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FORMALIZATION OF DERIVED CATEGORIES IN LEAN/MATHLIB

JOËL RIOU

Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France

Abstract. This paper outlines the formalization of derived categories in the mathematical library
of the proof assistant Lean 4. The derived category D(C) of any abelian category C is formalized as
the localization of the category of unbounded cochain complexes with respect to the class of quasi-
isomorphisms, and it is endowed with a triangulated structure.
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1. Introduction

1.1. Derived categories are not absolutely necessary in order to do homological algebra. Indeed,
when I initially learnt about this subject, it was all about studying projective resolutions of modules,
or homotopies between morphisms of chain complexes of free abelian groups in the context of the
singular homology of topological spaces. I learnt very nice theorems, but some details surprised me
then, as in the universal coefficient theorem for singular homology:

Theorem 1.1.1 ([36, Theorem 5.2.8]). Let X be a topological space. Let A be an abelian group. For
any n ∈ Z, there is a canonical short exact sequence:

0→ Hn(X)⊗Z A→ Hn(X,A)→ TorZ
1(Hn−1(X), A)→ 0

Moreover, this exact sequence splits (noncanonically).

I could understand the proof that the sequence splits, but the statement still looked mysterious
to me. Which phenomenon was responsible for this? I understood this much better after learning
about derived categories [40]. In the derived category of an abelian category C, instead of working
up to homotopy, we formally invert quasi-isomorphisms (i.e. morphisms of complexes that induce
isomorphisms in homology): for example, if P• is a projective resolution of an object X in C, then it
can be understood as a quasi-isomorphism P• → X,1 so that we get an isomorphism P• ∼= X in the
derived category D(C). Because Z is a principal ring, any submodule of a free Z-module is free, and
then any Z-module M admits a very short free resolution 0 → P1 → P0 → M → 0, which implies
the vanishing of Extq groups for q ≥ 2. Using this, one may obtain that any object of the derived
category of abelian groups, in particular the singular chain complex C⋆X of a topological space X,
decomposes (noncanonically) in the derived category as a direct sum C⋆X ∼= ⊕n∈NHn(X)[−n]. This
gives a more satisfactory explanation for the existence of the splitting in 1.1.1. Similarly, degeneracy
of spectral sequences can be explained using splittings of objects in derived categories, as it was done

E-mail address: joel.riou@universite-paris-saclay.fr.
1Here, we identify X to the complex · · · → 0 → 0 → X → 0 → 0 → . . . where X sits in degree 0.
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2 FORMALIZATION OF DERIVED CATEGORIES IN LEAN/MATHLIB

in algebraic geometry for the degeneracy of the Leray spectral sequence in étale cohomology with Qℓ

coefficients for a projective and smooth morphism such that the fibers satisfy the conclusion of the
hard Leftschetz theorem [11].

1.2. Derived categories were initially introduced by Grothendieck and Verdier in order to study the
cohomology of schemes, first for coherent sheaves [17], as an extension of Serre’s duality, and secondly
by the étale cohomology of schemes, towards the proof of the Weil conjectures [12]. Actually, in
the étale context, the derived categories are not just a tool in order to prove theorems, but the
important statements about the “six operations” in the étale formalism can be phrased only using
derived categories.2

1.3. The main result in this paper is the formalization in Lean/mathlib of the derived category
of any abelian category. An application to the construction of spectral sequences, in particular
the Grothendieck spectral sequence for the composition of right derived functors is also obtained
(see 5.4.5.1).

1.4. Derived categories already appeared in some form in the Liquid Tensor Experiment (LTE),
a team effort led by Johan Commelin to formalize in Lean a highly nontrival result in condensed
mathematics by Dustin Clausen and Peter Scholze [8] [32]. However, only the bounded above derived
category was considered and it was defined only for an abelian category C with enough projectives
as the homotopy category of bounded above cochain complexes of projective objects in C. Then, the
major novelty in my formalization is that it relies on the definition of the derived category in general
as a localized category (see section 3) obtained by formally inverting quasi-isomorphisms between
arbitrary cochain complexes. Spectral sequences also appeared in a previous work in Lean 2 [38],
where the Serre spectral sequence of a fibration [33] was constructed. A spectacular formalization of
the Brouwer fixed-point theorem in Lean was obtained by Brendan Murphy as a consequence of his
formalization of singular homology [28].

1.5. I would like to say that this formalization in the Lean proof assistant developed mainly by
Leonardo de Moura [27] builds on mathlib, which is the community developed mathematical library
for Lean [37]. This includes the general category theory initially developed by Kim Morrison as well
as the general results on abelian categories by Markus Himmel [18]. This work is also very much a
“post-LTE” development, because the design of homological complexes in mathlib owes a lot to the
LTE project and the lessons learned from it were very helpful in order to develop homology for mathlib
(see 2.1).

1.6. Homological algebra has been formalized in other proof assistants and studied in an effective
manner [31] in specialized software. The Kenzo program [13] is a tool that is able to compute homology
groups and homotopy groups. Part of the theorems it relies on have been formally verified in the proof
assistant Isabelle/HOL [2]. The approach in this paper is decidedly non-constructive and non-effective!
However, I wish that the software API I have contributed in Lean/mathlib could be used in order to
formally certify computations in homology.

1.7. Automated methods for diagram chasing in homological algebra have been studied in [26]
and [16]. This formalization of derived categories (and spectral sequences) includes a certain number
of diagram chases,3 but the strategy I have used (see 2.2) makes diagram chasing in general abelian
categories almost as easy as it would be in the category of abelian groups. Then, even though at-
tempts at automation of diagram chasing are very interesting developments, I have not felt it would
have eased significantly this work if such tools had been available.

2See [20] for more information about the development of derived categories.
3Actually, for the formalization of derived categories, only a handful of diagram chases are necessary. Spectral

sequences require much more!
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1.8. In a near future, it shall become possible to redefine the Ext-groups in mathlib using a definition
based on derived categories (see 5.1). More formal properties such as long exact sequences of Ext-
groups shall become accessible, which should allow the development of more cohomology theory in
Lean/mathlib. In particular, it will be possible to develop sheaf cohomology as Ext-groups in categories
of abelian sheaves (or using the right derived functor approach 5.3.3). It should also enable more
computations in group cohomology (which was introduced in mathlib by Amelia Livingston [23]).

1.9. This formalization was carried on as the GitHub branch jriou_localization of mathlib.
The about 150 pull requests (PR) to mathlib which were extracted from this branch are listed at
https://github.com/leanprover-community/mathlib4/pull/4197. In order to support the con-
tent in this paper, it is accompanied with a Lean file in the project https://github.com/joelriou/
lean-derived-categories which allows an easy cross-reference between mathematical statements
and definitions formalized in Lean.

1.10. Throughout the paper, mathlib notations are used whenever it is possible. For example, the
composition of two morphisms f : X → Y and g : Y → Z shall be denoted f ≫ g (and not gf). A
functor from a category C to a category D shall be denoted F : C⇀⇁D. Composition of functors is
denoted F ≫ G (and not GF ).

1.11. Acknowledgements. I would like to acknowledge the Lean/mathlib community for creating
this amazing framework for the formalization of mathematics. I would like to thank particularly
Patrick Massot for mentioning the existence of Lean to me, Floris van Doorn and Kyle Miller for
their deep understanding of Lean/mathlib which enabled them to answer my questions while they
were both postdocs in Orsay in 2022/2023. I thank Kevin Buzzard for his enthusiasm about my
formalization projects. Finally, I want to acknowledge the extreme dedication of Johan Commelin
towards the mathlib community, and his massive reviewing work of my pull requests to mathlib.

2. Homology and diagram chasing in general abelian categories

2.1. The homology refactor.

2.1.1. In an abelian category C, given two composable morphisms X1
f→ X2

g→ X3 such that
w : f ≫ g = 0, one may define the homology at X2 as the cokernel of the canonical map Im f →
ker g. This was essentially the definition in mathlib until I completed the homology refactor (a se-
quence of about 70 pull requests which was finished by PR #8706). This homology refactor had
several goals:

• change the definition of homology and exactness so that it becomes self-dual (i.e. we may
easily relate these notions in the opposite category and the original category);
• develop a convenient software API in order to manipulate homology objects and exactness.

One of the main ideas in order to achieve this was to introduce the category of “short com-
plexes”. Instead of using Lean terms like homology f g w, the idea was to introduce a structure
ShortComplex C which bundles all this data:
structure ShortComplex [HasZeroMorphisms C] where

{X₁ X₂ X₃ : C}

f : X₁ → X₂

g : X₂ → X₃

zero : f ≫ g = 0

Then, it became more convenient to introduce a single variable S : ShortComplex C, and refer to
the homology as S.homology. That ShortComplex C is a category makes it easy to study morphisms
S.homology → S'.homology induced by morphisms S → S' of short complexes.

https://github.com/leanprover-community/mathlib4/pull/4197
https://github.com/joelriou/lean-derived-categories
https://github.com/joelriou/lean-derived-categories
https://github.com/leanprover-community/mathlib4/pull/8706
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2.1.2. In order to define the homology of S, I introduced the notion of left homology data for S.
Such a h : S.LeftHomologyData involves the data of a morphism h.K → S.X2 which identifies to
the kernel of S.g : S.X2 → S.X3 and a morphism h.K → h.H which identifies to the cokernel of
the induced morphism S.X1 → h.K. In dual terms, we define h' : S.RightHomologyData to be
the data of a morphism S.X2 → h′.Q which identifies to the cokernel of S.f : S.X1 → S.X2 and a
morphism h′.H → h′.Q which identifies to the kernel of the induced morphism h′.Q→ S.X3. Then, a
homology data of S consists of left and right homology data h and h′, together with an isomorphism
h.H ∼= h′.H which makes the pentagon commute:

S.X1

h.f ′ ��?
??

??
S.f // S.X2

S.g //

h′.p '' ''PP
PPP

PPP
S.X3

h.K

h.π �� ��=
==

==

* 
 h.i

77oooooooo
h′.Q

h′.g′

??~~~~~

h.H
∼ // h′.H

/ � h′.ι

??~~~~

When such a homology data exists, we say that S “has homology”. Under this assumption, which
is the type class S.HasHomology, the homology S.homology of S is defined as h.H for an arbitrary
choice of such a homology data. Then, we define the object S.cycles, the cycles of S, as h.K. We also
introduce the dual notion S.opcycles, the “opcycles” of S, which is defined as h′.Q. Then, one may
understand the homology of S both as a quotient of S.cycles and as a subobject of S.opcycles. We
say that S is exact (property S.Exact) when there is such a homology data and that the homology is
a zero object.

One of the key remarks in order to understand the reason for this change of definition is that in the
diagram above, the object h.K does not need to be defined as kernel S.g. What is important in this
approach is that this object h.K is equipped with a morphism h.i : h.K → S.X2 which is a kernel of the
morphism S.g : S.X2 → S.X3, which in mathlib terms is formulated as the fields wi : i ≫ S.g = 0

and hi : IsLimit (KernelFork.ofι i wi) of the left homology data structure h. Similar remarks
apply to the objects h′.Q, h.H and h′.H.

Left and right homology data behave well with respect to the application of exact functors. Actually,
I initially introduced the notion of left homology data as part of the LTE in order to show that
“homology commutes with the application of exact functors”. The idea of redefining homology by
using a structure similar to “homology data” was first formulated by Adam Topaz.

As left and right homology data are switched by passing to the opposite category, it is clear that
these notions of homology and exactness of a short complex are self-dual.

In an abelian category, it is possible to show that all short complexes “have homology”, so that the
notion of homology defined here is consistent with the standard mathematical definition.

2.1.3. A significant advantage of this definition of homology and exactness is that it makes sense in
very general categories. For example, if S is a short complex in any preadditive category C, we may
introduce the notion of splitting of S:
structure Splitting (S : ShortComplex C) where

/-- a retraction of `S.f` -/

r : S.X₂ → S.X₁

/-- a section of `S.g` -/

s : S.X₃ → S.X₂

/-- the condition that `r` is a retraction of `S.f` -/

f_r : S.f ≫ r = 1 S.X₁ := by aesop_cat

/-- the condition that `s` is a section of `S.g` -/

s_g : s ≫ S.g = 1 S.X₃ := by aesop_cat

/-- the compatibility between the given section and retraction -/

id : r ≫ S.f + S.g ≫ s = 1 S.X₂ := by aesop_cat

In order to construct a splitting of S, we have to provide the morphisms r and s, but usually some
of the three equations f_r, s_g and id can be proven automatically, which is the reason why in this
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code, the default value for the three proofs is by aesop_cat: category theory in mathlib relies heavily
on the aesop automation tactic [22].

Even though not all morphisms in C may have kernels or cokernels, it is still possible to show that
if S is split (and C has a zero object), then S is a (short) exact short complex.

2.1.4. In mathlib, we have a category of homological complexes HomologicalComplex C c for a
category C (with zero morphisms) and c : ComplexShape ι. The type ι is the type of indices for
the complexes (like ℕ or ℤ) and c determines what are the directions of differentials. For example,
CochainComplex C ℤ is an abbreviation for HomologicalComplex C (ComplexShape.up ℤ) which
means that for a cochain complex K, the relevant differentials are K.d i j : K.X i → K.X j when
i+ 1 = j, which can be represented informally as follows when ι = ℤ:

. . .
d−→ Kn−2 d−→ Kn−1 d−→ Kn d−→ Kn+1 d−→ Kn+2 d−→ . . .

As part of the implementation design of homological complexes in mathlib, the differential K.d i j

is defined even if i+ 1 ̸= j, in which case it has to be zero.
In the general situation, if K is a homological complex, and if i, j and k are indices in ι, then we may

consider the short complex K.sc' i j k corresponding to the diagram K.X i → K.X j → K.X k.
If i and k are respectively the previous and the next element of j for the complex shape c, then the
homology of this short complex is by definition the homology of K in degree j: all the software API
for the homology of homological complexes is based on the corresponding API for short complexes.

2.1.5. Besides changing the definitions, most of the work in this homology refactor corresponds to the
development of a basic software API in order to manipulate homology objects, cycles and “opcycles”:
this does not involve any significant lemma or theorem!

2.2. Diagram chasing.

2.2.1. In the category of abelian groups, a morphism f : X → Y is a monomorphism (resp. an
epimorphism) if and only if f is an injective (resp. surjective) map, and a short complex X1

f→
X2

g→ X3 is exact if and only if for any x2 ∈ X2 such that g(x2) = 0, there exists x1 ∈ X1 such
that x2 = f(x1). These criteria allow a type of reasoning known as “diagram chasing”: categorical
properties can be rephased in terms of properties of elements in the abelian groups which appear in
a certain diagram. In the category of abelian groups, the five lemma or the snake lemma can be
obtained in this way.

There is another well-known situation where diagram chasing is possible. Let S be a topological
space. Let f : X → Y be a morphism of sheaves of abelian groups on S. Then, f is a monomorphism
if and only if for any open subset U of S, the map fU : X(U) → Y (U) is injective. However,
epimorphisms of sheaves cannot be characterized in such an easy way: instead of saying that an
element in Y (U) can be lifted to an element of X(U), we should only require that it can be lifted
locally. More precisely, it is possible to show that f is an epimorphism in the category of sheaves of
abelian groups if and only if f is locally surjective, i.e. for any open subset U of S and y ∈ Y (U),
there exists an open cover (Ui)i∈I of U and sections xi ∈ X(Ui) such that for all i ∈ I, f(xi) is the
restriction of y to Ui. Using these criteria, it is possible to do diagram chasing in categories of sheaves.

2.2.2. In order to formalize homological algebra, it is important to be able to obtain lemmas like
the five lemma in general abelian categories. If it were formalized, an abstract approach would be
given by the Freyd–Mitchell embedding theorem of (small) abelian categories in categories of modules
over a ring [25, Theorem 4.4]. Markus Himmel was able to obtain basic homological algebra lemmas
in general abelian categories [18] by formalizing a certain type of pseudo-elements attached to any
object in an abelian category [5]. As this particular type of pseudo-elements has some issues4, I have
developed a different approach which does not require the introduction of auxiliary types like pseudo-
elements: the argumentation shall only involve morphisms in the abelian category. As we shall see in
2.2.3, this approach also has a sheaf-theoretic interpretation.

4See https://mathoverflow.net/questions/419888/pullback-and-pseudoelements/419951 for the problematic
behavior of these pseudo-elements with respect to pullbacks, which was raised by Riccardo Brasca during the LTE.

https://mathoverflow.net/questions/419888/pullback-and-pseudoelements/419951
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The key observation is the following lemma which characterizes epimorphisms in any abelian cate-
gory C:
lemma epi_iff_surjective_up_to_refinements (f : X → Y) :

Epi f ↔ ∀ {A : C} (y : A → Y),

∃ (A' : C) (π : A' → A) (_ : Epi π) (x : A' → X), π ≫ y = x ≫ f := ...

The content of this lemma is illustrated in the following diagram:

A′ x //

π
����

X

f
����

A
y // Y

Indeed, let f : X → Y be an epimorphism, and y : A→ Y be any morphism. It would be too optimistic
to expect the existence of a morphism A → X which makes the triangle commute. However, there
exists an epimorphism π : A′ → A and a morphism x : A′ → X such that the square above commutes:
it suffices to take the fiber product A′ of y and f . Conversely, when this property holds for any
morphism y : A→ Y (in particular for the identity of Y ), then f is an epimorphism.

Then, the idea is to think of a morphism y : A→ Y as an “element” of Y . If f is an epimorphism,
it may not be possible to lift it to an element A → X of X. However, as the lemma above shows, it
becomes possible if we allow the precomposition of y with a well chosen epimorphism A′ → A. This
operation of precomposition shall be named “refinement”. With this language, a morphism f is an
epimorphism if and only if it is “surjective up to refinements”.

As the exactness of a short complex X1
f→ X2

g→ X3 in an abelian category can be rephased by
saying that the induced map X1 → ker g is an epimorphism, it is possible to deduce that similarly,
exactness is equivalent to “exactness up to refinements”:
lemma ShortComplex.exact_iff_exact_up_to_refinements (S : ShortComplex C) :

S.Exact ↔ ∀ {A : C} (x₂ : A → S.X₂) (_ : x₂ ≫ S.g = 0),

∃ (A' : C) (π : A' → A) (_ : Epi π) (x₁ : A' → S.X₁),

π ≫ x₂ = x₁ ≫ S.f := ...

After I had formalized these lemmas, I found that this approach was described in the unpublished
notes [4]. I have used the word “refinement” because this is the terminology which appeared there.

This type of argumentation “up to refinements” was very efficient in the formalization of homological
algebra: the snake lemma, the long exact homology sequence of a short exact sequence of homological
complexes, etc.

2.2.3. This approach of diagram chasing “up to refinements” admits a sheaf-theoretic interpretation.
Let f : X → Y be a morphism in an abelian category C. We may consider the induced natural
transformation Hom(−, f) : Hom(−, X) → Hom(−, Y ), which we should think of as a morphism in
the category of presheaves (of sets or of abelian groups) on the category C. Essentially by defini-
tion, f is a monomorphism if and only if for all A ∈ C, Hom(A, f) is injective, i.e. Hom(−, f) is a
monomorphism of presheaves. In order to characterize epimorphisms, one may introduce the following
Grothendieck topology [1, II 1.1] on the abelian category C: a sieve of an object X for this “refine-
ments topology” is covering if and only if it contains an epimorphism.5 One may easily show that
the representable presheaves Hom(−, X) and Hom(−, Y ) are sheaves for this Grothendieck topology.
Then, epimorphisms in C can be characterized as follows:

Lemma 2.2.3.1. Let f : X → Y be a morphism in an abelian category C. Then, f is an epimorphism
if and only if the morphism of sheaves Hom(−, f) : Hom(−, X)→ Hom(−, Y ) is locally surjective for
the refinements topology (i.e. it is an epimorphism of sheaves6).

5In an abelian category, all epimorphisms are effective, so that this “refinements” topology is a particular case of the
regular topology that is defined in mathlib.

6In mathlib, the statement that epimorphisms of sheaves are exactly the locally surjective morphisms requires some
constraints on the universe parameters of the category C, but these do hold if C is a small category in a certain universe u.
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Indeed, from 2.2.2, we know that f is an epimorphism if and only if it is “surjective up to refine-
ments”. Then, essentially by definition, f is “surjective up to refinements” if and only if the morphism
Hom(−, f) is locally surjective for the refinements topology.

It follows from this lemma that arguing “up to refinements” in a general abelian category is essen-
tially a particular case of the basic diagram chasing in categories of sheaves which were mentioned in
2.2.1, at least if we are ready to use Grothendieck topologies instead of topological spaces.

3. Localization of categories

As it was mentioned in the introduction, the main difference between this formalization of ho-
mological algebra and previous works is that it relies on the definition of the derived category of
an abelian category C as a localized category, i.e. it is obtained by formally inverting the class of
quasi-isomorphisms.

3.1. Let C be a category. Let W be a class of morphisms in C. In mathlib, such a class is
W : MorphismProperty C.7 The localized category C[W−1] (named W.localization in mathlib)
should be thought as the category generated by C in which we formally invert the morphisms that
are in W [14, I 1.1]. More precisely, the objects in C[W−1] are the same as in C, but morphisms from
X to Y in C[W−1] are equivalences classes of zigzags modulo the equivalence relation which enforces
that we have a functor C⇀⇁ C[W−1] and that the formal inverses that are introduced are actual left
and right inverses, where a zigzag is a diagram like this

X // Z1 Z2
oo // Z3 . . .oo Zn

oo // Y

which may involve morphisms in C going in both directions, but with the condition that morphisms
going towards the left are in W. More precisely, when I formalized this (initially in the mathlib3
PR #14422), I defined a quiver with the same objects as C and such that the arrows are either a
morphism in C or a morphism in W in the other direction. Then, the localized category was defined
as a quotient8 of the path category of this quiver.9

3.2. The localized category C[W−1] and the functor Q : C⇀⇁ C[W−1] satisfy the universal property
that for any functor F : C⇀⇁ E which sends morphisms in W to isomorphisms in E , there exists a
unique functor F̃ : C[W−1]⇀⇁ E such that F = Q ≫ F̃ . A similar result was obtained in Coq by
Carlos Simpson [34].

3.3. In commutative algebra, there is a parallel notion of the localization of a commutative ring R
at a (multiplicative) set S ⊂ R. This localization is a R-algebra T which satisfies a certain universal
property, which implies that it is well defined up to a unique isomorphism. There is also an explicit
construction of this localization, that is denoted R[S−1]. In the applications, we usually want to apply
results not only to the constructed algebra R[S−1] but to any T which satisfies the universal property.
In the development of the theory of schemes in Lean [6], it was important to introduce a nice predicate
which expresses that a morphism of rings R→ T identifies T to the localization R[S−1].

Similarly, given a functor L : C⇀⇁D and a class of morphismsW in C, we would like to express that
D is “the” localized category of C with respect to W. The conditions are:

• any morphism in W is mapped by L to an isomorphism;
• the induced functor C[W−1]⇀⇁D from the constructed localized category is an equivalence of

categories.
When these conditions hold, we shall say that L is a localization functor for W, and this is the
predicate L.IsLocalization W. The exact definition of this predicate is used only in the internals
of the software API about the localization of categories. This is a practical choice which allows to
circumvent the universe issues mentioned below (see 3.8), and it also relaxes the condition on the

7Classes of morphisms in categories were first introduced in mathlib by Andrew Yang in order to formulate properties
of morphisms of schemes in algebraic geometry.

8Quotients categories were formalized by David Wärn in 2020.
9The path category of a quiver was formalized by Kim Morrison in 2021.

https://github.com/leanprover-community/mathlib/pull/14422
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localized category, so that this notion behaves well with respect to equivalences of categories. Using
these definitions, we obtain the following relaxed universal property:

Lemma 3.4. If L : C⇀⇁D is a localization functor for a class of morphismsW, then for any category E,
the composition with L induces an equivalence of categories from the category of functors D⇀⇁ E to
the full subcategory of C⇀⇁ E consisting of functors which invert W.

This lemma contains most of what is needed for the applications: it allows to lift functors C⇀⇁ E
to D⇀⇁ E , and similarly natural transformations and natural isomorphisms can be lifted. Obviously,
if L : C⇀⇁D and L′ : C⇀⇁D′ are two localization functors for a class of morphisms W, there is an
equivalence of categories F : D⇀⇁D′ equipped with an isomorphism L ≫ F ≅ L'.

3.5. We obtain various stability properties of localization functors:

Lemma 3.5.1. If L : C⇀⇁D is a localization functor for a class of morphisms W, then the functor
Lop : Cop⇀⇁Dop is a localization functor for the opposite class Wop.

Lemma 3.5.2. If L1 : C1⇀⇁D1 and L2 : C2⇀⇁D2 are localization functors for classes of morphisms
W1 and W2, then the product functor L1 × L2 : C1 × C2⇀⇁D1 × D2 is a localization functor for the
product class W1 ×W2 if both W1 and W2 contain identity morphisms in C1 and C2 respectively.

Lemma 3.5.3. Let L1 : C1⇀⇁ C2 and L2 : C2⇀⇁ C3 be localization functors for classes of morphisms
W1 and W2 on C1 and C2 respectively. Let W3 be a class of morphisms on C1 such that:

(1) W3 is inverted by L1 ≫ L2;
(2) W1 ⊂ W3;
(3) W2 is contained in the essential image of W3 by L1.

Then, the functor L1 ≫ L2 is a localization functor for W3.10

In order to prove these lemmas, the general strategy is as follows:
• using equivalence of categories, show that we may assume that the given functors are the

functors Q of the constructed localized categories 3.1;
• show that in this particular case, the expected functor is a localization functor because it

satisfies the strict universal property 3.2;
The predicate L.IsLocalization W was made a type class, which informally means that it is

a variable in Lean that we do not need to pass explicitly to lemmas and definitions. Then, it is
worth noting that the lemmas 3.5.1 and 3.5.2 are instances: this basically means that if we know
L.IsLocalization W, and that for some reason, we need to know L.op.IsLocalization W.op,
then the later assumption shall be found automatically by Lean’s type class inference system.

3.6. Calculus of fractions. For the application to triangulated categories, and in particular for the
construction of derived categories as triangulated categories, it is important to develop the notion of
calculus of left or right fractions. If the class of morphismsW in the category is C is multiplicative (i.e.
contains identities and is stable by composition), it admits a calculus of left fractions if the following
conditions hold [14, I 2.2]:

(1) For any right fraction X
s← X ′ f→ Y (i.e. s ∈ W), there exists a left fraction X

f ′
→ Y ′ s′← Y

(i.e. s′ ∈ W) such that the following diagram is commutative:

Y ′

X

f ′
77

Y

s′

OO

X ′

s

OO

f

77ppppppppppppp

10This lemma 3.5.3 is parallel to the statement in commutative algebra that if S1 ⊂ S2 is an inclusion between two
multiplicative subsets of a commutative ring R, then there is a canonical isomorphism R[S−1

1 ][S−1
2 ] ∼= R[S−1

2 ].
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(2) If f and g are two morphisms X → Y and s : X ′ → X is a morphism in W such that
s≫ f = s≫ g, then there exists t : Y → Y ′ in W such that f ≫ t = g ≫ t:

X ′ s // X
f //
g

// Y
t // Y ′

If L : C⇀⇁D is a functor which inverts W (in particuliar, if L is a localization functor), then any
left or right fraction as above induces a morphism L(X)→ L(Y ). We obtain the following lemma:

Lemma 3.6.1. Let L : C⇀⇁D be a localization functor for a class of morphisms W that admits a
calculus of left fractions. Then, if X and Y are objects in C, any morphism L(X) → L(Y ) can be
represented by a left fraction.

Moreover, two left fractions X
f1→ Y1

s1← Y and X
f2→ Y2

s2← Y induce the same morphism L(X) →
L(Y ) if and only if there exists an object Z ∈ C, and two morphisms t1 : Y1 → Z and t2 : Y2 → Z such
that f1 ≫ t1 = f2 ≫ t2, and s1 ≫ t1 = s2 ≫ t2 ∈ W:

Y1
t1

  
X

f1

88ppppppppppppp

f2 &&NN
NNN

NNN
NNN

NN Y

s1

OO

s2
��

Z

Y2

t2

>>

This is essentially the mathematical content of [14, I 2]. Many details about this construction can
be found in the article [34] by Carlos Simpson who also formalized this construction in Coq.

Similarly as in [34], the proof of the lemma above consists in the verification that the equivalence
classes of left fractions are the morphisms for a category C′, and that the obvious functor C⇀⇁ C′
satisfies the strict universal property 3.2.

3.7. Preadditive structure. Let L : C⇀⇁D be a localization functor for a class of morphisms W. In
order to proceed with the localization of triangulated categories, we need to know that under certain
circumstances the localized category D is additive (i.e. D is preadditive and has finite products).

It is a general fact that finite products indexed by a set I exists in D if and only if the diagonal
functor D⇀⇁DI has a right adjoint. Then, if we assume that C has products indexed by I, the functor
C⇀⇁ CI has such a right adjoint F : CI ⇀⇁ C, and if we assume that the class W is compatible with
products (i.e. if we have morphisms fi : Xi → Yi inW, then the product map

∏
i fi is also inW), then

this functor F can be lifted to a functor F̃ : DI ⇀⇁D if I is finite (this is related to 3.5.2). As I have
formalized a theorem about the localization of adjunctions, one may obtain that F̃ is the expected
right adjoint, and then D also has finite products indexed by I.

If we assume that C is additive, we may use the previous construction in order to obtain that D has
finite products. Then, it remains to obtain that D is preadditive, i.e. that the sets of morphisms in D
are naturally equipped with structures of abelian groups. In my first approach, I used the property
that every object X in C is naturally equipped with an (internal) abelian group object structure, i.e.
we have morphisms 0 : ⊤_ C → X, neg : X → X and add : X → X × X which satisfies the usual
relations.11 Then, as we know that the localization functor L : C⇀⇁D preserves finite products, this
functor from C to the category of commutative group objects in C localizes as a functor from D to
the category of commutative abelian group objects in D, and from this, one may obtain the expected
preadditive structure on D.

In a second approach, I have formalized the preadditive structure on the localized category using
the calculus of left fractions: if C is preadditive and W admits a calculus of left fractions, then D is
preadditive and L is an additive functor [14, I 3.3]. (If we know that C is additive, then using that
additive functors preserve finite products, one may deduce that D also has finite products.)

11For example, commutative group schemes are defined as internal abelian group objects in the category of schemes
(over a base).
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3.8. Universe issues.

3.8.1. In mathlib’s category theory, when we introduce the variables for a category C, we may proceed
like this:
universe v u

variable (C : Type u) [Category.{v} C]

It is important to note that two universes are involved. First, we say that the type of objects of C is in
the universe u. The second variable [Category.{v} C] expresses that we have a category structure
on C such that for all objects X and Y , the type of morphisms X → Y is in the universe v. In mathlib,
a small category corresponds to the situation where C : Type u and [Category.{u} C] for some
universe u. For a large category, we would have C : Type (v + 1) and [Category.{v} C] for some
universe v.

3.8.2. Assume that W is a class of morphisms in a category C such we have C : Type u and
[Category.{v} C] and examine the case of the constructed localized category C[W−1] from 3.1.
By construction, the type of objects of C[W−1] is C (or more precisely, it is a type synonym for C,
which is a type which is obviously in bijection with C). Then, C[W−1] is a type in the same universe u.
The situation becomes more complicated for morphisms X → Y in the localized category. We recall
that such morphisms are equivalence classes of of zigzags:

X // Z1 Z2
oo // Z3 . . .oo Zn

oo // Y

In order to “parametrize” these zigzags, we have to specify a certain natural number which is the length
of the zigzag, then we have the types of morphisms Zi → Zi±1 which are in the universe v. A source of
disappointment is that we also need to specify the intermediate objects Z1, . . . , Zn, which belong to a
type in the universe u. It follows that if we denote W.Localization : Type u the localized category,
it satisfies [Category.{max u v} W.Localization]. The same remark applies to the constructed
localized category when there is a calculus of left or right fractions, because similarly as zigzags of
arbitrary length contain the data of the auxiliary objects Zi, the data of a fraction involves one
auxiliary object.

3.8.3. In certain circumstances, it is possible to show that the sets of morphisms in the localized
category are v-small (i.e. they are in bijection with a type in the universe v). This is the case of the
homotopy category of a model category C, which is the localized category with respect to the class
of weak equivalences of the model structure. Indeed, the fundamental lemma of homotopical algebra
states:

Lemma 3.8.3.1. [30, Corollary 1, §I.1] Let C be a model category. Let X be a cofibrant object of C.
Let Y be a fibrant object of C. Then, the set of homotopy classes of morphisms X → Y in C identify
to the set of morphisms between the images of X and Y in the homotopy category of C.12

It follows that sets of morphisms in the homotopy category of a model category C are v-small.
Indeed, if X and Y are objects in C, there exists a cofibrant replacement Xc → X of X and a fibrant
replacement Y → Yf of Y , i.e. Xc is cofibrant, and the map Xc → X is a trivial fibration (in particular
it is a weak equivalence), and similarly Yf is fibrant, and the map Y → Yf is a trivial cofibration.
Then, it follows from the lemma that any morphism in the homotopy category between X and Y can
be represented as a zigzag of the form X ← Xc → Yf ← Y . If follows that the type of morphisms
between X and Y in the homotopy category identifies to a quotient of Xc → Yf which is in Type v.

3.8.4. The main result of [19] is that if C is a Grothendieck abelian category, i.e. an abelian category
that has a generator and exact filtered colimits, then there is a model category structure on the
category of cochain complexes in C indexed by ℤ (i.e. unbounded complexes) such that the class of
weak equivalences is the class of quasi-isomorphisms. Using 3.8.3, it follows that types of morphisms
in the derived category of C must be v-small. This should apply in particular to the categories of
modules over a ring, and categories of sheaves on a ringed site.

12I have formalized this lemma as part of a test of my localization of categories software API in Lean 3.



FORMALIZATION OF DERIVED CATEGORIES IN LEAN/MATHLIB 11

3.8.5. In order to take into account this issue, I have introduced a type class HasLocalization.{w} W:
class HasLocalization where

/-- the objects of the localized category. -/

{D : Type u}

/-- the category structure. -/

[hD : Category.{w} D]

/-- the localization functor. -/

L : C ⇀⇁ D

[hL : L.IsLocalization W]

In addition to the universes u and v that are involved in the category C, there is a third universe w,
and this type class contains the data of a choice of a localization functor L : C⇀⇁D such that the
types of morphisms in D are in Type w. When this data is available, the chosen localization functor
is denoted W.Q' : C ⇀⇁ W.Localization'.

The design is that if some constructions (e.g. the derived category) require the choice of a localized
category, then the user may introduce the variable [HasLocalization.{w} W]. If the user wants to
formalize a theorem where the statement does not involve localized categories but the proof does, they
may prove some auxiliary definitions and lemmas under the assumption [HasLocalization.{w} W],
but in the proof of the theorem, they may use the following code:
theorem ... : ... := by

have : HasLocalization.{max u v} W := HasLocalization.standard W

-- from now on, we access the localized category as `W.Localization'`

...

3.8.6. In the particular case of derived categories, there is an abbreviation:
abbrev HasDerivedCategory := MorphismProperty.HasLocalization.{w}

(HomologicalComplex.quasiIso C (ComplexShape.up ℤ))

Then, after a few years, when we are able to obtain a v-smallness theorem for the type of morphisms
in the derived category of a Grothendieck abelian category C (see 3.8.4), it shall be possible to construct
a term in the type HasDerivedCategory.{v} C.

4. The derived category

4.1. Definitions. In this formalization of the derived category of an abelian category C, we define the
derived category D(C) (DerivedCategory C) as the localization of the category of cochain complexes
C(C) (indexed by ℤ) with respect to quasi-isomorphisms. Then, by definition, we have a localization
functor Q : C(C)⇀⇁D(C).

Lemma 4.1.1. Let K be a cochain complex (indexed by ℤ) in an additive category. There is a cochain
complex Cylinder(K) equipped with three morphisms ι0 : K → Cylinder(K), ι1 : K → Cylinder(K)
π : Cylinder(K)→ K, such that ι0 ≫ π = ι1 ≫ π = idK . Moreover, π is a homotopy equivalence, and
there is a distinguished homotopy between ι0 and ι1 such that for any cochain complex L, the data of a
morphism Cylinder(K)→ L is naturally equivalent to the data of two morphisms f and g in K → L
and a homotopy between f ang g.

As homotopy equivalences are quasi-isomorphisms, it follows from this lemma that Q(π) is an
isomorphim and that Q(ι0) = Q(ι1). It follows more generally that if f and g are homotopic morphisms
in C(C), then we have an equality of morphisms Q(f) = Q(g) in the derived category D(C). In other
words, the functor Q : C(C)⇀⇁D(C) induces a functor Qh : K(C)⇀⇁D(C). It also follows that K(C),
which is a quotient category of C(C), also identifies to the localization of C(C) with respect to the
class of homotopy equivalences.
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4.1.2.

C(C) //

Q ##G
GG

GG
GG

G
K(C)

Qh

��
D(C)

Using the lemma 3.5.3, one may deduce that via the functor Qh, the derived category D(C) identifies
to the localization of K(C) with respect to the class of quasi-isomorphisms in K(C). Then, our direct
construction of the category D(C) as a localized category of C(C) is also consistent with the more
standard definition of the derived category in two steps from the original sources [39] and [40]: first
take the quotient by homotopies, and secondly localize with respect to quasi-isomorphisms. That Qh
is a localization functor shall be very important in order to obtain more structure on the category
D(C), namely the triangulated structure.

4.2. Shifts.

4.2.1. When it was first introduced by Kim Morrison in mathlib3 in 2020, the original definition
of a shift on a category C consisted of the data of an auto-equivalence of the category C. This
means that we have a functor F : C⇀⇁ C, a choice of a quasi-inverse G : C⇀⇁ C, a unit isomorphism
1 C ≅ F ≫ G, a counit isomorphism G ≫ F ≅ 1 D which satisfy the triangle identity (similarly
as adjoint functors do). This definition was essentially consistent with the mathematical literature
on triangulated categories where it is assumed that F is an isomorphism of categories (i.e. we have
equalities F ≫ G = 1 C and G ≫ F = 1 D): it is so in [29] as well as in the original definition of
triangulated categories [40, II 1.1.1] where Verdier assumed that there is a structure of a “Z-catégorie
stricte”. In this context, we may define the iteration Fn of the functor F for any n ∈ Z.

4.2.2. In 2021, the definition in mathlib3 was changed by Johan Commelin and Andrew Yang in math-
lib3 PR #10573. The definition became closer to what Verdier defined as a “Z-catégorie” in [40, I 1.2.2].
It was defined as a monoidal functor Discrete ℤ ⇀⇁ (C ⇀⇁ C) where the category of endofunctors
C ⇀⇁ C is equipped with the monoidal structure given by the composition of functors. This means that
as part of the data of the shift on the category, we have functors F n : C ⇀⇁ C for all n : ℤ, an iso-
morphism zero : F 0 ≅ 1 C, and a family of isomorphisms add n m : F (n + m) ≅ F n ≫ F m

for all n m : ℤ, which satisfy three compatibilities (associativity, left unitality and right unitality),
which expresses a certain coherence relative to the identities (n+m)+ p = n+(m+ p), 0+n = n and
n+ 0 = n in ℤ. In mathlib, shifts on categories are defined in this way for any additive monoid M .

4.2.3. When I ported this from Lean 3 to Lean 4, I felt it was difficult to prove some identities
because the definitions about shifts were always unfolded into terms revealing the internals of the
API for monoidal functors. Then, in the mathlib4 PR #3039, I put a certain isolation between
the API for shifts from that of monoidal functors: abbreviations were replaced by definitions, and
more shift-specific lemmas were introduced. This improved automation significantly: for example, in
mathlib4 PR #3047, almost all the proofs in the file about the rotation of triangles were now found
automatically by aesop_cat.

4.2.4. Assume that the category C is equipped with a shift by an additive monoid M . Then, for
any n : M, the shift functor that was denoted F n can be obtained as shiftFunctor C n : C ⇀⇁ C,
and we have the notation X⟦n⟧ for (F n).obj X. Similarly, the isomorphisms add can be obtained
as shiftFunctorAdd C n m. The associativity compatibility that was mentioned before expresses
the commutativity of the following pentagon, where the maps are obtained by using the natural

https://github.com/leanprover-community/mathlib/pull/10573
https://github.com/leanprover-community/mathlib4/pull/3039
https://github.com/leanprover-community/mathlib4/pull/3047
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isomorphisms add and the functors F:

X⟦n + m⟧⟦p⟧

∼

  A
AA

AA
AA

AA
AA

AA
A

X⟦(n + m) + p⟧

∼ 55llllllll

X⟦n⟧⟦m⟧⟦p⟧

X⟦n + (m + p)⟧

∼ ))RRR
RRR

RR

X⟦n⟧⟦m + p⟧

∼

>>}}}}}}}}}}}}}}

The morphism on the left corresponds to an equality between two objects which follows from the
associativity relation (n + m) + p = n + (m + p) in the additive monoid. Out of the context of a
formalization, we may take this equality for granted, and we may not even make it appear on the
diagram: indeed, it does not appear in the equation [40, I (1.2.1.3)]. In the formalization in Lean, we
have to take this into consideration.

4.2.5. In order to mitigate this issue, I have introduced a natural isomorphism X⟦k⟧ ≅ X⟦i⟧⟦j⟧

whenever the equality h : i + j = k holds: this is the definition shiftFunctorAdd' C i j k h.
In particular, in the pentagon diagram above, the composition X⟦(n + m) + p⟧ ≅ X⟦n⟧⟦m + p⟧ can
be obtained directly as shiftFunctorAdd' C n (m + p) ((n + m) + p) h. Then, the associativity
can be phrased more generally in terms of these isomorphisms shiftFunctorAdd' when we have
elements a1, a2, a3, a12, a23 and a123 in the additive monoid which satisfy a1+a2 = a12, a2+a3 = a23
and a1+a2+a3 = a123: it then says that the two ways to identify X⟦a₁₂₃⟧ and X⟦a₁⟧⟦a₂⟧⟦a₃⟧ using
X⟦a₁₂⟧⟦a₃⟧ or X⟦a₁⟧⟦a₂₃⟧ as an intermediare object are the same.

4.2.6. Let C be a preadditive category. The category of cochain complexes C(C) in C is equipped
with a shift by ℤ. If K : CochainComplex C ℤ and n : ℤ, then K⟦n⟧ is the cochain complex such
that by definition we have (K⟦n⟧).X i = K.X (i + n) in degree i and the differentials are obtained
by multiplying by (−1)n the differentials of K.

The very fact that we are able to describe all the shifts K⟦n⟧ and not just K⟦1⟧ and K⟦-1⟧ shows
how relevant the design change 4.2.2 by Johan Commelin and Andrew Yang was. Indeed, if only the
shifts by ±1 were part of the structure of the shift on the category CochainComplex C ℤ, then the
explicit description of the iterated shifts for all n ∈ Z would have to be phrased by saying that the
nth iteration of the shift functor is isomorphic to the explicit functor above. Then, future applications
may require that we prove coherence properties of these isomorphisms! It is a much better design to
bundle all of this data and properties in the definition of the shift.

4.2.7. The shift on the category C(C) induces a shift on the category K(C). The mathematical reason
is that K(C) is the quotient category of C(C) by relations that are compatible with the shift on C(C):
if two morphisms of cochain complexes f and g are homotopic, then so are their shifts f⟦n⟧' and
g⟦n⟧' for all n : ℤ. (In mathlib, shifts of objects are denoted X⟦n⟧ while shifts of morphisms are
denoted f⟦n⟧'.)

In a certain sense, up to isomorphisms, the shift on K(C) is determined by the shift on the category
C(C). A simple way to express a compatibility between the shifts on C(C) and K(C) consists in the
formulation of a compatibility of the quotient functor C(C)⇀⇁K(C) with respect to the shifts, which
is done in the next paragraph.

4.2.8. Let F : C⇀⇁D be a functor between two categories equipped with a shift by an additive
monoid M . I have formalized the type class F.CommShift M expressing that F commutes with the
shifts by M as follows:
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class CommShift where

iso (a : A) : shiftFunctor C a ≫ F ≅ F ≫ shiftFunctor D a

zero : iso 0 = CommShift.isoZero F A := by aesop_cat

add (a b : A) : iso (a + b) = CommShift.isoAdd (iso a) (iso b) := by aesop_cat

The field iso contains the expected isomorphisms for the commutation with the shifts. It is then
important to understand that two isomorphisms iso a and iso b expressing the commutation with
the shifts by a and b can be “composed” in order to obtain a commutation isomorphism for the shift
by a + b (definition CommShift.isoAdd): the condition add asserts that iso (a + b) is this iso-
morphism. The condition zero asserts that iso 0 is the obvious isomorphism given by a definition
CommShift.isoZero. After I had formalized this, I found that the compatibility add was phrased in
the commutative diagram [40, I (1.2.3.2)]. (In Verdier’s notations, the condition zero was automat-
ically satisfied because in the language of fibered categories used in [40, I 1], the shift functors on a
category are the base-change functors given by a normalized cleavage.)

If τ : F₁ → F₂ is a natural transformation between two functors C⇀⇁D which commute with the
shifts on C and D, I have also introduced a type class NatTrans.CommShift τ M which expresses a
compatibility between τ and the isomorphisms F₁.commShiftIso a and F₂.commShiftIso a given
by the commutation of F1 and F2 with the shifts.

4.2.9. Let C be an abelian category. As we have shown that the functor Qh : K(C)⇀⇁D(C) is a
localization functor, the shift on K(C) induces a shift by ℤ on the derived category D(C): this con-
struction of a localized shift, and the previously mentioned construction of a quotient shift 4.2.7,
are actually both a special of a more general construction. Both localization functors and quotient
functors share a common property: these are functors F : C⇀⇁D such that for any category E , the
functor (D⇀⇁ E)⇀⇁ (C⇀⇁ E) given by the precomposition with F is fully faithful. Under this assumption
on F (with E := D), then if C is equipped with a shift by an additive monoid M , and if the func-
tors shiftFunctor C n ≫ F can be lifted as functors s n : D ⇀⇁ D, then the category D can be
equipped with a shift by M with the functors s n as shift functors, and then the functor F commutes
with the shifts.

It follows that the three categories C(C), K(C) and D(C) are equipped with shifts by ℤ. As Q :
C(C)⇀⇁D(C) identify to the composition of the quotient functor C(C)⇀⇁K(C) and of the localization
functor K(C)⇀⇁D(C), we may deduce that Q also commutes with the shifts.

4.3. The triangulated structure on the homotopy category.

4.3.1. If a category T is equipped with a shift by ℤ, a triangle is a diagram X₁ → X₂ → X₃ → X₁⟦1⟧,
which may be drawn as:

X3

+1

����
��
��
�

X1
// X2

\\9999999

A (pre)triangulated structure on a preadditive category T equipped with a shift by ℤ involves the
data of a predicate on triangles: the triangles which satisfy this predicate are called distinguished
triangles [40, II 1.1.1]. The axioms of (pre)triangulated categories are statements about these distin-
guished triangles. Pretriangulated categories were formalized in mathlib in 2021 by Luke Kershaw. I
have added many basic lemmas about pretriangulated categories, and I have formalized the statement
of the “octahedron axiom” (TR IV) of triangulated categories as this shall be used in 4.4.

Definition 4.3.2 ([40, I 3]). If C is an additive category. We shall say that a triangle in the homotopy
category of cochain complexes indexed by ℤ in C is a distinguished triangle if it is isomorphic to the
image of a standard triangle attached to a morphism f : K → L in the category CochainComplex C ℤ:
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Cone(f)
+1

yysss
sss

sss
sss

K // L

eeKKKKKKKKKKKK

where Cone(f) (or mappingCone f) is the cochain complex defined by Cone(f)n := Kn+1 ⊞ Ln and

the differentials are given by the matrix
(
−d 0
f d

)
. The map L→ Cone(f) is the obvious injection,

while Cone(f)→ K⟦1⟧ is the opposite of the first projection.

The fact that the homotopy category of an additive category is a pretriangulated category was
already obtained by Andrew Yang and Kim Morrison in the LTE. They used the definition of dis-
tinguished triangles from the Stacks project https://stacks.math.columbia.edu/tag/014P [10]:
a triangle in the homotopy category is distinguished if and only if it is isomorphic to the trian-
gle X₁ → X₂ → X₃ → X₁⟦1⟧ is associated to a degreewise split short exact sequence of complexes
0 → X₁ → X₂ → X₃ → 0 (the choice of a splitting in each degree allows the definition of a 1-
cocycle from X₃ to X₁, which corresponds to a morphism X₃ → X₁⟦1⟧). I have followed more closely
the original definition 4.3.2 by Verdier [40, I 3].13

4.3.3. Calculus of cochains. In order to verify the axioms of triangulated categories for the homo-
topy category of cochain complexes, it is convenient to introduce the cochain complex of morphisms
Hom•(K,L) [9, p. 10] for two cochain complexes K and L. It is a cochain complex in the category
of abelian groups which in degree n consists of families of morphisms Kp → Lq for all (p, q) ∈ Z2

such that p + n = q. The differentials on Hom•(K,L) are defined in such a way that an element in
Hom0(K,L) is a cocycle if and only if it corresponds to a morphism of cochain complexes K → L. In
mathlib, I have implemented this definition as the cochain complex HomComplex K L. However, the
more convenient related definitions are the types of cochains HomComplex.Cochain K L n and cocy-
cles HomComplex.Cocycle K L n in this complex. We obtain the expected correspondence between
morphisms of cochain complexes and 0-cocycles as:
def equivHom : (K → L) ≃+ Cocycle K L 0 where

...

Similarly, two morphisms of cochain complexes φi : K → L for i ∈ {1, 2} are homotopic if and only
if the corresponding cochains are cohomologous:
def equivHomotopy (φ₁ φ₂ : K → L) :

Homotopy φ₁ φ₂ ≃

{ z : Cochain K L (-1) //

Cochain.ofHom φ₁ = δ (-1) 0 z + Cochain.ofHom φ₂ } where

...

Then, in the verification of the axioms of triangulated categories, as we need to construct morphisms
from or to mapping cones of morphisms (and homotopies), it is very convenient to manipulate them
as cochains. For example, we have the following definitions for the left and right inclusions in the
mapping cone of a morphism f : K → L and the first and second projections from it:
def inl : Cochain K (mappingCone f) (-1) := ...

def inr : L → mappingCone f := ....

def fst : Cocycle (mappingCone f) K 1 := ...

def snd : Cochain (mappingCone f) L 0 := ...

An important structure on cochains is that they can be composed. Indeed, if z₁ : Cochain K L a

and z₂ : Cochain L M b, we may construct their composition in Cochain K M (a + b). Actually,

13However, I have followed the better sign convention of [9, p. 8]. Originally, there was no sign in the definition of
the morphism Cone(f) → K⟦1⟧ in [40, I 3.2.2.5] and [17, I §2].

https://stacks.math.columbia.edu/tag/014P
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similarly as for shifts 4.2.5, I defined the composition z₁.comp z₂ h : Cochain K M c for any c : ℤ

such that h : a + b = c holds. Then, computations can be achieved using lemmas like:
lemma inl_fst :

(inl f).comp (fst f).1 (neg_add_self 1) = Cochain.ofHom (1 K) := ...

Here, inl f is of degree −1 and fst f is of degree 1. Then, their naive composition would
be of degree (−1) + 1. By using the design above, which forces the user to provide the equation
neg_add_self 1 : (-1) + 1 = 0, we obtain a 0-cochain.

This design for the composition of cochains is different from the design for the product of homoge-
neous elements in graded rings in mathlib [41]. If I had followed a similar design as for graded rings, I
would have introduced the type of the direct sum of the abelian groups Cochain K L n for all n ∈ ℤ,14

and made computations in this type. On the one hand, doing so may have eased the automation of
the proof of some identifies (especially those where the associativity of the composition is used), but
in many situations, especially when K or L is obtained by shifting other cochain complexes, we need
to specify explicitly well chosen integers in order to do computations.

4.3.4. The octahedron axiom. The main ingredient in order to obtain the octahedron axiom for the
homotopy category is that if f : X1 → X2 and g : X2 → X3 are composable morphisms in the category
of cochain complexes, then there is a distinguished triangle:

Cone(g)
+1

xxppp
ppp

ppp
ppp

Cone(f) // Cone(f ≫ g)

ggPPPPPPPPPPPPPP

In order to do that, we need to construct an isomorphism in the homotopy category between Cone(g)
and the mapping cone of the canonical map Cone(f) → Cone(f ≫ g). We actually show that the
former is a “retract by deformation” of the latter. In order to verify this, we need to construct a ho-
motopy between two endomorphisms of Cone(Cone(f)→ Cone(f ≫ g)). If we unfold the definitions,
we see that in degree n, we have Cone(f)n ≃ Xn+1

1 ⊞ Xn
2 and Cone(f ≫ g)n ≃ Xn+1

1 ⊞ Xn
3 , and it

follows that we have an isomorphism:
Cone(Cone(f)→ Cone(f ≫ g))n ∼= (Xn+2

1 ⊞Xn+1
2 )⊞ (Xn+1

1 ⊞Xn
3 )

We see that the two endomorphisms we are trying to relate by an homotopy can be thought as 4× 4-
matrices consisting of cochains from Xi to Xj of various degrees n ∈ {−2,−1, 0, 1, 2} for various tuples
(i, j). Then, once the candidate homotopy is found, the equality of cochains that we need to show can
be interpreted as an identity between two 4× 4-matrices, which corresponds to 16 identities between
cochains.

One of the difficulties when proving equalities involving cochains is related to the associativity of
the composition of cochains. In category theory, when f , g and h are composable morphisms, a term
(f ≫ g)≫ h is automatically replaced by the simp tactic as f ≫ (g ≫ h) (and then, the parentheses
are redundant). Automation in mathlib relies on this design choice that compositions are “associated
towards the right”. We may try to do the same for the cochains, but the lemma expressing the
associativity of the composition of cochains is phrased as follows:
lemma comp_assoc {n₁ n₂ n₃ n₁₂ n₂₃ n₁₂₃ : ℤ}

(z₁ : Cochain F G n₁) (z₂ : Cochain G K n₂) (z₃ : Cochain K L n₃)

(h₁₂ : n₁ + n₂ = n₁₂) (h₂₃ : n₂ + n₃ = n₂₃) (h₁₂₃ : n₁ + n₂ + n₃ = n₁₂₃) :

(z₁.comp z₂ h₁₂).comp z₃ (show n₁₂ + n₃ = n₁₂₃ by rw [← h₁₂, h₁₂₃]) =

z₁.comp (z₂.comp z₃ h₂₃) (by rw [← h₂₃, ← h₁₂₃, add_assoc]) := by ...

The issue is that if zi for i ∈ {1, 2, 3} are composable cochains of degrees ni, we may consider the
composition “z1 ≫ z2” only if we provide an integer n12 such that n1 + n2 = n12, and similarly for
all the other compositions in the identity “(z1 ≫ z2) ≫ z3 = z1 ≫ (z2 ≫ z3)”. We could be tempted

14This type could be defined as the subtype of the families of morphisms αp,q : K
p → Lq for all p and q in ℤ consisting

of those families (αp,q)p,q such that {q − p, αp,q ̸= 0} is finite.
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to define the composition as a cochain of degree n1 + n2, but using n1 + n2 is not always the best
choice: for example, if z1 is of degree n− 1 for some integer n, and z2 is of degree 1, we probably want
to consider the composition “z1 ≫ z2” as a cochain of degree n rather than (n− 1) + 1. To be more
specific about the associativity, if we have all the data and properties in order to make sense of the
LHS of the equality (i.e. we have the integers n12 and n123), in general, there is no preferred choice
for the integer n23 = n2+n3 which appears in the RHS. This is the reason why we cannot make a nice
general simp lemma out of comp_assoc. In a few carefully selected situations, there is a preferred
choice for n23, in which case we may state specialized simp lemmas, e.g. when one of the ni is zero.
Another case is when n2 = −n3, because then, we may choose n23 := 0. For example, if α is a cochain
of degree n, the identity “(α ≫ inl f) ≫ fst f = α” can be proved automatically by simp: as inl f
and fst f are respectively of degrees −1 and 1, the associativity relation is applied, so that the simp

tactic is able to get the successive equalities (α≫ inl f)≫ fst f = α≫ (inl f ≫ fst f) = α≫ 1 = α.
These difficulties with the associativity relation are one of the reasons why, in the proof of the

axioms of (pre)triangulated categories (including the octahedron axiom), we do not prove the expected
identities between cochains by doing only computations in the types of cochains. In a few situations,
in order to prove an equality between two cochains α and β in Homn(K,L), instead of proving directly
α = β, we show it componentwise, i.e. using suitable extensionality lemmas, we have to show that for
all p and q such that p+n = q, the morphisms Kp → Lq that are part of α and β are equal. Here again,
we have to make reasonable choices for the integers p and q, e.g. if n = 0, we may assume that q is p
by definition: two 0-cochains α and β are equal if and only if the corresponding morphisms Kp → Lp

are equal for all p. By doing so, the associativity issue with the composition of cochains disappears
because we can then use the associativity of the composition of morphisms in the category C.

This formalization of the triangulated structure on the homotopy category of cochain complexes
indexed by ℤ in any additive category entered mathlib in January 2024 (PR #9550).

4.4. The localization theorem for triangulated categories. I have formalized the following
theorem, which is essentially [40, II 2.2.6]:

Theorem 4.4.1. Let T be a pretriangulated category. Let W be a class of morphisms in T that has a
calculus of left fractions (see 3.6) and is compatible with the triangulation. Then, the localized category
T [W−1] has a pretriangulated category structure such that the localization functor T ⇀⇁ T [W−1] is a
triangulated functor. Moreover, if T is triangulated and that W also has a calculus of right fractions,
then T [W−1] is a triangulated category.

The condition that W is compatible with the triangulation means that it is invariant by the shift
functors and that if T : X1 → X2 → X3 → X1[1] and T ′ : X ′

1 → X ′
2 → X ′

3 → X ′
1[1] are distinguished

triangles, then any commutative square where the maps s1 and s2 are in W can be extended to a
morphism of triangles T → T ′ such that s3 is also in W:

X1

s1
��

// X2

s2
��

// X3

s3
��

// X1[1]

s1[1]
��

X ′
1

// X ′
2

// X ′
3

// X ′
1[1]

In my formalization, the category T [W−1] can be replaced by the target category of any localization
functor L : T ⇀⇁D with respect to W. The verification of the axioms of (pre)triangulated categories
for D is relatively easy. The only difficulty consists in the construction of the expected structures of
the category D: the preadditive structure is obtained using the calculus of fractions (see 3.7), and the
shift functors are obtained by localization (see 4.2.9).

4.4.2. In order to construct classes of morphismsW satisfying the assumptions of 4.4.1, the main con-
struction is that of a class of morphismsWS attached to a triangulated subcategory S of a triangulated
category T . A triangulated subcategory S consists of the data of a predicate on objects on T which is
satisfied by a zero object, is stable by shifts and such that if X1 → X2 → X3 → X1[1] is a distinguished
triangle, then if X1 and X3 are in S, then X2 is isomorphic to an object in S. Then, we define WS as

https://github.com/leanprover-community/mathlib4/pull/9550
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the class of morphisms X1 → X2 which fit into a distinguished triangle X1 → X2 → X3 → X1[1] with
X3 ∈ S.

The verification of the expected properties forWS uses the octahedron axiom, and this is the reason
why this axiom was introduced [40, II 2.2.12]. Then, the full subcategory of T corresponding to S is
automatically endowed with a triangulated structure, and the localized category with respect to WS

is also denoted using the quotient notation C/S: this is known as the Verdier quotient of C by S.

4.4.3. The triangulated structure on the derived category D(C) of an abelian category is obtained
by taking the Verdier quotient of the triangulated category K(C) by the triangulated subcategory A
consisting of acyclic objects in the homotopy category K(C).

In order to check that A is a triangulated subcategory and that the class WA is precisely the class
of quasi-isomorphisms, we show that the homology functor H0 : K(C)⇀⇁ C is a homological functor,
i.e. that if X1 → X2 → X3 → X1[1] is a distinguished triangle in K(C), then H0(X1) → H0(X2) →
H0(X3) is an exact sequence. This can be proven directly by diagram chasing using the definition 4.3.2
of distinguished triangles, or this can be deduced from the homology sequence associated to a short
exact sequence of cochain complexes. Then, the triangulated subcategory A can be understood as
the “kernel” of the homological functor H0: an object X belongs to A if and only if for any n ∈ Z,
H0(X[n]) is zero, or equivalently, if for any n ∈ Z, Hn(X) is zero.

This construction of the derived category was submitted to mathlib in PR #11806 in March 2024.

5. Ongoing works

In this section, I outline some ongoing works. Very significant parts of these are already formalized,
but it may take a certain time before they enter mathlib.

5.1. Ext-groups. Currently, Ext-groups (or Ext-modules) are defined in mathlib only in abelian
categories that have enough projectives. This applies to the category of modules over a ring, which
is sufficient for the application to group cohomology [23] and to local cohomology (whose definition
was formalized in 2023 by Emily Witt and Kim Morrison). However, we cannot use this definition in
the context of categories of sheaves over a topological space, or a Grothendieck topology. Moreover, if
0→ X1 → X2 → X3 → 0 is a short exact sequence in an abelian category C, and if Y ∈ C, we should
have two long exact sequences of Ext:

· · · → Extn(Y,X1)→ Extn(Y,X2)→ Extn(Y,X3)
δ→ Extn+1(Y,X1)→ . . .

· · · → Extn(X3, Y )→ Extn(X2, Y )→ Extn(X1, Y )
δ→ Extn+1(X3, Y )→ . . .

At present, mathlib does not contain the statement of these exact sequences. However, the second
exact sequence was formalized in the LTE using the definition of Extn(−, Y ) as the right derived
functors of Hom(−, Y ).

I have formalized the fact that the functor C⇀⇁D(C) which sends an object X ∈ C to the cochain
complex · · · → 0 → 0 → X → 0 → 0 → . . . where X sits in degree 0 is fully faithful (this is the
inclusion of the heart of a t-structure, see 5.2). Then, we may identify C to a full subcategory of
the derived category D(C). Given two objects X and Y in C, we may then define Extn(X,Y ) as
HomD(C)(X,Y [n]) for any n ∈ ℕ. It is then easy to obtain the expected long exact sequences.

There are two difficulties in this process:
• make sign conventions for the definition of the connecting homomorphisms δ consistent with

the existing mathematical literature [9, §1.3];
• find a partial solution to the universe issue 3.8: in general, the type of morphisms between two

arbitrary objects in the derived category C may lie in a larger universe than the universe of
morphisms in the category C. However, if C has enough projectives or enough injectives, it is
possible to show that the types of morphisms HomD(C)(X,Y [n]) are small for X and Y in C.
Then, the Ext-groups could be defined by “shrinking” these types to the smaller universe.

https://github.com/leanprover-community/mathlib4/pull/11806
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5.2. t-structures.

5.2.1. If C is an abelian category, the homology functors Hq : D(C)⇀⇁ C can be used in order to define
full subcategories D(C)≥n and D(C)≤n for all n ∈ ℤ:

• an object X ∈ D(C) is ≥ n if Hq(X) is zero whenever q < n.
• an object X ∈ D(C) is ≤ n if Hq(X) is zero whenever n < q.

These full subcategories satisfies the following important properties:
• If X ≤ 0 and Y ≥ 1, then HomD(C)(X,Y ) = 0.
• For any Z ∈ D(C), there exists a distinguished triangle X → Z → Y → X[1] with X ≤ 0 and
Y ≥ 1.

More generally, a t-structure [3, §1.3] on a triangulated category T consists of the data of full sub-
categories T ≥n and T ≤n satisfying similar properties as those stated above. I would like to emphasize
the clarity of the exposition in [3, §1.3]: it was easy to translate the written arguments into formal
proofs in Lean/mathlib.

5.2.2. Given a t-structure on a triangulated category T , I have formalized the verification that the
heart T≥0 ∩ T≤0 of the t-structure is an abelian category [3, Théorème 1.3.6]. For example, the heart
of the canonical t-structure defined above on the derived category of D(C) of C is C itself.

5.2.3. An important feature of t-structures is that the distinguished triangle X → Z → Y → X[1]
with X ≤ 0 and Y ≥ 1 is functorial in Z: one may define functors τ≤0, τ≥1 and a natural transformation
δ : τ≥1(X)→ (τ≤0X)[1] such that the following triangle is distinguished for all X:

τ≤0(X)→ X → τ≥1(X)
δ→ (τ≤0X)[1]

More generally, one may define functors τ≥n, τ≤n, τ>n := τ≥n+1 and τ<n := τ≤n−1. An important
result is that there are canonical natural isomorphisms τ≥a(τ≤bX) ∼= τ≤b(τ≥aX) for all a and b in ℤ.

5.2.4. If a ≤ b ≤ c, then there is a natural distinguished triangle for all X:

τ<c(τ≥bX)

+1

yysss
sss

sss
s

τ<b(τ≥aX) // τ<c(τ≥aX)

eeKKKKKKKKKK

This may be extended for a, b and c in Z ∪ {±∞} if we set τ<−∞X = τ≥+∞X = 0 and τ≥−∞X =
τ<+∞X = X. Then, to any object X in a triangulated category T equipped with a t-structure is
attached what Verdier calls “un objet spectral de type Z ∪ {±∞} à valeurs dans T ” [40, II 4.1.2].
Surprisingly, I did not find any mention of this spectral object in [3]. The formalization in Lean is
long and technical, but it shall be a very important tool in the construction of spectral sequences 5.4.4.

5.3. Derived functors.

5.3.1. If F : C⇀⇁D is an additive functor between abelian categories, there is an induced triangu-
lated functor K(C)⇀⇁K(D) on the homotopy categories. In general, this functor does not preserve
quasi-isomorphisms, unless F is exact. In other words, the composed functor K(C)⇀⇁D(D) may not
send quasi-isomorphisms in K(C) to isomorphisms D(D), i.e. there is no “commutative diagram” of
functors:

K(C) F //

��

K(D)

��
D(C) // D(D)
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However, it is often possible to construct a functor RF : D(C)⇀⇁D(D), and instead of an isomorphism
between the composed functors, we have a natural transformation α:

K(C)
������ α

F //

��

K(D)

��
D(C) RF // D(D)

The tuple (RF,α) is said to be the right derived functor when it is universal (i.e. it is an initial object
in the category of such diagrams). By definition, when it exists, such a right derived functor is a left
Kan extension of K(C)⇀⇁D(D) along the localization functor K(C)⇀⇁D(C).

5.3.2. Kan extensions have been introduced in mathlib by Yuma Mizuno in PR #6552 in the context
of bicategories. Mathematically speaking, the notion of right derived functor, which is a special case of
a left Kan extension of functors can be thought as a particular case of left Kan extension in bicategories.
However, in terms of formalization in Lean, we cannot use the same software API for both because in
the diagram above, the categories may not have the same universe parameters (see also 3.8).

Then, I have formalized similar definitions of left Kan extensions in the context of categories and
functors, and developed the particular case of right derived functors. I was able to formalize the
following theorem:

Theorem 5.3.3. Let F : C⇀⇁D be an additive functor between abelian categories. We assume
that C has enough injectives. Then, the induced triangulated functor F : K+(C)⇀⇁K+(D) on the
homotopy categories of bounded below cochain complexes can be right derived as a triangulated functor
RF : D+(C)⇀⇁D+(D).

The proof of this theorem involves two aspects. First, the main technical results are that if we
denote Injectives(C) the full subcategory of C consisting of injective objects, for any L ∈ K+(C), there
is a quasi-isomorphism L → L′ with L′ ∈ K+(Injectives(C)).15 These statements generalize the well
known fact that if X ∈ C, then X admits an injective resolution 0 → X → I0 → I1 → I2 → . . . .
Secondly, I have formalized the notion of “derivability structure” introduced by Bruno Kahn and
Georges Maltsiniotis [21]: this is a general abstract machinery in order to construct derived functors.
(The details about this categorical notion are too technical to be described here.) Using the properties
mentioned above, I have shown that the inclusion functor K+(Injectives(C))⇀⇁K+(C), thought as a
morphism of localizers (here, it means that this functor sends isomorphisms to quasi-isomorphisms), is
a right derivability structure; moreover, the induced functor K+(Injectives(C))⇀⇁D+(C) is an equiv-
alence of categories.16 Here, the consequence is that any functor G : K+(C) → E from the bounded
below homotopy category has a right derived functor RG : D+(C)→ E , and for any cochain complex
L ∈ K+(Injectives(C)), the canonical map αL : G(L)→ RG(L) is an isomorphism.

5.3.4. Even though this is not discussed in [21], the notion of derivability structure behaves well with
respect to products of categories. Then, this framework is suitable for the study of derived functors of
functors of several variables. For example, if A is an abelian category that is equipped with a monoidal
category structure, in such a way that any object is a quotient of a flat object, there should be a “flat”
left derivability structure on K−(A), and the product derivability structure of two copies of it should
allow the construction of the derived functor of the tensor product functor K−(A)×K−(A)⇀⇁K−(A).
Then, it should be possible to obtain a monoidal category structure on D−(A). Similarly, if we assume
the existence of K-flat resolutions (in the sense of [35, 5.1]), it should be possible do obtain a monoidal
category structure on the full derived category D(A). In particular, this could be used in order to
define and study the properties of TorAn (M,N) when M and N are modules over a commutative
ring A.

15The lemmas that I have formalized essentially correspond to the factorization axiom CM5 for the model category
structure on C+(C) when C has enough injectives.

16The dual result of this is that if C has enough projectives, then the category D−(C) is equivalent to
K−(Projectives(C)), which shows the compatibility of this approach and the LTE 1.4.

https://github.com/leanprover-community/mathlib4/pull/6552
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5.4. Spectral sequences.

5.4.1. I have formalized the definition of a spectral sequence as follows:
variable (C : Type*) [Category C] [Abelian C]

{ι : Type*} (c : ℤ → ComplexShape ι) (r₀ : ℤ)

structure SpectralSequence where

-- the `r`th page of the spectral sequence

page' (r : ℤ) (hr : r₀ ≤ r) : HomologicalComplex C (c r)

-- the homology of a page identifies to the next page

iso' (r r' : ℤ) (hrr' : r + 1 = r') (pq : ι) (hr : r₀ ≤ r) :

(page' r hr).homology pq ≅ (page' r' (by omega)).X pq

With this definition, a spectral sequence E starting on page r0 consists of a family of homological
complexes, the pages of E, which are defined for all integers r ≥ r0. All the pages are complexes that
are indexed by the same type ι (typically Z2 or N2), but the shapes of differentials are specified for
each page individually. Then, the data in E contains an isomophism saying that the homology of a
page identifies to the next page.

For example, I have made an abbreviation CohomologicalSpectralSequence for spectral se-
quences indexed by Z2, with differentials of bidegree (r, 1 − r) on the rth page. Even though I
have made general definitions, allowing general shapes of spectral sequences, in this exposition, I shall
focus on this particular case, and use the standard mathematical notation Ep,q

r .

5.4.2. Stabilization. Given a spectral sequence E, let us fix (p, q). For any r ≥ r0, Ep,q
r+1 identifies to a

subquotient of Ep,q
r . If the differentials of Er are such that the differential to and from Ep,q

r are both
zero, then we have a canonical isomorphism Ep,q

r
∼= Ep,q

r+1. If this holds for all big enough integers r,
we may define the limit object Ep,q

∞ in such a way that for a big enough r, we shall have a canonical
isomorphism Ep,q

r
∼= Ep,q

∞ . In my formalization, I have defined a type class E.HasPageInfinityAt pq

for pq : ι in order to express that this stabilization phenomenon occurs.

5.4.3. Convergence. Assuming that the spectral sequence E stabilizes, we may say that it strongly
converges in degree n to a certain object Hn of the abelian category if we provide a filtration Fili on
Hn such that the Ep,q

∞ for all p+ q = n identify to the graded object of the successive quotients of this
filtration, which should also satisfy Fili = 0 for a small enough i and Fili = X for a big enough i.

The convergence can be used in order to do facilitate computations. For example, I have formalized
the 5-terms exact sequence in low degrees of a strongly convergent first quadrant E2-cohomological
spectral sequence:

0→ E1,0
2 → H1 → E0,1

2 → E2,0
2 → H2

Indeed, the filtration on H1 that is given by the convergence translates as a short exact sequence
0 → E1,0

∞ → H1 → E0,1
∞ → 0, and the automatic stabilization of first quadrant spectral sequences

gives identifications E1,0
∞ ∼= E1,0

2 and E0,1
∞ ∼= E0,1

3 . Now, as E3 is the homology of the E2-page, we
see that E0,1

3 identifies to the kernel of the differential d2 : E0,1
2 → E2,0

2 . Then, the cokernel of this
differential d2 identifies to E2,0

3
∼= E2,0

∞ which is a subobject of H2 because of the convergence in
degree 2.

5.4.4. Construction of spectral sequences. Let us assume that we have a spectral object (Ea,b) of type
Z ∪ {±∞} in a triangulated category T . The basic data of E include objects Ea,b ∈ T whenever we
have an inequality a ≤ b in Z ∪ {±∞}. More precisely, these Ea,b should be part of a functor from
the category of arrows in the ordered set Z ∪ {±∞}: in particular, if a ≤ b, a′ ≤ b′, a ≤ a′ and
b ≤ b′, there is a map Ea,b → Ea′,b′ . The additional data is that of a (functorial) connecting morphism
δ : Eb,c → Ea,b[1] whenever a ≤ b ≤ c, in such a way that the following triangle is distinguished :

Ea,b → Ea,c → Eb,c → Ea,b[1]

Examples of spectral objects in triangulated categories include the spectral object (τ<b(τ≥aX))
attached to any object in a triangulated category that is equipped with a t-structure 5.2.4. If a cochain
complex K in an abelian category C is equipped with a filtration Fila indexed by Z∪{±∞}, then there
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is an associated spectral object in the homotopy category K(C) defined by Xa,b := Cone(Fila → Filb):
the expected distinguished triangles are given by 4.3.4. Then, applying the triangulated functor
K(C)⇀⇁D(C), we obtain the spectral object in D(C) of a filtered object in C(C).

Then, if we have a homological functor H0 : T → C from the triangulated category T to an abelian
category C, these distinguished triangles lead to long exact sequences for all n ∈ Z:

· · · → Hn(Ea,b)→ Hn(Ea,c)→ Hn(Eb,c)
δ→ Hn+1(Ea,b)→ . . .

These objects (Hn(Ea,b)) are now part of a spectral object with values in the abelian category C as
it was defined in [40, II 4.1.4] and [7, XV §7]. Spectral sequences are attached to any spectral object
in an abelian category [40, II 4.3.3]. I have formalized this construction and studied the stabilization
and convergence of the associated spectral sequences.

Spectral sequences can also be constructed using the notion of exact couple in an abelian cat-
egory [24]. Slightly less data are involved in exact couples as compared to spectral objects. For
example, in the case of a filtered complex K in an abelian category, with the spectral object approach,
we consider simultaneously all the long exact sequences in homology deduced from all the short exact
sequences 0 → Filb /Fila → Filc /Fila → Filc /Filb → 0 whenever a ≤ b ≤ c in Z ∪ {±∞}. In the
exact couple approach, the data would only involve the long exact sequences deduced from the exact
sequences 0 → Fila−1 → Fila → Fila /Fila−1 for a ∈ Z. I have opted for spectral objects because all
the data involved in the spectral sequence can be described very directly in terms of the data of the
spectral object, whereas in the exact couple approach, the pages are constructed through an inductive
process known as the “derived exact couple” [24, I §4].

5.4.5. Examples of spectral sequences. The machinery for the construction of spectral sequences which
was outlined above shows that in order to construct a spectral sequence in an abelian category C, it
suffices to provide two data:

• a homological functor H0 : T ⇀⇁ C,
• a spectral object E in the triangulated category T .

The main example of a homological functor is the homology functor attached to a t-structure, which
obviously includes the functor H0 : D(C)⇀⇁ C when C is an abelian category. It is also important to
note that if H0 : T ⇀⇁ C is a homological functor, then for any triangulated functor F : T ′⇀⇁ T , the
composition F ≫ H0 : T ′⇀⇁ C is also a homological functor.

In order to construct a spectral object in the derived category, we may use any filtration on a
cochain complex. In particular, we may use the canonical filtration which is related to the spectral
objects attached to t-structures (see 5.2.4), but we may also use the stupid filtration. Similarly, the
total complex of a bicomplex may also be equipped with a filtration by the rows or by the columns.

I have completely formalized the following theorem, which is the Grothendieck spectral sequence
for the composition of right derived functors:

Theorem 5.4.5.1 ([15, 2.4.1]). Let F : A → B and G : B → C be additive functors between abelian
categories. We assume that A and B have enough injectives. Moreover, we assume that for any injective
object I in C, the object F (I) is “acyclic” for G, i.e. the canonical map G(F (I)) → RG(F (I)) is an
isomorphism.17

Then, for any X ∈ A, there is a first quadrant cohomological spectral sequence with first page
Ep,q

2
∼= RpG(RqF (X)) which converges to Rp+q(F ≫ G)(X).

We apply the machinery of spectral sequences to the homological functor RG ≫ H0 : D+(B)⇀⇁ C
and the spectral object attached to RF (X) using the canonical t-structure on D+(B). This spectral
sequence converges to Hp+q(RG(RF (X))), but the assumptions on F and G allow to show that the
natural transformation R(F ≫ G) → RF ≫ RG is an isomorphism. It follows that there is a
canonical isomorphism Rp+q(F ≫ G)(X) ∼= Hp+q(RG(RF (X))).

17If G is left exact, this means that (RpG)(F (I)) = 0 for p > 0.
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