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Abstract:
Fault diagnosis in marine diesel engines is vital for maritime safety and operational efficiency.
These engines are integral to marine vessels, and their reliable performance is crucial for safe
navigation. Swift identification and resolution of faults are essential to prevent breakdowns,
enhance safety, and reduce the risk of catastrophic failures at sea. Proactive fault diagnosis
facilitates timely maintenance, minimizes downtime, and ensures the overall reliability and
longevity of marine diesel engines. This paper explores the importance of fault diagnosis,
emphasizing subsystems, common faults, and recent advancements in data-driven approaches
for effective marine diesel engine maintenance.
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1. INTRODUCTION

After the COVID-19 pandemic and the Ukraine War, mar-
itime trade volume contracted marginally by 0.4% in 2022.
However, according to projections from the United Nations
Conference on Trade and Development (UNCTAD), it is
expected to grow by 2.4% in 2023. Additionally, in 2023, oil
cargo distances reached long-term highs due to disruptions
caused by the Russian Federation’s search for new export
markets for crude oil and refined products, while Europe
sought alternative energy suppliers (UNCTAD (2023)).
These developments have led to an increase in operational
hours and cargo transportation for merchants, exposing
vessels to prolonged periods of high loads, high humidity,
and vibrational environments, which in turn increase the
risk of malfunctions on ships. Of all the systems on a
vessel platform, the main engine plays the most critical
role as it is responsible for propulsion and power. Most
vessels rely on diesel engines, which are renowned for their
fuel efficiency (Tadros et al. (2020)). In 2022, the marine
diesel engine market surpassed a valuation of USD 4.7
billion. It is expected to experience a Compound Annual
Growth Rate (CAGR) of 4.8% from 2023 to 2032. This
growth is primarily driven by advancements in emerg-
ing economies and the continual expansion of seaborne
trade (GMI (2023)). The statistics of the damage of the
ship equipment indicate that marine diesel engines are
more vulnerable to damage than other machines and de-
vices (Witkowski and Wysocki (2020)). The significance of
maintaining the main engine in optimal condition cannot
be overstated, as any fault in this critical component can
lead to severe consequences, potentially even collisions.
Therefore, the development of fault diagnostic techniques
is imperative to detect and address any issues before they
escalate and cause damage to the engine or other compo-

nents and ensure safety and reliability during the operation
process (Jiang et al. (2017), Szymański and Tomaszewski
(2016)). The evolution of diagnostic techniques for marine
diesel engines can be categorized into three distinct stages
spanning from the 1960s to the present day. The first
stage, spanning from the 1960s to the 1990s, involved field
testing techniques, which were traditional methods that
required acquired signals to undergo further processing
to extract relevant fault features. The second stage, from
the 1990s to 2010, introduced online condition monitoring
and remote fault diagnosis, allowing for real-time fault
detection through monitoring and alarm systems, which
helped identify abnormal states between periodic checks.
The most recent stage, from 2010 to the present, marks
the era of Intelligent Fault Diagnosis. This stage incorpo-
rates advanced automation, artificial intelligence (AI), and
big data analysis, with diagnostic techniques relying on
quantitative models or data-driven approaches, as well as
expert systems. It is important to note that the complexity
of the marine diesel engine system entails that not all faults
can be effectively diagnosed using the same technique.
Therefore, a tailored approach is necessary to address
the diverse range of potential malfunctions in this critical
component. Advanced fault diagnostic techniques not only
allow for the early identification of issues but also facilitate
data-driven insights and predictive maintenance strate-
gies. They enable ship operators to minimize downtime,
lower maintenance costs, and reduce the environmental
footprint of their vessels, aligning with international regu-
lations and sustainability goals. This paper discusses and
reviews the recent data-based techniques used for fault
diagnosis on marine diesel engines. In Section 2, a brief
introduction to marine diesel engines is provided through
a description of engine subsystems functioning. Section 3 is



devoted to the analysis of different diagnostic techniques
used for the diagnosis of subsystems. Section 4 analyzes
and lists recent data-driven methods used for fault diag-
nosis on different marine diesel engine subsystems. Finally,
concluding remarks are given in Section 5.

2. DESCRIPTION OF DIESEL ENGINE

2.1 Marine Diesel Engine
The diesel engine, credited to Rudolph Diesel’s invention
in 1897, stands as a pivotal internal combustion engine,
serving as the powerhouse of modern industry by convert-
ing fuel into energy. In 1903 the first marine diesel engine
was built (Paul (2020)). Marine diesel engines are large in
scale and more complex than those used in automobiles
and safety issues they are more critical where they are
subjected to a higher risk of failure due to the surrounding
environment, and it is difficult to repair and maintain
diesel engines during maritime shipping. Mechanical fail-
ure may cause the diesel engine to stop the supply of ship
power and even the unit to be scrapped (Kamaltdinov
et al. (2019), Huo et al. (2020)). These engines operate
on the principle of compression ignition, where the fuel
ignites due to the high temperature and pressure gener-
ated during air compression within the engine’s cylinders.
The primary subsystems of a diesel engine, as depicted
in Fig. 1, are the fuel injection system, cooling system,
lubrication system, and air intake and exhaust system (Cai
et al. (2017)). These subsystems collaborate seamlessly
to ensure the efficient and reliable operation of marine
diesel engines. The air intake system is entrusted with
the critical task of supplying and filtering the air needed
for combustion, while the fuel injection system precisely
controls the delivery of fuel into the engine’s cylinders
where dual diaphragm design is used to create a fail-
safe if that compartment fails while for industrial engines
single diaphragm diesel pump is used. Concurrently, the
cooling system plays a pivotal role in maintaining the
engine’s temperature within safe operating limits to pre-
vent overheating, water and air cooling is used for cooling
down the engine. Furthermore, the exhaust system takes
on the responsibility of effectively eliminating combustion
by-products and managing emissions in compliance with
environmental standards, the lubricating system is respon-
sible for reducing friction between moving components
and cleaning engine parts by removing contaminants and
dampening noise and vibration.

2.2 Faults on Marine Diesel Engines
Faults can occur in various components of the engine
and are typically classified based on their type: Control
System Faults (including Hardware and Software faults) or
Actuator Faults (such as Mechanical or Hydraulic faults).
It is important to recognize that the interdependence of
subsystems within the engine means that a fault originat-
ing in one part may have a cascading effect, impacting
other parts. Identifying the cause-and-effect link between
system faults and their observable symptoms serves as the
initial phase in the process of detecting and isolating faults
(Luo et al. (2021), Singh et al. (2018)).

3. FAULT DIAGNOSTIC TECHNIQUES
The United States was the pioneering country in devel-
oping fault diagnosis technology. In 1967, NASA and the

Fig. 1. Marine Diesel Subsystems

Naval Research Institute jointly established the first me-
chanical prevention team. The ability to predict malfunc-
tions before they occur allows for cost reduction by tran-
sitioning from planned maintenance to predictive mainte-
nance. Diagnostic techniques in this field can be broadly
categorized into three groups: model-based, qualitative
empirical knowledge-based, and data-based methods (Qin
(2012)).

(1) Model-based techniques: diagnose the working status
by analyzing residuals, using parity space, observer-
based approach and parameter estimation approach.
Fu et al. (2023) developed a physical model for a
marine diesel engine for diagnosis by calculating the
residuals between predicted data variables using their
models and measured data. However, due to the
complexity of marine engine systems, establishing an
accurate mathematical model to maintain robustness
and sensitivity to faults has limitations, especially in
dealing with complex systems.

(2) Empirical knowledge-based technique: exemplified by
Expert Systems, heavily relies on the specialized
expertise of engineers for diagnostic purposes. Various
types of expert systems, such as rule-based, case-
based, framework, fuzzy logic, neural networks, and
genetic algorithms, are employed for diagnosis (Sahin
et al. (2012)). Fuzzy expert systems, in particular,
are widely utilized in this domain as developed by
Tasdemir et al. (2011). However, this method exhibits
limited efficacy in detecting novel or unexpected
problems, necessitating continual modifications and
development of the knowledge database.

(3) Data-based technique: employs data to build models,
enhancing the performance of diesel engine fault mon-
itoring systems through training experiences. This
method relies on abundant measured data where no
prior knowledge about the investigated object is re-
quired. The data-driven learning techniques can be
categorized into two paradigms: supervised learning
and unsupervised learning.

Advanced diagnostic techniques enable the prediction of
malfunctions before they occur, reducing costs by transi-
tioning from planned maintenance to predictive mainte-
nance (Kocak et al. (2023)). Various data-driven diagnos-
tic techniques, including Support Vector Machine (SVM),
Principle Component Analysis (PCA), Non-Negative Ma-
trix Factorization (NMF), Neural Networks (NN) based
on deep learning, and others, are employed for the di-



agnosis of marine diesel engines. The data-driven di-
agnostic technique typically involves three stages: pre-
processing, domain-adaptive training, and fault diagnosis.
Pre-processing of data takes up to 50% to 80% of the whole
process where data is treated depending on the type of
data found by data transformation, information gathering
or gathering new information (Maharana et al. (2022)). In
training and validation, data is trained to build the model
and then tested, and finally, the algorithm is ready for
diagnosis.

4. DATA-DRIVEN DIAGNOSIS ON MARINE DIESEL
ENGINES

Researchers are increasingly turning their attention to
utilizing sensor data, operational parameters, and ML for
improved detection and prediction of issues in marine
diesel engines. This approach allows for proactive and
accurate identification of faults in these engines. Given
the intricacies of marine diesel engines and the vast array
of sensors capturing data from various subsystems, each
subsystem is diagnosed individually due to the diverse
conditions of data within them.

4.1 Fuel Injection System
The most critical component of a diesel engine is its fuel in-
jection equipment. Even minor faults in this system can re-
sult in a significant loss of combustion efficiency, increased
engine emissions, and elevated noise levels (Krogerus et al.
(2016)). The fuel injection system serves the crucial role
of transferring fuel from the fuel tank, typically via a
fuel pump, to the fuel injectors responsible for deliver-
ing the precise amount of fuel required for combustion
within each cylinder. When considering damage within
the injection system, the majority of issues are related to
the following components: injectors, accounting for 41% of
reported problems; injector pumps, responsible for 31% of
issues; and fuel pipes, which contribute to 12% of iden-
tified faults (Witkowski and Wysocki (2020)). Monitor-
ing such faults is essential to protect the engine, ensure
better performance and reduce pollutants. Many research
studies have been conducted to diagnose various issues
occurring in the injection system. Shi et al. (2023) used
SVM method to diagnose injection faults by proposing
the ”Improved Refined Composite Multi-Scale Dispersion
Entropy (IRCMDE)” method for feature extraction which
is used to overcome the loss of useful information by
Multi-scale Dispersion Entropy (MDE) and improve the
accuracy of the entropy values. The IRCMDE value is
computed for a time series u with signal length N , a
predefined number of classes c, and embedding dimension
m. To calculate the IRCMDE value at a scale factor τ ,
first the length of the coarse-grained time series must be
found, N

τ . This is achieved by coarse-graining the time
series using an improved method, obtaining the sequence

Y
(τ)
K . Then, the Dispersion Entropy (DE) value is cal-

culated for each sequence y
(τ)
k,j separately. Finally, the

final IRCMDE value for the scale factor τ is computed
using these DE values as shown in the following equation:

IRCMDE(u,m, c, d, τ) = 1
τ

∑τ
k=1 DE(y

(τ)
k,j ,m, c, d)

Then, for the feature selection process, the Fast Correlation-
Based Filter (FCBF), a sophisticated multivariate method,
is applied. FCBF utilizes a heuristic approach by applying

a backward selection technique along with a sequential
search strategy to systematically eliminate irrelevant and
redundant features. Subsequently, the SVM method is
employed for the classification of the engine’s operating
condition. In this approach, data undergo training and
optimization through the Particle Swarm Optimization
(PSO) algorithm. The classification is based on mea-
surements derived from both fuel injection pressure and
vibration signals obtained from the high-pressure pipe.
To verify the method, data are collected from the MAN
B&W 6S35ME-B9 engine type, and the proposed method
is compared to other methods such as RCMDE, MDE, and
Multi-scale Permutation Entropy (MPE) methods, where
the IRCMDE showed the highest accuracy (92.12%) and
a relatively smaller standard deviation value. The method
effectively identifies issues such as delays in injection time,
blocked spray holes, and worn needle valves. However, it
is not conducive when classifying faults using vibration
signals measured on a double-wall pipeline. Hou et al.
(2020) applied different PCA and optimized SVMmethods
and compared their accuracy by comparing the Correct Di-
agnosis Ratio (CDR) and Fault Misclassified Ratio (FMR).
These methods are applied for fuel oil supply diagnosis
where faults focused on the fuel pump. PCA with SVM,
optimized by sample size, demonstrated the highest CDR
of 93.9% and the lowest FMR of 6.1% accuracy in fault
diagnosis. It effectively reduced the impact of the imbal-
ance and high dimensionality in the fuel oil supply system,
surpassing the accuracy achieved by the optimized SVM.
However, this complex algorithm showed long run-time
execution comparable to other methods. Chen and Liu
(2022) used improved Genetic Algorithm Elman Neural
Network (GA-ENN) adaptive fault detection technique to
enhance the accuracy of the traditional GA-ENN method.
The improved GA-ENN adaptive method uses a genetic
algorithm to assign the weight and threshold in ENN to
calculate the norm of each generation. The calculation

function is given by: f = (
∑M

j=1

∑N
i=1(P

2
ji − Z2

ji))
1/2

The fitness value is the error norm where Pji and Zji are
the expected and real outputs of j neuron and i node.
This algorithm is applied so the error is to be minimal.
Speed, power, maximum burst pressure, high-pressure oil
pressure, exhaust pressure and temperatures of diesel
fuel injection system are the input data to indicate the
state of the system. The method showed 95.67% diagnosis
accuracy and showed better performance than traditional
GA-ENN and SVM.

4.2 Intake and Exhaust System
The intake and exhaust system of a diesel engine are
crucial for its performance (Abdullah et al. (2013)). In
a marine diesel engine, the intake system plays a vital
role in supplying clean and compressed air to the com-
bustion chambers. Its key functions include filtering and
purifying incoming air, compressing it via a turbocharger,
and delivering it to the engine cylinders for mixing with
fuel. This process enhances combustion efficiency, pro-
motes engine power output, and reduces emissions, en-
suring effective and reliable operation in the demand-
ing marine environment. After combustion, the exhaust
system manages the removal of exhaust gases from the
cylinder part of the exhaust gas drive, powering the tur-
bocharger of the intake system. The primary component



of the exhaust system in a marine diesel engine is the
exhaust valve. One common fault in the exhaust system
is valve leakage, which can lead to detrimental effects,
including increased exhaust temperature, reduced output
power, and an overall decrease in engine performance. To
diagnose faults on this subsystem without disassembling
the engine, researchers have explored various methods,
focusing on thermal parameters, vibration analysis, and
acoustic emission (AE) signals. Hu et al. (2023) conducted
a study using AE signals to generalize diagnostic methods
for exhaust valve leakage in marine diesel engines. The re-
search compared supervised learning methods, specifically
the principal component analysis-support vector machine
(PCA-SVM) and a one-dimensional convolutional neu-
ral network (1D-CNN), with domain-adaptive networks,
including deep adaptation network (DAN), domain ad-
versarial neural network (DANN), and margin disparity
discrepancy (MDD). These techniques were applied to two
distinct marine diesel engines. The study investigated the
diagnostic capabilities of domain-adaptive methods, em-
phasizing the assessment of feature transferability across
different engine types. The proposed method, particularly
MDD, demonstrated significant accuracy in cross-engine-
type fault diagnosis, outperforming alternative methods.
In harsh operating environments, vibration signals often
exhibit nonstationary behavior, making it challenging to
isolate fault features from substantial noise. Integrating
traditional deep learning can result in significant perfor-
mance losses, especially when dealing with new diagnostic
tasks or limited datasets. To address these challenges,
transfer learning has been proposed for exhaust valve
leakage diagnosis. Cai et al. (2023) introduced a modi-
fied VGG16 deep convolutional neural network transfer
method, achieving an impressive 95.2 percent accuracy in
diagnosing valve leakage. Another approach, presented by
Wang et al. (2020), combines supervised and unsupervised
learning techniques. They utilized a neural network algo-
rithm employing PCA clustering analysis. PCA is used for
the reduction of the dimensionality of the raw data, sim-
plified through k-means clustering for grouping the sample
data. The determination of the k value relies on the compu-
tation of the function J defined in the following equation:
J(c, k) =

∑m
i=1 ||x(i) − kc(i) ||2 aiming to simplify intricate

data into a single numerical representation. This function
computes the total of squared distances between each data
point and the center of mass. Where, c(i) signifies the near-
est class for the i-th sample among n classes, strategically
chosen to minimize the J-function. This categorization
minimizes the gap between the center of mass and the
sample x(i), continually adjusting the centroid kj to reduce
J for each class. The ensuing results of k-means PCA op-
timization are subjected to testing by a BP NN, deploying
the Mean Squared Error (MSE). A smaller distance be-
tween all output vectors and the target vector results in a
smaller MSE value. The training concludes when the min-
imum MSE is achieved. This approach has demonstrated
a notable diagnostic capability, particularly in identifying
faults associated with air leakage in the exhaust valve.
Through optimization of the clustering analysis neural
network, the diagnostic speed is enhanced, and the number
of nodes and hidden layers is minimized. It’s worth noting
that data-driven methods often require extensive datasets
comprising both normal and fault data to effectively train

a fault monitoring model. However, gathering sufficient
data for all types of faults can be challenging. In response,
Wang et al. (2021) introduced a hybrid fault monitoring
technique that combines manifold learning and anomaly
detection. This approach relies solely on normal condition
data to train the model. Manifold learning methods, such
as Multi-Dimensional Scaling (MDS) based on the concept
of dissimilarity measures that quantify the discrepancy
between two data points, aim to find a projection of high-
dimensional data points in a lower-dimensional space that
preserves pairwise distances. Locally Linear Embedding
(LLE) computes a set of weights for each point that real-
izes a linear combination of its neighbors to evaluate the
importance of the feature through a metric criterion. T-
distributed Stochastic Neighbor Embedding (t-SNE) is a
dimensionality reduction technique based on probability
distribution to model a high-dimensional data set by a
low-dimensional dataset, mapping the data points to the
probability by affinities that convert similarities between
data points to joint probabilities. MDS, LLE, and t-SNE
are used to extract valuable information from the original
dataset. These features are then fed into an improved
isolation forest (iForest) anomaly detection algorithm and
trained, reducing redundancy and addressing the curse
of dimensionality issues. This technique was successfully
applied to diagnose faults related to exhaust gas leakage
and other faults and showed that the combination of t-SNE
and iForest has the best performance and is better than the
PCA feature selection method. It is well known, however,
that the variations of the actual data are nonlinear and
highly non-Gaussian, and the majority of the data cannot
be described by second-order correlations. Therefore, the
employment of PCA shows a very poor performance. Tu
and Tseng (2021) diagnosed faults in the air system when
there is insufficient airflow by utilizing Kernel Principal
Component Analysis (KPCA) for feature extraction from
the data, which is a non-linear form of PCA, and employed
SVM for fault classification and diagnosis. This method
effectively reduced the computational cost. For turbine
faults and air filter clogging, Basurko and Uriondo (2015)
used Artificial Neural Networks (ANN) for the diagnosis
of these faults. A feed-forward network with sigmoid as
the activation function and a back-propagation method
for network training were used to develop the model. The
weightings of each variable are determined by sensitivity
analysis to select the most sensitive for use in the ANN
model. This method is applied to faults such as a clogged
turbine, air cooler, and air filter/compressor, which cause
an increase in fuel consumption, and showed good per-
formance in diagnosis. For exhaust pipe blockage, Zhong
et al. (2019) used Semi-Supervised PCA (SSPCA) for
diagnosis rather than the traditional PCA, which cannot
handle the labeled data due to its unsupervised essence.
SSPCA showed better performance as it makes full use of
all labeled and unlabeled samples simultaneously. Fault
detection occurs when exceeding the limit of the two
statistics of SSPCA T 2

sem and Qsem by F distribution and
Kernel Density Estimation (KDE), respectively. In case
of offline monitoring, and in case of online monitoring, if
T 2
sem and Qsem exceed their respective control limits, a

fault is detected. This method showed better accuracy in
detection even if pure data is fed to PCA.



4.3 Lubricating and Cooling System

Ensuring the effective functioning of the cooling system
is crucial as it is responsible for attaining and sustaining
optimal working conditions for the engine. If the cool-
ing system experiences damage, it can lead to a swift
increase in temperature for essential engine components.
This, in turn, can negatively impact lubrication, causing
a loss of lubricating properties in the oil and affecting
combustion. It may also trigger premature ignition of
the fuel-air mixture. Ultimately, this scenario could result
in excessive thermal expansion of the piston within the
cylinder, often culminating in significant engine damage.
However, the lubrication system’s role is to ensure proper
functioning, minimise wear and tear, remove heat from
metal surfaces out of the engine, neutralize acids that
can be extremely corrosive, clean the engine’s internal
surfaces from dirt, insoluble and metal particles and pre-
vent rust and corrosion of internal surfaces. this mission
is accomplished by pumping sufficient oil to components
(crankshaft, camshaft, ring/cylinders, etc). Insufficient lu-
brication may cause wear to the components and decrease
the efficiency of combustion in a cylinder, and insufficient
propulsion. For this purpose, the lubrication pressure, tem-
perature, and quantity must be maintained and any fault
occurrence must be detected. Wang et al. (2022) used a
multivariate statistics-based approach for early detection
and diagnosis for the whole lubrication system with a
sensor network designed to be minimal. The data set is
decomposed and pre-processed according to PCA. The
multivariate statistics aimed to calculate the Hotellings
T 2 and Q control parameters according to the estimated
Probability Density Function (PDF) obtained by Adaptive
Kernel Density Estimation (AKDE) for more realistic limit
estimation. Any statistics exceeding its control limit, the
system is to be degraded from the healthy condition.
The abnormalities detected are the input of the Bayesian
networks which will identify the root cause of the lubrica-
tion fault, this method was tested on 11 faults that may
occur in the lubrication system (Lubrication pipe leakage,
lubrication oil shortage and others). Monitoring all ob-
servable parameters in large mechanical systems is nearly
impractical due to constraints such as limited installation
space and high costs. Şahin et al. (2022) used supervised
ML techniques for diagnosis. The authors of this paper
applied and compared 13 different ML techniques (Light
Gradient Boosting Machine (Light GBM), Random Forest
(RF), Gradient Boosting Classifier (GBC), Extra Trees
(ET), Quadratic Discriminant Analysis (QDA), Decision
Tree (DT), K-Nearest Neighbors (KNN), Ridge Regres-
sion (Ridge), Linear Discriminant Analysis (LDA), SVM,
Logistic Regression (LR), AdaBoost (ADA), Naive Bayes
(NB)) ensembled with Bagging method or with the Blend-
ing method according to the accuracy of diagnosis re-
sults and execution time of diagnosis. While the bagging
method is used to reduce the variance of a learning model
and combines homogeneous learners. Blending combines
heterogeneous learners to produce a stronger model with
less biased error than their components. These methods
were applied to diagnose faults related to the cooling and
lubrication faults (failure of oil jet and insufficient cooling
liquid for cylinder cooling). The results showed that with
the Bagging ensemble, the Gradient Boosting Classifier
(GBC) showed better performance where 98.08% is shown

but with long model execution, while when the blend-
ing ensemble method is applied, most successful results
were shown when combining with GBC and RF with an
accuracy of 98.43% and 86 sec construction time. Liang
et al. (2023) used an anomaly Transformer NN (TNN) and
residual analysis for faults related to the cooling system.
The TNN is an unsupervised deep learning used in an
autoencoder manner where there is no need for faulty data
to build the model, the faulty data is reconstructed using
the trained model. The Transformer Autoencoder (TAE)
comprises two identical encoder layers with four attention
heads each. Unlike traditional Transformer architectures,
an efficient reconstruction process is achieved using a
Multi-Layer Perceptron (MLP) in the decoder. This AE
application of the Transformer model streamlines complex-
ity by excluding shifted features in decoding, relying solely
on learned representations for reconstruction. Then the
Sequential Probability Ratio Test (SPRT) is used to make
decisions about a hypothesis based on a sequential anal-
ysis. The sum of squares of normalized residuals (SSNR)
follows a Chi-square distribution with k degrees of freedom
which is equal to the number of features, and the threshold
is derived by inverse cumulative distribution function, used
for the reconstruction error. This method is applied on
cooling faults and showed stability of TAE performance
but it took time in execution and is only tested on one
fault type which may not be efficient on other components
fault detection.

5. CONCLUSION

In conclusion, this survey paper has meticulously defined
the key subsystems of a marine diesel engine, and in-
troduced various diagnostic techniques, with a particular
focus on data-driven approaches. The analysis of recent
research papers employing data-driven diagnostic tech-
niques for specific subsystems of marine diesel engines has
showcased significant advancements in efficiency and diag-
nostic performance. However, the observation that many of
these methods are predominantly tested on specific faults
underscores a limitation in the broader applicability of
these approaches. Regrettably, only a limited number of
studies have tackled the diagnostic challenges of entire
subsystems within marine diesel engines, primarily due
to the insufficient availability of comprehensive datasets
for comprehensive model training. While promising strides
have been made, future research must address this gap
and broaden its scope to encompass entire subsystems,
aiming to enhance the overall robustness and applicability
of diagnostic methodologies in the realm of marine diesel
engines. This critical need emphasizes the potential for
further advancements in ensuring the reliability and per-
formance of marine diesel engines through comprehensive
data-driven diagnostic techniques. This survey paper is
planned to be extended into a journal paper, where fault
isolation will be discussed and a more in-depth exploration
of other diagnostic methods.
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