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MIDPOINT PRESCRIBED STABILIZATION OF THE WAVE EQUATION

VIA AUTOREGRESSIVE CONTROL

KAÏS AMMARI, ISLAM BOUSSAADA, SILVIU-IULIAN NICULESCU, AND SAMI TLIBA

Abstract. In this paper, we consider the stabilization problem of the wave equation with

pointwise delay feedback. We propose a control methodology having the advantage of the

assignation of the closed-loop exponential decay. The methodology involves a four-parameter
autoregressive control structure for which the design strategy is based on multiplicity mani-

folds. The proof of the main result is based on spectral analysis, thereby conveying a positive

outlook on the control of further classes of partial differential equations.
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1. Introduction

On the one hand, wave propagation represents a complex dynamical phenomenon ubiquitous in
natural and engineered environments. These hyperbolic partial differential equations often ex-
hibit inherent instabilities, posing significant challenges for driving such processes and requiring
effective control strategies to ensure stability and appropriate performances. Furthermore, delay
effects manifest in various applications and practical problems, with a well-established under-
standing that even a minute delay can potentially destabilize a system that would otherwise be
uniformly asymptotically stable in the absence of delay (as discussed in [19, 18]). The stability
analysis of the wave equation with a pure pointwise instantaneous proportional control has been
addressed in [7], revealing stability for a specific choice of the control location. Additionally, it
has been demonstrated that in the absence of delay, the system remains exponentially stable
for any pointwise dissipation. Conversely, the introduction of a delay term likely leads to in-
stability phenomena, as suggested in [20]. In addition, the recent investigation by Ammari and
Nicaise [5] is noteworthy, as they comprehensively examined the stabilization of elastic systems
via collocated feedback, with or without delay.

On the other hand, conventional control approaches typically rely on instantaneous feedback
information, which may be limited in capturing the nuanced dynamics of wave systems. In this
paper, we introduce a novel methodology that leverages past data to enhance the stability of
wave systems through intelligent control laws. By integrating past information into the control
framework, our approach offers a proactive strategy to mitigate instabilities and improve overall
system behavior. The main benefit is a new perspective that leverages past data to build the
control signal, thereby improving system stability and performance. As a matter of fact, in linear
autonomous Functional Differential Equations (FDE), recent works have highlighted a particu-
larly interesting spectral property, called multiplicity-induced-dominancy (MID), which consists
in conditions on the system’s parameters under which a multiple spectral value corresponds to
the spectral abscissa [12, 40]. The first analytic proof of this property has been proposed for first-
order FDE in [13], and it relies on an integral representation of the corresponding characteristic
function and a contradiction argument. In particular, it appears that a characteristic root of
maximal multiplicity (i.e., equal to the degree of the corresponding quasipolynomial) necessarily
defines the spectral abscissa of the system. Such a systematic study of the links between roots
of large multiplicity and the spectral abscissa was not sufficiently addressed in the literature
until the early work [13], even though some hints in this direction were provided in [38] in the
case of low-order systems. Since these works, the case of the assignment of a characteristic root
with maximal multiplicity, called generic MID property , was recently addressed and completely
characterized in [35] (retarded case) and in [10] (unifying retarded and neutral cases) for LTI
FDEs including a single delay .

As discussed in [35, 10], this property opens interesting perspectives in control through the so-
called partial pole placement method, that is, imposing the multiplicity of a characteristic root of
the closed-loop system by an appropriate choice of the controller gains guarantees the exponential
stability of the closed-loop system with a prescribed decay rate. Furthermore, the resulting
partial poles placement has been widely used in the design of reduced-complexity controllers
such as the well-known Proportional-Integral-Derivative (PID) control, see for instance [33].

By this paper, we aim to extend such a control methodology to tackle problems modeled by
partial differential equation such as the works [2, 3]. In particular, the middle point stabilization
of the wave via autoregressive control is considered. The remainder of the paper is organized
as follows. Some prerequisites on stability of continuous-time difference equations are presented
and the considered problem is formulated in Section 2. Next, in Section 3, the well posedness of
the pointwise control of the wave equation is considered. We provide a study of the asymptotic
behavior of solutions in Section 4. Further insights on spectral properties and parametric settings
are provided in Sections 5 and 6. The latter is devoted to the estimation of the closed-loop
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exponential decay. Section 7 is dedicated to the illustration of the main result of the paper. A
conclusion ends the paper.

2. Prerequisites and Problem statement

In this section, we start by providing some result from the literature which will be used in our
main result. Next, we formulate the considered problem.

2.1. Stability of continuous-time scalar difference equation with interfering delays.
Consider the following scalar dynamical system described by difference equation with interfering
delays

(2.1) y(t) + a1 y(t− τ1) + a2 y(t− τ2) + a3 y(t− τ3) = 0,

where τk ∈ R∗
+ and τ3 = τ1 + τ2. In this case, the characteristic function corresponding to (2.1)

reduces to

(2.2) Q(s; τ1, τ2) := 1 + a1 e
−τ1 s + a2 e

−τ2 s + a3 e
−(τ1+τ2) s,

where s designates the complex Laplace variable. In fact, the Hale-Silkowski criterion completely
characterizes the exponential stability of solutions of (2.1), see for instance [28, Chapter 9,
Theorem 6.1] and for further refinement and generalization of the above result see [16]. As a
matter of fact, since the three involved delays in equation (2.1) (τ1, τ2, and τ1+τ2) are rationally
dependent, then one can transform (2.1) into an equivalent matrix equation involving only two
delays τ1 and τ2. By denoting

f(t) :=

(
y(t)

y(t− τ1)

)
, A :=

(
−a1 0
1 0

)
, B :=

(
−a2 −a3
0 0

)
,

equation (2.1) is equivalent to the system:

(2.3) f(t) = Af(t− τ1) +B f(t− τ2).

Furthermore, if the delays τ1 and τ2 are rationally independent, then using [27, Chapter 9,
Theorem 6.1] one concludes that (2.3) is stable locally in the delays if, and only if,

sup
φ1, φ2∈[0, 2π]

µ
(
A ei φ1 +B ei φ2

)
< 1,

where µ(·) designates the spectral radius of a given square matrix.

This entails the following necessary and sufficient stability conditions for the local stability
in the delay τ : {

1− a1 > |a2 + a3| ,
1 + a1 > |a3 − a2| ,

However, if delays τ1 and τ2 are rationally dependent, that is τ2 =
p

q
τ1 with p, q ∈ N, then

one can further transform (2.3) into an equivalent augmented matrix equation and again using
[28, Chapter 9, Theorem 6.1] one can obtain explicit necessary and sufficient conditions.

The importance of the result recalled above is incontestable from a purely qualitative point of
view. However, quantitatively, it lacks information on the solution’s decay rate. In the following
section, we shall recall an interesting stability property generated in the manifold defining a
given spectral values’ multiplicity to get some insights on the solutions’ decay rate.
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2.2. On the MID paradigm. Notice that the MID property, which consists in conditions on
the system’s parameters under which a multiple spectral value is dominant, has been fully char-
acterized for single delay retarded as well as neutral equations, see for instance [11]. However, in
the multiple delay case, beyond the partial results established in [24] in the scalar retarded differ-
ential equations with two delays, and in [3] for the case of continuous-time difference equations,
the question remains open. For the sake of self-containment, the latter result will be recalled
since it will be exploited in our main result. More precisely, in this section, we shall provide
some configurations in which the MID applies; this corresponds to the dominancy of spectral
values with a multiplicity which is equal to the degree∗ of the considered quasipolynomial.

Notice that the degree may vary when some coefficients are set to be zero or when some
delays are set to be equal. In particular, the case τ1 = τ2 will be considered separately since it
decreases the degree of the quasipolynomial Q.

In this case, the quasipolynomial Q reads as

(2.4) Q(s; τ1, τ1) := 1 + (a1 + a2) e
−τ1 s + a3 e

−2 τ1 s

which admits a degree equal to two for a1 ̸= −a2 and a3 ̸= 0. We recall the following result
from [3] which will be used in the sequel.

Theorem 2.1 ([3]). Consider the quasipolynomial Q(·, τ1, τ1) given by (2.4).

A given real number s0 is a double root of (2.4) if, and only if,

(2.5)

{
a2 = −a1 − 2 es0 τ1 ,

a3 = e2s0 τ1 .

If (2.5) is satisfied then the GMID holds, that is, s0 corresponds to the spectral abscissa of the
quasipolynomial Q(·; τ1, τ1) given by (2.4). Furthermore, all zeros of (2.4) are double and lie on
the vertical axis R {s} = s0.

Now, let us consider again the quasipolynomial (2.2) where τ1 ̸= τ2 and
3∑

k=1

a2k ̸= 0, i.e., the

case where the quasipolynomial’s degree is equal to three.

Theorem 2.2 ([3]). Consider the quasipolynomial Q(·; τ1, τ2) given by (2.2) and let τ1 ̸= τ2.

A given real number s0 is a triple root of (2.2) if, and only if,

(2.6)


a1 =

τ1 + τ2
τ1 − τ2

es0 τ1 ,

a2 = −τ1 + τ2
τ1 − τ2

es0 τ2 ,

a3 = −es0 (τ1+τ2)

If (2.6) is satisfied and τ2 is a multiple of τ1 (τ2 = k τ1 with k an integer k > 1) then the GMID
holds, that is, s0 corresponds to the spectral abscissa of the quasipolynomial Q(·; τ1, kτ1) given
by (2.2).

Notice that The above Theorems have been proven in [3] thanks to a property of self inversive
polynomials where a Theorem of A. Cohn [17] and a result of Eneström-Kakeya [31, 23] have
been deployed; see also [22, 34, 32, 15] for further insights on polynomials with all zeros on the
unit circle.

Remark 2.3. From a control theory viewpoint, the MID property can be exploited by tuning the
control parameters as emphasized above after prescribing a negative number s0 which corresponds
to the closed-loop system solution’s decay rate.

∗The degree of a quasipolynomial corresponds to the sum of the degrees of the involved polynomials plus the
number of delays.
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When the MID property fails, one can prescribe a lower bound for the decay rate as will be
discussed in the next section.

2.3. Estimation of the exponential decay. In what follows, despite the MID property’s
failure, we shall provide a lower bound for the solution’s exponential decay. By taking the
parameters values ak given in system (2.6) into the expression of Q given in (2.2) and by
introducing the variable change

(2.7) z :=
τ1(s− s0)

2
,

and the new parametrization

(2.8) τ :=
2 τ2
τ1

,

it comes

(2.9) Q̃(z; τ) := 1− τ + 2

τ − 2
e−2 z +

τ + 2

τ − 2
e−τ z − e−(τ+2) z.

Le us now examine the location of roots of Q̃ with respect to τ . Since the quasipolynomials we
are considering are with real coefficients, so that the corresponding zeros are symmetric with
respect to the real axis, i.e., the zeros are either real or appear in complex conjugate pairs. The
following lemma, which has been shown in [2, 3], underlines an additional symmetry structuring

the distribution of zeros of Q̃ with respect to the imaginary axis.

Lemma 2.4 ([3]). Let z ∈ C be a zero of Q̃ defined by expression (2.9). Then, −z is also a

zero of Q̃.

In order to locate the zeros of (2.9), we require the following settings and results from [29],
see also [9] for further refinements. Consider the quasipolynomial

(2.10) Θ(z, κ, h) :=

N∑
k=0

κk e
−z χk.h

where κ = (κ1, . . . , κN )T ∈ RN , h = (h1, . . . , hM )T ∈ RM
+ , χj = (χj,1, . . . , χj,M ), χj,k ∈ N∗

(j ∈ J1, NK, k ∈ J1,MK) and χj .h =
∑M

k=1 χj,khk. We also adopt the notations κ0 = 1 and
χ0 = (0, . . . , 0). Define ZΘ(κ, h) := {R {z} : Θ(z, κ, h) = 0} and denote its closure by Z̄Θ(κ, h).

Lemma 2.5 ([29]). If the equation Θ(x+ iω, κ, h) = 0 is satisfied for some reals x and ω, then
the lengths

{
|κj |e−xχj .h, j ∈ J0, NK

}
can form a closed polygon; that is, none of these lengths is

larger than the sum of the others: |κj |e−xχj .h ≤
∑

k ̸=j |κk|e−xχk.h for j ∈ J0, NK.

Also, following Henry [29], let us define ρj = ρj(κ, h) (j ∈ J0, NK), if they exist, by the
relation

(2.11) |κj |e−ρj χj .h =
∑
k ̸=j

|κk|e−ρj χk.h for j ∈ J0, NK.

If χN .h ≥ χj .h > 0 for j ∈ J1, N − 1K, then ρN and ρ0 are uniquely defined and ρN < ρ0 for
N ≥ 2.

Lemma 2.6 ([29]). If χN .h ≥ χN−1.h > . . . > χ1.h > 0, then

(2.12) Z̄Θ(κ, h) ⊆ [ρN , ρ0].

The following lemma, which has been proved in [3], provides a vertical strip in the complex

plane, which is symmetric with respect to the imaginary axis and contains the set of zeros of Q̃:
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Lemma 2.7 ([3]).

(2.13) Z̄Q̃(κ, h) ⊆ [−ρ∗, ρ∗],

where ρ∗ is the unique positive zero of

(2.14) Q̂(ρ, τ) := 1−
∣∣∣∣τ + 2

τ − 2

∣∣∣∣ e−2ρ −
∣∣∣∣τ + 2

τ − 2

∣∣∣∣ e−τρ − e−(τ+2)ρ.

Now, ρ∗ is a root of (2.14) if, and only if,

(2.15) e−(τ+2)ρ∗
= 1−

∣∣∣∣τ + 2

τ − 2

∣∣∣∣ e−2ρ∗
−
∣∣∣∣τ + 2

τ − 2

∣∣∣∣ e−τρ∗

Substituting the above expression into Q̂ρ, the first derivative of Q̂ with respect to ρ, and
evaluating the obtained expression at ρ∗ entails:

Q̂ρ(ρ
∗, τ) = −

(τ + 2)
(
e−2ρ∗

τ − |τ − 2|+ 2 e−τρ∗)
|τ − 2|

.

which never vanish for any τ ∈ R∗
+\{2}. Indeed, for τ < 2, Q̂ρ is of constant sign and strictly

decreasing with respect to ρ∗. In addition, if we assume that Q̂ρ vanishes at ρ∗ for τ > 2, we
get

(2.16) τ =
−2 e−τρ∗ − 2

e−2ρ∗ − 1
.

However, by eliminating e−τρ∗
from the above expression of Q̂ρ and substituting it into the

expression of Q̂, we obtain

Q̂(ρ∗, τ) =

(
τ2 − 4

)
e−2ρ

2|τ − 2|
− e−(τ+2)ρ − τ

2
= 0,

that is,

(2.17) τ =
2 e−(τ+2)ρ∗ − 2 e−2ρ∗

e−2ρ∗ − 1
,

which is inconsistent with (2.16) and the fact that ρ∗ > 0. Consequently, the Implicit Function
Theorem is then applicable to (2.14) and asserts that ρ∗ = ρ∗(τ) with

ρ∗′(τ) =

(
4 +

(
−τ2 + 4

)
ρ∗(τ)

)
e−2ρ∗(τ) + 4 e−τρ∗(τ) + ρ∗(τ) |τ − 2| (τ − 2)(

e−2ρ∗(τ)τ − |τ − 2|+ 2 e−τρ∗(τ)
)
(τ2 − 4)

.

Lemma 2.8 ([3]). Consider the quasipolynomial Q̂ given by (2.14) with τ ̸= 2. Then the spectral

abscissa σ of Q̂ is lower-bounded by ρ̂(τ) where ρ̂ is given by

(2.18) ρ̂(τ) :=
1

min{τ, 2}
ln

(
1 + 2

τ + 2

|τ − 2|

)
.

2.4. Statement of problem (P). The main goal here is to study the pointwise stabilization
of a wave equation with delay-based feedback control. More precisely, we consider the system
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given by:

(P)



utt(x, t)− uxx(x, t) = 0, (0, 1) \ {ξ} × (0,+∞)

u(ξ−, t) = u(ξ+, t), t > 0,

ux(ξ
+, t)− ux(ξ

−, t) + α (ux(ξ
+, t− τ)− ux(ξ

−, t− τ)) =

β ut(ξ, t) + γ ut(ξ, t− τ), t > 0

ut(ξ, t− τ) = 0 = ux(ξ
+, t− τ)− ux(ξ

−, t− τ), t ∈ (0, τ),

u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), (0, 1),

where τ > 0, α, β, γ and ξ ∈ (0, 1) are constants.

Delay effects arise in many applications and practical problems and it is well-known that an
arbitrarily small delay may destabilize a system which is uniformly asymptotically stable in the
absence of delay, see e.g. [18, 21, 20, 36]. Nevertheless, recent papers reveal that a particular
choice of delays may lead to the exponential stability property, see [25, 26, 41].

We refer also to [1, 6, 36, 5, 37] for stability results for systems with time delay due to the
presence of “good” feedbacks compensating the destabilizing delay effect.

Note that the above system is exponentially stable in the absence of time delay, see e.g.

α = γ = 0, β > 0, ξ admits a coprime factorization
p

q
and p is odd (the best rate is obtained

for ξ =
1

2
, see e.g. [4]).

3. Formulation via D’Alembert’s formula and Well-posedness of problem (P)

We look for u solution of (P) in the form:

u(x, t) = ψ−(x+ t)− ψ−(t− x), ∀x ∈ (0, ξ), t ≥ 0,(3.19)

and

u(x, t) = ψ+(x− 1 + t) + ψ+(t− x+ 1), ∀x ∈ (ξ, 1), t ≥ 0,(3.20)

where ψ− ∈ H1
loc(−ξ,+∞) and ψ+ ∈ H1

loc(−(1 − ξ),+∞) have to be determined. From this
expression, we directly see that

u(0, t) = 0, and ux(1, t) = 0, ∀t ≥ 0.

Hence it remains to impose the initial conditions at t = 0 and the transmission conditions at
x = ξ.

In order to fulfill the initial conditions for x ≤ ξ, we take

ψ−(x) = −1

2
u0(−x) +

1

2

∫ −x

0

u1(s) ds ∀x ∈ (−ξ, 0),

ψ−(x) =
1

2
u0(x) +

1

2

∫ x

0

u1(s) ds ∀x ∈ [0, ξ).

In that way ψ− is uniquely determined in (−ξ, ξ).
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In the same manner to fulfill the initial conditions for x ≥ ξ, we take

ψ+(y) =
1

2
u0(1 + y) +

1

2

∫ 1+y

0

u1(s) ds ∀y ∈ (−(1− ξ), 0),

ψ+(y) =
1

2
u0(1− y)− 1

2

∫ 1−y

0

u1(s) ds ∀y ∈ [0, 1− ξ).

In that way ψ+ is uniquely determined in (−(1− ξ), 1− ξ)).

Note that, by definition, ψ− ∈ H1(−ξ, ξ) and ψ+ ∈ H1(−(1 − ξ), 1 − ξ). Now, we extend
ψ−, ψ+ by iteration obtaining functions in H1

loc(−ξ,+∞), H1
loc(−(1− ξ),+∞) respectively (cfr.

[25]). To check (P)1 in (0, 1)×(0, τ), we need the continuity of u and (P)5 at ξ, that is equivalent
to

ψ−(ξ + t)− ψ−(t− ξ) = ψ+(ξ − 1 + t) + ψ+(t− ξ + 1), ∀t ∈ (0, τ),

ψ′
+(ξ − 1 + t)− ψ′

+(t− ξ + 1)− ψ′
−(ξ + t)− ψ′

−(t− ξ) =

β
(
ψ′
+(ξ − 1 + t) + ψ′

+(t− ξ + 1)
)
, ∀t ∈ (0, τ).

By setting y = ξ + t, this is equivalent to

ψ−(y)− ψ+(y − 2ξ + 1) = ψ−(y − 2ξ) + ψ+(y − 1), ∀y ∈ (ξ, ξ + τ),

ψ′
+(y − 1)− ψ′

+(y − 2ξ + 1)− ψ′
−(y)− ψ′

−(y − 2ξ) =

β
(
ψ′
+(y − 1) + ψ′

+(y − 2ξ + 1)
)
, ∀y ∈ (ξ, ξ + τ).

Differentiating the first identity in y, taking the sum and the difference of the two identities, we
get

ψ′
−(y) =

2− β

2
ψ′
+(y − 1)− β

2
ψ′
+(y − 2ξ + 1), ∀y ∈ (ξ, ξ + τ),(3.21)

ψ′
+(y + 1− 2ξ) = − 2

2 + β
ψ′
−(y − 2ξ)− β ψ′

+(y − 1), ∀y ∈ (ξ, ξ + τ).(3.22)

By iteration this allows to find ψ− (resp. ψ+) up to τ + ξ (resp. τ + 1 − ξ). Indeed fix
ε ≤ 2min{ξ, 1 − ξ}, then in a first step for y ∈ (ξ, ξ + ε), we remark that y − ℓ belongs to
(ξ − 1, ξ + ε − 1) which is included in (ξ − 1, 1 − ξ) the set where ψ+ is defined up to now.
This allows to obtain ψ′

−(y) for all y ∈ (ξ, ξ + ε). In the same manner ψ′
−(y − 2ξ) is well-

defined and this allows then to obtain ψ′
+(y + 1− 2ξ) for all y ∈ (ξ, ξ + ε). We now iterate this

argument, namely for y ∈ (ξ + ε, ξ + 2ε), the right-hand sides of (3.21)–(3.22) are meaningful,
and consequently we obtain ψ′

−(y) (resp. ψ
′
+(y + 1− 2ξ)) for such y. We iterate this procedure

up to y ∈ (ξ + (k − 1)ε, ξ + kε), with k ∈ N such that

ξ + kε = ξ + 2.

This proves the announced statement.

For y > ξ + τ , we need to take into account (P)2 and (P)3, that take the form

ψ−(ξ + t)− ψ−(t− ξ) = ψ+(ξ − 1 + t) + ψ+(t− ξ + 1), ∀t > τ,

ψ′
+(ξ − 1 + t)− ψ′

+(t− ξ + 1)− ψ′
−(ξ + t)− ψ′

−(t− ξ)+

α
(
ψ′
+(ξ − 1 + t− τ)− ψ′

+(t− τ − ξ + 1)− ψ′
−(ξ + t− τ)− ψ′

−(t− τ − ξ)
)
=

β
(
ψ′
+(ξ + t− 1) + ψ′

+(t− ξ + 1)
)
+ γ

(
ψ′
+(ξ + t− τ − 1) + ψ′

+(t− τ − ξ + 1)
)
, ∀t > τ.
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By setting y = ξ + t, this is equivalent to

ψ−(y)− ψ−(y − 2ξ) = ψ+(y − 1) + ψ+(y − 2ξ + 1),∀y > ξ + τ,

ψ′
+(y − 1)− ψ′

+(y − 2ξ + 1)− ψ′
−(y)− ψ′

−(y − 2ξ)+

α
(
ψ′
+(y − 1− τ)− ψ′

+(y − τ − 2ξ + 1)− ψ′
−(y − τ)− ψ′

−(y − τ − 2ξ)
)
=

β
(
ψ′
+(y − 1) + ψ′

+(y − 2ξ + 1)
)
+ γ

(
ψ′
+(y − τ − 1) + ψ′

+(y − τ − 2ξ + 1)
)
,∀y > ξ + τ.

As before differentiating the first equation in y and taking the sum and the difference, we arrive
at (compare with (3.21)–(3.22))

ψ′
−(y) =

(
1− β

2

)
ψ′
+(y − 1) +

α− γ

2
ψ′
+(y − 1− τ)− α+ γ

2
ψ′
+(y − τ − 2ξ + 1)

− αψ′
−(y − τ)− αψ′

−(y − τ − 2ξ)− β

2
ψ′
+(y − 2ξ + 1), ∀y > ξ + τ,

(3.23)

ψ′
+(y + 1− 2ξ) = − 2

2 + β
ψ′
−(y − 2ξ) +

α− γ

2 + β
ψ′
+(y − 1− τ)

− α+ γ

2 + β
ψ′
+(y − τ − 2ξ + 1)− α

2 + β

(
ψ′
−(y − τ) + ψ′

−(y − τ − 2ξ)
)

− β

2 + β
ψ′
+(y − 1), ∀y > ξ + τ.

(3.24)

The same iterative argument allows to show that ψ−(y) (resp. ψ+(y)) is uniquely defined for
y > τ + ξ (resp. y > τ + 1− ξ).

This is equivalent to

ψ′
−(y) =

2

2 + β
ψ′
+(y − 1) +

α− γ

2 + β
ψ′
+(y − 1− τ)

+
(α+ γ)(2β − 1)

2
ψ′
+(y − τ − 2ξ + 1)− αψ′

−(y − τ)

− α
β + 4

2β + 4
ψ′
−(y − τ − 2ξ) +

β

2 + β
ψ′
+(y − 2ξ), ∀y > ξ + τ,

(3.25)

ψ′
+(y + 1− 2ξ) = − 2

2 + β
ψ′
−(y − 2ξ) +

α− γ

2 + β
ψ′
+(y − 1− τ)

− α+ γ

2 + β
ψ′
+(y − τ − 2ξ + 1)− α

2 + β

(
ψ′
−(y − τ) + ψ′

−(y − τ − 2ξ)
)

− β

2 + β
ψ′
+(y − 1),∀y > ξ + τ.

(3.26)

The main point is this last iterative relation between ψ′
−(y), ψ

′
+(y + 1 − 2ξ) and previous

evaluations.

For ξ = 1
2 , τ = 2, we can equivalently write (3.25)–(3.26) as the following system

(3.27)


ψ′
−(y)

ψ′
+(y)

ψ′
−(y − 1)

ψ′
+(y − 1)

ψ′
−(y − 2)

ψ′
+(y − 2)

 =Mα,β,γ


ψ′
−(y − 1)

ψ′
+(y − 1)

ψ′
−(y − 2)

ψ′
+(y − 2)

ψ′
−(y − 3)

ψ′
+(y − 3)

 .
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where Mα,β,γ is given by:

(3.28) Mα,β,γ =



β
2+β

2
2+β −α (α+γ)(2β−1)

2 −α β+4
2β+4

α−γ
2+β

−2
2+β

−β
2+β

−α
2+β −α+γ

2+β
−α
2+β

α−γ
2+β

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


.

Let us now take ξ = 1
2 , τ = 2, α = 0, β = 0, then we can equivalently write (3.23)–(3.24) as the

following system

(3.29) C(y) =Mγ C(y−1), where C(y) :=


ψ′
−(y)
ψ′
+(y)

ψ′
+(y − 1)

ψ′
+(y − 2)

 , Mγ :=


0 1 −γ

2 −γ
2

−1 0 −γ
2 −γ

2
0 1 0 0
0 0 1 0

 .

As in [25, 26] we are reduced to calculate the eigenvalues of the matrix Mγ whose characteristic
polynomial is

pγ(λ) := λ4 +
(
1 +

γ

2

)
λ2 − γ

2
.

Consequently, the eigenvalues of this matrix are strictly less than 1 in modulus if and only if

(3.30) |γ + 2±
√
γ2 + 12γ + 4| < 4.

In the case γ2 + 12γ + 4 ≥ 0 we see that (3.30) holds if and only if

(3.31) −6 + 4
√
2 < γ < 0.

On the contrary in the case γ2 + 12γ + 4 < 0 we check that (3.30) holds if and only if

(3.32) −2 < γ ≤ −6 + 4
√
2.

Hence we conclude that (3.30) holds if and only if γ ∈ (−2, 0).

Since

p′γ(λ) = λ(4λ2 + 2 + γ),

we can conclude that for γ ∈ (−2, 0), all eigenvalues of Mγ are of modulus < 1 and simple. In
that case, there exists a matrix Vγ such that

Mγ = V −1
γ DγVγ ,

where Dγ is the diagonal matrix made of the eigenvalues of Mγ .

Now coming back to (3.29) and using an inductive argument, we can deduce that for all
j ∈ N, and for all y ∈ ( 52 + j, 52 + (j + 1)], we have

C(y) =Mγ
jC(y − j).

Therefore using the previous factorization of Mγ , we get

C(y) = V −1
γ Dj

γVγC(y − j).

Finally, there exists a positive constant Cγ (depending only on γ) such that for all j ∈ N, and
all y ∈ ( 52 + j, 52 + (j + 1)], we have

(3.33) ∥C(y)∥2 ≤ Cγρ
j
γ∥C(y − j)∥2,

where ργ is the spectral radius of Dγ that is < 1 (if γ ∈ (−2, 0)).

Now let us consider the total energy of the string given by

E(t) :=
1

2

∫ 1

0

(
|ut(x, t)|2 + |ux(x, t)|2

)
dx.(3.34)
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By simple calculation, we see that

E(t) =

∫ 1
2

− 1
2

(ψ′
−(x+ t)2 + ψ′

+(x+ t)2) dx.

Now we closely follow the arguments of [25, 26] to conclude the exponential decay of the
system. Namely for all j ∈ N, and for all t ∈ (2 + j, 2 + (j + 2)], we can apply (3.33) with
y = x+ t for any x ∈ (− 1

2 ,
1
2 ) and consequently

E(t) ≤
∫ 1

2

− 1
2

∥C(x+ t)∥22 dx

≤ C2
γ ρ

2j
γ

∫ 1
2

− 1
2

∥C(x+ t− j)∥22 dx.

Finally as for t ∈ (2 + j, 2 + (j + 2)] and x ∈ (− 1
2 ,

1
2 ), x + t − j belongs to a compact set, the

quantity ∫ 1
2

− 1
2

∥C(x+ t− j)∥22 dx

is bounded independently of j. This means that we have found a constant Kγ such that for all
j ∈ N, and all t ∈ (2 + j, 2 + (j + 2)], one has

E(t) ≤ Kγ ρ
2j
γ .

This leads to the conclusion because ρ2jγ = e2j ln ργ ≤ e2t ln ργ .

In what follows, we will prove the global existence and the uniqueness of the solution of
problem (P). We will first transform the problem (P) to the problem (3.37) by making the
change of variables (3.35), and then we use the semigroup approach to prove the existence of
the unique solution of problem (P).

To overcome the problem of the boundary delay, we introduce the new variables:

(3.35) z1 (ρ, t) = ux(ξ
+, t− τρ)− ux(ξ

−, t− τρ), z2 (ρ, t) = ut(ξ, t− τρ), ρ ∈ (0, 1), t > 0.

Then, we have

(3.36) τ zjt (ρ, t) + zjρ (ρ, t) = 0, in (0, 1)× (0,+∞), j = 1, 2.

Therefore, problem (P) is equivalent to:

(3.37)



utt(x, t)− uxx(x, t) = 0, x ∈ (0, 1) \ {ξ} , t > 0,

u(ξ+, t) = u(ξ−, t), t > 0,

τ zjt (ρ, t) + zjρ(ρ, t) = 0, ρ ∈ (0, 1), t > 0, j = 1, 2,

ux(ξ
+, t)− ux(ξ

−, t) + α z1(1, t) = β z2(0, t) + γ z2(1, t), t > 0,

z1(0, t) = ux(ξ
+, t)− ux(ξ

−, t), z2(0, t) = ut(ξ, t), u(0, t) = ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, 1),

zj(ρ, 0) = 0, ρ ∈ (0, 1), j = 1, 2.

In this section we will give a sufficient condition that guarantees that this problem is well-
posed. For this purpose we will use a semigroup formulation of the initial-boundary value
problem (P).

If we denote V := (u, ut, z1, z2)
T
, we define the energy space:

H = H1
ℓ (0, 1)× L2(0, 1)× L2(0, 1)× L2(0, 1),

where H1
ℓ (0, 1) =

{
u ∈ H1(0, 1), u(0) = 0

}
.
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Clearly, H is a Hilbert space with respect to the inner product

(3.38) ⟨V1, V2⟩H =

∫ 1

0

u1,x v1,x dx+

∫ 1

0

u2 v2 dx+
τ

β

2∑
j=1

∫ 1

0

zj wj dρ

for V1 = (u1, u2, z1, z2)
T and V2 = (v1, v2, w1, w2)

T . Therefore, if V0 ∈ H and V ∈ H , the
problem (3.37) is formally equivalent to the following abstract evolution equation in the Hilbert
space H :

(3.39)

{
V ′(t) = A V (t), t > 0,

V (0) = V0,

where ′ denotes the derivative with respect to time t, V0 := (u0, u1, 0, 0)
T
and the operator A

is defined by:

A


u
v
z1
z2

 =


v
uxx

−τ−1z1,ρ
−τ−1z2,ρ

 .

The domain of A is the set of V = (u, v, z1, z2)
T such that:

(u, v, z1, z2)
T ∈ H1

ℓ (0, 1)×H1
ℓ (0, 1)×H1(0, 1)×H1(0, 1),(3.40)

u|(0,ξ) ∈ H2(0, ξ), u|(ξ,1) ∈ H2(ξ, 1),

ux(1) = 0, v(ξ) = z2(0), ux(ξ
+)− ux(ξ

−) = z1(0),
(3.41)

z1(0) + α z1(1) = β z2(0) + γ z2(1).(3.42)

Then the well-posedness of problem (3.37) is ensured by:

Theorem 3.1. Let α, β, γ be such that

(3.43)


|α| < 1,

|γ| <
√
1− α2,

β ≥ 1,

Under these conditions, let V0 ∈ H , then there exists a unique solution V ∈ C (R+;H ) of
problem (3.39). Moreover, if V0 ∈ D (A ), then

V ∈ C (R+;D (A )) ∩ C1 (R+;H ) .

Proof. In order to prove the existence and uniqueness of the solution of problem (3.39) we use
the semigroup approach and the Lumer-Phillips’ theorem.

Indeed, let V = (u, v, z1, z2)
T ∈ D (A ). By definition of the operator A and the scalar

product of H , we have:

⟨A V, V ⟩H =

∫ 1

0

vx(x)ux(x) dx+

∫ 1

0

uxx(x)vx(x) dx+
τ

β

2∑
j=1

∫ 1

0

τ−1zjρ(ρ)zj(ρ) dρ.
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We obtain:

(3.44)

⟨A V, V ⟩H = −v(ξ) z1(0)−
1

2β
(z21(1)− z21(0))−

1

2β
(z22(1)− z22(0)),

= −z2(0) (−α z1(1) + β z2(0) + γ z2(1))−
1

2β
z21(1)

+
1

2β
(−α z1(1) + β z2(0) + γ z2(1))

2 − 1

2β
z22(1) +

1

2β
z22(0),

= z1(1)

(
α2 − 1

2β
z1(1)−

αγ

2β
z2(1)

)
+ z2(0)

(
1

2β
− β

2

)
z2(0)

+ z2(1)

(
−αγ
2β

z1(1) +
1

2β

(
γ2 − 1

)
z2(1)

)
,

=
(
z1(1) z2(0) z2(1)

)
Dα,β,γ

z1(1)z2(0)
z2(1)

 ,

where

(3.45) Dα,β,γ :=


α2−1
2β 0 −αγ

2β

0 1
2β − β

2 0

−αγ
2β 0 γ2−1

2β

 .

One can notice that if (α, β, γ) satisfy the conditions (3.43), then Dα,β,γ given by (3.45) is a

definite negative matrix. Indeed, one can explicitly compute its eigenvalues given by −β
2 − 1

2β
,

− 1

2β
,
γ2 + α2 − 1

2β
. Also, when α is taken to be zero, one recovers the conditions obtained in

[1].

According to condition (3.43), we obtain

⟨A V, V ⟩H = −1− α2 − γ2

2β
z21(1)−

β2 − 1

2β
z22(0)−

1− α2 − γ2

2β
z22(1)

− 1

2β
(γ z1(1) + α z2(1))

2
.

(3.46)

Hence ⟨A V, V ⟩H ≤ 0, A is thus a dissipative operator.

Now we want to show that A is invertible.

For F = (f1, f2, f3, f4)
T ∈ H , let V = (u, v, z1, z2)

T ∈ D (A ) solution of

A V = F,

which is:

v = f1,(3.47)

uxx = f2,(3.48)

zj,ρ = −τ fj+2, j = 1, 2.(3.49)

Thus, from (3.49), zj , j = 1, 2, are given by:

(3.50)

z1(ρ) = z1(0)− τ

∫ ρ

0

f3(s) ds, ρ ∈ (0, 1),

z2(ρ) = f1(ξ)− τ

∫ ρ

0

f4(s) ds, ρ ∈ (0, 1).
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Using the preceding expression and assumption (3.43), we have:
(3.51)

u(x) =



∫ x

0

(∫ y

0

f2(s) ds

)
dy

+

{∫ 1

0

f2(s) ds+
ατ

1 + α

∫ 1

0

f3(s) ds−
γτ

1 + α

∫ 1

0

f4(s) ds+
β + γ

1 + α
f1(ξ)

}
x, x ∈ (0, ξ),∫ x

ξ

(∫ y

ξ

f2(s) ds

)
dy −

(∫ 1

ξ

f2(s) ds

)
x+

∫ ξ

0

(∫ y

0

f2(s) ds

)
dy

+ ξ

∫ ξ

0

f2(s) ds+
αξτ

1 + α

∫ 1

0

f3(s) ds−
γξτ

1 + α

∫ 1

0

f4(s) ds+ ξ
β + γ

1 + α
f1(ξ), x ∈ (ξ, 1)

and

z1(ρ) =
β + γ

1 + α
f1(ξ) +

ατ

1 + α

∫ 1

0

f3(s)ds−
γτ

1 + α

∫ 1

0

f4(s)ds− τ

∫ ρ

0

f4(s)ds, ρ ∈ (0, 1).

So, we have found V = (u, v, z1, z2)
T ∈ D (A ), the unique solution of A V = F . Which implies

in particular that 0 ∈ ρ(A ), where ρ(A ) is the resolvent set of A .

The operator A generates a C0 semigroup of contractions etA on H . Thus from the Lumer-
Phillips’ theorem, there exists a unique solution V ∈ C (R+;H ) of the problem (3.39). This
completes the proof of Theorem 3.1. □

Since D(A ) ⊂
[
H2((0, 1) \ {ξ}) ∩H1

ℓ (0, 1)
]
× H1

ℓ (0, 1) × H1(0, 1) × H1(0, 1), the Sobolev’s

embedding implies that A −1 is a compact operator on H . So, we have the following corollary.

Corollary 3.2. The spectrum of A , σ(A ), only consists on eigenvalues of finite multiplicity.

4. Asymptotic behavior

In this section, we show that under condition (3.43), the semigroup etA decays exponentially to
the null steady state. To obtain this, our technique is based on a frequency domain method and
combines a contradiction argument with the multiplier technique to carry out a special analysis
for the resolvent.

Theorem 4.1. Suppose that condition (3.43) holds and ξ = 1
2 . Then there exist constants

C,ω > 0 such that, for all V0 ∈ H, the semigroup etA satisfies the following estimate

(4.52)
∥∥etA V0∥∥H

≤ C e−ωt ∥V0∥H ,∀ t > 0.

Remark 4.2. For α = γ = 0 and β = 1, the best decay rate, i.e., the best ω > 0 such that

(4.52) is satisfied for all V0 ∈ H , is equal to
ln(3)

2
, according to [4]. In other words, in the

case where α = γ = 0 and β = 1, the fastest decay rate of the solutions of (P) is obtained if the
actuator is located at the middle of the string.

Proof of Theorem 4.1. We will use the following frequency domain theorem for uniform stability
from Huang-Prüss [30, 39] of a C0 semigroup of contractions on a Hilbert space:

Lemma 4.3. A C0 semigroup etL of contractions on a Hilbert space H satisfies

||etLU0||H ≤ C e−θt||U0||H
for some constant C > 0 and for θ > 0 if and only if

(4.53) ρ(L) ⊃
{
iδ
∣∣ δ ∈ R

}
≡ iR,
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and

(4.54) lim sup
δ∈R,|δ|→∞

∥(iδI − L)−1∥L(H) <∞,

where ρ(L) denotes the resolvent set of the operator L.

First we look at the point spectrum of A .

Lemma 4.4. The spectrum of A contains no point on the imaginary axis if and only if ξ ∈ (0, 1)
satisfies the following condition:

(4.55) ξ /∈
{

2k′

2k + 1
, k′, k ∈ N

}
.

Proof. Since A has compact resolvent, its spectrum σ(A ) only consists of eigenvalues of A .
We will show that the equation

(4.56) A Z = iδZ

with Z = (u, v, z1, z2)
T ∈ D(A ) and δ ∈ R∗ has only the trivial solution.

Equation (4.56) writes :

iδu = v,(4.57)

uxx + δ2u = 0,(4.58)

iδτzj + zj,ρ = 0.(4.59)

By taking the inner product of (4.56) with Z and using (3.46), we get:

z1(0) = z2(1) = 0.

Thus we have z1(ρ) = z1(0)e
−iδτρ = 0, z2(ρ) = z2(1)e

−iδτ(ρ−1) = 0, we obtain also u(x) =
A sin(δx), x ∈ (0, 1) and A is a constant.

So, the only solution of (4.56) is the trivial one if and only if ξ satisfies the condition (4.55). □

According to [8], the Lemma 4.4 shows that

Corollary 4.5. For all V0 ∈ H, the semigroup etA satisfies the following strong stability result

(4.60)
∥∥etA V0∥∥H

−−−−→
t→+∞

0

if and only if ξ satisfies (4.55).

The following lemma shows that (4.54) holds with L = A .

Lemma 4.6. The resolvent operator of A satisfies condition (4.54).

Proof. Suppose that condition (4.54) is false. By the Banach-Steinhaus Theorem (see [14]), there
exist a sequence of real numbers δn → +∞ and a sequence of vectors Zn = (un, vn, z1, z2)

t ∈
D(A ) with ∥Zn∥H = 1 such that

(4.61) ||(iδnI − A )Zn||H → 0 as n→ ∞,

i.e.,

(4.62) iδnun − vn ≡ f1,n → 0 in H1
ℓ (0, 1),

(4.63) iδnvn − un,xx ≡ f2,n → 0 in L2(0, 1),

(4.64) iδnzj,n +
1

τ
∂ρzj, n ≡ fj,n → 0, j = 3, 4. in L2(0, 1),
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Our goal is to derive from (4.61) that ||Zn||H converges to zero, thus there is a contradiction.
The proof is divided in four steps:

First step. We notice that from (4.61) we have

(4.65) ||(iδnI − A )Zn||H ≥ |R {⟨(iδnI − A )Zn, Zn⟩H } |.

Then, by (3.46) and (4.61),

(4.66) zj,n(0), z2,n(1) → 0, j = 1, 2.

Which implies according (4.62) that δnun(1/2) −→ 0. Moreover, since Zn ∈ D(A ), we have, by
(4.66),

(4.67) z1,n(1), vn(1/2), un,x

(
1

2

+)
− un,x

(
1

2

−)
→ 0.

Thus, we have according to (4.66), that

zj, n(ρ) = zj, n(0) e−iδnτρ + τ

∫ ρ

0

e−iδnτ(ρ−s) fj+2,n(s) ds

⇓

(4.68) zj, n −→ 0, L2(0, 1), j = 1, 2.

Second step. We express now vn in function of un from equation (4.62) and substitute it into
(4.63) to get

(4.69) −δ2nun − un,xx = f2,n + iδnf1,n

Next, we take the inner product of (4.69) with q(x)un,x in L2(0, 1/2) where q(x) ∈ C1([0, 1/2])
and q(0) = 0. We obtain that

(4.70)

∫ 1
2

0

(
−δ2n un(x)− unxx(x)

)
q(x)un,x dx =

∫ 1
2

0

(f2,n(x) + iδnf1,n(x)) q(x)un,x(x) dx,

=

∫ 1
2

0

f2,n(x) q(x)un,x(x) dx− i

∫ ξ

0

q(x) f1,n,x(x) δnun(x) dx

− i

∫ 1
2

0

f1,n(x) qx(x) δnun(x) dx+ i f1,n

(
1

2

)
q

(
1

2

)
δnun

(
1

2

)
.

It is clear that the right-hand side of (4.70) converges to zero since f1,n, f2,n converge to zero in
H1

ℓ (0, 1) and L
2(0, 1), respectively.

By a straight-forward calculation,

R

{∫ 1
2

0

−δ2nun(x) q(x)un,x dx

}
= −1

2
q

(
1

2

) ∣∣∣∣δnun(1

2

)∣∣∣∣2 + 1

2

∫ 1
2

0

qx(x)|δnun(x)|2 dx

and

R

{∫ ξ

0

−un,xx(x) q(x)un dx

}
= −1

2
q

(
1

2

) ∣∣∣∣un,x(1

2

)∣∣∣∣2 + 1

2

∫ 1
2

0

qx(x) |un,x(x)|2 dx.

This leads to

(4.71)

∫ 1
2

0

qx(x) |δnun(x)|2 dx+

∫ 1
2

0

qx(x) |un,x(x)|2 dx− q

(
1

2

) ∣∣∣∣un,x(1

2

−)∣∣∣∣2 → 0.
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Similarly, we take the inner product of (4.69) with q1(x)un,x in L2( 12 , 1) with q1 ∈ C1([ 12 , 1])
and q1(1) = 0, then repeat the above procedure. This will give us

(4.72)

∫ 1

1
2

q1,x(x)|δnun(x)|2 dx+

∫ 1

1
2

q1,x |un,x(x)|2 dx+ q1

(
1

2

) ∣∣∣∣un,x(1

2

+)∣∣∣∣2 → 0.

Third step. Next, we show that both of
∣∣∣un,x ( 1

2

−
)∣∣∣ and ∣∣∣un,x ( 1

2

+
)∣∣∣ converge to zero. To

proceed, we have
(4.73)

un(x) =


An sin(δnx)−

∫ x

0

sin (δn(x− y))

δn
(f2,n(y) + iδnf1,n(y)) dy, x ∈ (0, 1/2),

Bn cos (δn(1− x))−
∫ 1

x

sin (δn(x− y))

δn
(f2,n(y) + iδnf1,n(y)) dy, x ∈ (1/2, 1),

where An, Bn are given by :

Anδn = sin(δn/2)

[∫ 1/2

0

sin

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y)) dy−

∫ 1

1/2

sin

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y)) dy

]
+

cos(δn/2)

[∫ 1/2

0

cos

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y))dy+

∫ 1

1/2

cos

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y))dy

]
−

cos(δn/2) [−αz1,n(1) + βz2,n(0) + γz2,n(1)] ,

and

Bnδn = sin(δn/2)

[∫ 1/2

0

cos

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y)) dy+

∫ 1

1/2

cos

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y))dy

]
−

sin(δn/2) [−αz1,n(1) + βz2,n(0) + γz2,n(1)]−

cos(δn/2)

[∫ 1/2

0

sin

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y))dy−

∫ 1

1/2

sin

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y))dy

]
,

which implies that

Anδn, Bnδn → 0.

Thus,

(4.74) un,x

(
1

2

−)
= Anδn cos(δn/2)−

∫ 1/2

0

cos

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y)) dy → 0.

and

(4.75) un,x

(
1

2

+)
= Bnδn sin(δn/2)−

∫ 1

1/2

cos

[
δn

(
1

2
− y

)]
(f2,n(y) + iδnf1,n(y)) dy → 0.
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Fourth step. Finally, we choose q(x) and q1(x) so that dq
dx and dq1

dx are strictly positive. This can
be done by taking

(4.76) q(x) = ex − 1, q1(x) = ex−1 − 1.

Therefore, (4.71) and (4.72) imply

(4.77) ∥δnun∥L2(0,1) → 0, ∥un,x∥L2(0,1) → 0.

In view of (4.62), we also get

(4.78) ∥vn∥L2(0,1) → 0,

which clearly, with (4.68), contradict ∥Zn∥H = 1.

□

The two hypotheses of Lemma 4.3 are proved by Lemma 4.6. Then (4.52) holds. The proof
of Theorem 4.1 is then finished. □

5. Spectral analysis

We give here the characterization of the eigenvalues and eigenvectors of A .

Lemma 5.1.. A complex number λ ∈ C is an eigenvalue of A if and only if

(5.79)
(
1 + α e−τ λ

)
coshλ+

(
β + γ e−τ λ

)
cosh (λ (ξ − 1)) sinh (λ ξ) = 0,

or equivalently,

(2 + β) + (2− β) e−2λ − β e−2ξ λ + β e2(ξ−1)λ − γ e−(τ+2ξ)λ

+ γ e−(τ−2ξ+2)λ + (2α+ γ) e−τ λ + (2α− γ) e−(τ+2)λ = 0.
(5.80)

Moreover the corresponding eigenfunction Fλ is given by

(5.81) Fλ(x, ρ) = (uλ(x), λuλ(x), zλ(ρ), wλ(ρ))
T

where

(5.82)

uλ(x) =

{
cosh (λ (1− ξ)) sinh (λx) , 0 ≤ x ≤ ξ,
sinh (λ ξ) cosh (λ (1− x)) , ξ ≤ x ≤ 1.

zλ(ρ) = −λ cosh(λ) e−λ τ ρ, ρ ∈ (0, 1),

wλ(ρ) = λ cosh (λ (ξ − 1)) sinh (λ ξ) e−λ τ ρ, ρ ∈ (0, 1).

Proof. Assume that (uλ, vλ, zλ, wλ)
T is an eigenvector associated to the eigenvalue λ of A . Then

vλ = λuλ and (uλ, zλ, wλ) satisfy

(5.83)

d2uλ
dx2

(x) = λ2 uλ(x), x ∈ (0, ξ) ∪ (ξ, 1),

dzλ
dρ

(ρ) = −λτzλ(ρ), ρ ∈ (0, 1),

dwλ

dρ
(ρ) = −λτwλ(ρ), ρ ∈ (0, 1),

with boundary conditions

(5.84) uλ(0) =
duλ
dx

(1) = 0,

(5.85) uλ(ξ
−) = uλ(ξ

+),

(5.86) wλ(0) = λuλ(ξ), zλ(0) =
duλ
dx

(ξ+)− duλ
dx

(ξ−),
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(5.87)
duλ
dx

(ξ+)− duλ
dx

(ξ−) = −αzλ(1) + β wλ(0) + βwλ(1).

Equation (5.83) and (5.84) imply that

uλ(x) =

{
A sinh(λx), x ∈ (0, ξ),
B cosh (λ (x− 1)) , x ∈ (ξ, 1),

zλ(ρ) = zλ(0) e
−λ τ ρ, ρ ∈ (0, 1),

wλ(ρ) = wλ(0) e
−λ τ ρ, ρ ∈ (0, 1).

Then, (5.87) and (5.85) imply{
sinh (λ ξ) A− cosh (λ (ξ − 1)) B = 0,(
β + γ e−λ τ

)
sinh (λ ξ) +

(
1 + α e−λ τ cosh (λ ξ)

)
A−

(
1 + α e−λ τ

)
sinh (λ (ξ − 1)) B = 0.

The system (5.83) has a non-trivial solution if and only if the determinant of the coefficients
matrix of the above system satisfies:

(5.88) D(λ) =
(
1 + α e−τ λ

)
coshλ+

(
β + γ e−τ λ

)
cosh (λ (ξ − 1)) sinh (λ ξ) = 0.

Then, the solutions of (5.83)-(5.86) have the following form

uλ(x) =

{
cosh (λ (ξ − 1)) sinh (λx) , x ∈ (0, ξ),
sinh (λ ξ) cosh (λ (x− 1)) , x ∈ (ξ, 1),

zλ(ρ) = −λ cosh(λ)e−λ τ ρ, ρ ∈ (0, 1),

wλ(ρ) = λ cosh (λ (ξ − 1)) sinh (λ ξ) e−λ τ ρ, ρ ∈ (0, 1).

□

According to Corollary 3.2, σ(A ) is given by the eigenvalues of A and under condition (3.43),
is localized in C− := {λ ∈ C |R {λ} < 0}. More precisely we have the following corollary:

Corollary 5.2. σ(A ) = {λ ∈ C− |D(λ) = 0} and is symmetrically distributed with respect of
real axis.

6. A parametric stability analysis via a frequency domain approach

Let s ∈ C be the Laplace variable of the Laplace Transform operator and the delay such that

τ ∈ R∗
+. For ξ =

1

2
, the characteristic equation in (5.80) which is nothing but Q(·; 2, τ) = 0

given in (2.2), with

(6.89)



a1 =
2− β

2 + β
,

a2 =
2α+ γ

2 + β
,

a3 =
2α− γ

2 + β
.

This allows to the following characteristics function of interest:

(6.90) Q(s; 2, τ) = 1 +
2− β

2 + β
e−2 s +

2α+ γ

2 + β
e−τ s +

2α− γ

2 + β
e−(τ+2) s.

The exponential stability of the closed-loop system (P) as well as the one of (2.1) can be
achieved if, and only if, the roots of (6.90) have a strictly negative real part. Moreover, the
decay-rate σ toward zero, with σ > 0, for y(·) solution of (2.1) as well as for u(x, ·) solution of
(P) can be obtained if, and only if, −σ is an upper-bound on the real part of any root of (6.90).
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For β > 0 the following set of necessary and sufficient conditions can be derived from [27,
Chapter 9, Theorem 6.1] and recalled in Section 2.1:

(6.91)


|γ| < 2,

|α| < β

2
.

One can note that such conditions encompass the sufficient conditions obtained in (3.43) for
β > 2.

In the following section, we shall exploit the manifold of spectral values’ multiplicities to get
some insights on the solutions’ decay rates.

6.1. Validity of the MID property. Notice that the special case τ = 2 allows to decrease
the degree of the quasipolynomial Q. As a matter of fact, the quasipolynomial Q reads

(6.92) Q(s; 2, 2) = 1 +
(2 + 2α− β + γ) e−2s

2 + β
+

(2α− γ) e−4s

2 + β

which admits a degree equal to two for γ ̸= 2α and γ ̸= β − 2α− 2. As a direct consequence of
(6.92) and Theorem 2.1, we can enunciate the following corollary:

Corollary 6.1. Consider the quasipolynomial Q(·; 2, τ) given by (6.90) where τ = 2 and α, β,
γ are such that γ ̸= 2α and γ ̸= β − 2α− 2.

A given real number s0 is a double root of (6.92) if, and only if,

(6.93)


α =

(
1− e2 s0

)2
4

β − e2 s0 +
e4 s0

2
− 1

2
,

γ =

(
1

2
− e2 s0 − e4 s0

2

)
β −

(
1 + e2 s0

)2
.

If (6.93) is satisfied then the GMID holds, that is, s0 corresponds to the spectral abscissa of
the quasipolynomial Q(·; 2, 2) given by (6.92). Furthermore, all zeros of (6.92) are double and
lie on the vertical axis R {s} = s0.

Remark 6.2. Notice that (6.93) allows a parametric freedom since the parameter β can be
arbitrarily selected. For a good choice of this a parameter with respect to performance, one can
choose β in order for the sufficient condition (3.43) of the closed-loop operator dissipativity is
guaranteed; that is, β > 1. This fact shall be illustrated later through the transverse vibration
control of a string in Section 7.

Now, let us consider again the quasipolynomial (6.90) where α ̸= |γ2 | and |β| ̸= 2, i.e., the
case where the quasipolynomial’s degree is equal to three. Taking into account (6.90), a direct
consequence of Theorem 2.2 gives the following corollary:

Corollary 6.3. Consider the quasipolynomial Q(·; 2, 2k) given by (6.90) and let k ̸= 1.

A given real number s0 is a triple root of (6.90) if, and only if,

(6.94)



α =
(τ − 2) e2 s0 − (τ + 2)

(τ + 2) e2 s0 − (τ − 2)
eτ s0 ,

β = −2
(τ + 2) e2 s0 + (τ − 2)

(τ + 2) e2 s0 − (τ − 2)
,

γ = −2
(τ − 2) e2 s0 + (τ + 2)

(τ + 2) e2 s0 − (τ − 2)
eτ s0 .
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If (6.94) is satisfied and τ is an even integer strictly greater than 2, then the GMID holds,
that is s0 corresponds to the spectral abscissa of the quasipolynomial Q(·; 2, 2k) given by (6.90).

When the MID property fails, one can prescribe a lower bound for the decay rate as will be
discussed in the next Subsection.

6.2. Estimation of the exponential decay. The following Lemma which is inspired from [3,
Section 4, Theorem 5], provides an estimate of the closed-loop system (P) decay rate.

Lemma 6.4. Consider the quasipolynomial Q̂ given by (2.14) with τ ̸= 2. Then the spectral

abscissa σ of Q̂ is lower-bounded by ρ̂(τ) where ρ̂ is given by

(6.95) ρ̂(τ) :=
1

min{τ, 2}
ln

(
1 + 2

τ + 2

|τ − 2|

)
.

Proof. It is easy to observe that for ρ > 0 and τ ̸= 2

Q̂(ρ; 2, τ) ≥ 1−
(
1 + 2

τ + 2

|τ − 2|

)
e−τρ.

We remark that the right-hand side of this last inequality admits a single root which is upper
bounded by ρ̂ given by (6.95). In conclusion, for any τ ̸= 2, one has Q̂(ρ̂(τ), τ) > 0, which
asserts that ρ∗(τ) ≤ ρ̂(τ) from the Intermediate Value Theorem. □

Thanks to the results of Section 2.1 and the above lemmas, the proof of the following the-
orem, which gives a certified decay rate’s lower-bound for the closed-loop system’s solution, is
immediate.

Theorem 6.5. Consider the output feedback stabilization of the problem (P) with an arbitrary
positive delay τ , then the following assertions hold:

• If τ = 2, then the control parameter tuning prescribed in system (6.93) allows to assign
the solution’s exponential decay rate at an arbitrary −s0;

• If τ = 2 k where k is an integer greater than one, then the control parameter tuning
prescribed in system (6.94) allows to assign the solution’s exponential decay rate at an
arbitrary −s0;

• If τ ̸= 2 k, then the control parameter tuning prescribed in system (6.94) allows a closed-
loop solution decaying exponentially faster than −s0 − ρ̂(τ), where ρ̂ is defined by ex-
pression (6.95).

Proof. The spectral analysis of the operator derived from (P) turns it into the characteristic
equation (6.90). Finally, using the normalization (2.7), we end up with expression (2.9). The first
assertion is a direct consequence of Corollary 6.1. The second assertion is a direct consequence
of Corollary 6.3. The third assertion follows directly from Lemma 6.4. □

Remark 6.6. Figure 1 shows the locus of ρ̂ given by (6.95) (the proposed upper-bound on the

real parts of the zeros of the quasipolynomial Q̂) as a function of the delay τ . Thanks to the linear
change of variables (2.7), this enables the selection of an appropriate pair (s0, τ) in the filled
gray region, providing an upper-bound on the spectral abscissa of the quasipolynomial Q given in
(6.90). As asserted in Theorem 6.5, the desired decay rate towards the steady state equilibrium
is greater than |s0 + ρ̂(τ)| = −(s0 + ρ̂(τ)), since we have proven that any root si ∈ C of equation
(6.90) (i ∈ N) is such that R {si} < s0 + ρ∗ < s0 + ρ̂(τ). By prescribing a minimal decay
rate σ > 0, s0 is chosen such that s0 + ρ̂(τ) < −σ < 0 to ensure the asymptotic stability, i.e.,
s0 < −σ − ρ̂(τ).
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Figure 1. Plot of the function ρ̂(τ) given by expression (6.95).

7. Application to the transverse vibration control of a string

In this section, the transverse vibration of a string is considered for the illustration of the control
scheme described in this paper. For a perfectly elastic string of length l > 0 with both fixed
ends, having constant density and elasticity parameters, when no body forces are considered,
the motion equation is described by the following Partial Derivative Equation

(P̃)


Utt(x, t)− c2 Uxx(x, t) = 0, (x, t) ∈ (0, l)× (0,+∞)

U(0, t) = 0, Ux(l, t) = 0, t > 0,

U(x, 0) = f(x), Ut(x, 0) = g(x), x ∈ (0, l),

where U(x, t) denotes the transversal displacement of a point belonging to the string, located
at position x and given at time t; f and g are smooth univariate functions that are specified
further below.

Remark 7.1. The wave equation problem modeled by equation (P) has used some normalized
( i.e., dimensionless) time t and position x variables, in such a way that their corresponding

relations to the considered true variables are x = l x and t = d t with d :=
l

c
. In this case, the

normalized transversal displacement is related to the original one by the relation

(7.96)
u(x, t) := U(x, t),

= U(Lx, d t).

The control law is given by the following delay-based autoregressive control law applied in a
pointwise manner at the midpoint x = ξ in (P̃) where now (x, t) ∈ (0, l) \

{
ξ := l

2

}
× (0,+∞).

It writes

(C̃)



U(ξ−, t) = U(ξ+, t), ξ :=
l

2
, t > 0,

Ux(ξ
+, t)− Ux(ξ

−, t) + α
(
Ux(ξ

+, t− τ )− Ux(ξ
−, t− τ )

)
=

β

c
Ut(ξ, t) +

γ

c
Ut(ξ, t− τ ), t > 0,

Ut(ξ, t− τ ) = 0, Ux(ξ
+, t− τ )− Ux(ξ

−, t− τ ) = 0, t ∈ (0, τ ),
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where τ := d τ is the delay used here as a control parameter.

7.1. Finite difference scheme. To check numerically the efficiency of the proposed control
scheme, we propose to first perform a finite difference discretization of the above problem by
using the following approximations.

Let us define the constant space step ∆x > 0, the constant time step ∆t > 0 and the numerical
sequences

(7.97) xi := i∆x (i = 0, 1, 2, . . . , N), tj := j∆x (j = 0, 1, 2, . . . , n) and Ui,j := U(xi, tj),

where M , N , n ∈ N are such that

(7.98) M ∆x =
l

2
, N = 2M and n∆t = Tf

where Tf stands for the final time for the simulation. Let us denote Uti,j :=
∂U(x, t)

∂t

∣∣∣∣x=xi,
t=tj

,

Uxi,j :=
∂U(x, t)

∂x

∣∣∣∣x=xi,
t=tj

, Utti,j :=
∂2U(x, t)

∂t2

∣∣∣∣x=xi,
t=tj

and Uxxi,j :=
∂2U(x, t)

∂x2

∣∣∣∣x=xi,
t=tj

.

For all t > 0, the boundary conditions in (P̃) are transcribed as follows with j ∈ N∗:

U(0, t) = 0 −→ U0,j = 0,

Ut(0, t) = 0 −→ Ut0,j = 0,

Utt(0, t) = 0 −→ Utt0,j = 0.

(7.99)

For all ∀x ∈ (0, l), the initial conditions read, for i = 0, 1, 2, . . . , N ,

U(x, 0) = f(x) −→ Ui,0 = f(i∆x),

Ut(x, 0) = g(x) −→ Uti,0 = g(i∆x),

Ux(x, 0) = f ′(x) −→ Uxi,0 = f ′(i∆x),

Uxx(x, 0) = f ′′(x) −→ Uxxi,0 = f ′′(i∆x).

(7.100)

By continuity of U(x, t) in the variable t, the initial conditions are then

U(0, 0) = 0 ⇒ f(0) = 0 −→ U0,0 = 0,

Ux(l, t) = 0 ⇒ Ux(l, 0) = 0 ⇒ f ′(l) = 0 −→ UxN,j = 0,

Ut(0, t) = 0 ⇒ Ut(0, 0) = 0 ⇒ g(0) = 0 −→ Ut0,0 = 0.

(7.101)

Moreover, at i = 0 and j = 0, it turns out that f ′′(0) = 0. To summarize, at this stage, the
functions f and g should satisfy

(7.102)
f(0) = 0, f ′′(0) = 0, f ′(l) = 0,

g(0) = 0.

Consider the following approximations of the first-order partial derivatives

Uti,j =
1

2∆t
(3Ui,j − 4Ui,j−1 + Ui,j−2) ,(7.103)

Uxi,j =
1

2∆x
(Ui+1,j − Ui−1,j) ,(7.104)

and the ones for the second-order partial derivatives

Utti,j =
1

∆t2
(Ui,j − 2Ui,j−1 + Ui,j−2) ,(7.105)

Uxxi,j =
1

∆x2
(Ui+1,j − 2Ui,j + Ui−1,j) ,(7.106)
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defined for i = 1, 2, . . . , N and j = 2, 3, . . . , n. For j = 1, we set

Ui,1 = Ui,0 +∆t Uti,0 ,

= f(i∆x) + ∆t g(iDx).(7.107)

The delay-based autoregressive control law (C̃) is turned into a numerical sequence given by

(7.108)


UxM+1,j − UxM−1,j =

β

c
UtM,j , for j = 0, 1, . . . , δ − 1,

UxM+1,j − UxM−1,j = −α (UxM+1,j−δ − UxM−1,j−δ) +
β

c
UtM,j

+
γ

c
UtM,j−δ , for j = δ, δ + 1, . . . , n

where δ := ⌊τ/∆t⌋ denotes the integer part of τ/∆t close to −∞, and α, β, γ are real scalar
parameters that set the control law as indicated by Theorem 6.5. Here, UM−1,j and UM+1,j

stands for U(ξ−, tj) and U(ξ+, tj) respectively. Therefore, it comes

(7.109) UM+1,j = UM−1,j = UM,j .

for the sake of consistency when ∆x→ 0. The autoregressive control law carries on the gradient
jump term Ux(ξ

+, t)− Ux(ξ
−, t) leading to the following finite difference approximation

Ux(ξ
+, t)− Ux(ξ

−, t) −→ UxM+1,j − UxM−1,j =
UM+2,j − 2UM,j + UM−2,j

2∆x
, ∀j ∈ N∗.(7.110)

Using (7.109), one should pay attention to the following fact

Ux(ξ, tj) −→ UxM,j =
UM+1,j − UM−1,j

2∆x
= 0, ∀j ∈ N.(7.111)

As a consequence, in addition to (7.102), the following additive constraints should be taken into
account for f

(7.112) f ′(M ∆x) = 0, f ′′(M ∆x) = 0.

Now we are ready to write the finite difference scheme for both the uncontrolled wave equation
in (P̃), and the closed-loop system combining (P̃) and (C̃).

Let µ :=
c∆t

∆x
.

7.2. Open-loop case. When there is no output feedback control applied to (P̃), the finite
difference scheme writes

Utti,j = c2 Uxxi,j , i = 0, 1, 2, . . . , N − 1, ∀j ∈ N\ {0, 1} ,
UN,j = UN−1,j , ∀j ∈ N,

leading to the following implicit scheme

−µ2 Ui+1,j + (1 + 2µ2)Ui,j − µ2 Ui−1,j = 2Ui,j−1 − Ui,j−2.(7.113)

7.3. Closed-loop case. When the output feedback control given by (C̃) is applied to (P̃), the
finite difference scheme becomes

Utti,j = c2 Uxxi,j , i = 0, 1, 2, . . . ,M − 2,M + 2, . . . , N − 1, ∀j ∈ N\ {0, 1} ,
UN,j = UN−1,j , ∀j ∈ N,

UM+2,j − 2UM,j + UM−2,j

2∆x
= −α UM+2,j−δ − 2UM,j−δ + UM−2,j−δ

2∆x

+
β

c

3UM,j − 4UM,j−1 + UM,j−2

2∆t

+
γ

c

3UM,j−δ − 4UM,j−1−δ + UM,j−2−δ

2∆t
, ∀j ∈ N\ {0, 1} ,
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where, for all i, j ∈ N, Ui,j−k = 0 for any k ∈ N such that j − k < 0. It comes,

(7.114)



−µ2 Ui+1,j + (1 + 2µ2)Ui,j − µ2 Ui−1,j = 2Ui,j−1 − Ui,j−2, ∀j ∈ N\ {0, 1} ,
UN,j = UN−1,j , ∀j ∈ N,

UM+2,j −
(
2 + 3β

∆x

∆t

)
UM,j + UM−2,j = −4β

∆x

∆t
UM,j−1 + β

∆x

∆t
UM,j−2

+

(
2α+ 3 γ

∆x

∆t

)
UM,j−δ − α (UM+2,j−δ − UM−2,j−δ)

−4 γ
∆x

∆t
UM,j−1−δ + γ

∆x

∆t
UM,j−2−δ,

where, for all i, j ∈ N, Ui,j−k = 0 for any k ∈ N such that j − k < 0.

Even if naturally implicit, this numerical scheme can easily be transformed into an explicit
numerical scheme and written in a matricial form. The study of stability, consistency, and
convergence of both these numerical schemes is abandoned for conciseness.

7.4. Numerical simulations. Let us now consider the numerical values of Table 1 for the
considered string of problem (P̃). To ensure stability and convergence of both numerical schemes

Length (m) l 10
Wave propagation
speed (m/s)

c 1.118

Time scaling factor (s) d 8.9443
Wave magnitude A 0.5

Table 1. Features of the string.

(7.113) and (7.114), we set ∆x = 0.05, ∆t = 0.005 and Tf = 100. The initial conditions are
chosen as follow

f(x) = A

(
3
x

l
− 17

(x
l

)3
+ 27

(x
l

)4
− 12

(x
l

)5)
,

g(x) = 0,

to cope with all the requirements described in 7.1.

For illustration purposes, we precise the computation of the Energy function in (3.34) using
the previous numerical scheme, for both the open-loop and the closed-loop cases. For j ≥ 2,
this function is computed as

E(j∆t) =
∆x

2

((
u1,j − u0,j

∆x

)2

+

N−1∑
i=2

(
ui+1,j − ui−1,j

2∆x

)2

+

(
uN,j − uN−1,j

∆x

)2

+

N∑
i=0

(
3ui,j − 4ui,j−1 + ui,j−2

2∆t

)2
)
,

which for j ≥ 2, given the boundary conditions in (P̃), reduces to

E(j∆t) =
∆x

2

(
u1,j

2

∆x2
+

N−1∑
i=2

(
ui+1,j − ui−1,j

2∆x

)2

+

N∑
i=0

(
3ui,j − 4ui,j−1 + ui,j−2

2∆t

)2
)
.(7.115)

Moreover, for j = 0 and j = 1 and by considering (7.107)

E(0) = E(1,∆t) =
∆x

2

((
f(∆x)

∆x

)2

+

N−1∑
i=2

(
f ((i+ 1) x)− f ((i− 1) x)

2∆x

)2
)
.(7.116)
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s0 −2
−1.005 ρ̂(τ)

≃−14.481

−2.01 ρ̂(τ)

≃−28.961

τ 2 3 4 0.08

α 0.20463 0.013593 0.0010584 -0.34014 -0.1068

β 3.0 2.1495 1.9969 1.7889 1.7889

γ 0.40758 0.024495 0.0019166 -0.60846 -0.19104

MID Met Unmet Met Unmet Unmet

Time plot Fig. 2d Fig. 2e Fig. 2f Fig. 2b Fig. 2c

Table 2. Feedback parameters, various cases.

Several simulation cases have been performed, they are summarized in Table 2.

Figure 2a shows the free time response of the wave equation of problem (P̃), ie only subjected
to initial conditions and without any control. Figures 2b, 2c, 2d, 2e and 2f show the closed-
loop time response to the same initial conditions for the various cases described in Table 2. In
Figure 3, the total energy logarithm is plotted for the various closed-loop cases, where the energy
is the one defined in (3.34) and computed through (7.115). The blue curve illustrates the case
where there is no feedback control. In Figure 4, the time response of the closed-loop control
signals for the various cases is plotted. One can notice the periodic occurrence of impulsive peaks
on the control signal, whose magnitude seems to be lower as the delay parameter increases. In
Figure 3, the exponential decay in closed-loop can be noticed, and especially its controlling by
assigning s0. Moreover, it can also be noticed that, for the same s0 = −2 and for different
values of τ , the best decay rate is achieved with the MID case described in Theorem 6.5, say
for a triple multiplicity of s0 with τ = 4. One also notices that this case provides a similar
exponential decay as the one with s0 ≃ −28.961 and τ = 0.08, but gives a closed-loop control
signal with a lower magnitude in comparison with the other cases.

8. Conclusion

This work addressed the control problem of the wave equation via an autoregressive output
feedback control law applied at the midpoint. We have first introduced a difference equation
with two interfering delays for which we have derived some results about the exponential sta-
bility. Then, we proposed an analysis of the operator’s dissipativity where the operator was
derived from a reformulation of the wave equation and we have exhibited the link between this
operator and the previous difference equation. This allowed us to derive some conditions on the
parameters of the autoregressive control to ensure the exponential stability of the considered
problem with the advantage of prescribing the decay of the solution. Some numerical results
have illustrated the efficiency of our approach for the case of a vibrating string satisfying the
considered boundary and initial conditions.

Acknowledgements

The authors would like to thank our colleague Karim L. Trabelsi (IPSA Paris) for careful
reading of the manuscript as well as for valuable comments.



MIDPOINT PRESCRIBED STABILIZATION OF THE WAVE EQUATION 27

(a) Without control.

(b) Closed-loop control at the midpoint – case with τ = 0.08 (d τ = 0.715), α ≃
−0.34014, β = 1.7889, γ ≃ −0.60846 and a spectral abscissa given by s0 ≃ −14.481
triple. This assignment of a triple spectral value has been set thanks to the tuning
proposed in Corollary 6.3.
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(c) Case s0 ≃ −28.961 triple and τ = 0.08, without MID property.

(d) Case s0 = −2 double and τ = 2, with MID property.
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(e) Case s0 = −2 triple and τ = 3, without MID property.

(f) Case s0 = −2 triple and τ = 4, with MID property.

Figure 2. Time simulations, various cases.
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[23] G. Eneström. Remarque sur un théorème relatif aux racines de l’équation {a n}{xˆ n}+{an-1}{xn-
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Figure 3. Time simulation of the energy logarithm defined in (3.34) for the various cases
reported in Tab. 2.
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Figure 4. (Top) Time simulation of the closed-loop control signal for the various cases
reported in Tab. 2. (Bottom) Focus on the control signals around zero.
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