronger reconstruction on the right side of188

the ring, corresponding to a region where the transmitted object wave is weaker. Figure 5(c) and189

(d) are for the case where the crystal is misaligned and the object wave makes an internal angle190

of about 6° with the optic axis. In this case the object wave experiences double refraction. The191

latter can be recognized in Fig. 5(c) that shows its transmission through the SPS crystal. Here the192

saturated left spot corresponds to the transmission of the dominant object eigenwave while the193

weak spot on the right corresponds to a spurious intensity on the other (orthogonally polarized)194

eigenwave . If a hologram is recorded with the reference wave on the orthogonal eigenwave,195

upon read-out one observes merely a weak diffraction at the position of the right spot [Fig. 5(d)].196

Under the same conditions used for the aligned configuration, the corresponding diffracted power197

in direction of the object wave is about 30 times weaker, which confirms the specific importance198

of propagating the object wave along the optic axis.199

The section of the ring which is most strongly reconstructed depends on the input polarization200

of the reference wave. This is illustrated with the help of Fig. 6, that shows the results of hologram201

recording and read-out with linear horizontal or vertical polarization (in the laboratory frame) for202

the reference wave, together with a circular polarized object input wave at recording. Clearly203

the horizontal (H-pol) and vertical polarized (V-pol) reference lead to predominant revealing204

of different sections of the CD ring at read-out, as seen in Fig. 6(b) and (c), respectively. The205

corresponding angular-dependent powers can be best visualized by integrating the intensity across206

a narrow radial section across the CD ring for different azimutal angles along the ring, what gives207

the solid red curve (H-pol) and the dotted blue curve (V-pol) in Fig. 6(d). This behavior can be208

put in relation with the expectations of a simplified theory, as discussed in the next section.209

4. Background theory210

The detailed explanation of our above observations in connection with CD holography and211

TWM is a tedious task. It involves on one hand the physics related to the anisotropic optical212

properties leading to the CD effect and, on the other hand, the complex physics related to the213

photorefractive effect [36] in such a low symmetry monoclinic crystal. The latter is concerned by214



Fig. 5. Holographic recording with orthogonal eigenwaves. Left column: transmitted
object wave prior to hologram recording for the aligned (a) and misaligned (c)
configurations. Right column: object wave reconstruction at read-out after hologram
recording, again for the aligned (b) and misaligned (d) configurations. The arrows in (a)
and (b) give the local linear polarization directions for the transmitted and reconstructed
object wave, respectively.
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Fig. 6. CD holography with circularly polarized input object wave and linearly polarized
(horizontal (H) or vertical (V) in laboratory frame) reference wave. (a) CD object
wave transmission prior to hologram recording; (b) Object wave reconstruction for
H-polarized reference; (c) Object wave reconstruction for V-polarized reference; (d)
Normalized azimuthal dependence of local power on the reconstructed ring for cases
(b) and (c).

the photoinduced charge transport leading to the formation of a space-charge field distribution215

and by its conversion into a refractive index modulation (phase hologram) by means of the216

material’s electro-optic response. However, the space-charge electric field in the case of a217

photorefractive grating is periodically modulated in space and the electro-optic response gets218



an additional level of complexity as compared to the case where the field would be spatially219

homogeneous. A thorough quantitative description requires the knowledge of all clamped220

electro-optic coefficients, as well as of all the elastic, elasto-optic and piezo-electric properties of221

the crystal, a significant part of which is still unknown for SPS. More details on these aspects can222

be found in [45,46] and references therein. For the above reasons the purpose of this section is223

not to find a quantitative agreement between experiments and theory, but rather to confirm the224

plausibility of the observation in the framework of a highly simplified theoretical approach.225

As discussed above in connection with Fig. 2, the local polarization direction on the CD varies226

along the ring circumference and spans an angle θ of 180° over a full revolution of the polar227

angle ϕ by 360°, the variation in θ being always half the variation in ϕ. Considering different228

spatial positions on the ring is therefore equivalent to considering a given linear polarization229

component for the object wave among all the possible ones in the plane perpendicular to the230

object wave ~k-vector. We recall that for a circularly polarized input object beam the different231

linear polarizations are equally probable , giving thus a complete ring. The easiest situation is232

the one where the reference wave is linearly polarized (as for instance in Fig. 6). In this case the233

problem of estimating the azimuthal dependence of the hologram diffraction efficiency and TWM234

gain reduces essentially to an evaluation of the coupling strengths between a plane reference235

wave with a fixed polarization and components of the object wave with all possible polarization236

directions taken as a variable parameter. This coupling strength follows from coupled wave theory237

for anisotropic gratings [47] and is a function of several material and experimental parameters.238

On one hand, in the case of a grating created by means of the photorefractive effect the coupling239

strength depends on the modulation depth amplitude of photorefractive space-charge field created240

by the two considered wave components. On the other hand it depends on an effective scalar241

electro-optic coefficient re f f specific to the pair of waves being considered. This coefficient is a242

function of the unit vector K̂ in the direction of the grating vector, of the anisotropic electro-optic243

properties expressed by a tensor re f f
i jk

(see Ref. [45]), and of the two unit polarization vectors d̂re f
244

and d̂ob j for the reference and object waves, respectively. Importantly, here d̂ob j ≡ d̂ob j (θ) is245

the local object wave polarization corresponding to a given azimuthal position on the CD ring.246

The expression for the scalar electro-optic coefficient determining the coupling is [45]247

re f f = d̂ob j
i · (re f f

i jk
K̂k ) · d̂re f

j , (1)

where the Einstein summation convention over equal indices is utilized. Importantly, all the248

vectors in the above equation have to be expressed in the orthogonal crystallo-physical reference249

frame (xyz) in which the electro-optic tensor and other tensorial physical properties of the crystal250

are usually expressed. This crystallo-physical system is oblique with respect to the laboratory251

frame. As an example, the unit vector along the optic axis of propagation of the object wave is252

expressed in the xyz-system as (0.4678, 0.7660, 0.4408). In the laboratory frame the same vector253

would possess only a unique unity component along the longitudinal coordinate perpendicular to254

the entrance surface plane of the crystal. As discussed in [45], the third-rank tensor re f f
i jk

to be255

used in in (1) is a function of the clamped (high-frequency) electro-optic tensor elements and256

depends also on the elastic, piezoelectric and elasto-optic properties of the material. Unfortunately257

there is a lack of sufficient data on these mechanical properties for SPS, so that we do not have258

access to the correct values to be used for the coefficients of the tensor re f f
i jk

. Instead we take a259

rather rude approximation and we utilize the unclamped (free) electro-optic tensor elements rT
i jk

260

that were measured in [37] and [38] for what matters the first and third column of the tensor,261

respectively. The employed values (in units of pm/V) are: rT111=174, rT221=92, rT331=140, rT131=-25,262

rT113=-67, rT223=-22, rT333=-25 and rT133=14. The two still unknown coefficients rT322 and rT122 are263

expected to be rather small as they are associated to electric field directions perpendicular to264

the crystallographic mirror plane containing the crystal’s spontaneous polarization. Both these265
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Fig. 7. Expected relative diffraction efficiency based on the simplified model described
in Sect. 4. The object input wave is assumed circularly polarized and contain all linear
polarization angles between 0° and 180°. The reference wave is assumed horizontally
(red solid curve) or vertically polarized in the laboratory frame (blue dotted curve).

coefficients are set equal 0 for the following evaluation. Note also that the third column (index266

k = 3) diagonal coefficients r113, r223 and r333 are taken here with the opposite sign as in the267

original publication [38]. The reason is the different convention for the positive direction of the268

z-crystallo-physical axis. Here we stick to the the convention in Ref. [42] which is consistent269

with the IEEE Standard on Piezoelectricity [48], with positive x- and z-direction such that both270

piezoelectric coefficients d111 and d333 are positive, while in [38] a convention with d333 negative271

was taken. It is also worth mentioning that for our experimental configuration the photorefractive272

space-charge electric field has the largest projection on the x-axis and the elements of the first273

column (k = 1) of the electro-optic tensor largely determine the resulting scalar electro-optic274

coefficient of Eq. (1).275

The expected local hologram diffraction efficiency η is proportional to the square of the product276

of re f f with the amplitude Esc of the photorefractive space-charge grating responsible for the277

coupling of the two waves, i.e. [47]278

η ∝ [re f f (θ)Esc ]2 . (2)

This relation is valid for moderate diffraction efficiencies of the phase hologram, what is the case279

for our gratings where the spatially averaged diffraction efficiency is typically of the order of280

2-3 %. For what matters the space-charge field amplitude, we assume here that it is proportional281

to the light modulation index induced by the two local polarizations, i.e. to the scalar product282

Esc ∝ (d̂ob j · d̂re f ). This is a rather rude approximation for various reasons, the principal one283

being associated to the fact that the space-charge field saturates at large modulation (for nearly284

parallel d̂ob j and d̂re f ), what leads to a sublinear dependence of Esc on the modulation depth in285

this regime. Therefore, the use of this approximation may lead to an excessive contrast in the286

simulated curves for η as a function of the object wave polarization angle. Such a simulation is287

shown in Fig. 7 for the case of a circularly polarized input object wave and a linearly polarized288

reference (horizontal or vertical), as for the case of Fig. 6. It can be easily recognized in Fig. 7289

that the diffraction for the horizontal and vertical polarization of the reference beam are nearly290

(but not exactly) in anti-phase, meaning that their maxima are separated by approximately 90° in291

the object wave polarization, what corresponds to 180° on the CD ring. Despite for the many292

simplifying assumptions, such a behavior agrees qualitatively with the experimental results293

shown in Fig. 6.294

In the case of two-wave mixing with weak signal wave, the local amplification γ(θ) is expected295



to depend exponentially on the exponential gain Γ(θ) as [36]296

γ(θ) = eΓ(θ)d , (3)

where d is the propagation distance in the crystal. In absence of an anisotropy of the photoexcitation297

process [46] the exponential gain can be expressed as298

Γ � B(êob j · êre f )re f f (θ)Ẽsc, im , (4)

where B is a constant that depends on the refractive indices associated to the two waves, on299

the light wavelength, and on the weak walk-off angle for the reference wave. Here Ẽsc, im is300

the imaginary part of the space-charge field amplitude. This is the nonlocal component of the301

space-charge field (90° phase shifted with respect to the intensity modulation) and is responsible302

for the TWM gain. In materials with diffusion dominated charge transport, as in SPS [41], this303

is the dominant component of the space-charge field. Importantly, this quantity depends on304

experimental and materials parameters such as the beams crossing angles, the trap density in the305

crystal or its static dielectric properties. However, Ẽsc, im does not depend on the relative intensity306

of the two-waves and the corresponding light modulation depth, so that it can be considered as a307

constant for our purposes. In (4) the unit vectors êob j and êre f are along the electric fields of the308

object and reference waves, respectively. Due to the weak walk-off their scalar product can be309

safely approximated by the corresponding scalar product of the electric displacement unit vectors310

d̂ob j and d̂re f , so that311

Γ � C(d̂ob j · d̂re f )re f f (θ) , (5)
where C is again a constant that depends on the specific experimental arrangement. In this312

equation the dependence on the local object wave polarization angle θ appears twice, in the313

effective scalar electro-optic coefficient re f f (θ) and in the scalar product between the two d̂314

vectors. Figure 8 shows the expected amplification of the object wave for the case where the315

input polarizations of the object and reference wave are linear and mutually orthogonal and the316

reference wave polarization is aligned to one of the eigenpolarizations. This situation corresponds317

to the one of Fig. 4. The evaluation follows from the simplifying approach of Eqs. (3), (5) and (1)318

where the constant C was adjusted to give an average amplification γ̄0 ≈ 4.5. In Fig. 8 the angle θ319

is given relative to the input polarization angle θ0,obj of the object wave (θ0,obj = −63.2°), so that320

the input wave intensity distribution (assumed proportional to cos2(θ − θ0,obj) is centered on the321

graph (dashed red curve). It can be recognized that the central region where the object wave has322

a maximum in absence of TWM interaction (corresponding to the left region in Fig. 4(a)) is not323

being amplified. This is due to the vanishing scalar product in (5) at this point. The maximum324

power in the amplified wave is predicted for two regions with a deviation of roughly ±60° in θ325

(±120° along the ring) from this position. These maxima have different heights and are mainly a326

result of a combination of the effects of re f f (θ) together with the initial θ-dependence of the327

unaffected CD wave. Even though the gain Γ tends to increase when the polarization direction θ328

gets closer to the one of the reference (at the two borders of the graph in Fig. 8), from a certain329

point on the lack of input light possessing such polarization components becomes dominant,330

what gives the minimum at ±90° in Fig. 8. Experimentally this minimum corresponds to the dark331

region on the right-hand side of the circle on Fig. 4(b). Again, despite the highly simplifying332

assumptions, one can conclude that our modeling gives a satisfactory qualitative agreement with333

the observations. It is also worth mentioning that, even though here the average amplification is334

only slightly more than a factor of 4, locally the light can be amplified much stronger with peaks335

exceeding a factor of 40.336

5. Discussion and conclusion337

We have considered conical diffraction vector waves in a nonlinear photorefractive and optically338

biaxial material and we have shown, for the first time to our knowledge, that it is possible339
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Fig. 8. Expected TWM amplification of the CD object wave as a function of the local
angle of polarization θ for the case of orthogonal linearly polarized input waves with
the reference wave as one of the eigenpolarizations. The angle θ0,obj is the polarization
angle of the input object wave, for which the non amplified CDwave is locally maximum.
Red dashed curve: non amplified wave; Blue solid curve: amplified object wave with
γ̄0 ≈ 4.5.

to amplify locally or record in-situ holograms of such waves. The biaxial crystal acts both340

as generator of the CD vector wave and as a recording material. The holographic recording341

process possesses a kind of angular resonance for the object wave direction parallel to one of the342

optical axes. It was shown that under these aligned CD conditions of the crystal the recording343

is possible even for orthogonal polarizations of the two interacting input beams thanks to the344

polarization spreading resulting from the CD process. This property is remarkable since the345

hologram recording is driven by the intensity distribution, as in conventional holography, and not346

by the polarization states of the interacting waves, as in the framework of polarization holography347

in polarization-sensitive media [49]. It was found that the pattern reconstruction depends on the348

combination of recording polarizations and on the read-out polarization. For two-wave mixing349

we obtain a varying local amplification across the CD ring, which can partially lead to a more350

homogeneous power around the circle. The observed effects could be used as an additional351

way to dynamically control the structure of the CD ring beam, for instance in connection to352

optical particle trapping. We have analyzed the situation with the help of a highly simplified353

theoretical approach based on the model of the photorefractive effect and general features of354

conical diffraction. Despite its simplicity and the number of assumptions, the model allows a355

surprisingly good qualitative description of the main experimental features. A more thorough356

modeling would require the determination of a number of still unknown anisotropic material357

parameters, as well as the consideration of details regarding CD under the conditions of optical358

activity [50,51], which is little investigated to date and was neglected for the purpose of this work.359

The present investigations have dealt with CD in a single crystal without cascades. However,360

more complex vector patterns can be obtained with CD cascades, up to the cases where their361

circularly symmetry is being broken [16,17]. Since in such cases the output patterns are obtained362

in the last focal image plane (near the last crystal in the cascade), we expect that recording and363

local amplifications of such more complex patterns shall be possible as well if this last crystal is364

able to store a hologram.365
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