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SETS OF CROSS NUMBERS OF SEQUENCES OVER FINITE ABELIAN GROUPS

AQSA BASHIR AND WOLFGANG A. SCHMID

Abstract. Let G be a finite abelian group with exp(G) the exponent of G. Then W(G) denotes the set
of cross numbers of minimal zero-sum sequences over G and w(G) denotes the set of all cross numbers
of non-trivial zero-sum free sequences over G. It is clear that W(G) and w(G) are bounded subsets of

1
exp(G)

N with maximum K(G) and k(G), respectively (here K(G) and k(G) denote the large and the small

cross number of G, respectively). We give results on the structure of W(G) and w(G). We first show
that both sets contain long arithmetic progressions and that only close to the maximum there might be
some gaps. Then, we provide groups for which W(G) and w(G) actually are arithmetic progressions, and
argue that this is rather a rare phenomenon. Finally, we provide some results in case there are gaps.

1. Introduction

Let (G,+) be a finite abelian group. For a sequence S = g1 . . . gℓ over G, that is a collection of elements
gi of G where repetitions are allowed (for a formal definition and other undefined terminology see below),
the cross number of S is defined as

k(S) =
1

ord(g1)
+ · · ·+

1

ord(gℓ)
.

This can be seen as a weighted version of the length ℓ of the sequence. The term cross number was
introduced by Krause in 1984 [23, 24]. The cross number is an interesting zero-sum constant and in
particular plays an important role in the factorization theory of Krull monoids, see for example [7, 8, 11,
12, 13, 5, 16, 17, 9, 18, 25, 21, 22, 27, 3] for various contributions on the cross number.

In analogy with the Davenport constant of a finite abelian group, one defines the large cross number
of G, denoted K(G) as the maximal cross number of a minimal zero-sum sequence, and the small cross
number of G, denoted k(G), as the maximal cross number of a zero-sum free sequence. Recall that the
large Davenport constant of a finite abelian group G, denoted D(G), is defined as the maximal length
of a minimal zero-sum sequence of G while the small Davenport constant, denoted d(G), is the maximal
length of a zero-sum free sequence.

For the small Davenport constant it is obvious that zero-sum free sequences of each length up to the
maximum exist as every subsequence of a zero-sum free sequence is zero-sum free. Also, for the large
Davenport constant one can see without difficulty that for each length smaller than the large Davenport
constant there exists a minimal zero-sum sequence of that length as well; it suffices to replace two elements
in a minimal zero-sum sequence by their sum to obtain a minimal zero-sum sequence whose length is
diminished by 1.

By contrast, for the cross number the analogous problem is more subtle. Of course, we cannot obtain
all the rational numbers up to the maximum as cross numbers, as the cross number of each sequence over
G is easily seen to be an integral multiple of 1

exp(G) . The actual question is if each integral multiple of
1

exp(G) up to the maximum occurs as a cross number. The basic reasoning that we just recalled for the

Davenport constant does not translate to this situation, and indeed in earlier work on the subject it was
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proved that, depending on the group, there are certain restrictions on the values of the cross numbers
of minimal zero-sum sequences, see [4, 1]. In recent literature, the sets of values attained by arithmetic
invariants (including the sets of elasticities, of catenary degrees, and more) found wide attention, because
knowing all the values of the invariants allows a finer understanding of the problem than just knowing its
maximum, see for example [14, 2, 6, 15, 28].

In the present paper we continue the investigations on the cross numbers of minimal zero-sum sequences
and in addition study the values of cross numbers of zero-sum free sequences. The latter problem did
not yet get much attention. It turns out that, depending on the group, the two sets can be essentially
identical, with one being a shift of the other by 1

exp(G) , yet they can also be quite different.

2. Preliminaries

Let N denote the set of positive integers and let N0 = N ∪ {0}. For integers a, b ∈ Z, we set [a, b] =
{z ∈ Z | a ≤ z ≤ b} the interval of integers. Given subsets A,B ⊆ Z and λ ∈ R, we set A +B = {a+ b |
a ∈ A, b ∈ B} the sumset of A and B, and we set λA = {λa | a ∈ A} the dilation of A by λ; since we
hardly use it, we do not introduce a notation for the s-fold sumset of A, that is the sumset of s copies of
A.

For n ∈ N let Cn be a cyclic group of order n; we use additive notation. Let (G,+, 0) be an additive
finite abelian group. There exist unique integers 1 < n1 | · · · | nr such that G ∼= Cn1

⊕· · ·⊕Cnr
. Moreover,

there exist unique prime-powers 1 < q1 ≤ · · · ≤ qs such that G ∼= Cq1 ⊕ · · · ⊕Cqs . The integer nr is called
the exponent of the group, and the order ord(g) of each element g ∈ G divides exp(G). One calls r the
rank of G and s the total rank of G. In case exp(G) is a prime-power, the two coincide and one calls G
a p-group. A p-group is called an elementary p-group if the exponent is prime. For a given prime p one
calls the number of prime powers qi that are a p-power the p-rank of G, denoted by rp(G). It is non-zero
if and only if the prime p divides the exponent.

Note that if |G| = 1, then the exponent is 1, while all the ranks are 0.
As indicated in the introduction, the focus of the paper is on cross numbers of sequences over a finite

abelian group G. Informally, a sequence over a finite abelian group G is a collection of elements of G
where repetitions of elements are allowed yet the ordering of the terms is typically disregarded. Formally,
a sequence over G is an element of the free abelian monoid F(G) over G. That is, a sequence S over G
can be written uniquely as S =

∏

g∈G gvg with vg ∈ N0 for each g ∈ G; moreover it can be written as

S = g1 . . . gℓ where gi ∈ G for each i ∈ [1, ℓ] and these elements are unique up to ordering. The neutral
element of F(G) is denoted by 1, unless there is a risk of confusion, and is called the trivial sequence.
Sometimes we want to consider only sequences that contain elements in a subset G0 ⊆ G; in that case we
use the notation F(G0).

One calls

• σ(S) =
∑

g∈G vgg =
∑ℓ

i=1 gi the sum of S,

• |S| =
∑

g∈G vg = ℓ the length of S,

• k(S) =
∑

g∈G

vg
ord(g) =

∑ℓ

i=1
1

ord(gi)
the cross number of S.

For a sequence S, a subsequence T of S is a divisor of S in F(G). We denote by Σ(S) = {σ(T ) : 1 6=
T | S} the set of sums of non-trivial subsequences of S. Moreover, supp(S) = {g1, . . . , gℓ}, called the
support of S, denotes the set of elements that occur in S. A sequence S is called a zero-sum sequence if
σ(S) = 0 and it is called zero-sum free if 0 /∈ Σ(S). A non-trvial zero-sum sequence is called a minimal
zero-sum sequence (or an atom) if it has no proper non-trivial subsequence that is a zero-sum sequence.

Equivalently, S = g1 . . . gℓ is a zero-sum sequence if
∑ℓ

i=1 gi = 0, while it is zero-sum free if
∑

i∈I gi 6= 0
for each ∅ 6= I ⊆ [1, ℓ] (note that I = [1, ℓ] is possible). Furthermore, it is a minimal zero-sum sequence if

it is non-trivial with
∑ℓ

i=1 gi = 0, yet
∑

i∈I gi 6= 0 for each proper subset ∅ 6= I ( [1, ℓ].
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We denote by B(G) the set of all zero-sum sequences over G, by A(G) the set of all minimal zero-sum
sequences over G and by A∗(G) the set of all non-trivial zero-sum free sequences over G (note that the
trivial sequence is also zero-sum free according to the definition given above).

While it is not central for our current investigation, we mention in passing that B(G) is a submonoid
of F(G); this submoind is atomic and its irreducible elements are precisely the elements of A(G).

The central objects for the current paper are the following two sets. The set of cross numbers of all
minimal zero-sum sequences over G, denoted

W(G) = {k(S) | S ∈ A(G)}

has been investigated, e.g., in [1, 4, 13]. We also study the related set

w(G) = {k(S) | S ∈ A∗(G)}

the set of cross numbers of all non-trivial zero-sum free sequences over G; sometimes it is technically
advantageous to consider w◦(G) = w(G)∪{0}, which would correspond to considering the trivial sequence
as well.

As mentioned in the introduction the large cross number of G is defined by

K(G) = max{k(S) | S ∈ A(G)}

and the small cross number of G, for |G| 6= 1, by

k(G) = max{k(S) | S ∈ A∗(G)}.

In other words, K(G) = maxW(G) and k(G) = maxw(G). If |G| = 1, then K(G) = 1 and we set k(G) = 0.
Let G = Cq1 ⊕ · · · ⊕ Cqs be a direct sum decomposition of G into cyclic groups of prime power order.

Set

k
∗(G) =

s∑

i=1

qi − 1

qi
and K

∗(G) =
1

exp(G)
+ k

∗(G) .

Suppose {e1, . . . , es} is an independent generating set of G with ord(ei) = qi for each i ∈ [1, s]. Then

T = eq1−1
1 . . . eqs−1

s is zero-sum free and S = T (e1 + · · ·+ es) is a minimal zero-sum sequence. This shows
that K

∗(G) ≤ K(G) and k
∗(G) ≤ k(G). In principle one could use any set of independent elements, but

using a set with elements of prime power order yields the best bound.
Given such a lower bound, the question arises if equality holds. Equality holds in particular for p-groups

(see [10, Proposition 5.1.8 and Theorem 5.5.9]) and for some other special cases (see e.g. [11, 21, 22]);
we invoke some results in later sections. No example is known where equality does not hold. Krause and
Zahlten conjectured in [24, Page 688] that the equality K(G) = K

∗(G) holds for all cyclic groups G, but
even this remains open.

The two constants k(G) and K(G) are closely related. It is easy to see that 1
exp(G) + k(G) ≤ K(G), yet

it is not known if equality always holds. However, in case K(G) = K
∗(G), we have

1

exp(G)
+ k

∗(G) ≤
1

exp(G)
+ k(G) ≤ K(G) = K

∗(G) =
1

exp(G)
+ k

∗(G)

and thus k(G) = k
∗(G) and also 1

exp(G) + k(G) = K(G).

Since we use them sometimes in the current paper, we recall a few results for the Davenport constant.
The equality D(G) = |G| for finite cyclic groups is known and easy to see. Moreover for p-groups
G = Cq1 ⊕ · · · ⊕ Cqs one has D(G) = 1 +

∑s
i=1(qi − 1). See for instance [10, Chapter 5] for these and

further results.
We end this section with some results on W(G) and w(G) that we use frequently.
For every finite abelian group, with |G| 6= 1, one has W(G) ⊆ 1

exp(G) [2, exp(G)K(G)] and w(G) ⊆
1

exp(G) [1, exp(G)k(G)]. If |G| is even and exp(G) = 2km with an odd m and G does not contain a

subgroup of the form C2
2k , then W(G) ⊆ 2

exp(G) [1,
exp(G)K(G)

2 ], see [4, Lemma 1].
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In the other direction for every finite abelian group with |G| odd and |G| 6= 1, one has 1
exp(G) [2, exp(G)] ⊆

W(G). If |G| is even, then in general one only has 2
exp(G) [1,

exp(G)
2 ] ⊆ W(G); however, if exp(G) = 2km

with an odd m and G contains a subgroup of the form C2
2k , then we have 1

exp(G) [2, exp(G)] ⊆ W(G) as in

the case of groups of odd order, see [4, Theorem 2].

3. Results on w(G)

In the current section, we obtain some results on the structure of the set w(G). More specifically,
we show in two different ways that the set is in some sense close to an arithmetic progression, and that
deviations can only occur for values close to the maximum k(G). In later sections, we discuss that while
for G a p-group and in a few other cases, the set is indeed an arithmetic progression, this is not always
the case.

First, we establish and recall a few simple lemmas. It is easy to see that w(G) contains all small
elements; the result for W(G) is recalled at the end of the preliminaries.

Lemma 3.1. Let G be a finite abelian group. Then

1

exp(G)
[1, exp(G)− 1] ⊆ w(G).

Proof. We need to show that for each j ∈ [1, exp(G) − 1], there is some S ∈ A∗(G) with k(S) = j
exp(G) .

Assume g ∈ G with ord(g) = exp(G). Then Sj = gj is a zero-sum free sequence for each j ∈ [1, exp(G)−1]

and k(Sj) =
j

exp(G) . �

While this result is basic, it is indeed sharp in some cases, namely when G is cyclic group of prime

power order as in this case, and in this case only, we have k(G) = exp(G)−1
exp(G) . The following lemma shows

that this is indeed the only case. Later, we establish results that yield the existence of larger arithmetic
progressions in w(G) in case the group has a large rank.

Lemma 3.2. Let G be a finite abelian group and let H ⊆ G be a subgroup. Then w(H) ⊆ w(G), and
equality holds if and only if H = G.

Proof. It is immediate from the definion that A∗(H) ⊆ A∗(G) and thus w(H) ⊆ w(G) by definition.
Cearly, H = G yields w(H) = w(G) and it remains to show the converse. Note by [10, Proposition 5.1.11]
that

k(G) ≥ k(H) +
k(G/H)

exp(H)
.

Since w(H) = w(G) implies k(H) = k(G), it means k(G/H) = 0, and hence |G/H | = 1 (which is same as
H = G). �

The following lemma is a key tool for the current section.

Lemma 3.3. Let G1 and G2 be non-trivial finite abelian groups. Then

w
◦(G1) + w

◦(G2) ⊆ w
◦(G1 ⊕G2) and w(G1) + w

◦(G2) ⊆ w(G1 ⊕G2) .

Proof. For i ∈ [1, 2], let qi ∈ w
◦(Gi). Since w

◦(Gi) ⊆ w
◦(G1 ⊕ G2) by Lemma 3.2, we may assume

that q1 > 0 and q2 > 0. Then there are zero-sum free sequences Si ∈ F(Gi) with k(Si) = qi. Since
S1S2 ∈ F(G1 ⊕G2) is zero-sum free, we obtain that

q1 + q2 = k(S1) + k(S2) = k(S1S2) ∈ w
◦(G1 ⊕G2) .

The second claim is obvious from the first, since 0 is not contained in the left-hand set. �

We now combine these results with a result from additive combinatorics to show that in certain cases
w(G) is close to an arithmetic progression.
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Theorem 3.4. Let G be a finite abelian group with exp(G) = n ≥ 2.

1. If G = G1 ⊕ . . .⊕Gs, where s ∈ N, exp(Gi) = n for all i ∈ [1, s], then

1

n
[1, (n− 1)s] ⊆ w(G) .

2. There exist constants c, s∗ ∈ N such that, for all s ≥ s∗,

1

exp(G)
[1, s exp(G)k(G) − c] ⊆ w(Gs) .

To see the relevance of the second part of this result, we point out that, for every finite abelian group
G and for every s ∈ N, we have

k
∗(Gs) = sk∗(G) .

Thus, since there is no example known of a finite abelian group G′ where k(G′) 6= k
∗(G′), there is no

example known of a group G and and an integer s ∈ N, for which

k(Gs) 6= sk(G).

However, if for some finite abelian group G, we have k(Gs) = sk(G) for all s ∈ N, then the second
part of the theorem shows that for all s ∈ N the set w(Gs) is an arithmetic progression, apart from a
globally bounded upper part; to see this it suffices to recall that w(Gs) ⊆ 1

exp(Gs) [1, exp(G
s)k(Gs)] and

that exp(Gs) = exp(G).

Proof. 1. Since 1
n
[1, n− 1] ⊆ w(Gi) for all i ∈ [1, s], we obtain that

1

n
[1, (n− 1)s] ⊆

1

n
[0, n− 1] + . . .+

1

n
[0, n− 1]

︸ ︷︷ ︸
s

⊆ w
◦(G1) + . . .+ w

◦(Gs)

⊆ w
◦(G) ,

2. We set A = exp(G)w◦(G) ⊆ N0. Since gcd(A) = 1 by 1, it follows from [26, Theorem 1.1] that there
exists integer c ∈ N such that the s-fold sumset of A has the form

A′ ⊎ [c, smaxA− c] ⊎ A′′ ⊆ exp(G)w◦(Gs) ,

with A′ ⊆ [0, c− 2] and A′′ ⊆ smaxA− c+ [2, c], for all s ≥ max{1, (|A| − 2)(maxA− 1)maxA}; we set
s∗ equal to this value.

Now suppose in addition that (n−1)s∗ ≥ c. Then the first assertion implies that [1, c] ⊆ exp(G)w◦(Gs).
Thus, we obtain that

[0, smaxA− c] ⊎ A′′ ⊆ exp(G)w◦(Gs) ,

and hence the assertion follows. �

There are better estimates for the constant c than the one given in [26]; see for example [20, 19],
however we do not pursue this route for improvement. Instead, we present our second approach to the
problem of determining that w(G) contains all small elements. The approach is similar, in that we use
again Lemma 3.3. However, we do not impose anymore that all the groups have the same exponent. This
has the advantage of being able to apply the result to any group. The drawback is that the application
of Lemma 3.3 is less direct. To overcome this issue we need a result on set-addition, which we give in
Lemma 3.7.

The main result we obtain is the following theorem. As a corollary we obtain a complete description
of w(G) for G a p-group.

Theorem 3.5. Let G = H ⊕ Cn with exp(G) = n. Then

1

n
[1, n− 1 + nk∗(H)] ⊆ w(G) .
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Corollary 3.6. Let G be a p-group. Then

w(G) =
1

exp(G)
[1, exp(G)k(G)] .

The proof of the following lemma is basic and chances are the result is somewhere in the literature, we
include it for lack of a suitable reference. We recall that ∆(A) denotes the set of successive distance of A,
that is for A = {a1, . . . , ak} with ai < ai+1 the set is given by ai+1 − ai for i ∈ [1, k − 1].

Lemma 3.7. Let A ⊆ Z be a finite set with |A| ≥ 2 and max∆(A) ≤ l. Then [0, l − 1] + A =
[minA,maxA+ l − 1].

Proof. Let n ∈ [minA,maxA+ l− 1]. We show that n ∈ [0, l− 1]+A. Let a ∈ A be maximal with a ≤ n,
which exists since minA ≤ n. We note that n− a ≤ l− 1. This is due to the fact that if a 6= maxA, then
[a + 1, a+ l] contains an element of A by the condition on ∆(A), while if a = maxA, then the assertion
follows from the fact that 0 ≤ n− a ≤ l − 1. �

In the following result we allow rather arbitrary direct sum decomposition of G into cyclic groups,
note though that the exponent of G is indeed n. Usually, starting from a given group, the best way to
decompose is to impose that each qi is a prime power.

Proposition 3.8. Let G =
⊕t

i=1 Cqi ⊕ Cn where each qi divides n. Then

t∑

i=1

1

qi
[0, qi − 1] + w

◦(Cn) ⊆ w
◦(G)

and
t∑

i=1

1

qi
[0, qi − 1] + w(Cn) ⊆ w(G)

Proof. By repeated application of Lemma 3.3 we have

t∑

i=1

w
◦(Cqi) + w

◦(Cn) ⊆ w
◦(G)

and
t∑

i=1

w
◦(Cqi) + w(Cn) ⊆ w(G) .

Now, by Lemma 3.1 we have 1
qi
[0, qi − 1] ⊆ w

◦(Cqi ) and the claims follow. �

Combining the result with earlier lemmas we get a main technical result of this section.

Proposition 3.9. Let G =
⊕t

i=1 Cqi ⊕ Cn where each qi divides n. Then

1

n
[0, n− 1 + n

t∑

i=1

qi − 1

qi
] ⊆ w

◦(G)

and

1

n
[1, n− 1 + n

t∑

i=1

qi − 1

qi
] ⊆ w(G)

Proof. We apply the Proposition 3.8 to obtain
∑t

i=1
1
qi
[0, qi − 1] +w

◦(Cn) ⊆ w
◦(G). Now by Lemma 3.1,

we have 1
n
[0, n− 1] ⊆ w

◦(Cn). By Lemma 3.7, we have n
qi
[0, qi− 1]+ [0, n− 1] = [0, n− 1+ n(qi−1)

qi
]. Then

the claim follows by a simple induction. �

We now conclude this section with the proof of the main results.
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Proof of Theorem 3.5 and Corollary 3.6. The theorem is a direct consequence of Proposition 3.9; it suf-
fices to impose that qi is a prime power for each qi and to recall the definition of k∗(H). To get the
corollary it suffices to note that if G is a p-group and we write G = H ⊕ Cn with exp(G) = n, then
k(G) = k

∗(G) = n−1
n

+ k
∗(H). �

4. Results on W(G)

The purpose of this section is to obtain results along the lines of the ones for w(G) presented in the
preceding section. We recall the following result due to Chapman and Geroldinger [4, Theorem 4] that
gives a complete description of W(G) for p-groups, like we established it in Corollary 3.6 for w(G). It is
interesting to observe the difference for 2-groups.

Theorem 4.1. Let G = Cn1
⊕ · · · ⊕ Cnr

be a finite abelian p-group with 1 = n0 < n1 | · · · | nr.

1. Suppose that p is either odd or that p = 2 with nr−1 = nr. Then

W(G) =
1

exp(G)
[2, exp(G)K(G)].

2. Suppose p = 2 and nr−1 < nr. Then

W(G) =
2

exp(G)
[1,

exp(G)

2
K(G)].

The goal of the remainder of the section is to obtain a result like Proposition 3.9 for W(G) instead of
w(G). The overall strategy of the proof is the same but the problem is more subtle as we do not have a
result like Lemma 3.3. Moreover, we impose right away that each qi is a prime power, which anyway is
the most relevant case.

Proposition 4.2. Let G =
⊕t

i=1 Cqi ⊕ Cn where each qi is a prime power that divides n. Then

t∑

i=1

1

qi
[0, qi − 1] +W(Cn) ⊆ W(G)

The proof is similar to that of Proposition 3.8, but a problem is that we cannot simply take the
concatenation of zero-sum free sequences. Instead we need to maintain the property that the sequence is
a minimal zero-sum sequence while at the same time controlling the cross number. Recall that if Ui is a
minimal zero-sum sequence over Gi and gi | Ui for i ∈ [1, 2], then (g−1

1 U1)(g
−1
2 U2)(g1 + g2) is a minimal

zero-sum sequence over G1 ⊕G2 of length |U1|+ |U2| − 1. However, to control the cross number we need
some information on the orders of the elements involved.

To this end we establish the following lemma. Let p be a prime, we denote by vp(n) the p-adic valuation,
or p-valuation for short, of a positive natural number n.

Lemma 4.3. Let n ≥ 2. For each w ∈ W(Cn), there is an A ∈ A(Cn) with k(A) = w and for each prime

divisor p of n there exists a g ∈ supp(A) such that vp(ord(g)) = vp(n).

Proof. Let w ∈ W(Cn). Then there exists a T ∈ A(Cn) with k(T ) = w. Let p0 | n be a prime and let
g ∈ supp(T ) be an element whose order has maximal p0-valuation among the orders of elements in supp(T ).
If vp0

(ord(g)) = vp0
(n), there is nothing to do. Thus, assume that vp0

(ord(g)) < vp0
(n). There exists some

g0 ∈ Cn such that p0g0 = g. We have ord(g0) = p0 ord(g) and this means vp0
(ord(g0)) = vp0

(ord(g)) + 1,
while vp(ord(g0)) = vp(ord(g)) for every other prime p. Now, the sequence S = (Tg−1)(g0)

p0 is a minimal
zero-sum sequence with the same cross number k(S) = k(T )− 1

ord(g) +
p0

ord(g0)
= k(T ) = w.

Now if vp0
(ord(g0)) = vp0

(n), we are done otherwise we repeat the same steps starting with S instead
of T until we obtain a sequence that contains an element whose order has p0-valuation equal to that of n.

Repeating the argument for each prime p0 dividing n, the assertion follows. Note that the above
mentioned process only affects the valuations for the prime p0, whence there is no interference between
the different steps. �
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With this lemma at hand we can prove the proposition.

Proof of Proposition 4.2. Assume Cqi = 〈ei〉 where ord(ei) = qi for i ∈ [1, t]. Let [1, t] = ⊎s
j=1Ij where the

order of qi for i ∈ Ij is a pj-power for some prime pj ; in addition, we assume that all the Ij are non-trivial
and the pj are pairwise distinct. In other words, ⊕s

j=1(⊕i∈Ij 〈ei〉) is a decomposition into p-groups of
⊕t

i=1 Cqi , and |Ij | is the pj-rank of the group.
We have

G = Cn ⊕
s⊕

j=1

(⊕i∈Ij 〈ei〉).

Let wG = wc+
∑t

i=1
ji
qi

∈ W(Cn)+
∑t

i=1
1
qi
[0, qi− 1] where wc ∈ W(Cn) and ji ∈ [0, qi− 1], which we can

also write as

wG = wc +

s∑

j=1

∑

i∈Ij

ji
qi
.

Then by Lemma 4.3, there exists some Sc ∈ A(Cn) such that k(Sc) = wc and for each i ∈ [1, s] the
sequence Sc contains an element gi whose pi-valuation is maximal, that is, its pi-valuation is vpi

(n). Note
that the gi are not necessarily distinct, which causes slight complication.

We now construct, recursively, a sequence with the desired cross number. For clarity, we present the
first step in detail and then briefly line out the general step. Let g1 be an element in Sc such that the
p1-valuation of g1 is maximal. Let

g∗1 = g1 −
∑

i∈I1

jiei,

then ord(g∗1) = ord(g1). The sequence

S1 = g−1
1 g∗1Sc

∏

i∈I1

ejii

is a minimal zero-sum sequence over Cn ⊕ (⊕i∈I1〈ei〉) and k(S1) = k(Sc)−
1

ord(g1)
+ 1

ord(g∗

1
) +

∑

i∈I1

ji
qi

=

wc +
∑

i∈I1

ji
qi
. Moreover S1 contains an element whose order has pi-valuation equal to vpi

(n) for each

i ∈ [1, s].
The result now follows by repeating this process. Assume that for k ∈ [1, s − 1] we have a sequence

Sk over Cn ⊕
⊕k

j=1(⊕i∈Ij 〈ei〉) with cross number wc +
∑k

j=1

∑

i∈Ij

ji
qi

that contains an element of whose

pi-valuation is maximal, that is, its pi-valuation is vpi
(n) for each i ∈ [1, s].

Now let gk+1 be in Sk such that the pk+1-valuation of gk+1 is maximal. Let

g∗k+1 = gk+1 −
∑

i∈Ik+1

jiei,

then ord(g∗k+1) = ord(gk+1). The sequence

Sk+1 = g−1
k+1g

∗
k+1Sk

∏

i∈Ik+1

ejii

is a minimal zero-sum sequence over Cn ⊕
⊕k

j=1(⊕i∈Ij 〈ei〉) and k(Sk+1) = k(Sk)−
1

ord(gk+1)
+ 1

ord(g∗

k+1
) +

∑

i∈Ik+1

ji
qi

= wc+
∑k+1

j=1

∑

i∈Ij

ji
qi
. Moreover Sk+1 contains an element whose order has pi-valuation equal

to vpi
(n) for each i ∈ [1, s].

The proof is complete by observing that Ss has the required property. �

Theorem 4.4. Let G = H ⊕ Cn be a finite abelian group with exp(G) = n.

1. If n is odd, then
1

n
[2, n+ nk∗(H)] ⊆ W(G) .
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2. If n is even, then
2

n
[1,

1

2
(n+ n(k∗(H)− δ))] ⊆ W(G)

where δ = 0 if nk∗(H) is even and δ = 2−v2(exp(H)) otherwise.

We note that in case v2(exp(H)) < v2(n), we have W(G) ⊆ 2
n
[1, n

2K(G)] as recalled at the end of
Section 2 and moreover nk∗(H) is even. Thus the second part of the result is quite tight, too, in this case.
However, in case v2(exp(H)) = v2(n), there is a considerable discrepancy. In Proposition 5.4 we address
this in a special case.

Proof. We want to apply Proposition 4.2. Let q1, . . . , qt be prime powers such that H ∼=
⊕t

i=1 Cqi ,
moreover we assume that q1 ≤ · · · ≤ qs are powers of 2 while the other qi are odd. Let us denote
H = H2 ⊕Ho where |Ho| is odd and |H2| is a power of 2, then H2

∼=
⊕s

i=1 Cqi .

Now, G ∼=
⊕t

i=1 Cqi ⊕ Cn and each qi divides n, thus Proposition 4.2 yields

t∑

i=1

1

qi
[0, qi − 1] +W(Cn) ⊆ W(G).

As observed at the end of Section 2 we know that if n is odd, then 1
n
[2, n] ⊆ W(Cn) and if n is

even, then 2
n
[1, n2 ] ⊆ W(Cn). For n odd, using Lemma 3.7 as in the proof of Proposition 3.9, we get

∑t

i=1
1
qi
[0, qi − 1] + 1

n
[2, n] = 1

n
[2, n+ n

∑t

i=1
qi−1
qi

], which is precisely 1
n
[2, n+ nk∗(H)].

Likewise, if n is even and qi is odd, then qi |
n
2 , and we get again by Lemma 3.7 that

∑t

i=s+1
1
qi
[0, qi −

1] + 2
n
[1, n

2 ] =
2
n
[1, 12 (n+ n

∑t
i=s+1

qi−1
qi

)], which is precisely 2
n
[1, 1

2 (n+ nk∗(Ho))].

It remains to treat the contribution of the even qi. Using Lemma 3.7, we get
∑s

i=1
1
qi
[0, qi − 1] =

1
qs
[0, qsk

∗(H2)]. Now, if qs |
n
2 , we have again using Lemma 3.7 that 1

qs
[0, qsk

∗(H2)]+
2
n
[1, 1

2 (n+nk∗(Ho))] =
2
n
[1, 1

2 (n+ nk∗(H))]. If qs ∤
n
2 , then we note that

2

qs

[

0,
⌊qs
2
k
∗(H2)

⌋]

⊆
1

qs
[0, qsk

∗(H2)] ,

and thus 2
qs
[0,

⌊
qs
2 k

∗(H2)
⌋
] + 2

n
[1, 1

2 (n+ nk∗(Ho))] ⊆ W(G). Since qs
2 | n

2 , we can apply Lemma 3.7 to get

that
2

qs

[

0,
⌊qs
2
k
∗(H2)

⌋]

+
2

n

[

1,
1

2
(n+ nk∗(Ho))

]

equals
2

n

[

1,
1

2
(n+ nk∗(Ho)) +

n

qs

⌊qs
2
k
∗(H2)

⌋]

.

Now, if qsk
∗(H2) is even, this is again

2
n
[1, 12 (n+ nk∗(H))], while if qsk

∗(H2) is odd, it equals
2
n
[1, 12 (n+

n(k∗(H) − 1
qs
))]. To conlude the proof it remains to obverve that the parity of nk∗(H) and qsk

∗(H2)

coincide. �

5. When are w(G) and W(G) arithmetic progressions?

In earlier sections we showed that for a wide variety of groups the initial parts of the sets w(G) and
W(G) are arithmetic progressions with difference 1

exp(G) or sometimes 2
exp(G) . In the current section we

study when the full sets actually are arithmetic progressions. We first recall that this is the case for
p-groups, more precisely for G = Cn1

⊕ . . .⊕ Cnr
a finite abelian p-group with 1 = n0 < n1 | · · · | nr we

have that W(G) and w(G) are arithmetic progressions with difference 1
exp(G) , unless p = 2 and nr−1 < nr

in which case W(G) is an arithmetic progression with difference 2
exp(G) , see Theorem 4.1.

We now consider groups that are the direct sum of an elementary 2-group and a p-group and establish
in some cases that sets of cross numbers are arithmetic progressions, too. While this is a quite special
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class of group, there are reasons to assume that the phenomenon is quite rare; we discuss this at the end
of this paper.

We start with a result for cyclic groups; the assertion on W(G) is known by a result of Baginski et al.
[1, Theorem 2.1].

Theorem 5.1. Let G = C2pk with k ∈ N and p be a prime. Then

W(G) =
2

exp(G)
[1,

exp(G)

2
K
∗(G)] and w(G) =

1

exp(G)
[1, exp(G)k∗(G)] .

Proof. The statement on W(G) was proved by Baginski et al. in [1, Theorem 2.1]. We need to prove the

result for w(G). Based on the outcome concerning W(G), note that we have k(G) = k
∗(G) = 3pk−2

2pk . Now

for some g ∈ G with ord(g) = 2pk, take S = gi ∈ A∗(G) for i ∈ [1, 2pk − 1] whence

1

2pk
[1, 2pk − 1] ⊆ w(G) ⊆

1

2pk
[1, 3pk − 2]

It remains to obtain the missing elements as cross numbers of a zero-sum free sequence. Write G = C2⊕Cpk

and suppose (e, f) is a generating set of G with ord(e) = 2 and ord(f) = pk. For 1 ≤ l ≤ pk−1
2 , set

Bl = e(e+ f)fpk−1−l ∈ A∗(G) and B′
l = Bl(e+ f)−1 ∈ A∗(G)

then

k(Bl) =
3pk − 1− 2l

2pk
and k(B′

l) = k(Bl)−
1

2pk
.

Altogether, Bl and B′
l give us [2pk, 3pk − 3] ⊆ 2pkw(G). Now if we put l = 0 in Bl then B0 ∈ A(G) but

B′
0 = B0(e+ f)−1 ∈ A∗(G) and k(B′

0) =
3pk−2
2pk and the proof is complete. �

Combining this result with results from the preceding section we obtain more general results. We start
by a result for w(G), which are again easier to obtain.

Proposition 5.2. Let Gp be a p-group for an odd prime p and let G = Cr
2 ⊕Gp for some r ∈ N. Then

1

exp(G)
[1, exp(G)k∗(G)] ⊆ w(G) ⊆

1

exp(G)
[1, exp(G)k(G)]

In particular, if k(G) = k
∗(G), then equality holds and w(G) is an arithmetic progression.

Proof. The inclusion w(G) ⊆ 1
exp(G) [1, exp(G)k(G)] is obvious. We show 1

exp(G) [1, exp(G)k∗(G)] ⊆ w(G).

Let G =
∑t

i=1 Cqi ⊕Cn where n = exp(G) and the qi are prime-powers, that is in the current case either

a p-power or 2. By Proposition 3.8 we know that
∑t

i=1
1
qi
[0, qi − 1] + w(Cn) ⊆ w(G). By Theorem 5.1,

we know that w(Cn) =
1
n
[1, nk∗(Cn)]. Using Lemma 3.7, in the same was as in the proof of Proposition

3.9, we see that
∑t

i=1
1
qi
[0, qi − 1] + 1

n
[1, nk∗(Cn)] =

1
n
[1, nk∗(G)], and the claim is established. �

We now want a similar result for W(G). We need a technical lemma.

Lemma 5.3. Let G be a cyclic p-group with G = 〈f〉 where ord(f) = pk for some odd prime p and some

k ∈ N.

1. For each j ∈ [1, pk − 1], there exists some Sj ∈ A∗(G) such that σ(Sj) = −f and k(Sj) =
j

pk .

2. For each j ∈ [1, pk − 2], there exists some Tj ∈ A∗(G) such that σ(Tj) = −2f , −f /∈ Σ(Tj) and

k(Tj) =
j
pk .
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Proof. 1. Take Sj = f j−1((pk − j)f) for some j ∈ [1, pk − 1]. Then Sj is a zero-sum free sequence with

sum −f . We have k(Sj) =
j

pk unless pk − j is divisible by p. Suppose pk − j is a multiple of p, that means

j is a multiple of p, but then j − 1 is not a multiple of p. Therefore, S′
j = f j−2(2f)((pk − j − 1)f) is a

zero-sum free sequence that fulfills the requirements.
2. Take Tj = f j−1((pk − j − 1)f) for some j ∈ [1, pk − 2], then Tj is zero-sum free with sum −2f and

−f /∈ Σ(Tj). The cross number is j
pk unless pk − j − 1 is divisible by p. If pk − j − 1 is a multiple of p,

then pk − j − 2 is not and therefore T ′
j = f j−2(2f)((pk − j − 2)f) has the required properties. �

Proposition 5.4. Let Gp be a p-group for an odd prime p and let G = Cr
2 ⊕Gp for some r ∈ N.

1. If r = 1, then

2

exp(G)
[1,

exp(G)

2
K
∗(G)] ⊆ W(G) ⊆

2

exp(G)
[1,

exp(G)

2
K(G)]

In particular, if K(G) = K
∗(G) then equality holds and W(G) is an arithmetic progression with

difference 2
exp(G) .

2. If r ≥ 2, then

1

exp(G)
[2, exp(G)K∗(G)] ⊆ W(G) ⊆

1

exp(G)
[2, exp(G)K(G)]

In particular, if K(G) = K
∗(G) then equality holds and thus W(G) is an arithmetic progression

with difference 1
exp(G) .

Proof. The inclusions for W(G) are the well-known ones, see the end of Section 2. It remains to show
that W(G) contains the claimed elements. Assume Gp = Cpk1 ⊕ · · · ⊕ Cpkl for some ki ∈ N, i ∈ [1, l] and
k1 ≤ · · · ≤ kl. By Proposition 4.2, it suffices to show the results for G = Cr

2 ⊕ Cpkl only. Therefore, from
now on assume G = Cr

2 ⊕ Cpk for some k ∈ N.
The first assertion, then is precisely Theorem 5.1. We turn to the second assertion. We show the result

for r = 2 only, again the rest follows from Proposition 4.2. Write

G = C2 ⊕ C2 ⊕ Cpk = 〈e1〉 ⊕ 〈e2〉 ⊕ 〈f〉

where ord(f) = pk and ord(ei) = 2 for i ∈ [1, 2].

Then K
∗(G) = 2 1

2 + pk−1
pk + 1

2pk = 2 − 1
2pk . Now, 1

exp(G) [2, exp(G)] ⊆ W(G) by [4, Theorem 2]. For

j ∈ [1, pk − 1], let Aj = e1e2(e1 + e2 + f)Sj ∈ A(G) where Sj ∈ A∗(G) such that σ(Sj) = −f and

k(Sj) =
j

pk , which exists by Lemma 5.3. We have k(Aj) = 1 + 1+2j
2pk for j ∈ [1, pk − 1].

For j ∈ [1, pk − 2], let A′
j = e1e2(e1 + f)(e2 + f)Tj ∈ A(G) where Tj ∈ A∗(G) such that σ(Tj) = −2f ,

−f /∈ Σ(Tj), and k(Tj) =
j
pk , which exists by Lemma 5.3. We have k(A′

j) = 1 + 2+2j
2pk for j ∈ [1, pk − 2].

Whence 1 + 1
2pk and 1 + 2

2pk are the only cross numbers which are not yet realized by some minimal

zero-sum sequence in G but S = e1e2(e1 + f)(e2 − f) ∈ A(G) with k(S) = 1 + 1
2pk + 1

2pk and S =

(e1 + e2 − f)(e1 + f)(e2 + f)fpk−1 ∈ A(G) with k(S) = 1 + 1
2pk .

Thus we infer that 1
2pk [2, 2p

k
K
∗(G)] ⊆ W(G). The equality, under the assumption of K∗(G) = K(G), is

now obvious. �

In order to have unconditional results of the above mentioned type we study K(G) for these types of
groups, which also yields the result for k(G). We stress that for k(G) more general results are obtained in
[22, Theorem 7], however we could not see how to obtain the result for K(G) from those results and thus
present proofs even if they are quite similar.

Proposition 5.5. Let H be a finite abelian group of odd order. If K(H) = K
∗(H) and

∑

d|exp(H)
1
d
≤ 2,

then K(C2 ⊕H) = K
∗(C2 ⊕H).
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Proof. Let C2 = 〈e〉 with ord(e) = 2 and let H be a finite abelian group of odd order with
∑

d|exp(H)
1
d
< 2

and K
∗(H) = K(H), which implies in particular that k∗(H) = k(H). Let S ∈ A(C2 ⊕H) and assume for

a contradiction that k(S) > K
∗(C2 ⊕H). The condition on the cross number gives

k(S) ≥ K
∗(C2 ⊕H) +

1

2 exp(H)
= k(H) +

1

2
+

1

exp(H)
.

We distinguish two cases.
Case I: There is an element, say e, in supp(S) with order 2.
In this case we have k(Se−1) ≥ 1

exp(H) + k(H) = K(H). Consider π : C2 ⊕H → (C2 ⊕H)/〈e〉 ∼= H . We

note that π(Se−1) is a zero-sum sequence. Additionally, since the sum of Se−1 is e, it necessarily contains
an element of even order.

This implies that

k(π(Se−1)) > k(Se−1) = K(H),

which means π(Se−1) is not a minimal zero-sum sequence. Yet this yields a contradiction to S being a
minmal zero-sum sequence, as Se−1 has a proper subsequence with sum e or 0, which together with e
yields a proper zero-sum sequence of S.

Case II: There is no element of order 2 in supp(S). Let us write S = SHSe+H where SH ∈ F(H)
and SeH ∈ F(e + H). Now for some g1g2 | Se+H with ord(g1) = ord(g2), consider g1 + g2. Then

ord(g1 + g2) |
ord(g1)

2 , in particular 1
ord(g1)

+ 1
ord(g2)

≤ 1
ord(g1+g2)

. Thus without loss, we can assume that

Se+H contains at most 1 element of each order as if there are two elements of the same order in Se+H , we
can replace the two by their sum, which maintains the property that the sequence is a minimal zero-sum
sequence and does not decrease the cross number. Thus we assume S = SHR where R is a sequence in
e+H which contains at most one element of each order. Then

k(R) ≤
∑

16=d|exp(H)

1

2d
=

1

2

∑

16=d|exp(H)

1

d

and
k(SH) = k(S)− k(R)

≥ k(H) +
1

exp(H)
+

1

2
− k(R) .

Now
∑

16=d|exp(H)
1
d
≤ 1 implies that

k(SH) ≥
1

exp(H)
+ k(H)

which implies that SH is not a zero-sum free sequence in H . The only way how this does not contradict
the fact that S is a minimal zero-sum sequence is that S = SH that is R is trivial. Yet, in this case
k(SH) ≥ k(H) + 1

exp(H) +
1
2 > k(H) + 1

exp(H) , and thus S is not a minimal zero-sum sequence in C2 ⊕H ,

which again shows that it is not a minimal zero-sum sequence. �

For any p-group H = Gp, Proposition 5.5 implies that K∗(C2 ⊕Gp) = K(C2 ⊕Gp).

Theorem 5.6. Let G = C2
2 ⊕Gp where Gp is a p-group for some odd prime p. Then K

∗(G) = K(G).

Proof. Assume exp(Gp) = pk for some k ∈ N so exp(G) = 2pk and K
∗(G) = 1 + k

∗(Gp) +
1

2pk . We know

K
∗(G) ≤ K(G). Assume S ∈ A(G) with k(S) > K

∗(G). We must show that no such S exists. We have
k(S) ≥ K

∗(G) + 1
2pk = k(Gp) +

1
pk + 1. We distinguish three cases.

Case I: supp(S) contains two elements of order 2, say e1 and e2. Let C
2
2 = 〈e1, e2〉. Then

k(S(e1e2)
−1) ≥ k

∗(Gp) +
1

pk
= K

∗(Gp) = K(Gp)
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Now let π : G → G/〈e1, e2〉 ∼= Gp be the canonical epimorphism. Then π(S(e1e2)
−1) ∈ A(G/〈e1, e2〉) but

k(π(S(e1e2)
−1)) > k(S(e1e2)

−1) ≥ K(Gp)

because there is at least one element in S(e1e2)
−1 of even order, therefore π(S(e1e2)

−1) > K(Gp) contra-
dicting our assumption.

Case II: supp(S) contains exactly one element of order 2, say e. Let π1 : G → G/〈e〉 ∼= Gp ⊕ C2 be
the canonical epimorphism. Then π1(Se

−1) ∈ A(G/〈e〉) but

k(π1(Se
−1)) > k(Se−1)

> K
∗(G)−

1

2
= K

∗(G/〈e〉)

= K(G/〈e〉)

the first inequality is strict because there is at least one element in Se−1 of even order and the last equality
is due to Proposition 5.5, a contradiction.

Case III: supp(S) does not contain an element of order 2.

Now set S =
∏k

i=1 Spi

∏k
j=1 S2pj where Spi consists of elements of order pi for i ∈ [1, k] and S2pj consists

of elements of order 2pj for j ∈ [1, k]. Note that without loss we can assume |S2pj | ≤ 3 for all j ∈ [1, k] as
we can replace two elements of even order whose sum is not of even order by their sum (compare this to
the argument in Case II of the proof of Proposition 5.5). Then

k(
k∏

i=1

Spi) = k(S)− k(
k∏

j=1

S2pj )

≥ k(S)−
3

2

k∑

j=1

p−j

> k(S)−
3

2

1

p− 1

> k(S)− 1

≥ k(Gp) +
1

pk

= K(Gp)

a contradiction to S ∈ A(G) and hence the assertion follows.
�

Corollary 5.7. Let Gp be a p-group for an odd prime p and let G = Cr
2 ⊕Gp for some r ∈ N.

1. If r = 1, then

W(G) =
2

exp(G)
[1,

exp(G)

2
K
∗(G)].

2. If r = 2, then

W(G) =
1

exp(G)
[2, exp(G)K∗(G)].

Proof. This follows directly from Propositions 5.4, 5.5 and Theorem 5.6. �

The second point yields a class of groups, other than p-groups of odd order for which W(G) is an
arithmetic progressions with difference 1

exp(G) . This problem was raised in [4, Remark 5].
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Corollary 5.8. Let Gp be a p-group for an odd prime p and let G = Cr
2 ⊕Gp for some r ∈ N. If r ≤ 2,

then

w(G) =
1

exp(G)
[1, exp(G)k∗(G)].

Proof. This follows directly from Propositions 5.2, 5.5 and Theorem 5.6. �

We end this section with a reflection of the problem to which extent the sets W(G) and w(G) determine
the structure of G. Note that if |G|, |G′| ∈ {1, 2}, then W(G) = W(G′) = {1}.

Proposition 5.9. Let G and G′ be finite abelian groups.

1. Let |G|, |G′| ≥ 3. If W(G) = W(G′) then exp(G) = exp(G′) and K(G) = K(G′).
2. Let G be a p-group for some odd prime p. We have W(G) = W(G′) if and only if exp(G) = exp(G′)

and K(G) = K(G′).
3. Let G be a p-group for some prime p. We have w(G) = w(G′) if and only if exp(G) = exp(G′) and

k(G) = k(G′).

Proof. 1. Let W(G) = W(G′). Since minW(G) = 2
exp(G) and minW(G′) = 2

exp(G′) , we get from W(G) =

W(G′) that exp(G) = exp(G). Similarly, since maxW(G) = K(G) and maxW(G) = K(G), we get
K(G) = K(G).

2. Assume first that exp(G) = pk for some k ∈ N. We only need to show the reverse implication
of 1. and then the assertion is complete. If exp(G) = exp(G′), then exp(G′) = pk and G′ is also a
p-group. Now let K(G) = K(G′). Then by Theorem 4.1, we have W(G) = 1

exp(G) [2, exp(G)K(G)] =
1

exp(G′) [2, exp(G
′)K(G′)] = W(G′).

3. Suppose w(G) = w(G′). Then 1
exp(G) = minw(G) = minw(G′) = 1

exp(G′) whence exp(G) = exp(G′).

Moreover, we also get k(G) = maxw(G) = maxw(G) = k(G′). Conversely, suppose exp(G) = pk for some
k ≥ 1 and let pk = exp(G) = exp(G′). Then G′ is also a p group having the same exponent as G. Now if
k(G) = k(G′) too, then Corollary 3.6 implies that w(G) = w(G′). �

The following remark highlights some examples that complement the preceding result.

Remark 5.10.

1. Let G = C2k1 ⊕ . . . ⊕ C2kr with 1 ≤ k1 ≤ . . . ≤ kr−1 = kr and G′ = C2l1 ⊕ . . . ⊕ C2ls with
1 ≤ l1 ≤ . . . ≤ ls−1 < ls. Assume that kr = ls, that is, exp(G) = exp(G′). For suitable choices of
r, s and the ki, li it is possible to have K(G) = K(G′), too. Indeed, for instance take G = C3

4 and
G′ = C3

2 ⊕ C4 then exp(G) = exp(G′) = 4 and K(G) = K(G′) = 10
4 . But in any case, Theorem 4.1

tells that W(G) 6= W(G′). Thus the Proposition 5.9.2 only works for odd primes.
2. For some p-groupsG,G′, the group rank can still differ even if exp(G) = exp(G′), K(G) = K(G′) and

W(G) = W(G′). For instance, if G = C4
3 ⊕ C9 and G′ = C4

9 then W(G) = W(G′) by Theorem 4.1
but G and G′ have different rank. Therefore, exp(G) = exp(G′), K(G) = K(G′) and W(G) = W(G′)
does not determine the structure of the group.

6. Gap structure in W(Cr
p ⊕ Cs

q )

The goal of this section is to highlight the fact that there are gaps in the set of cross numbers for the
group G = Cr

p ⊕ Cs
q with p > q odd primes and r, s ∈ N at least if p is large relative to q. Note that

r = s = 1 is studied in detail in [1].
Since it is needed in this section we recall that for a finite abelian group G, the constant η(G) is defined

to be the smallest integer t such that every sequence S over G with |S| ≥ t has a zero-sum subsequence
T with length |T | ∈ [1, exp(G)], such a subsequence is called short. It is easy to see that this constant
is finite, for example exp(G)|G| is a trivial upper bound. In general, the exact value is unknown. By
definition, we have D(G) ≤ η(G). The exact value of η(G) is known for groups of rank at most two and
it is known that η(G) ≤ |G| always holds, we refer to [10, Chapter 5] for these and other results.
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The main results are the two corollaries at the end. We start with a few technical results. The following
lemma is useful to establish a link between w(G) and W(G).

Lemma 6.1. Let G = Cr
p ⊕ Cs

q for r, s ∈ N and p > q be primes. Let S ∈ A(G) such that

k(S) > max{
1 + r(p − 1)

p
,
1 + s(q − 1)

q
}.

Then S contains an element of order pq.

Proof. Assume to the contrary that S does not contain an element of order pq. Then S contains either
only elements of oder p or element of order q. This contradicts the assumption on the cross number. �

The following result allows to focus on w(G) when trying to show the existence of gaps.

Proposition 6.2. Let G = Cr
p ⊕ Cs

q for r, s ∈ N and p > q be primes. Then W(G) ⊆ 1
pq

+ w(G).

Proof. Let S ∈ A(G). We need to show that k(S) ∈ 1
pq

+ w(G). If k(S) > max{ 1+r(p−1)
p

, 1+s(q−1)
q

}, then

by Lemma 6.1 S contains an element g of order pq and thus g−1S is zero-sum free with cross number

k(S)− 1
pq
, which proves the claim. If k(S) ≤ max{ 1+r(p−1)

p
, 1+s(q−1)

q
}, then k(S) is in 1

pq
+w(G), simply as

by Theorem 3.5 the set contains every integral multiple of 1
pq

from 2
pq

up to pq+(r−1)(p−1)+(s−1)(q−1)
pq

. �

The following result gives some insight into the structure of zero-sum free sequences of large cross
number for groups of exponent pq for two odd primes p, q under the assumption that p is larger than q;
this assumption is implicit in the condition on t, if p is not large enough no such t exists and the result is
void. In other words the result is only relevant for p > η(Cs

q ).

Proposition 6.3. Let G = Cr
p ⊕ Cs

q for r, s ∈ N and p > q primes. Let S ∈ A∗(G) such that

k(S) ≥ k
∗(G)−

t

pq

where t ∈ N such that t ≤ p− η(Cs
q ) . Then S contains s(q − 1) elements of order q.

We first establish a lemma for sequences that do not contain an element of order at most q.

Lemma 6.4. Let G = Cr
p ⊕ Cs

q for r, s ∈ N and p > q be primes. Let S ∈ F(G \ Cs
q ) such that

k(S) ≥
r(p− 1)

p
+

η(Cs
q )

pq
.

Then S is not zero-sum free.

Proof. We write S = SpSpq where the elements in Sp and Spq have order p and pq, respectively.
Let us write Spq = Q1 . . . QlR such that σ(Qi) ∈ Cr

p and |Qi| ≤ q and l is maximal. In other words, the
images of sequences Qi are short zero-sum sequences overG/Cr

p
∼= Cs

q . Thus, we have that |R| ≤ η(Cs
q )−1.

Note that
pqk(SpSpq) = q|Sp|+ |Spq| ≤ q|Sp|+ ql + η(Cs

q )− 1

and pqk(SpSpq) ≥ qr(p− 1) + η(Cs
q ) by our assumption that k(S) ≥ r(p−1)

p
+

η(Cs
q )

pq
. Therefore |Sp|+ l >

r(p− 1). Thus, Spσ(Q1) . . . σ(Ql) is a sequence over Cr
p of length greater than r(p− 1) and hence cannot

be zero-sum free. It follows that SpQ1 . . .Ql is not zero-sum free either, which shows the claim. �

Proof of Proposition 6.3. We write S = SpSqSpq where the order of elements in Sj is j for each j ∈
{p, q, pq}. Since S is zero-sum free it is clear that |Sq| is at most s(q − 1). Assume |Sq| < s(q − 1). Then

k(SpSpq) ≥
r(p−1)

p
+ 1

q
− t

pq
. Since p− t ≥ η(Cs

q ) by assumption, it follows that k(SpSpq) ≥
r(p−1)

p
+

η(Cs
q )

pq
.

Now, by Lemma 6.4 the sequence SpSpq is not zero-sum free and thus S is not zero-sum free. This
contradiction establishes the claim. �
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We now determine the large values in the set of cross numbers.

Corollary 6.5. Let G = Cr
p ⊕ Cs

q for r, s ∈ N and p > q odd primes such that p ≥ η(Cs
q ) + 2q. Then

w(G) ⊆
1

pq
[1, pqk∗(G)] \ {

1

pq
[pqk∗(G)− (2q− 3), pqk∗(G)− (q + 1)] ∪

1

pq
[pqk∗(G)− (q − 2), pqk∗(G)− 1]}

while 1
pq
{pqk∗(G)− (2q−2), pqk∗(G)−q, pqk∗(G)− (q−1), pqk∗(G)} ⊆ w(G) and moreover k(G) = k

∗(G).

Proof. To prove the first inclusion and that k(G) = k
∗(G), let S ∈ A∗(G) such that k(S) ≥ k

∗(G)− 2q−1
pq

,

say k(S) = k
∗(G) − t

pq
with t ≤ 2q − 1. We need to show that t is not in [1, q − 2] ∪ [q + 1, 2q − 3]

and that t ≥ 0. Then, at the end of the proof we establish examples of sequences that yield the values
1
pq
{pqk∗(G)− (2q−2), pqk∗(G)− q, pqk∗(G)− (q−1), pqk∗(G)}, corresponding to t equal to 2q−2, q, q−1,

and 0.
We decompose S into subsequences according to the order of the elements, namely, let Sq, Sp and Spq

be the subsequences of S of elements of order q, p and pq, respectively.
First, we recall a result on Sq and then we investigate SpSpq. By Proposition 6.3 we know that

|Sq| = s(q − 1). Thus |Sq| = D(Cs
q ) − 1 and Sq is a zero-sum free sequence of maximal length over

Cs
q . Therefore Σ(Sq) = Cs

q \ {0} (see [10, Proposition 5.1.4]). Assume π : G → Cr
p to be the canonical

epimorphism. It follows that π(SpSpq) is zero-sum free in Cr
p . We get that |π(SpSpq)| ≤ r(p− 1).

This fairly strong condition on |π(SpSpq)| and thus on |SpSpq| has consequences for the values the cross

number of SpSpq can attain. Since we know that k(Sq) =
s(q−1)

q
, this directly yields results on k(S).

We analyze these restrictions in detail. We observe that k(SpSpq) =
|Sp|
p

+
|Spq|
pq

. Moreover, we know

that |Sp| + |Spq| ≤ r(p − 1). In particular, k(SpSpq) is at most
|Sp|+|Spq|

p
, and from |SpSpq| ≤ r(p − 1) it

follows that k(SpSpq) ≤
r(p−1)

p
. Since k(Sq) =

s(q−1)
q

, we get that k(S) ≤ s(q−1)
q

+ r(p−1)
p

= k
∗(G). Thus

there is no zero-sum free sequence of cross-number strictly greater than k
∗(G) and thus k∗(G) = k(G). By

the same argument, if |SpSpq| ≤ r(p− 1)− 2, then k(S) ≤ k
∗(G)− 2q

pq
, a contradiction to our assumption

on k(S).
Therefore, |SpSpq| ∈ {r(p − 1)− 1, r(p− 1)}. Let us observe possible values for k(SpSpq). For ease of

notation we set M = r(p−1)
p

, so that k∗(G) = s(q−1)
q

+M . We include all the relevant values in the table.

Note that for |Spq| larger than the values in the table, the value of the cross number of k(S) is below
bound we assumed initially.

|Sp|+ |Spq| |Spq| k(SpSpq)

r(p− 1)
0 r(p−1)

p
= M

1 r(p−1)
p

− 1
p
+ 1

pq
= M − q−1

pq

2 r(p−1)
p

− 2
p
+ 2

pq
= M − 2(q−1)

pq

r(p− 1)− 1
0 r(p−1)

p
− 1

p
= M − q

pq

1 r(p−1)
p

− 2
p
+ 1

pq
= M − 2q−1

pq

2 r(p−1)
p

− 3
p
+ 2

pq
= M − 3q−2

pq

Thus it can be seen that {k∗(G) − q−2
pq

, . . . , k∗(G) − 1
pq
} ∩ w(G) = ∅ and {k∗(G) − 2q−3

pq
, . . . , k∗(G) −

q+1
pq

} ∩ w(G) = ∅, as those values do not appear in the table. This establishes our claim.

It remains to show that 1
pq
{pqk∗(G) − (2q − 2), pqk∗(G) − q, pqk∗(G) − (q − 1), pqk∗(G)} ⊆ w(G). We

note that there are choices of the parameters in the table that yield these values. It remains to show
that zero-sum free sequences with the parameters as indicated in the table actually exist. We outline the
argument below.
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Of course a zero-sum free sequence Sq over Cs
q of length s(q− 1) exists, and we also have zero-sum free

sequence S′
p and S′′

p over Cr
p of length r(p− 1) and length r(p− 1)− 1, respectively. The sequences SqS

′
p

and SqS
′′
p are zero-sum free and yield the values in the table corresponding to |Spq| = 0.

Moreover for h ∈ Cs
q \ {0} and g | S′

p, the sequences g−1(g + h)S′
p and g−1(g + h)S′

pSq are still zero-
sum free (the projection of the former to Cr

p remains unchanged and is thus zero-sum free) and contain

exactly one element of order pq. Likewise for g1g2 | S′
p the sequences g−1

1 (g1 + h)g−1
2 (g2 + h)S′

p and

g−1
1 (g1+h)g−1

2 (g2+h)S′
p are still zero-sum free and contain exactly two elements of order pq. These yield

sequences for the values corresponding to |Sp| + |Spq| = r(p − 1) and |Spq| equal to 1 and 2. The same
argument for S′′

p , yields the values corresponding to |Sp|+ |Spq| = r(p − 1)− 1 and |Spq| equal to 1 and
2. �

The proof does not really make use of the fact that q is odd. But the claim is void for q = 2. The
situation is somewhat different for the proof below.

Corollary 6.6. Let G = Cr
p ⊕ Cs

q for r, s ∈ N and p > q odd primes such that p ≥ η(Cs
q ) + 2q. Then

W(G) ⊆
1

pq
[2, pqK∗(G)]\{

1

pq
[pqK∗(G)− (2q−3), pqK∗(G)− (q+1)]∪

1

pq
[pqK∗(G)− (q−2), pqK∗(G)−1]}

while 1
pq
{pqK∗(G) − (2q − 2), pqK∗(G) − q, pqK∗(G) − (q − 1), pqK∗(G)} ⊆ W(G) and moreover K(G) =

K
∗(G).

Proof. We know by Lemma 6.4 that W(G) ⊆ 1
pq

+w(G). This proves the claim by invoking Corollary 6.5,

except for the part regarding the existence of the values. However, to see this it suffices to note that we
can construct the zero-sum free sequences in the proof of Corollary 6.5 in such a way that the sum has
order pq. It is clear that the projection of the sum on Cr

p is non-zero. If the projection of the sum on Cs
q

is 0, then we could just use a different element h for our construction; indeed every other element of order
q would do in that case, and there is more than one, as q 6= 2. �

It would be possible to obtain more precise results on the sets of cross numbers in case p is much larger
than q. Broadly speaking the gap structure in W(Cr

p ⊕Cs
q ) follows the same pattern as that in the cyclic

case discussed in [1].
We conclude by pointing out that the phenomenon we observed in this section suggest that sets of

cross numbers are rarely arithmetic progressions. The point is that zero-sum free sequences whose cross
number is maximal should contain only elements whose order is not the exponent. Starting from such a
sequence, minor changes will usually not result in a sequence whose cross number is merely 1

exp(G) less

than the original sequence.
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