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ABSTRACT

This paper numerically investigates the impact of fluid rheology on the behaviors of a spherical capsule through a microchannel constriction.
Different flow scenarios are considered: a Newtonian capsule in a viscoelastic matrix, a Newtonian capsule in a Newtonian matrix, and a
viscoelastic capsule in a Newtonian matrix. The results demonstrate that the capsule’s lengths undergo oscillations during the passage
through the constriction, with three stages of evolution. When approaching the constriction, the capsule respectively experiences increase
and decrease in its length and height. While within or exiting the constriction, the length of the capsule continuously decreases, and the
height generally increases. As the capsule moves away from the constriction, the capsule relaxes to different profiles in different flows.
Detailed analysis on the effects of the fluid viscoelasticity on the capsule’s lengths in different stages is provided. In addition, the behaviors of
a red blood cell passing through a microchannel constriction are also examined. This study sheds light on the complex behaviors of a
spherical capsule and red blood cell in microchannel constriction, emphasizing the significant influence of fluid rheology on their
deformation and shape changes.

I. INTRODUCTION

A capsule refers to a flexible object consisting of a thin membrane
that encloses a liquid core within it. The behaviors of capsules have
garnered increasing interest owing to their significant role in various
biomedical and industrial applications. For instance, lipid membrane-
based carriers have been employed to transport drugs and vaccines,
even those that may be harmful to the human body.1–3

Great efforts have been devoted to experimental and numerical
investigations aimed at understanding the behavior of capsules in vari-
ous flow conditions (e.g., shear flow4–6 and channel flow7–9) In recent
years, particular interest have been placed on the study of deformation
and motion of elastic capsules through microchannel constrictions.
This research is motivated by its relevance to understanding the
behavior of cells in vessels with stenosis,10 as well as, applications on
manipulation of cells in microfluidics.11 Previous experimental studies
have mainly focused on measuring cell properties and manipulating
cells (e.g., cell sorting12,13) For instance, Luo and colleagues14 devel-
oped a microfluidic system incorporating a constriction to measure

the Young’s modulus of a cell. Their findings revealed a direct relation-
ship between the Young’s modulus of a cell and its length during
passage through the constriction. Additionally, contraction-expansion
structures in microchannels have been employed to effectively separate
cancer cells from whole human blood, resulting in a remarkably high
separation rate.13

Numerical simulations have also been conducted to investigate
the behavior of cells passing through constrictions in microchannels.
For example, Kusters et al.15 numerically investigated the forced trans-
port of an elastic particle through a narrow constriction and found
that whether the particle blocks or passes through the constriction
depends on both the size and length of the constriction segment. Park
and Dimitrakopoulos16 studied the effects of blockage ratio and viscos-
ity ratio on the deformation of a capsule through a microchannel con-
striction. Their findings showed that the size of the capsule
significantly affects the transition time and pressure drop through the
constriction, while the viscosity ratio has only a weak effect. In addi-
tion, Lu and Peng17 examined the deformation of a red blood cell

Effects of fluid rheology on dynamics of a capsule
through a microchannel constriction

1

https://doi.org/10.1063/5.0165614
https://doi.org/10.1063/5.0165614
https://doi.org/10.1063/5.0165614
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0165614
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0165614&domain=pdf&date_stamp=2023-09-01
https://orcid.org/0000-0001-5734-3272
https://orcid.org/0000-0002-9882-4942
https://orcid.org/0000-0002-5607-1882
https://orcid.org/0000-0002-4482-893X
https://orcid.org/0000-0002-1247-6896
mailto:bitxyq@bit.edu.cn
https://doi.org/10.1063/5.0165614
pubs.aip.org/aip/phf


passing through an extremely narrow (sub micrometer) constriction.
Their study reported that a higher pressure drop results in higher pass-
ing velocity and larger deformation, while the viscosity ratio does not
significantly affect the transition time and deformation of the capsule.

The aforementioned investigations have provided valuable
insights into the diverse behaviors of a capsule as it passes through a
constriction segment in a microchannel. However, these studies have
predominantly focused on Newtonian flows, neglecting the influence
of fluid rheology on the capsule’s behavior within constrictions. It is
worth noting that many fluids encountered in biological systems and
microfluidics exhibit non-Newtonian characteristics. For instance,
human blood plasma has been documented to demonstrate robust vis-
coelastic characteristics.18,19 Furthermore, viscoelastic behavior has
also been identified in the intracellular liquid (cell cytoplasm).20,21 The
presence of these internal and external viscoelastic fluids may signifi-
cantly impact the behavior of a capsule in confined flows. In this study,
we aim to investigate the influence of fluid viscoelasticity on the
dynamic behaviors of a capsule through a microchannel constriction.

The organization of the rest of this paper is as follows: The prob-
lem statement, the mathematical models and the numerical methods
utilized in the present work are introduced in Sec. II. In Sec. III, the
results and discussion are presented. Final conclusions are provided in
Sec. IV.

II. PROBLEM STATEMENT AND NUMERICAL METHODS
A. Problem statement

In this study, we investigate the dynamics of an initially spherical
capsule flowing through a microchannel with a constriction segment.
The geometric configuration of the microchannel is depicted in Fig. 1.
The channel has a length of 20Hc, where Hc represents the height of
the constriction segment. In addition, the microchannel has a square
cross-section with a side length of 4Hc. The origin is positioned at the
center of the microchannel. Consequently, the computational domain
spans over ½�10Hc; 10Hc� � ½�2Hc; 2Hc� � ½�2Hc; 2Hc� along the x-,
y-, and z-axis directions, while the constriction segments are located at
½�2Hc;2Hc��½�2Hc;2Hc��½Hc;2Hc� and ½�2Hc;2Hc��½�2Hc;2Hc�
�½�2Hc;�Hc�.

An initially spherical capsule, with a radius of R, is positioned at
the center of the microchannel’s cross-section with x ¼ �4Hc. The
fluids both inside and outside the capsule can be either Newtonian or
viscoelastic. To investigate the influence of fluid viscoelasticity on tran-
sient capsule behaviors, three distinct cases are simulated: a

Newtonian capsule in a Newtonian matrix (N/N flow) as the baseline,
a viscoelastic capsule in a Newtonian matrix (V/N flow), and a
Newtonian capsule in a viscoelastic matrix (N/V flow). The viscoelastic
properties of the fluid are modeled using the FENE-CR constitutive
equation, which is commonly employed to model Boger fluids.22 The
FENE-CR model is utilized wherever the fluid exhibits viscoelasticity,
while the Newtonian constitutive model is used elsewhere. The differ-
ent fluids (internal and external fluids) are separated by the capsule

FIG. 1. Geometry of the microchannel with a constriction segment.

TABLE I. Non-dimensional parameters.

Name Definition Value

Reynolds number Re ¼ qf UcW=lout
0 0.5

Weissenberg number Wi ¼ kp _ceff 0–100
The ratio of the internal
to the external total viscosity

nl ¼ lin
0 =l

out
0 0.2–5.0

The ratio of the solvent
to the total viscosity

b ¼ ls=l0 0.5, 1.0

Capillary number Ca ¼ lout
0 Uc=Es 0.0333

The non-dimensional
bending stiffness

eb ¼ Eb=EsR2 0.001

Blockage ratio Br ¼ 2R=2Hc 1.0
The non-dimensional
diffusion parameter

Pr ¼ j=ðUcWÞ 5:0� 10�3

TABLE II. Simulation parameters.

Name Symbol Value

Fluid density (kg=m�3) q 1000
Channel width (lm) W 40
Average inflow
velocity (m/s)

Uc 0.0125–0.025

Solvent viscosity
of external fluid (Pa s)

lout
s 1� 103

Polymer viscosity
of external fluid (Pa s)

lout
s 0–1� 103

Zero-shear viscosity
of external fluid (Pa s)

lout
0 1� 103–2� 103

Solvent viscosity of
internal fluid (Pa s)

lin
s 0:1� 103–10� 103

Polymer viscosity of
internal fluid (Pa s)

lin
s 0–5� 103

Zero-shear viscosity
of internal fluid (Pa s)

lin
0 0:2� 103–10� 103

Polymer extensibility
parameter for FENE-CR model

L2p 10�2 � 1010

Capsule radius (lm) R 10
Capsule stretching
modulus (N/m)

Es 3:75� 10�4–1:5� 10�3

Capsule bending
modulus (N m)

Eb 3:75� 10�17–1:5� 10�16
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membrane, and to identify different fluids, the front-tracking method
is employed. Detailed descriptions of the FENE-CR model and the
front tracking method can be found below.

The membrane of the 3D capsule is a closed elastic surface with
zero-thickness. The internal stretching and bending forces can be
induced by the deformation of the membrane, and they can obtained
by

f e þ f b ¼ �
dðWS þWBÞ

dX
; (1)

where X is the position of a node on the capsule membrane, f e and f b
are, respectively, the internal elastic and bending forces induced by the
deformation of the membrane, and WS and WB are total strain and
bending energies.

For the bending energy, one of the most extensively used models,
the Helfrich energy model, is employed, and it is given as23,24

WB ¼ Eb
2

ð
A
ð2H � c0Þ2dA; (2)

where Eb is the bending rigidity, H is the mean curvature, and c0 ¼ 0
is the spontaneous curvature.

For the membrane strain energy, two models are considered
here: the neo-Hookean law25,26 (strain-softening) and the Skalak’s
(SK) law27 (strain-hardening). For the neo-Hookean (NH) law which
was originally used to model the volume-incompressible rubber-like
materials, the strain energy takes the form of25,26

WS ¼
ð
A

Es
6

I1 þ
1

I2 þ 1
� 1

� �
dA; (3)

where A is the surface area, Es is the stretching modulus, and I1 and I2
are the strain invariants of the surface deformation, obtained with the
principal in-plane stretch ratios k1 and k2 according to

FIG. 2. The evolution of the lengths of the capsule as a function of the position of the capsule center xc at nl ¼ 1 and L2p ¼ 103, Wi¼ 1.0 and different Pr in the N/V flow. (a)
Length Lx, (b) width Ly, and height (c) Lz (scaled by the initial diameter of the capsule 2R).
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I1 ¼ k21 þ k22 � 2; (4)

I2 ¼ ðk1k2Þ2 � 1: (5)

For the Skalak’s (SK) law, the strain energy function due to the
stretching deformation is given by

WS ¼
ð
A

Es
12

I21 þ 2I1 � 2I2
� �

þ Ea
12

I22

� �
dA; (6)

where Ea is elastic modulus for surface-area conservation. In the pre-
sent study, the SK law with C¼ Ea/Es¼ 1 is used to model the capsule
membrane.

The fully developed laminar channel flow is applied at the inlet of
the channel, and Neumann boundary conditions are set at the outlet.
The non-slip boundary condition is imposed at the channel walls. The
flows of the fluid are described by the continuity and Navier–Stokes
equations28,29

r � u ¼ 0; (7)

@ðquÞ
@t
þr � ðquuÞ ¼ r � ð�pI þ 2lsDþ spÞ; (8)

where q is the fluid density, u is the velocity of the fluid, p is the
pressure, ls is the solvent dynamic viscosity, I is the identity tensor,
D ¼ 1

2 ½ruþ ðruÞT � is the strain rate tensor, and sp is the viscoelastic
stress tensor induced by the polymers in the solvent. In this work, the
FENE-CR model is utilized to determine the viscoelastic stress sp in
terms of the conformation tensor C as,28,30–32

sp ¼
lp

kp
FðCÞðC � IÞ ðFENE� CRÞ; (9)

where lp and kp are, respectively, the dynamic viscosity and relaxation
time of the polymer, and FðCÞ ¼ 1

1�trðCÞ=L2p
is the spring function with

Lp being the maximum extension length of the spring and tr(C) being

FIG. 3. The evolution of the lengths of the capsule as a function of the position of the capsule center xc at nl ¼ 1 and L2p ¼ 103 and different Wi in the N/V flow. (a) Length
Lx, (b) width Ly, and height (c) Lz (scaled by the initial diameter of the capsule 2R).
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the trace of the tensor C. The conformation tensor C is computed by
the following transport equations,

@C
@t
þ ðu � rÞC ¼� FðCÞ

kp
ðC � IÞ þ C � ru

þ ðruÞT � C ðFENE� CRÞ: (10)

To simulate multiphase flows, we employ the front-tracking
method.33,34 Following the treatment used in Luo et al.,35 the multi-
phase problem is treated as one-phase flow, with the sharp material
property (i.e., solvent viscosity ls, polymer viscosity lp, and polymer

relaxation time kp) variations across the capsule membrane. In this
case, the flows inside and outside the capsule can be simultaneously
obtained on a stationary Eulerian grid through the solution of a sin-
gle set of governing equations [i.e., Eqs. (7) and (8)] across the entire
computational domain. It should be noted that the constitutive
equations [i.e., Eqs. (9) and (10)] for the viscoelastic stress sp is also
solved over the whole domain, while lp ¼ 0 and kp ¼ 0 are utilized
for the Newtonian phase.

Within the front-tracking method, the material properties of the
fluid, including the solvent viscosity ls, polymer viscosity lp, and poly-
mer relaxation time kp, at a grid node x are computed as follows:

FIG. 5. (a) The instantaneous profiles of the capsule in plane y¼ 0 at xc=Hc ¼ �2:336 and different Wi. (b)-(d) The distributions of the pressure coefficient Cp at different Wi.

FIG. 4. The instantaneous profiles of the capsule at Wi¼ 2.0 at different positions: (a) xc=Hc ¼ �3:15, (b) xc=Hc ¼ 0, (c) xc=Hc ¼ 2:28 and (d) xc=Hc ¼ 4:62.
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wðxÞ ¼ wout þ win � wout
� �

IðxÞ; (11)

where w represents the material properties of the fluid, of
which the values inside and outside the capsule are denoted by the
superscripts “in” and “out,” respectively, and the indicator func-
tion IðxÞ takes a value of 1 inside the capsule and 0 outside the
capsule.

The non-dimensional parameters involved in this problem are:
the Reynolds number Re ¼ qf UcW=lout

0 , the Weissenberg number
Wi ¼ kp _ceff , the non-dimensional diffusion parameter Pr ¼ j=
ðUcWÞ, the ratio of the internal to the external total viscosity nl

¼ lin
0 =l

out
0 the ratio of the solvent to the total viscosity b ¼ ls=l0, the

polymer extensibility parameter L2p, the capillary number Ca

¼ lout
0 Uc=Es, the non-dimensional bending stiffness eb ¼ Eb=EsR2,

and the blockage ratio at the constriction segment Br ¼ 2R=2Hc,
where qf is the fluid density, Uc is the mean velocity of the flow applied
at the channel inlet, _ceff ¼ 2Uc=W is the effective wall shear rate, j is

the diffusion parameter, Es and Eb are, respectively, the stretching and
bending modulus of the capsule membrane, and lin

0 ¼ lin
s þ lin

p and

lout
0 ¼ lout

s þ lout
p are, respectively, the total viscosities of the internal

and external fluids of the capsule, with lin
s and lin

p , respectively, being

the solvent and polymer viscosities of the internal fluid and lout
s and

lout
p , respectively, being the solvent and polymer viscosities of the

external fluid. The non-dimensional parameters involved in the pre-
sent study is summarized in Table I. In addition, the real physical
parameters involved in this study are listed in Table II for possible
future comparison with experiments. It should be noted that the diffu-
sion parameter j is a parameter involved in the lattice Boltzmann
method for viscoelastic constitutive equations [Eq. (10)], and details
about this parameter can be found in our previous papers.28,32 The
grid spacing Dx ¼ Dy ¼ Dz ¼ R=20 is used in all simulations, and
validations have confirmed the mesh independence has been achieved
at this grid spacing.

FIG. 6. The distributions of the flowing velocity in x� axis direction (ux) at xc=Hc ¼ �0:226 and Wi ¼ (a) 0, (b) 0.5 and (c) 2.0.
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B. Numerical method

In this study, the continuity and Navier–Stokes equations [Eqs.
(7) and (8)], along with the constitutive equations for the FENE-CR
fluid [Eq. (10)], are solved using the lattice Boltzmann method.
Further details regarding the numerical method can be found in our
previous papers.4,28,32,36–39

Within the frame of the front-tracking method, it is necessary to
update the indicator function IðxÞ at each time step. This is achieved
by solving the following Poisson equation33,34

r2Iðx; tÞ ¼ r �
ð
A
D x � Xð ÞndA; (12)

where X and n are, respectively, the position vector and unit normal
vector of a Lagrangian node on the capsule membrane. A is the inter-
facial area. Dðx � XÞ is a smoothed approximation of the Dirac Delta
function.29,32 The Poisson equation [Eq. (12)] is solved by the finite
difference method as detailed in Refs. 33 and 34.

C. Validations

The method has been verified extensively for behaviors of a cap-
sule in fluid-structure interaction problems involving viscoelastic flu-
ids.4,28,32 In addition, further validation of the present method against
problems involving complex geometries is provided in the Subsections
1 and 2 of Appendix A.

Here, the effects of the dimensionless diffusion parameter on
the behaviors of the capsule are evaluated. To determine a suitable
value of the dimensionless diffusion parameter Pr involved in this
problem, several simulations are conducted with different values of
Pr at Wi¼ 1.0 for N/V flow. Figure 2 shows the evolutions of the
lengths of the capsule (length Lx, width Ly, and height Lz, scaled by
2R) at L2p ¼ 103,Wi¼ 1.0 and Pr ¼ 5:0� 10�3; 1:0� 10�2, and 2:0
�10�2. It is observed that the diffusion parameter Pr does not
remarkably affect the deformation of the capsule when Pr is not
larger than 1:0� 10�2. Therefore, Pr ¼ 5:0� 10�3 is utilized in the
present study.

FIG. 7. (a) The instantaneous profiles of the capsule in plane y¼ 0 at xc=Hc ¼ �0:226 and different Wi. (b)–(d) The distributions of the pressure coefficient Cp at
different Wi.
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III. RESULTS AND DISCUSSION

In this work, simulations are conducted at Re¼ 0.5,
Ca¼ 0.0333, eb ¼ 0:001, Br¼ 1.0, b ¼ 0:5; Pr ¼ 5� 10�3, and dif-
ferent values of Wi (ranging from 0 to 2.0 for the N/V flow and 0
to 100.0 for the V/N flow), nl (ranging from 0.2 to 5.0), L2p (ranging
from 10 to 103 for the N/V flow and 10�2 to 1010 for the V/N flow)
are utilized to evaluate effects of these parameters on the dynamics
of the capsule flowing through the channel constriction segment in
N/V and V/N flows.

A. A Newtonian capsule in a viscoelastic matrix
(N/V flow)

Here, the dynamics of a capsule enclosing a Newtonian fluid
in a viscoelastic matrix are examined. The effects of the
Weissenberg number Wi, the ratio of the total viscosity nl and the
extensibility parameter of the polymer L2p on the capsule deforma-
tion are studied.

1. Effects of Wi

The effects of the Weissenberg number Wi on the capsule
dynamics are studied here, and the matched total viscosity ratio
nl ¼ 1 and the extensibility parameter L2p ¼ 103 are used. Figure 3
shows evolutions of lengths (i.e., length Lx, width Ly, and height Lz,
scaled by 2R) of the capsule as a function of the capsule center position
xc=Hc (in x direction) at different Wi. It is found that all lengths of
the capsule experience oscillations when the capsule moves through
the channel constriction segment. This is understandable since the
capsule experiences changes in its shape (due to the interactions
between the capsule and the ambient fluid16) when passing through
the confinement and expansion structure of the channel (as shown in
Fig. 4). In addition, the behaviors of the capsule can be approximately
divided into three stages: (I) initial stage (xc=Hc < �1:5), where the
capsule is positioned on the left side of the constriction segment, and
approaches it; (II) transient stage (�1.5<xc=Hc < 3:5), where the cap-
sule is inside or just exiting the constriction segment; (III) relaxation
stage (xc=Hc > 3:5), where the capsule gradually moves away from

FIG. 8. (a) The instantaneous profiles of the capsule in plane y¼ 0 at xc=Hc ¼ 2:375 and different Wi. (b)–(d) The distributions of the flowing velocity in z� axis direction (uz)
at xc=Hc ¼ 2:375 at different Wi.
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the constriction segment. It is found that the Weissenberg number Wi
has varying effects on different lengths of the capsule. Specifically, a
higher Wi normally leads to a smaller width (Ly) of the capsule in all
three stages. In contrast, the effects of Wi on Lx and Lz are different
depending on the capsule position. At stage (I), a higher Wi leads to a
smaller Lx and a larger Lz of the capsule. To further illustrate the impact
ofWi on Lx and Lz during stage (I), Fig. 5(a) presents the instantaneous
profiles of the capsule at different Wi and xc=Hc ¼ �2:336 in the
plane y¼ 0. It is observed that a lower Wi leads to a more elongated
leading tip and a smaller height, and this is primarily due to different
pressure field distributions at varyingWi. The contours of the pressure
coefficient Cp ¼ ðp� pcÞ=ð0:5qf U

2
c Þ (pc denoted the pressure at the

capsule’s center) are displayed in Figs. 5(b)–5(d). The analysis reveals
that the pressure difference across the capsule’s leading tip drops with
increasing Wi, leading to reduced stretching force. This explains the
reduction in length (Lx) at higherWi values. In addition, the regions of
high pressure at the upper and lower sides of the capsule membrane
(indicated by black arrows) shrinks as Wi increases, leading to the

decreased compressive force. This accounts for the increasing height
(Lz) with risingWi.

During stage (II), the length of the capsule (Lx) experiences con-
tinuous decrease as xc increases, and this reduction is more pro-
nounced at smaller Wi. The decrease in the length Lx is caused by the
different flowing velocities at the head and tail of the capsule. Figure 6
shows the distributions of the flowing velocity in x� axis direction
(ux) at xc=Hc ¼ �0:226 forWi¼ 0, 0.5, and 2.0. It is observed that the
flowing velocity at the tail of the capsule surpasses that at the head for
all Wi, and this velocity difference contributes to the reduction in the
length of the capsule (Lx). In addition, it is also found that the high-
velocity region at the tail shrinks asWi increases, leading to the smaller
velocity disparity between the tail and head of the capsule at
higher Wi. This explains why Lx experiences a more rapid decline at
lowerWi.

The height of the capsule Lz increases with increasing xc, espe-
cially at xc=Hc larger than 2.0, where the capsule is moving out of the
constriction segment. This is because of the expansion in the cross

FIG. 9. (a) The instantaneous profiles of the capsule in plane y¼ 0 at xc=Hc ¼ 7:579 and different Wi. (b)-(d) The distributions of the pressure coefficient Cp at different Wi.

9

pubs.aip.org/aip/phf


section at the right side of the constriction segment.16 In addition, the
viscoelasticity of the external liquid has different effects on Lz depend-
ing on the position of the capsule. When xc=Hc is no larger than 1.5,
the height of the capsule Lz is normally larger at higherWi. In order to
further illustrate the influence of Wi on the capsule deformation at
xc=Hc < 1:5, the profiles of the capsule in plane y¼ 0 at Wi¼ 0, 0.5,
and 2.0 and xc=Hc ¼ �0:226 are shown in Fig. 7(a). It is found that
the tail of the capsule is more stretched (in z� axis direction) at higher
Wi. This is caused by different pressure distributions at the upper and
lower sides of the capsule tail. Figures 7(b)–7(d) illustrate the contours
of the pressure coefficient Cp at xc=Hc ¼ �0:226 andWi¼ 0, 0.5, and
2.0. It is observed that there are two low pressure centers inside capsule
tips, and the pressure at the upper and lower sides of the capsule tail
(pointed by black arrows) decreases with the increase inWi leading to
lower pressure differences across the upper and lower tips. This means
the compressing forces on the capsule tail is smaller at higher Wi,
which explains why higherWi leads to smaller Lz. The effect ofWi on

Lz is opposite at 1.5< xc=Hc < 3:5. The profiles of the capsule in plane
y¼ 0 atWi¼ 0, 0.5, and 2.0 and xc=Hc ¼ 2:375 are shown in Fig. 8(a)
to illustrate the influence of Wi on the capsule shape. It is observed
that the capsule has a larger height at a smaller Wi. This is induced by
the larger flowing velocities in the z� axis direction at the right side of
the constriction segment at a smallerWi [as shown in Figs. 8(b)–8(d)].

At stage (III), the capsule completely exits and moves away from
the constriction segment, and the shape of the capsule is supposed to
relax toward the “bullet” shape when placed in a Newtonian matrix.16

However, the deformation of the capsule is different when the capsule
is exposed to a viscoelastic matrix. It is observed that (from Fig. 3) the
height of the capsule (Lz) converges to close values at differentWi, but
the length of the capsule (Lx) increases with the increase in Wi. The
instantaneous profiles of the capsule in plane y¼ 0 atWi¼ 0, 0.5, and
2.0 and xc=Hc ¼ 7:579 are shown in Fig. 9(a). An obvious influence of
Wi is the elongated tail of the capsule, and it seems that the capsule
experiences stronger stretching forces at the upper and lower tips at

FIG. 10. The evolution of the lengths of the capsule as a function of the position of the capsule center xc at Wi¼ 1.0 and L2p ¼ 103 and different nl. (a) Length Lx, (b) width
Ly, and height (c) Lz (scaled by the initial diameter of the capsule 2R).
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higherWi. To explain the different deformations of the capsule at dif-
ferent Wi, the distributions of the pressure coefficient Cp at Wi¼ 0,
0.5, and 2.0 are, respectively, illustrated in Figs. 9(b)–9(d). It is found
that low pressure regions appear (pointed by black arrows) at lower
and upper tips of the capsule atWi¼ 0.5 and 2.0. In addition, the low
pressure regions expand with the increase in Wi, accompanied by the
decrease in the lowest pressure. This causes larger pressure differences
across the tips of the capsule leading to stronger stretching forces at
tips of the capsule at higher Wi. In contrast, low pressure regions do
not appear at the upper and lower tips of the capsule at Wi¼ 0 [as
shown in Fig. 9(b)]. This is why the capsule has larger Lx at higherWi.

2. Effects of nl and L2
p

The effects of the total viscosity ratio nl and the polymer
extensibility parameter L2p on the capsule dynamics are evaluated
here. Figure 10 shows the evolutions of the capsule lengths at

Wi¼ 1.0, L2p ¼ 103 and different nl. It is found that a global effect
of nl is to reduce the magnitude of oscillations of the capsule
lengths, which means the inner viscosity tends to hinder the cap-
sule deformation. This trend has also been reported in previous
studies on capsule deformation in a shear flow40 or through a con-
striction16 in N/N flows. It has been reported that the deformation
of the capsule is governed by the competitive relation of the
stresses of internal and external fluids.16 The external fluid tends to
improve the capsule deformation, and the external fluid stresses
tend hinder the capsule deformation. Here, the viscous stress of
the internal fluid is supposed to increase with increasing nl with
the stresses of outer fluid being the same. This means a higher hin-
dering effect is exerted on the capsule by the inner fluid at higher
nl, and this is why the capsule lengths tend to experience oscilla-
tions with deceasing magnitudes with the increase in nl.

Figure 11 illustrates the effects of the polymer extensibility
parameter L2p on the capsule deformation. It is observed that as L2p

FIG. 11. The evolution of the lengths of the capsule as a function of the position of the capsule center xc at Wi¼ 1.0 and nl ¼ 1:0 and different L2p. (a) Length Lx, (b) width Ly,
and height (c) Lz (scaled by the initial diameter of the capsule 2R). Please note that the evolutions of capsule lengths in the single-phase Newtonian flow with nl ¼ 1:0 are
drawn (blue lines) for reference.
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decreases, the capsule deformation gradually approaches that in a
single-phase Newtonian flow with the same total viscosity ratio. This
is due to the diminished viscoelastic effect of the fluid at lower L2p. The
polymer extensibility parameter L2p quantifies the largest extensional
length of polymer spring in the fluid, and a smaller L2p means polymer
molecules in the fluid can be less extended, leading to the smaller vis-
coelastic effect.41 This explains why the capsule deformation tends to
converge to that in the single-phase Newtonian flow with the decrease
in the extensibility parameter L2p.

B. A viscoelastic capsule in a Newtonian matrix
(V/N flow)

The transient behaviors of a viscoelastic capsule in a
Newtonian matrix are investigated in this section, and effects of
the Weissenberg number Wi, the ratio of the total viscosity nl and
the polymer extensibility parameter L2p on the capsule deformation
are evaluated.

1. Effects of Wi

The effects of the Weissenberg number Wi on the capsule
dynamics are studied here, and the total viscosity ratio nl ¼ 5:0 and
the polymer extensibility parameter L2P ¼ 1:0� 103 are used. Figure
12 shows evolutions of lengths Lx, Ly, and Lz (scaled by 2R) of the cap-
sule as a function of the capsule center position xc=Hc at different Wi.
It is observed that the behaviors of the capsule can be also divided into
three stages: (I) initial stage (xc=Hc < �1:5), (II) transient stage
(�1.5< xc=Hc < 4:0), and (III) relaxation stage (xc=Hc > 4:0).
However, the effects of the Weissenberg number Wi on lengths of the
capsule are remarkably different from those in the N/V flow. For
example, the higher Wi leads to the larger length Lx and the smaller
height Lz of the capsule at stage (I), and Lx and Lz, respectively, experi-
ences more rapid decrease and increase at higher Wi at stage (II).
These effects are opposite to those in the N/V flow (see Fig. 3 for more
details). To further show the effect ofWi on the capsule behaviors, the
instantaneous profiles of the capsule at xc=Hc ¼ �2:369, 0.581, 3.0,

FIG. 12. The evolution of the lengths of the capsule as a function of the position of the capsule center xc at nl ¼ 1 and b ¼ 0:5 and different Wi in the V/N flow. (a) Length
Lx, (b) width Ly, and height (c) Lz (scaled by the initial diameter of the capsule 2R).
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and 7.392 at different Wi are illustrated in Fig. 13. It is observed that
the capsule tends to have a more elongated leading tip and a smaller
height at higher Wi at stage (I), and it is also caused by the different
pressure distributions (as shown in Fig. 14). As observed in Fig. 14, the
pressure difference across the leading tip of the capsule increases with
the increase in Wi, leading to a higher stretching force at higher Wi.
That is why the capsule has a larger length (Lx) at larger Wi. In addi-
tion, the high pressure regions inside the capsule shrinks at larger Wi,
which causes the larger compressing force on the capsule. This is why
the capsule experiences a smaller height (Lz) at higherWi.

At stage (II), the length of the capsule Lx undergoes a continuous
decrease similar to the behavior observed in the N/V flow. However,
there is a distinct difference in the trend: as the Weissenberg number
(Wi) increases, the decrease in Lx becomes more rapid. Regarding the
height of the capsule, Lz, it initially demonstrates a gradual increase
when xc=Hc < 2:0. Subsequently, in the range of 2:0 < xc=Hc < 4:0,
there is a rapid rise in Lz. Additionally, higher values of Wi result in a
more rapid increase in Lz, especially at 2:0 < xc=Hc < 4:0. These

trends can be also attributed to the distinct distributions of the
pressure and velocity fields, which are similar to those discussed in
Sec. IIIA 1. However, for brevity, the detailed representations of these
pressure and velocity distributions are not presented here.

At stage (III), the capsule tends to relax to the same profile at all
Wi (same Lx, Ly, and Lz), which is further confirmed by the instanta-
neous profiles shown in Fig. 13(d). In addition, it has also been
observed that the viscoelasticity of the fluid does not significantly
impact the behaviors of the capsule as the value of Wi exceeds 2.0.
This trend has also been observed for the deformation of a capsule in
shear V/N flows,35 and it is caused by the strong relaxation effect of
the viscoelastic fluid.

2. Effects of nl and L2
p

In this section, the effects of the total viscosity ratio nl and the
polymer extensibility parameter L2p on the capsule dynamics in the
V/N flow are evaluated. Figure 15 shows the evolutions of the capsule

FIG. 13. The instantaneous profiles of the capsule at nl ¼ 5:0; L2P ¼ 1:0� 103 and different Wi at different positions: (a) xc=Hc ¼ �2:369, (b) xc=Hc ¼ 0:581, (c) xc=Hc

¼ 3:0 and (d) xc=Hc ¼ 7:392.
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FIG. 14. The distributions of the pressure coefficient Cp at nl ¼ 5:0; L2p ¼ 103 and (a) Wi¼ 0 and (b) Wi¼ 10.0.

FIG. 15. The evolution of the lengths of the capsule as a function of the position of the capsule center xc at Wi¼ 2.0 and L2p ¼ 103 and different nl. (a) Length Lx, (b) width
Ly, and height (c) Lz (scaled by the initial diameter of the capsule 2R).
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lengths at Wi¼ 2.0, L2p ¼ 103 and different nl. It is observed that the
lengths of the capsule experiences oscillations with smaller amplitudes
at higher nl as found in N/V flow. The effects of the polymer extensi-
bility parameter L2p on the capsule deformation in V/N flow is illus-
trated in Fig. 16. It is found that L2p does not show remarkable
influence on the deformation of the capsule within a wide range of L2P
(1:0� 10�2 � L2p � 1:0� 1010).

C. A biconcave capsule passing through
the constriction segment

Red blood cells as an essential component of blood may encoun-
ter different flow conditions (e.g., vessels with stenosis) when moving
in blood vessels. Therefore, it is beneficial to study the behaviors of a
red blood cell in a refined channel. Here, the deformation of a red
blood cell moving through a microchannel with a constriction is inves-
tigated. The geometry for a red blood cell is set as:42

x ¼ R0g; y ¼ R0f;

jzj ¼ 0:5R0 1� r2ð Þ0:5 0:207þ 2:003r2 � 1:123r4ð Þ;
(13)

where r2 ¼ g2 þ f2 and R0 is a constant used to adjust the volume of
the red blood cell.

In this section, the simulations are conducted with the following
parameter values: Re¼ 0.5, Ca¼ 0.167, eb ¼ 0:001, Br¼ 0.5,
b ¼ 0:5; Pr ¼ 5� 10�3, Wi ¼ 0� 2:0, nl ¼ 5:0, and L2p ¼ 103.
These parameters are defined based on the equivalent radius of the red
blood cell, R ¼ ð3V=4pÞ1=3, where V is the volume of the red blood
cell. Initially, the red blood cell is positioned at the center of the micro-
channel’s cross-section at x ¼ �8Hc. Figure 17 illustrates the serial
profiles of the red blood cell in both V/N and N/V flows at Wi¼ 2.0.
It is observed that the red blood cell undergoes shape changes in both
cases, and it exhibits a sharper leading tip in the microchannel con-
striction in the V/N flow compared with that in the N/V flow [as illus-
trated in Fig. 17(a)]. This observation aligns with the findings in the

FIG. 16. The evolution of the lengths of the capsule as a function of the position of the capsule center xc at Wi¼ 2.0, nl ¼ 1:0 and different L2p. (a) Length Lx, (b) width Ly,
and height (c) Lz (scaled by the initial diameter of the capsule 2R).
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FIG. 17. The serial profiles of the red blood cell through the microchannel constriction at Wi¼ 2.0 in (a) the V/N flow and (b) the N/V flow.

FIG. 18. The evolution of the lengths of the red blood cell in different flows (N/V, N/N and V/N) as a function of the center position xc at Wi¼ 2.0 and L2p ¼ 103 and nl ¼ 5:0.
(a) Length Lx, (b) width Ly, and height (c) Lz (scaled by the initial equivalent diameter of the red blood cell 2R).
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spherical capsule cases (Secs. IIIA and IIIB). Furthermore, in the V/N
flow, the red blood cell tends to relax into a “parachute” shape, while
in the N/V flow, it adopts a “sickle” shape.

To provide further insight into the behavior of red blood cells,
Fig. 18 presents the evolutions of the lengths Lx, Ly, and Lz (scaled by
2R) as a function of the capsule center position xc=Hc in V/N, N/N,
and N/V flows at Wi¼ 2.0. It can be observed that the lengths of the
red blood cell exhibit similar trends in V/N, N/N, and N/V flows
before entering the constriction segment. However, distinct variations
are observed as the red blood cell passes through the constriction seg-
ment. Specifically, the length of the red blood cell (Lx) increases more
rapidly in the N/V flow compared to N/N and V/N flows.
Additionally, the height of the red blood cell (Lz) undergoes a decline
rather than a continuous increase in N/N and V/N flows. After exiting
the constriction segment, the red blood cell tends to exhibit a larger
length (Lx) in the N/V flow compared with N/N and V/N flows, while

the height (Lz) gradually relaxes to similar values in all cases.
Additionally, the impact of the Weissenberg number on the deforma-
tion of the red blood cell as it traverses the constriction segment is fur-
ther explored. In Fig. 19, the evolution of capsule lengths at different
Wi values in the V/N flow is depicted. It reveals that the viscoelastic
properties of the inner fluid exert a subtle influence on capsule defor-
mation, manifesting as a marginal increase in Lx and a decrease in Lz
at the constriction segment. Figure 20 provides the insight into the
evolution of capsule lengths at different Wi in the N/V flow. Notably,
the viscoelasticity of the external fluid leads to a pronounced enhance-
ment of Lx at higher Wi. This pattern aligns with the observations
made in spherical capsule cases.

IV. CONCLUSIONS

In this work, the effects of the fluid rheology on the behaviors
of a spherical capsule passing through a microchannel constriction

FIG. 19. The evolution of the lengths of the red blood cell as a function of the center position xc at L2p ¼ 103; nl ¼ 5:0 and different Wi in the V/N flow. (a) Length Lx, (b) width
Ly, and height (c) Lz (scaled by the initial equivalent diameter of the red blood cell 2R).
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are numerically investigated, and the deformation of the capsule in
various types of multiphase flows (N/V, N/N, and V/N) is exam-
ined. The findings reveal that the lengths of the capsule (length Lx,
width Ly, and height Lz) undergo oscillations as the capsule passes
through the constriction segment, and their evolutions can be clas-
sified into three stages. Initially, as the capsule approaches the con-
striction segment, the length Lx increases, while the height Lz
decreases, with the increase in the capsule center position (xc=Hc).
The viscoelasticity of the fluid exerts different effects on the capsu-
le’s lengths in different flow types. In N/V flow, the capsule tends
to have a smaller length and a larger height, whereas in V/N flow,
the tendency is reversed. These differences arise due to the differ-
ent pressure field distributions induced by the viscoelastic property
of the fluid. During the transient stage, when the capsule is inside
or just exiting the constriction segment, Lx generally exhibits a
continuous decrease, whereas Lz typically shows an increase. In
N/V flow, the length Lx and the height Lz of the capsule show a less

rapid decrease and increase, respectively, at higher Wi, which is
opposite in V/N flow. As the capsule moves away from the micro-
channel constriction, during the relaxation stage, it tends to adopt
similar profiles in V/N and N/V flows while displaying elongated
tails in N/V flow. In addition, the red blood cell also experiences
changes in its shape during the passage through the microchannel
constriction, with a sharper leading tip within the constriction seg-
ment in the V/N flow, and it relaxes to different shapes in V/N and
N/V flows (the parachute shape in the V/N flow and the sickle
shape in the N/V flow).
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FIG. 20. The evolution of the lengths of the red blood cell as a function of the center position xc at L2p ¼ 103; nl ¼ 5:0 and different Wi in the N/V flow. (a) Length Lx, (b) width
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APPENDIX A: VALIDATIONS OF THE NUMERICAL
METHOD

1. A Newtonian spherical capsule flowing through
a constriction in a microchannel filled
with a Newtonian fluid

Here, the deformation of an initially spherical capsule enclos-
ing a Newtonian fluid through a constriction in a microchannel
filled with a Newtonian fluid is considered to validate the present
method. The geometry of the microchannel is shown in Fig. 1. A
fully developed Poiseuille flow with the averaged velocity Uc is
applied to the inlet of the microchannel (left boundary), the

Neumann boundary condition ð@u=@x ¼ 0) is given at the outflow
boundary (right boundary), and other boundaries are treated as
solid walls. The capsule (with an initial radius R) modeled by the
Skalak’s law (with C ¼ Ea=Es ¼ 1) is initially placed at center of the
cross-section of the microchannel and x ¼ �4Hc, and a prestress
ap ¼ 0:05 is enforced to the capsule to be consistent with the study
by Park and Dimitrakopoulos16 (Please refer to Park and
Dimitrakopoulos16 for more details about the prestress). Following
the configuration by Ref. 16, the capillary number Ca ¼ lout

s Uc=Es
¼ 0:0333 and the non-dimensional bending stiffness eb ¼ Eb=
ðEsR2Þ ¼ 0 are used here. Simulations are performed for different
viscosity ratios nl ¼ lin

s =l
out
s ¼ 1:0 and 5.0. The Reynolds number

is Re ¼ qout
f UcW=lout

s ¼ 0:25, and the blockage ratio at the con-
traction segment is Br ¼ 2R=2Hc ¼ 0:9.

The grid spacing used is Dx ¼ Dy ¼ Dz ¼W=80, which is
sufficient to reach the independence of the mesh size for this prob-
lem.43 Figure 21 shows the evolution of the lengths of the capsule
(length Lx, width Ly, and height Lz, normalized with 2R) with the
capsule center position xc (in x-axis direction), and the present
results are compared with the results from Park and
Dimitrakopoulos.16 It is found the present results show very good
agreement with those of the previous study.

FIG. 21. The evolution of the lengths of the capsule as a function of the position of the capsule center at Ca¼ 0.0333 and n ¼ (a) 1.0 and (b) 5.0. Here, xc is the position of
the capsule center in the x� axis direction.

FIG. 22. Schematic diagram of the planar 4:1 contraction flow.
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2. The flow of an Oldroyd-B fluid through the 4:1 planar
contraction

The flow of a viscoelastic fluid through a contraction geometry
exhibits some critical and intricate characteristics, which makes it a
benchmark problem for validations of numerical method involving
complex geometries. Here, the flow of an Oldroyd-B fluid through a
4:1 planar contraction is investigated to further validation the pre-
sent method in problems involving complex geometries. The sche-
matic diagram for this problem is illustrated in Fig. 22. The fully
developed Poiseuille flow (with the average velocity U1) is imposed
at the inlet and the Neumann boundary condition is applied at the
outlet. The non-slip boundary conditions are used at upper and
lower walls. Here, the Reynolds number used is the Reynolds num-
ber Re ¼ qf U1W=l0 ¼ 0:067, the Weissenberg number is defined
as Wi ¼ kpU2=L with U2 being the downstream average velocity,
the non-dimensional diffusion parameter used is Pr ¼ j=ðU1WÞ
¼ 5� 10�3, and the ratio of the solvent to the total viscosity is
b ¼ ls=l0 ¼ 1=9. Here, Wi ¼ 0; 0.5, 1.0 and 2.0 are considered.
Following the study by Su et al.,44 the grid spacing Dx ¼ Dy
¼ L=80 is utilized in the simulations. Figure 23 illustrates the evolu-
tion of the salient vortex length XR as a function of the Weissenberg

FIG. 24. Flow patterns of the Oldroyd-B fluid at: (a) Wi¼ 0, (b) Wi¼ 0.5, (c) Wi¼ 1.0, and (d) Wi¼ 2.0.

FIG. 23. The evolution of the salient vortex length XR as a function of the
Weissenberg number Wi.
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number Wi. It is found that the salient vortex length XR decreases
with increasing Wi, and the present results show good agreement
with the previous numerical data in Refs. 44–47. Figure 24 illus-
trates the flow patterns of the Oldroyd-B fluid at four different Wi
(Wi ¼ 0; 0.5, 1.0 and 2.0). It has been observed that the lip vortex
emerges and grows as Wi is increased, but it is discernible until Wi
reaches 2.0. These findings are consistent with Refs. 44 and 47.
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