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A voting rule decides on a probability distribution over a set of m alternatives, based on rankings of those

alternatives provided by agents. We assume that agents have cardinal utility functions over the alternatives,

but voting rules have access to only the rankings induced by these utilities. We evaluate how well voting

rules do on measures of social welfare and of proportional fairness, computed based on the hidden utility

functions.

In particular, we study the distortion of voting rules, which is a worst-case measure. It is an approximation

ratio comparing the utilitarian social welfare of the optimum outcome to the social welfare produced by the

outcome selected by the voting rule, in the worst case over possible input profiles and utility functions that

are consistent with the input. The previous literature has studied distortion with unit-sum utility functions

(which are normalized to sum to 1), and left a small asymptotic gap in the best possible distortion. Using tools

from the theory of fair multi-winner elections, we propose the first voting rule which achieves the optimal

distortion Θ(
√
m) for unit-sum utilities. Our voting rule also achieves optimum Θ(

√
m) distortion for a larger

class of utilities, including unit-range and approval (0/1) utilities.

We then take a similar worst-case approach to a quantitative measure of the fairness of a voting rule,

called proportional fairness. Informally, it measures whether the influence of cohesive groups of agents on

the voting outcome is proportional to the group size. We show that there is a voting rule which, without

knowledge of the utilities, can achieve a Θ(logm)-approximation to proportional fairness. As a consequence

of its proportional fairness, we show that this voting rule achieves Θ(logm) distortion with respect to the Nash

welfare, and selects a distribution that provides a Θ(logm)-approximation to the core, making it interesting

for applications in participatory budgeting. For all three approximations, we show that Θ(logm) is the best

possible approximation.
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1 INTRODUCTION

We consider the problem of designing voting rules that aggregate agents’ ranked preferences and
arrive at a collective decision with high social welfare and which is fair to all agents. Throughout,
we focus on probabilistic voting rules, which take as input a preference profile of complete rankings
of a set A ofm alternatives and output a probability distribution over A.

In order to evaluate the social welfare and fairness of voting rules, we build upon the framework
of implicit utilitarian voting [Procaccia and Rosenschein 2006], which assumes that each agent i has
a cardinal utility functionui : A → R�0 over alternatives, but reports only the induced ranking over
alternatives to the voting rule. While in principle a voting rule could elicit the precise utility values,
it is more common in the literature to ask for rankings. This makes for a simple elicitation protocol,
which can ease the cognitive burden on agents (because they need not precisely determine their
own utility values), and preserves the privacy of any agents who may not wish to reveal their exact
utilities to a voting rule.

The implicit utilitarian framework allows us to quantify the efficiency of a given voting rule:
Given an input profile of rankings, we can measure efficiency as the worst-case ratio between
the social welfare of the optimal outcome and the social welfare of the outcome selected by the
voting rule, where the worst case is taken over all utility functions consistent with the ordinal
rankings reported to the voting rule. This quantity is known as distortion and has been widely
studied. The existing literature commonly analyzes distortion for the class of unit-sum utilities, in
which each agent’s total utility is normalized to 1 [Boutilier et al. 2015; Caragiannis et al. 2017;
Filos-Ratsikas et al. 2020; Mandal et al. 2019, 2020]. For deterministic voting rules, which place the
entire probability mass of 1 on a single alternative, it is known that the best possible distortion
is Θ(m2) [Caragiannis et al. 2017; Caragiannis and Procaccia 2011]. For probabilistic voting rules,
which we are interested in, Boutilier et al. [2015] prove a lower bound of Ω(

√
m). We propose the

first voting rule achieving the asymptotically optimal distortion of O(
√
m), matching the lower

bound of Boutilier et al. [2015] and resolving an important open question in this line of work. Our
proof shows that the same rule is also optimal for unit-range utilities (which are normalized to
range between 0 and 1) with the same O(

√
m) distortion. This improves upon the previous best

known distortion of O(m2/3) [Filos-Ratsikas 2015; Lee 2019]. This O(
√
m) distortion of our rule is

also optimal for the special case of approval utilities, in which each agent has utility 1 for a subset
of alternatives and utility 0 for the rest. This class corresponds naturally to approval voting but,
to the best of our knowledge, has not been studied in the context of distortion.1 Our rule can be
computed in polynomial time.

Interestingly, while our new voting rule achieves low distortion (i.e., high social welfare), it
internally aims for a fair outcome. Specifically, it uses tools from multi-winner voting for selecting
a committee (a fixed-size subset of alternatives) that is representative. Informally, as many agents as
possible should have one of their highly ranked alternatives in the committee. There is an intuitive
case for considering representative committees for achieving low distortion: Suppose a voting rule
places little weight on the highly-ranked alternatives of a large group of agents. Then the voting
rule may incur high distortion when those agents feel strongly about their preferences and all other
agents are indifferent. This suggests that, at least in some settings, if one wants to be efficient, it
pays to also be fair.

1Distortion for approval utilities makes sense in contexts where agents may find it easier to rank alternatives than to

assign them approval utilities. For example, if the alternatives are budget divisions, a project leader would naturally rank

the divisions by the amount of money allocated to their project. But the eventual utility depends on whether the money is

enough to deliver the project or not, and the required amount may be unknown at the time of voting.
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Table 1. Overview of Our Results

Distortion, unit-sum Distortion, unit-range Proportional fairness

Stable Lottery Rule Θ(
√

m) [Theorem 3.4] Θ(
√

m) [Theorem 3.4] —

Stable Committee Rule Θ(
√

m) [Theorem D.6] Θ(
√

m) [Theorem D.6] O (
√

m) [Theorem D.4]

Harmonic Rule (strategyproof) Θ(
√

m log m) [Theorem B.1] Θ(m 2
3 log

1
3 m) [Theorem B.2] Θ(

√
m log m) [Theorem B.3]

Best possible Θ(
√

m) [BCHLPS 15] Θ(
√

m) [Theorem 3.6] Θ(log m) [Theorem 4.2, 4.6]

Best possible, strategyproof Θ(
√

m log m) [BDG 18] Θ(m 2
3 ) [FM 14] Ω(

√
m) [Theorem C.8]

Previously known results: O (
√

m log m) [Boutilier et al. 2015] upper bound on the distortion of the harmonic rule for

unit-sum utilities, Ω(
√

m) [Boutilier et al. 2015] and Ω(
√

m log m) [Bhaskar et al. 2018] lower bounds on the distortion

of non-strategyproof and strategyproof rules for unit-sum utilities, respectively, and Θ(m2/3) distortion of the best

possible strategyproof rule for unit-range utilities [Filos-Ratsikas and Miltersen 2014; Lee 2019].

While we use fair committees as a means to achieve high social welfare, we are also interested
in fairness as an end. We wish to achieve a notion of fairness defined for our single-winner setting.
Specifically, we adapt a quantitative measure from network theory called proportional fairness to
the voting context. This measure is phrased in terms of agents’ utility functions, and we combine
it with the worst-case philosophy of distortion to obtain a way to measure the fairness of voting
rules. Intuitively, for an outcome to do well with respect to proportional fairness, it cannot be the
case that any large group of agents gets too little utility, where “too little” is a function of how
large the group is and how easy it is to give high utility to the group.

If we knew the underlying agent utilities, we could compute a distribution that is 1-
proportionally fair. We show that given only a preference profile of rankings, there always exists
a distribution that is O(logm)-proportionally fair regardless of the underlying utility functions
(consistent with the input rankings). Our existence proof uses the minimax theorem for zero-sum
games. We show that our result is optimal because there are preference profiles for which every
distribution has an approximation to proportional fairness that is no better than Ω(logm) under
some consistent utility functions. We then show that, given a preference profile, the projected
subgradient descent algorithm can be used to compute a distribution with an (almost) optimal
approximation to proportional fairness in polynomial time.

Proportional fairness is an interesting measure because voting rules that do well on it auto-
matically do well on other fairness measures as well. For example, it is widely recognized that
maximizing the Nash welfare instead of the utilitarian welfare gives fairer outcomes (the Nash
welfare of an outcome is the product of agent utilities instead of the sum). We can define a version
of distortion for the Nash welfare, and our rule for proportional fairness will guarantee O(logm)
distortion for this objective, which we show to be best-possible. Another fairness property is
taken from the literature on participatory budgeting (PB) [Fain et al. 2016]. We can interpret a
probabilistic voting rule as dividing a fixed budget between different projects, and agents vote by
ranking those projects. Agents wish to see more money spent on the projects they rank higher. An
important goal in PB is to provide proportional representation in that any x% of the population
cannot find an allocation of x% of the budget which provides them a Pareto improvement (i.e.,
does not hurt any of them and strictly improves some). This aim can be formalized using the
concept of the core. Our rule for proportional fairness selects an outcome that provides an
O(logm)-approximation to the core, which we show to be best-possible.

Table 1 provides an up-to-date account of the results on distortion for unit-sum and unit-range
utilities as well as proportional fairness. It also includes known and new results for strategyproof
rules which we discuss in Appendices B and C.

1.1 Related Work

There are many papers that study the distortion of voting rules, beginning with the work
of Procaccia and Rosenschein [2006], who analyze the distortion of many common voting rules.

ACM Trans. Econ. Comput., Vol. 12, No. 1, Article 3. Publication date: March 2024.
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Caragiannis and Procaccia [2011] also evaluate the distortion of prominent voting rules, but from
the perspective of optimizing embeddings, which (perhaps randomly) map cardinal utilities to
ordinal votes that voting rules take as input. Their work, together with that of Caragiannis et al.
[2017], identifies the best possible distortion via deterministic voting rules to be Θ(m2). Boutilier
et al. [2015] study probabilistic voting rules and derive a lower bound of Ω(

√
m) on the optimal

distortion for probabilistic voting rules with unit-sum utilities. They also design an artificial rule
(tailored specifically to the unit-sum distortion context) which establishes an upper bound of
O(

√
m log∗m).2 OurO(

√
m) upper bound matches their lower bound and eliminates the log∗m gap.

Boutilier et al. [2015] also propose the harmonic rule based on the harmonic scoring rule

and show that it achieves O(
√
m logm) distortion for unit-sum utilities. Bhaskar et al. [2018]

point out that this voting rule is strategyproof (in expectation with respect to any consistent

utility function), and prove that any strategyproof rule must incur at least Ω(
√
m logm) distortion,

making the harmonic rule asymptotically optimal, subject to strategyproofness. Distortion subject
to strategyproofness had first been studied by Filos-Ratsikas and Miltersen [2014], who consider
unit-range utilities and prove that any strategyproof rule must incur at least Ω(m2/3) distortion.
Their proof also implies this bound for approval utilities. Lee [2019] proposed a strategyproof
method that achieves a matching O(m2/3) upper bound for unit-range utilities.3 In the appendix,

we show that the harmonic rule achieves distortion Θ(m2/3 log1/3m) for approval and for unit-
range utilities, matching the lower bound subject to strategyproofness up to a logarithmic factor.
Using the techniques of Filos-Ratsikas and Miltersen [2014] and Bhaskar et al. [2018], we derive
a lower bound of Ω(

√
m) on our proportional fairness objective subject to strategyproofness, and

show that the harmonic rule again matches this bound, up to a logarithmic factor.
Implicit utilitarian voting can be seen as a protocol for reducing communication complexity

by asking agents to report ordinal preferences in place of cardinal utilities, so it is natural to
study the trade-off between the communication complexity (the number of bits of information
each agent is asked to report) and the optimal distortion achievable. Mandal et al. [2019, 2020]
characterize the Pareto frontier of this tradeoff, showing that in order to achieve distortion

d , probabilistic voting rules require agents to communicate only Θ̃(m/d3) bits of information

whereas deterministic voting rules require Θ̃(m/d) bits, establishing probabilistic rules as superior
in this context. Amanatidis et al. [2021] considered making a few value queries (asking agents to
report their utility for an alternative) or comparison queries (asking agents to report whether the
ratio of their utilities for two alternatives is at least a threshold) on top of their reported ordinal
preferences. They prove that asking onlyO(log2m) value queries orO(log2m) comparison queries
is sufficient to achieve constant distortion.

Going beyond single-winner voting, Caragiannis et al. [2017] study distortion (and another
closely related objective called regret) for multi-winner voting, where the goal is to select a com-
mittee of k alternatives for a given size k . They assume that the utility of an agent for a committee
is the maximum utility of the agent for any alternative in the committee. They prove that the opti-
mal distortion of deterministic rules is Θ(1+m(m−k)/k), implying an optimal distortion of Θ(m2)
for deterministic single-winner voting. For probabilistic rules, they leave a gap of Θ(m1/6) between
their upper and lower bounds for the optimal distortion. Recently, Borodin et al. [2022] close this

2log∗m is the iterated logarithm of m, which is the number of times log needs to be applied to m until the result is at most

1.
3The method achieving this bound chooses, with probability 1

2 an alternative uniformly at random, and with probability
1
2 it chooses a voter uniformly at random and then chooses one alternative that this voter ranks in the top m1/3 ranks

uniformly at random. A detailed proof of the result by Lee [2019] that this rule achieves O (m2/3) distortion for unit-range

utilities is presented by Filos-Ratsikas [2015, Section 2.3].

ACM Trans. Econ. Comput., Vol. 12, No. 1, Article 3. Publication date: March 2024.



Optimized Distortion and Proportional Fairness in Voting 3:5

gap by building upon our work. They extend our single-winner rule with O(
√
m) distortion to

multi-winner voting and prove that it achieves the optimal distortion of Θ(min(
√
m,m/k)).

Benadè et al. [2021] study participatory budgeting, which is an extension of multi-winner voting
in which each alternative has a cost and the goal is to find a subset of alternatives with total cost at
most a given budget. They focus on a different utility model, in which the utility of an agent for a set
of alternatives is the sum of her utilities for the alternatives in the set. They compare four protocols
for eliciting agent preferences and prove that while ranked preferences lead to O(

√
m · logm)

distortion with probabilistic aggregation, threshold approval votes, which ask agents to identify
alternatives for which their utility is at least a specified threshold, lead to a significantly lower
distortion of O(log2m). Bhaskar et al. [2018] show that the near-optimal O(

√
m · logm) distortion

for participatory budgeting with ranked preferences can in fact be obtained via a strategyproof
voting rule, establishing that strategyproofness comes at minimal cost even in this general model.

In all these papers, agents are modeled to have normalized utilities for alternatives. Initiated
by the work of Anshelevich et al. [2018], a large recent literature about metric distortion instead
models agents as having costs for alternatives. This literature makes the assumption that the cost
of an agent for an alternative is the distance between them in an underlying metric space, and
aims to approximate the utilitarian social cost (i.e., the sum of agent costs) [Anshelevich et al.
2018; Anshelevich and Postl 2017; Anshelevich and Sekar 2016; Caragiannis et al. 2022; Kempe
2020; Munagala and Wang 2019]. It turns out that the metric structure allows significantly better
distortion bounds: the best distortion of deterministic rules is 3 [Gkatzelis et al. 2020; Kizilkaya
and Kempe 2022] (compared to Θ(m2) in the non-metric setting) and that for probabilistic rules is
between 2.1126 and 2.753 [Charikar and Ramakrishnan 2022; Charikar et al. 2024] (compared to
Θ(

√
m) distortion in the non-metric setting). Note that probabilistic rules are superior to determin-

istic rules in the metric setting as well.
Fairness of single-winner voting rules has received less attention than distortion. For prob-

abilistic voting rules, fairness has been studied in a series of papers that interpret the output
distribution as a division of a budget. Most work has studied this in a model with known approval
utilities of the agents [Aziz et al. 2019; Bogomolnaia et al. 2005; Brandl et al. 2021; Duddy 2015].
Airiau et al. [2023] study probabilistic voting rules which take as input ranked preferences, and
then convert those preferences into utilities using a fixed scoring vector (such as Borda). The rules
then maximize the Nash welfare (the geometric mean of agent utilities) or the egalitarian welfare
(the minimum agent utility) and its leximin refinement. Note that in our work the utilities are
unknown. They prove that Nash-welfare-based rules satisfy the SD-core. This is a weaker axiom
than the core that we introduce in Section 2, which in the terminology of Aziz et al. [2018] could
be called the strong SD-core. We note that SD-core implies no better than an m-approximation of
our (strong) core (for example, random dictatorship satisfies SD-core and is in them-approximate
core), whereas we achieve anO(logm)-approximate core. In a model where voters report their util-
ities, Fain et al. [2016] investigate the core and propose a polynomial-time algorithm for finding an
outcome in the core via the so-called Lindahl equilibrium. Note that they do not require an approx-
imation to the core because utilities are known. They also point out connections to proportional
fairness.

Fairness in voting has been studied in detail for deterministic multi-winner voting rules. Various
fairness notions have been studied that require every group of agents to have representation in
the committee, with larger and more cohesive groups having better representation. This includes
notions such as justified representation (JR), extended justified representation (EJR) [Aziz et al.
2017a], proportional justified representation (PJR) [Sánchez-Fernández et al. 2017], full justified
representation (FJR) [Peters et al. 2021a] and the proportionality degree [Skowron 2021]. Cheng
et al. [2020] prove that there always exists a distribution over committees that satisfies a stronger

ACM Trans. Econ. Comput., Vol. 12, No. 1, Article 3. Publication date: March 2024.



3:6 S. Ebadian et al.

fairness notion called stability; this is the main tool we use to achieve O(
√
m) distortion for

single-winner voting. Jiang et al. [2020] derandomize this result to prove that there always exists a
committee satisfying 32-approximate stability; we show that this derandomized result can be used
to achieve O(

√
m) distortion with respect to the Nash welfare, but we are able to improve on that

bound to achieve Θ(logm) distortion using the minimax theorem (which is best-possible). Fain
et al. [2018] study a more general model of public goods and achieve different approximations to
the core under various constraints on feasible outcomes.

2 PRELIMINARIES

For t ∈ N, we write [t] = {1, . . . , t}. For a set A, let Δ(A) be the set of probability distributions x

over X . For a ∈ A, we write x(a) for the probability that x places on a, and for a set A′ ⊆ A, we
write x(A′) =

∑
a′ ∈A′ x(a′).

We repeatedly use the inequality of arithmetic, geometric, and harmonic means (AM-GM-HM
inequality) which states that for all a1, . . . ,at > 0, we have 1

t

∑t
i=1 ai � t

√
a1a2 · · ·at � t

1
a1
+· · · 1

at

.

Voting. Let N be a set of n agents and A be a set of m alternatives. For k ∈ [m], let Pk (A)
denote the set of all subsets of A of size k . Each agent i ∈ N submits a preference ranking over the
alternatives, encoded by a bijective rank function σi : A → [m]. For example, if σi (a) = 1, then a
is the most-preferred alternative for agent i . We use a �i a

′ to denote σi (a) < σi (a′) (agent i ranks
a strictly above a′) and a �i a′ to denote σi (a) � σi (a′). We refer to the collection 	σ = (σi )i ∈N

as a preference profile. A probabilistic voting rule f (which we usually just call a voting rule) is a
function that takes a preference profile 	σ as input and outputs a distribution over alternatives. The
output of a voting rule can be interpreted as a randomized selection of alternatives, but also as a
division of some divisible resource (such as time or a budget) between the alternatives.

Utilities. A utility functionu : A → R�0 assigns a non-negative utility to each alternative. We can
extend u to also assign utility values to distributions x ∈ Δ(A) over alternatives by setting u(x) =
Ea∼x u(a). We assume that when agents submit ranked preferences, they have more expressive
underlying cardinal preferences. Given a preference profile 	σ , we say that a utility function ui for
agent i is consistent with her preference ranking if for all a,a′ ∈ A such that a �i a′, we have
ui (a) � ui (a′). Note that we allow alternatives to have equal utility, and then the agent can break
ties arbitrarily when submitting a preference ranking. We refer to a collection 	u = (ui )i ∈N as a
utility profile. We use the notation 	u � 	σ to indicate that ui is consistent with σi for each agent i .
Note that voting rules have access to the preference profile but not to the utility profile.

Utility classes. Let Uall denote the class of all possible utility functions. We also study the fol-
lowing standard restricted utility classes.

• Uunit-sum is the class of unit-sum utility functions u satisfying
∑

a∈A u(a) = 1.
• Uunit-range is the class of unit-range utility functions u satisfying maxa∈A u(a) = 1.4

• Uapproval is the class of approval utility functions u satisfying u(a) ∈ {0, 1} for all a ∈ A and
u(a) = 1 for at least one a ∈ A.

We introduce a new class of balanced utility functions, where the highest utility intensity that
can be expressed is at most 1, and where the total utility of the utility function is at least 1.

• Ubalanced is the class of utility functionsu satisfyingu(a) � 1 for all a ∈ A and
∑

a∈A u(a) � 1.

Note that Uunit-sum ⊆ Ubalanced and Uapproval ⊆ Uunit-range ⊆ Ubalanced. Our main upper bound
for distortion (Theorem 3.4) will hold for the entire class of balanced utility functions.

4Some definitions of unit-range utilities require mina∈A u(a) = 0 in addition, but this is not necessary for our results.
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Table 2. Preferences and Utilities for Example 2.2

Agent i1 Agent i2 Agent i3
Preferences 	σ a1 � a2 � a3 a2 � a1 � a3 a1 � a3 � a2

Utilities
	u1 1/2 , 1/3 , 1/6 1/2 , 1/2 , 0 1/3 , 1/3 , 1/3

	u2 1/2 , 1/2 , 0 1 , 0 , 0 1/3 , 1/3 , 1/3

Utilities are sorted according to agents’ preference rankings.

In this work, we focus on two metrics for evaluating voting rules: distortion, which is a measure
of social welfare, and proportional fairness, which is a measure of fairness.

2.1 Distortion

Given the utility profile 	u, the utilitarian welfare of a distribution over alternatives x ∈ Δ(A) is
defined as UW(x, 	u) =

∑
i ∈N ui (x).

If one could observe the underlying utilities, an argument dating back to Bentham [1789] sug-
gests that picking the alternative maximizing the utilitarian welfare is the best choice. However,
a voting rule is allowed to observe only the preference profile 	σ , thus obtaining partial informa-
tion about the utility profile 	u. In this case, we measure the efficiency of the voting rule by the
worst-case approximation ratio it achieves for maximizing the utilitarian welfare.

Definition 2.1 (Distortion). Given a utility profile 	u, the distortion of a distribution x ∈ Δ(A) is
the ratio between the highest possible social welfare and the social welfare of x under 	u:

D(x, 	u) =
maxy∈Δ(A) UW(y, 	u)

UW(x, 	u)
.

The distortion of x on a preference profile 	σ for a utility class U is obtained by taking the worst
case over all utility profiles 	u ∈ Un consistent with 	σ .

D(x, 	σ ,U) = sup	u ∈Un : 	u� 	σ D(x, 	u).
Given a numberm of alternatives, the distortion of a voting rule f for utility classU is Dm(f ,U) =
sup	σ D(f (	σ ), 	σ ,U), where the supremum is taken over all preference profiles 	σ withm alternatives
and any number of agents.

Example 2.2. Table 2 shows a preference profile with three agents and three alternatives. Con-
sider the distribution x = (a1 : 1/2, a2 : 1/4, a3 : 1/4). Let us evaluate its distortion under the two
utility profiles given in the table.

— For utility profile 	u1, the social welfare of x is UW(x, 	u1) = 3/8 + 3/8 + 1/3 = 13/12. For 	u1, the

optimal outcome is y = (a1 : 1) with UW(y, 	u1) = 4/3. Hence, D(x, 	u1) =
4/3

13/12
≈ 1.23.

— For utility profile 	u2, the social welfare of x is UW(x, 	u2) = 3/8 + 1/4 + 1/3 = 23/24. For 	u2, the

optimal outcome is y = (a2 : 1) with UW(y, 	u2) = 11/6. Hence, D(x, 	u2) =
11/6

23/24
= 44/23 ≈ 1.91.

Thus, under 	u1, it is possible to obtain 23% more social welfare than x, and under 	u2, it is possible
to obtain 91% more. Using a simple linear program, one can check that 	u2 is the worst case for utility
profiles from Uunit-sum, so D(x, 	σ ,Uunit-sum) = 44/23 ≈ 1.91. Using a more sophisticated linear
program [Boutilier et al. 2015], one can find the distribution with the lowest possible distortion
for unit-sum utilities, which is x∗ ≈ (a1 : 0.5882,a2 : 0.4118,a3 : 0) with distortion of about 1.54.

As we mention in Example 2.2, given a preference profile 	σ , one can find a distribution x

minimizing D(x, 	σ ,Uunit-sum) by solving a linear program proposed by Boutilier et al. [2015].
Their approach works for any utility class that is described by linear constraints, so it can
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3:8 S. Ebadian et al.

be used to find instance-optimal distributions for unit-sum, for unit-range, and for balanced
utilities. However, approval utilities are not described by linear constraints (since we need
to enforce integrality). Still, we show in Lemma A.1 in the appendix that the distribution
minimizing distortion for unit-range utilities also minimizes distortion for approval utili-
ties, so instance-optimal distributions for approval utilities can still be found using a linear
program.

We have defined the distortion for a class of utility functions U by taking the worst case over
all utility profiles 	u in which the utility function ui of every agent i belongs to U. Most naturally,
one would like to analyze the distortion for the class of all utility functions Uall. However,
the worst-case distortion for this class is degenerate: the rule that always selects the uniform
distribution has O(m) distortion, and it is easy to see that any rule has at least Ω(m) distortion
(by considering utility profiles where some agents care a lot and others not at all). Thus, without
some additional restrictions on cardinal utilities (such as unit-sum or unit-range), it turns out that
ordinal preferences do not provide significant information about utilitarian welfare.

2.2 Nash Welfare Distortion

Distortion is typically defined with respect to utilitarian welfare, but the same principle can
be applied to other welfare functions. We will in particular study Nash welfare (NW), which is

the geometric mean of agent utilities: NW(x, 	u) = (
∏

i ∈N ui (x))
1/n . We can define the distortion

DNW
m (f ,U) of a voting rule f for Nash welfare by replacing the utilitarian welfare UW in

Definition 2.1 by NW.
Nash welfare is sometimes viewed as a combined measure of efficiency and fairness. It

measures efficiency in a Pareto sense (if everyone’s utility increases then so does Nash welfare),
and it measures fairness because if some agent has very low utility then this has a strong
negative impact on overall Nash welfare. Remarkably, the Nash welfare is scale invariant,
i.e., multiplying the utility function of an agent by some factor does not change the compar-
ison between the Nash welfare of two distributions over alternatives. Hence, we have that
DNW

m (f ,Uall) = DNW
m (f ,Uunit-sum) = DNW

m (f ,Uunit-range) for every voting rule f .

2.3 Core

When we view a distribution x as a division of a budget between the alternatives, the core is a
fairness axiom that intuitively guarantees every group of agents an influence proportional to its
size, provided the agents in the group have similar enough preferences.

Let α � 1. We will define an α-approximate notion of the core which coincides with the standard
version when α = 1. Similar α-approximations to the core have been studied in discrete budgeting
settings [Fain et al. 2018; Munagala et al. 2022; Peters and Skowron 2020]. A distribution over
alternatives x ∈ Δ(A) is said to be in the α-core with respect to utility profile 	u if there is no subset
of agents S and distribution over alternatives y ∈ Δ(A) such that

|S |
|N | · ui (y) � α · ui (x) for every agent i ∈ S ,

and at least one of these inequalities is strict.5 For every agent i ∈ S and at least one of these
inequalities is strict [Fain et al. 2016, 2018]. For any utility profile 	u, the distribution maximizing
Nash welfare is in the 1-core [Fain et al. 2016]. Given a preference profile 	σ , we say that a dis-
tribution x is in the universal α-core if x is in the the α-core with respect to every utility profile

5Equivalently, this condition requires that there is no set S ⊆ N and partial distribution y : A → [0, 1] with
∑

a y(a) =
|S |/n such that ui (y) � α · ui (x).
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Optimized Distortion and Proportional Fairness in Voting 3:9

	u consistent with 	σ . A voting rule f is said to be in the universal α-core if, for every preference
profile 	σ , f (	σ ) is in the universal α-core.

The core notion is inspired by cooperative game theory, where it is seen as a stability notion:
if a group of agents is not treated fairly, then those agents can leave the system in order to use
their fraction of the budget in a preferable way. The core is typically defined in settings where
agents’ utility functions are known; our notion is phrased for the case where the rule has access to
only ordinal information. Note that to be in the universal α-core, a rule needs to avoid deviations
for all consistent utilities. This makes sense as a conservative stability notion because agents will
presumably make their decision to leave based on their actual utilities.

While 1-core can be achieved when exact utilities are known (see Section 2.4), it is easy to
see that no rule can satisfy 1-core given only the ordinal preferences. For example, consider the
preference profile from Example 2.2 with preferences (a1 � a2 � a3, a2 � a1 � a3, a1 � a3 �
a2). For the utility profile where each agent approves just their top alternative, there is a unique
distribution x that satisfies the 1-core, namely x = (a1 : 2/3,a2 : 1/3,a3 : 0). This is because if x(a1)
was any lower, then the first and third agents could deviate; if x(a2) was lower, then the second
agent could deviate. However, x fails the 1-core if we change the utility profile so that the second
agent gives the same utility to all alternatives. For that utility profile, all three agents can deviate
together by proposing to place the entire budget on a1.

2.4 Proportional Fairness

We have now seen two notions that are connected to fairness (Nash welfare and the core). A third
such notion is proportional fairness, which was first proposed in communication networks [Kelly
et al. 1998] but is easily adapted to social choice more generally. This is a quantitative way of mea-
suring the fairness of a distribution. As we will see, proportional fairness is intimately connected
to the other two notions.

Definition 2.3 (Proportional Fairness). Let x ∈ Δ(A) be a distribution over alternatives. Given a
utility profile 	u, we write

PF(x, 	u) = max
y∈Δ(A)

1

n

∑
i ∈N

ui (y)
ui (x)

= max
a∈A

1

n

∑
i ∈N

ui (a)
ui (x)

.6 (1)

For every utility profile 	u, there exists a distribution x with PF(x, 	u) = 1; in fact, the distribution
that maximizes Nash welfare with respect to 	u has this property [e.g., Fain et al. 2018, Sec. 2.2].
This is the lowest possible value because if we take y = x in the definition of PF(x, 	u), we obtain
a value of 1. To illustrate why proportional fairness is a measure of fairness, we can note that if x

is a distribution such that ui (x) = 0 for some agent i ∈ N , then PF(x, 	u) = ∞, which we can see
by taking any y for which ui (y) > 0. Thus, an α-proportionally fair distribution, with α not too
high, guarantees to every agent a base level of utility compared to what the agent can receive in
any other distribution. In particular, no agent’s preferences can be completely ignored.

Definition 2.4 (Distortion of Proportional Fairness). Given a preference profile 	σ and a utility class
U, the distortion with respect to proportional fairness of a distribution x is

DPF(x, 	σ ,U) = sup	u ∈Un : 	u� 	σ
PF(x, 	u)

miny∈Δ(A) PF(y, 	u)
= sup	u ∈Un : 	u� 	σ PF(x, 	u),

where the last transition holds because the denominator in the middle expression is always 1, as
we just discussed.

6This is the maximum possible average multiplicative increase in agent utilities when moving from x to any other y. The

second transition in (1) holds because 1
n

∑
i∈N ui (y)/ui (x) is linear in y.
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3:10 S. Ebadian et al.

Given a numberm of alternatives, the distortion with respect to proportional fairness of a voting
rule f (for utility class U) is obtained by taking the worst case over all preference profiles 	σ with
m alternatives and any number of agents, that is, DPF

m (f ,U) = sup	σ PF(f (	σ ), 	σ ,U).

Like the Nash welfare, proportional fairness is also scale invariant. Hence, we have
DPF

m (f ,Uall) = DPF
m (f ,Uunit-sum) = DPF

m (f ,Uunit-range) for every voting rule f . Our results for

proportional fairness all hold with respect to Uall, so we drop it from the notation and simply use
DPF(x, 	σ ) and DPF

m (f ).

Example 2.5. Consider the profile in Table 2, previously discussed in Example 2.2. For the distri-
bution x = (a1 : 1/2, a2 : 1/4, a3 : 1/4) and utilities 	u1, we have PF(x, 	u1) = 1

3 max{11/3, 29/9, 13/9} =
11/9 ≈ 1.22. For utilities 	u2, we have PF(x, 	u2) = 1

3 max{7/3, 19/3, 1} = 19/9 ≈ 2.11. Using Lemma 4.1
in Section 4, we can check that 	u2 is the worst-case utility profile for distribution x, so that
PF(x, 	u) � 19/9 ≈ 2.11 for all utility profiles 	u ∈ Uall. Hence, DPF(x, 	σ ) = 19/9.

Using the techniques described in Section 4.3, we can establish that the optimal distribution
with respect to proportional fairness is x∗ ≈ (a1 : 0.586, a2 : 0.414, a3 : 0), and PF(x∗, 	u) � 1.472
for all utility profiles 	u ∈ Uall.7

An appealing strength of proportional fairness is that it is related to other fairness properties of
interest. In particular, an α-proportionally fair voting rule is also in the universal α-core, and has
a distortion with respect to Nash welfare of at most α .

Proportional fairness ⇒ the core. The following is a well-known relation between proportional
fairness and the core.8

Proposition 2.6. For eachm and every α � 1, if DPF
m (f ) � α , then f is in the universal α-core.

Proof. We prove that if f violates the universal α-core, then its distortion with respect to pro-
portional fairness is at least α . Suppose there exists a consistent pair of utility profile 	u and pref-
erence profile 	σ such that x = f (	σ ) is not in the α-core with respect to 	u. Then there is a subset

of agents S and a distribution over alternatives y ∈ Δ(A) such that |S |
n

· ui (y) � α · ui (x) (i.e.,
ui (y)
ui (x) � α · n

|S | ) for every agent i ∈ S and at least one of these inequalities is strict. Hence,∑
i ∈S

ui (y)
ui (x)

> α · n ⇒ 1

n

∑
i ∈N

ui (y)
ui (x)

�
1

n

∑
i ∈S

ui (y)
ui (x)

> α ,

showing that DPF
m (f ) > α . �

Proportional fairness ⇒ distortion with respect to the Nash welfare. It is also well-known that
proportional fairness is an upper bound on the approximation of (i.e., distortion with respect to)
the Nash welfare.9

Proposition 2.7. For every voting rule f , we have DNW
m (f ,Uall) � DPF

m (f ,Uall).

Proof. This holds because for any pair of distributions over alternatives x, y ∈ Δ(A) and utility
profile 	u, we have

7On this small example, one can find this optimum distribution x∗ by hand after noting that a3 must receive probability 0.

One derives x∗ = {a1 : 2 −
√

2, a2 :
√

2 − 1, a3 : 0} with DPF(x∗, 	σ , Uall) = 1 +
√

2/3.
8This result has not been explicitly stated, but essentially the same proof is frequently used to show that distributions

maximizing Nash welfare lie in the core [e.g., Fain et al. 2018, Section 2.2; Aziz et al. 2019, Theorem 3].
9Observations to this effect can be found, for example, in Appendix D of Caragiannis et al. [2019] and in the derivation of

Equation (2) in Inoue and Kobayashi [2022].
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NW(y, 	u)
NW(x, 	u)

=

(∏
i ∈N

ui (y)
ui (x)

)1/n

�
1

n

∑
i ∈N

ui (y)
ui (x)

,

by the inequality of arithmetic and geometric means. �

2.5 The Minimax Theorem

In several places, we will use some basic elements of the theory of zero-sum games and the minimax
theorem. Recall that if X ⊆ Rn is a convex set and f : X → R is a function, then f is convex if for
all x1, x2 ∈ X and all 0 � λ � 1, we have f (λx1 + (1 − λ)x2) � λf (x1) + (1 − λ)f (x2). Further, f
is concave if −f is convex. For example, f (x) = x2 is convex and f (x) = logx is concave; linear
functions are both convex and concave.

Theorem 2.8 (Minimax Theorem, von Neumann 1928). Let X ⊆ Rn and Y ⊆ Rm be compact

convex sets. Let f : X × Y → R be a continuous function that is concave in its first argument and

convex in its second argument (that is, f (·, y) is concave for each fixed y ∈ Y and f (x, ·) is convex for

each fixed x ∈ X ). Then

max
x∈X

min
y∈Y

f (x, y) = min
y∈Y

max
x∈X

f (x, y).

We can interpret this theorem as a statement about a two-player zero-sum game between
a player and an adversary. The player can choose a strategy x from the set X while aiming to
maximize the value f (x, y), and the adversary can choose y ∈ Y aiming to minimize the value.
The minimax theorem states that (under certain convexity conditions) it does not matter in which
order the players make their moves. In our applications, we have X = Δ(S1) and Y = Δ(S2) for
some finite sets S1 and S2 of pure strategies, so that X and Y are sets of mixed strategies. In this
case, the function f typically encodes an expected payoff, f (x, y) = Es1∼x,s2∼y[д(s1, s2)] for some
д : S1 × S2 → R. Such an f is linear in both arguments and hence satisfies the conditions of the
minimax theorem. In our results about proportional fairness, we will need the full strength of
the minimax theorem, allowing for functions f that are not linear in both arguments. The equal
value of the max-min and min-max expressions is known as the value of the zero-sum game.

3 DISTORTION

We begin by aiming to achieve low distortion with respect to utilitarian social welfare. Boutilier
et al. [2015] consider unit-sum utilities and show that any rule must incur distortion at least Ω(

√
m).

They also construct an intricate and artificial voting rule that achieves distortion O(
√
m log∗m),

thus leaving a tiny gap. They also present a more natural voting rule that achieves distortion

O(
√
m logm), which we call the harmonic rule fHR. It is based on the harmonic scoring rule, ac-

cording to which each agent i gives 1/k points to the alternative she ranks in the k-th position.
Given a preference profile 	σ , the harmonic score of an alternative a is hsc(a) =

∑
i ∈N 1/σi (a). Now,

with probability 1
2 , the harmonic rule chooses an alternative uniformly at random, and with proba-

bility 1
2 , it chooses an alternative a with probability proportional to hsc(a). Note that the harmonic

scores of all alternatives sum to nHm where Hm = 1 + 1
2 + · · · +

1
m

. Thus, if x = fHR(	σ ) then

x(a) = 1

2m
+

hsc(a)
2nHm

for all a ∈ A.

In this section, we introduce a new rule that achieves distortion O(
√
m), which is optimal up

to a constant factor. This rule is based on concepts from cooperative game theory and from the
theory of committee selection, and can be computed in polynomial time. Our rule turns out to
have robustly good performance, in that its distortion remains low for other utility classes and
other welfare functions. We will compare it throughout to the harmonic rule.

ACM Trans. Econ. Comput., Vol. 12, No. 1, Article 3. Publication date: March 2024.



3:12 S. Ebadian et al.

3.1 Stable Lotteries

Below the hood, our new voting rule is based on multi-winner voting, also known as committee

selection, which concerns the well-studied problem of selecting a committee X ⊆ A of k alterna-
tives, based on the agents’ preferences over the alternatives [Faliszewski et al. 2017]. One goal
of the literature on multi-winner voting is to identify representative committees, where as many
agents as possible are represented in the committee, in the sense that one of their highly-ranked
alternatives is included [Chamberlin and Courant 1983]. This is a type of fairness consideration
and related to the idea of proportional representation which is particularly well-developed in the
context of approval utilities [Lackner and Skowron 2023].

Representative committees are interesting in the distortion context due to the following intu-
ition: if a voting rule places very little weight on alternatives that are highly ranked by many agents,
then the rule is in danger of incurring high distortion, because those unrepresented agents may
feel strongly about their high-ranked alternatives, while others may be more or less indifferent.

For ranked preferences, a recently studied representation axiom is (local) stability [Aziz et al.
2017b; Cheng et al. 2020]. This axiom is based on the idea that a group of n

k
agents should be able

to decide over one of the k slots in the committee. Formally, for a committee X with |X | = k and
an alternative a∗, write V (a∗,X ) = |{i ∈ N : a∗ �i X }| for the number of agents who prefer a∗

to all alternatives in the committee. We say that X is stable if for all alternatives a∗ � X , we have
V (a∗,X ) < n

k
. Such a committee is stable in a sense familiar from cooperative game theory.

There are examples of preference profiles and sizes k where no stable committee exists [Jiang
et al. 2020, Thm. 4]. However, Cheng et al. [2020] proved that there always exists a probability
distribution over committees which satisfies a probabilistic generalization of the stability property.

Definition 3.1. A distribution X ∈ Δ(Pk (A)) over committees X of size k is a stable lottery if for
all alternatives a∗ ∈ A, we have

EX∼X [V (a∗,X )] < n

k
.

To be self-contained, we include a short proof of existence, following the simplified treatment
due to Jiang et al. [2020, Lem. 4].

Theorem 3.2 (Cheng et al. 2020). For every preference profile 	σ and for every k , there exists a

stable lottery.

Proof. Let 	σ be a preference profile. We view our task as proving the following bound:

min
X∈Δ(Pk (A))

max
a∗ ∈A

EX∼X[V (a∗,X )] < n

k
.

If the bound holds, then an X that solves the minimization problem is a stable lottery. We can view
the expression on the left-hand side as a zero-sum game, where one player chooses a distribution
and the adversary responds with an alternative. By the minimax theorem, it suffices to show that

max
y∈Δ(A)

min
X∈Δ(Pk (A))

EX∼X,a∗∼y[V (a∗,X )] < n

k
.

Let y ∈ Δ(A). Define a distribution X over committees by the following process. Draw k alterna-
tives a1, . . . ,ak from the distribution y independently and with replacement. Let X be the random
set of alternatives thus selected, if necessary filled up with arbitrary additional alternatives until
|X | = k . Now note that for every agent i ∈ N , the probability Pra∗∼y,X∼X[a∗ �i X ] is at most the
probability that a∗ is the strictly most-preferred among the at most k +1 alternatives a∗,a1, . . . ,ak

which are drawn i.i.d. Hence by symmetry Pra∗∼y,X∼X[a∗ �i X ] � 1/(k + 1) < 1/k .
Summing up over all i ∈ N , it follows that EX∼X,a∗∼y[V (a∗,X )] < n

k
, as desired. �
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Cheng et al. [2020] prove that a stable lottery can be found in (expected) polynomial time using
the multiplicative weights update algorithm for zero-sum games. That algorithm finds a solution
whose value is ε-close to the optimum value. But the existence proof above in fact established that
the value of the game is at most n/(k + 1), when all we need is a solution with value less than
n/k . Thus, we can run the algorithm with ε = 1

2 · (n
k
− n

k+1 ) and obtain an exactly stable lottery in
expected polynomial time.

3.2 The Stable Lottery Rule

We propose a voting rule based on stable lotteries for committees of size k =
√
m. Like the pre-

viously proposed harmonic rule, our rule spreads half of the probability mass uniformly over all
alternatives.10 It then assigns the remaining probability mass to alternatives in proportion to the
probability that they are included in the committee selected by the stable lottery.

Definition 3.3 (Stable Lottery Rule, fSLR). Let X be a stable lottery over committees X of size
k =

√
m. The Stable Lottery Rule fSLR works as follows: With probability 1/2, sample a committee

X ∼ X and choose an alternative uniformly at random from X , and with probability 1/2, choose
an alternative uniformly at random fromA. Therefore, each alternative a ∈ A will be selected with
probability x(a) = 1

2
√

m
· PrX∼X[a ∈ X ] + 1

2m
.

Our first main result states that fSLR achieves distortion Θ(
√
m) on the class of balanced utility

functions, and hence also for unit-sum, unit-range, and approval utilities.

Theorem 3.4. On the utility class Ubalanced, the Stable Lottery Rule achieves O(
√
m) distortion:

Dm(fSLR,Ubalanced) = O(
√
m).

Proof. Let 	u be a utility profile consistent with a profile 	σ , with ui ∈ Ubalanced for all i ∈ N . We
begin the proof by making the following observation. Let X be a committee, and let a∗ ∈ A be a
distinguished alternative. Write ui (X ) =

∑
a∈X ui (a) and UW(X , 	u) =

∑
i ∈N ui (X ). Then,

UW(X , 	u) � UW(a∗, 	u) −V (a∗,X ). (2)

Indeed, for every agent i such that a∗ �i X , we haveui (X ) � 0 � ui (a∗)−maxa∈A ui (a) � ui (a∗)−1
becauseui ∈ Ubalanced, and for every agent i such that a∗ �i X , there exists some alternative a ∈ X
such that a �i a

∗, so ui (X ) � ui (a) � ui (a∗). Equation (2) follows by summing these inequalities
over all i ∈ N , noting that the number of agents of the first type is V (a∗,X ).

Let x = fSLR(	σ ) be the distribution selected by the Stable Lottery Rule, and let X be the
underlying stable lottery over committees of size

√
m. Let us write x = 1

2 x1 +
1
2 x2, where x1

is the part of x based on the stable lottery and x2 is the uniform distribution over A. Thus,
x1(a) = 1√

m
· PrX∼X[a ∈ X ] and x2(a) = 1/m for all a ∈ A.

Note that for all i ∈ N , we have ui (x2) � 1
m

∑
a∈A ui (a) � 1

m
because ui ∈ Ubalanced. Hence,

UW(x2, 	u) � n
m

and so m
n
· UW(x2, 	u) � 1. Now fix an arbitrary a∗ ∈ A. Then,

√
m · UW(x1, 	u) =

√
m ·

∑
a∈A

1√
m

PrX∼X[a ∈ X ] · UW(a, 	u)

= EX∼X[
∑

a∈X UW(a, 	u)]

= EX∼X[UW(X , 	u)]

10Instead of 1/2, one can use any other constant fraction (such as 0.0001) without changing the main conclusion of The-

orem 3.4 that the rule has distortion O (
√

m), though its distortion will be worse by a constant factor. One can also shift

probability from a Pareto-dominated alternative to a dominating alternative without worsening distortion.
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� EX∼X[UW(a∗, 	u) −V (a∗,X )] (by equation (2))

= UW(a∗, 	u) − EX∼X[V (a∗,X )] (linearity of expectation)

� UW(a∗, 	u) − n√
m

(stability of X)

� UW(a∗, 	u) − n√
m

· m
n
· UW(x2, 	u) (since m

n
· UW(x2, 	u) � 1)

= UW(a∗, 	u) −
√
m · UW(x2, 	u).

Hence,

UW(x, 	u) = 1
2 UW(x1, 	u) + 1

2 UW(x2, 	u) �
UW(a∗, 	u)

2
√
m

for all a∗ ∈ A.

Therefore,

D(x, 	σ ,Ubalanced) � max
a∗ ∈A

UW(a∗, 	u)
UW(a∗, 	u)

2
√

m

= 2
√
m.

Since the above holds for all preference profiles 	σ , we have that

Dm(fSLR,Ubalanced) = max
	σ

D(x, 	σ ,Ubalanced) � 2
√
m = O(

√
m). �

Following the proof that a stable lottery always exists [Cheng et al. 2020], Jiang et al. [2020] con-
sidered approximately stable (deterministic) committees. They proved that a 16-stable committee
always exists (this proof being much more complicated than the existence of a stable lottery) but
that a 2-stable committee may fail to exist. In Appendix D, for c � 1, we adapt the Stable Lottery
Rule to define the rule fc-SCR that uses a c-stable committee instead. The proof of Theorem 3.4 can
straightforwardly be adapted to show that fc-SCR has distortion at most O(c ·

√
m).

In contrast to the O(
√
m) distortion of the Stable Lottery Rule, the Harmonic Rule fHR achieves

worse distortion for both unit-sum and, especially, unit-range utilities.

Theorem 3.5. The distortion of the Harmonic Rule is Dm(fHR,Uunit-sum) = Θ(
√
m logm) for unit-

sum utilities and Dm(fHR,Uunit-range) = Θ(m2/3 log1/3m) for unit-range utilities.

For unit-sum utilities, the upper bound is due to Boutilier et al. [2015] and the lower bound
follows from the work of Bhaskar et al. [2018], though we include an explicit lower bound example
in Appendix B.1. The analysis of the distortion of fHR for unit-range utilities is new. The polynomial
increase in the distortion of fHR compared to that of fSLR can be explained by noting that fHR

is strategyproof, and for unit-range utilities, Filos-Ratsikas and Miltersen [2014] prove that any
strategyproof rule has distortion Ω(m2/3), meaning that fHR still has close to the best distortion
achievable via strategyproof rules. We give proofs of these results in Appendix B.1.

3.3 Lower Bounds

Boutilier et al. [2015] prove that the distortion of every voting rule for the class Uunit-sum of
unit-sum utilities is 1

2

√
m = Ω(

√
m), showing that fSLR is optimal on this class, up to at most a

constant factor of 4.11 Here, we present a lower bound for the class of approval utility functions,
which also applies to the larger class of unit-range utilities. This bound implies that fSLR achieves
asymptotically optimal distortion on both of these utility classes.

Theorem 3.6. For any voting rule f , Dm(f ,Uapproval) = Ω(
√
m) and Dm(f ,Uunit-range) = Ω(

√
m).

11Boutilier et al. [2015] prove a lower bound of
√

m/3, but a careful look at their analysis shows that it actually yields a

lower bound of
√

m/2.
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Proof. Assume
√
n is a positive integer, and let m = n +

√
n. Each agent i ranks alternative ai

first, alternative an+ �i/
√

n � second, and the remaining alternatives in an arbitrary order. Note that

this naturally divides the agents into
√
n groups, N1, . . . ,N√

n , where, for r ∈ [
√
n], Nr denotes the

group of agents who rank alternative an+r second.
Let f be a voting rule, and let x be the distribution selected by f on this profile. By the pigeonhole

principle, there must exist one index r ∈ [
√
n] such that x(an+r ) � 1/

√
n. Without loss of generality,

assume that x(an+1) � 1/
√
n. Consider the approval utility profile 	u under which all agents in N1

approve their top two alternatives (i.e., their top choice and an+1), and all other agents approve
only their top alternative. Then, UW(an+1, 	u) =

√
n whereas UW(a′, 	u) = 1 for every alternative

a′ ∈ A \ {an+1}. Therefore, we have

Dm(f ,Uapproval) � UW(an+1, 	u)
UW(x, 	u)

�
√
n(

1 − 1√
n

)
· 1 + 1√

n
·
√
n
�

√
n

2
= Ω

(√
m
)
,

where the final transition holds due to m = n +
√
n. Because Uapproval ⊆ Uunit-range, we also have

Dm(f ,Uunit-range) = Ω(
√
m). �

4 PROPORTIONAL FAIRNESS

In this section, we turn our attention to proportional fairness (see Definition 2.3). As we noted
in Section 2.4, the proportional fairness objective is scale invariant, and thus DPF

m (f ,Uall) =
DPF

m (f ,Uunit-sum) = DPF
m (f ,Uunit-range) for all voting rules f . We will just consider Uall throughout

this section, and thus suppress the utility class U from our notation.

4.1 Upper Bounds

A natural question at this point is whether the stable-lottery-based approach from the previous
section, which provides optimal distortion, also works for proportional fairness. In Appendix D,
we present a close cousin of our stable lottery rule, namely the stable committee rule (fSCR), which
uses an approximately stable deterministic committee in place of an exactly stable lottery over com-
mittees; such committees with constant approximations are guaranteed to exist due to the recent
work of Jiang et al. [2020]. In Appendix D, we show that this rule is O(

√
m)-proportionally fair.

This raises the obvious question of whether it is possible to do better. Surprisingly, we show that
it is! Using the minimax theorem, we are able to show that there exists anO(logm)-proportionally
fair voting rule. We later show this upper bound to be tight. In Section 4.3, we use the projected
subgradient descent algorithm to turn this non-constructive argument into an efficient algorithm.

We begin with a useful lemma that simplifies the analysis of the proportional fairness of a given
distribution x. Let us write hi (a) = {a′ ∈ A : a′ �i a} for the set of alternatives that agent i ranks
weakly above a, and for a distribution x, let x(hi (a)) =

∑
a′ ∈hi (a) x(a′) be the total weight that x

places on these alternatives.

Lemma 4.1. Given a preference profile 	σ and a distribution x, we have

DPF(x, 	σ ) = max
a∈A

1

n

∑
i ∈N

1

x(hi (a))
, (3)

and DPF(x, 	σ ) is convex in x.

Proof. Recall from Section 2.4 that

DPF(x, 	σ ) = sup
	u ∈(Uall)n :	u� 	σ

max
a∈A

1

n

∑
i ∈N

ui (a)
ui (x)

.
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Fix any a ∈ A. Note that we can take the worst case over the utility function ui of each agent i
separately as its contribution to the above expression, for any fixed x and a, is independent of that
of the other utility functions.

Thus, it is sufficient to show that supui ∈Uall:ui �σi
ui (a)/ui (x) = 1/x(hi (a)). This follows from the

simple observation that ui (a′) � ui (a) for all a′ ∈ hi (a), which implies ui (x) � x(hi (a)) · ui (a),
i.e., ui (a)/ui (x) � 1/x(hi (a)), and noting that this upper bound is achieved by setting, for example,
ui (a′) = 1 for all a′ ∈ hi (a) and ui (a′) = 0 for all a′ ∈ A \ hi (a).

Convexity in x follows because the function д(z) = 1/z is a convex function, and taking the sum
and maximum of a collection of convex functions yields a convex function. �

Note that the last line of the proof shows that the worst case for proportional fairness is achieved
at an approval utility profile. Hence, DPF

m (f ,Uall) = DPF
m (f ,Uapproval) for all voting rules f . Using

this simplification, we can now derive an upper bound on the optimal proportional fairness.

Theorem 4.2. There exists a voting rule f with DPF
m (f ) � 2(1 + ln(2m)).

Proof. We consider the instance-optimal voting rule which, given a preference profile, selects
a distribution x that is α-proportionally fair for the smallest α . We interpret this distribution as
the outcome of a (two-player) zero-sum game and α as the value of that game. We then bound this
value in a dual game obtained by applying the minimax theorem.

Formulation as a zero-sum game. Let 	σ be a preference profile. Let DPF(	σ ) = minx∈Δ(A) DPF(x, 	σ ).
Lemma 4.1 implies that

DPF(	σ ) = min
x∈Δ(A)

max
a∈A

1

n

∑
i ∈N

1

x(hi (a))
.

Hence, DPF(	σ ) can be viewed as the outcome of a zero-sum game. The set of pure strategies for the
first player (or just the player) is Δ(A), i.e., the player may choose a distribution over alternatives.
In response, the second player (the adversary) can choose a single alternative a ∈ A. Then, for a
pair of strategies (x,a) ∈ Δ(A) × A, the payoff to the adversary, which is equal to the negative
payoff of the player, is defined as

R(x,a) = 1

n

∑
i ∈N

1

x(hi (a))
.

With this notation, we have

DPF(	σ ) = min
x∈Δ(A)

max
a∈A

R(x,a).

Suppose we allow the adversary to choose a mixed strategy, i.e., a distribution over alternatives
z ∈ Δ(A). Define the expected payoff of the pair (x, z) of strategies to be Ea∼z[R(x,a)]. Because this
objective is linear in z, there is always a pure best response for the adversary (selecting a single
alternative a ∈ A). Thus, allowing the adversary to choose a mixed strategy does not change the
value of the game. Hence,

DPF(	σ ) = min
x∈Δ(A)

max
z∈Δ(A)

Ea∼z[R(x,a)].

Now note that Ea∼z[R(x,a)] is convex in x (Lemma 4.1) and linear (and hence concave) in z. There-
fore, by the minimax theorem (Theorem 2.8), we have

DPF(	σ ) = max
z∈Δ(A)

min
x∈Δ(A)

Ea∼z[R(x,a)].

We call this game the dual game.
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Bounding the value of the dual game. In the dual game, for a given strategy z of the adversary,
suppose the player responds with the strategy x with x(a) = 1

2z(a) +
1

2m
for all a ∈ A (which is

not necessarily a best response). Thus, with probability 1
2 the player selects according to z, and

with probability 1
2 , the player selects an alternative uniformly at random. Note that the value of

the dual game when the player plays x is an upper bound on the true value of the dual game. Now,
we have

DPF(	σ ) = max
z∈Δ(A)

min
x∈Δ(A)

Ea∼z[R(x,a)]

� max
z∈Δ(A)

Ea∼z[R(x,a)] (first player responds with x)

= max
z∈Δ(A)

1

n

∑
i ∈N

Ea∼z

[
1

x(hi (a))

]
(linearity of expectation)

� max
z∈Δ(A)

max
i ∈N

Ea∼z

[
1

x(hi (a))

]
. (4)

The last term is maximized at some distribution z and some agent i with preference ranking σi .

Without loss of generality, suppose σi = a1 �i a2 �i · · · �i am . Write Tj =
∑j

�=1
x(a�) = x(hi (aj ))

and T0 = 0. Then (4) is equal to∑
j ∈[m]

z(aj ) ·
1

x(hi (aj ))
<

∑
j ∈[m]

2 · x(aj )
x(hi (aj ))

= 2
∑

j ∈[m]

Tj −Tj−1

Tj
= 2

∑
j ∈[m]

(
1 −

Tj−1

Tj

)
.

Using the fact that 1 − x � − ln(x),∑
j ∈[m]

(
1 −

Tj−1

Tj

)
� 1 +

m∑
j=2

(
ln(Tj ) − ln(Tj−1)

)
= 1 + ln(Tm) − ln(T1) � 1 + ln(2m),

where the last inequality holds due to Tm = 1 and T1 = x(a1) � 1
2m

. It follows that DPF(	σ ) �
2(1 + ln(2m)), as desired. �

This upper bound on proportional fairness immediately implies upper bounds on the universal
α-core and distortion with respect to Nash welfare, using Propositions 2.6 and 2.7.

Corollary 4.3. Let α = 2(1+ ln(2m)). There exists a voting rule f which is in the universal α-core

and whose distortion with respect to Nash welfare is DNW
m (f ) � α .

What about strategyproof rules? In the context of distortion with respect to utilitarian social
welfare, we saw that strategyproof rules (in particular, the harmonic rule fHR) can provide a dis-
tortion that is only a logarithmic factor worse than the optimum. In the context of proportional
fairness, however, strategyproofness comes at a much larger cost. Indeed, strategyproof rules
must be exponentially worse than the optimum: strategyproof rules cannot be better than Ω(

√
m)-

proportionally fair, when the optimum is O(logm)-proportionally fairness. This lower bound is

again almost attained by the harmonic rule fHR, which is Θ(
√
m logm)-proportionally fair.

Theorem 4.4. The harmonic rule fHR is Θ(
√
m logm)-proportionally fair.

Theorem 4.5. If f is an α-proportionally fair voting rule that is also strategyproof, then α =
Ω(

√
m).

We provide proofs of these results in Appendix B.2 and Appendix C, respectively.
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4.2 Lower Bounds

Next, we give a lower bound that matches our upper bound up to a constant factor. We thank an
anonymous reviewer for suggesting this lower bound construction.

Theorem 4.6. Every voting rule f has distortion at least 1
2 log2m with respect to the Nash wel-

fare and with respect to proportional fairness. Furthermore, if f is in the universal α-core, then

α � 1
8 log2m.

Proof. First, we derive the lower bound on the distortion with respect to the Nash welfare and
proportional fairness. Then, we show that the same construction provides the desired core lower
bound as well.

Nash welfare and proportional fairness lower bound. We show that there exists a preference pro-
file 	σ for which DNW(x, 	σ ) � Ω(logm) for every distribution x ∈ Δ(A).

For simplicity, we assume n = 2k−1 and m = 2k − 1, but the proof works when n is a multiple
of 2k−1. Take the preference profile 	σ , in which the kth vote of all agents is alternative a1, the
(k − 1)th vote of all agents is evenly divided between a2 and a3, the (k − 2)th votes are equally
divided between a4, . . . ,a7, and similarly for � ∈ [k] the �th vote of all agents is divided equally
among alternatives a2k−� , . . . ,a2k−�+1−1 each with 2�−1 votes at rank �. We fill the bottom m − k
votes of all agents arbitrarily. A construction for when k = 4 is depicted in Table 3.

As usual, we can think about distortion as a zero-sum game. For every utility profile 	u and
distribution y, we have DNW(x) � NW(y, 	u)/NW(x, 	u), and we can think of 	u and y as being
chosen by an adversary that maximizes the right-hand quantity. To obtain a lower bound, we
weaken the adversary and assume the realized utility profile is one of thek utility profiles described
as follows. For � ∈ [k], let 	u� be the utility profile where each agent has a utility of 1 for their top
� votes and a utility of 0 for their bottom m − � votes. On 	u� , suppose the adversary selects the
distribution y� that is the uniform distribution over the alternatives appearing on the �th rank, i.e.,
y�(aj ) = 2−(k−�) for j ∈ [2k−�, 2k−�+1 − 1]. Then, for all agents i ∈ [n], ui (y�, 	u�) = 2−(k−�). As a

result, NW(y�, 	u�) = 2−(k−�). Next, we show that every distribution x ∈ Δ(A) incurs a distortion
of at least k/2s with respect to one of the 	u� ’s.

By the inequality of arithmetic and geometric means, we have NW(x) � 1
n

∑
i ∈[n] ui (x) for all

utility profiles. For all � ∈ [k],

NW(x, 	u�) �
1

n

∑
i ∈[n]

ui (x, 	u�) =
1

n

∑
i ∈[n]

∑
j ∈[m]

x(aj ) · 1[ranki (aj ) � �]

=
1

n

∑
j ∈[m]

x(aj ) ·
��{i ∈ [n] | ranki (aj ) � �}

�� ,
=

1

n

∑�

�′=1

∑2k−�′+1−1

j=2k−�′ x(aj ) · 2�
′−1,

where in the last transition we regrouped the summation based on the positions an alternative
takes among the top � votes of the preference profile. Denote the total probability mass on the

alternatives that appear on the �th rank by p� =
∑2k−�+1−1

j=2k−� x(aj ). Then, the above is equal to

1

n

∑
i ∈[n]

ui (x, 	u�) =
1

n

∑�

�′=1
p�′ · 2�

′−1 =
∑�

�′=1
p�′ · 2�

′−k ,

and distortion of x w.r.t. the Nash welfare is at least

DNW(x, 	u�) �
NW(y�, 	u�)
NW(x�, 	u�)

�
2−(k−�)∑�

�′=1 p�′ · 2�
′−k
=

1∑�
�′=1 p�′ · 2�

′−�
. (5)
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Table 3. Nash Welfare Lower Bound Instance

i1 i2 i3 i4 i5 i6 i7 i8
a8 a9 a10 a11 a12 a13 a14 a15

a4 a4 a5 a5 a6 a6 a7 a7

a2 a2 a2 a2 a3 a3 a3 a3

a1 a1 a1 a1 a1 a1 a1 a1

...
...

...
...

...
...

...
...

Next, using an averaging argument, we will show for at least one value of � ∈ [k], the denominator

above
∑�

�′=1 p� · 2�
′−� < 2

k
and hence DNW(x) � DNW(x, 	u�) > k

2 . It follows from

min
�∈[k]

∑�

�′=1
p�′ · 2�

′−� �
1

k

∑k

�=1

∑�

�′=1
p�′ · 2�

′−�

=
1

k

k∑
�′=1

p�′
k∑

�=�′

2�
′−�

=
1

k

k∑
�′=1

p�′ · (2 − 2�
′−k ) < 1

k

k∑
�′=1

p�′ · 2 =
2

k
. (6)

Hence, DNW(x) > k
2 �

log2 m

2 for all x ∈ Δ(A). Using Proposition 2.7, we also have DPF(x) > log2 m

2 .

Core lower bound. Under 	u� and y� , all agents have the same utility ui (y�, 	u�) = 2−(k−�) = γ .
From the above analysis, we have

NW(y�, 	u�) = γ >
k

2
· ��� 1

n
·
∑

i ∈[n]
ui (x, 	u�)

��� .
Then, there must exist at least n/2 agents i ∈ N ′ ⊆ N with ui (x, 	u�) < 4

k
· γ . (Otherwise the RHS

would be at least k
2 · 1

n
· (n

2 · 4
k
· γ ) � γ .) This violates the (k/8)-core since for all i ∈ N ′,

|N ′ |
|N | · ui (y�, 	u�) �

1

2
· γ = k

8
·
(

4

k
· γ
)
�

k

8
· ui (x, 	u�). �

4.3 Computation

Lemma 4.1 gives a simple formula for calculating the value DPF(x, 	σ ) of a given distribution x.
Now, we turn to the computational problem of finding a distribution x with the lowest possible
distortion with respect to proportional fairness, for a given preference profile 	σ . We show that
this problem can be (approximately) solved in polynomial time. Our argument depends on the
convexity of DPF(x, 	σ ) in x (Lemma 4.1), which allows us to use convex optimization methods (in
particular, the projected subgradient descent algorithm). For definitions of a subgradient and the
subdifferential ∂ f of a convex function f , we refer the reader to the books of Nesterov [2003] and
Vishnoi [2021].

Theorem 4.7 (Nesterov [2003], Chapter 3.2, Vishnoi [2021], Theorem 7.1). Let f be a convex

function over a bounded closed convex setQ . There is an algorithm (based on subgradient descent) that,

given (a) an oracle that, given x ∈ Q , can return f (x) and a subgradient g ∈ ∂ f (x); (b) a number G
such that for all x ∈ Q and subgradients g ∈ ∂ f (x), we have ‖g‖2 � G; (c) an initial point x0 ∈ Q ;
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(d) a number D such that
��x0 − x∗��

2
� D where x∗ = arg minx∈Q f (x); and (e) some ε > 0, outputs

a sequence x0, x1, . . . , xT−1 such that 1
T

∑T−1
i=0 f (xi ) − f (x∗) � ε , where T =

(
DG

ε

)2
.

We can use this algorithm to compute the optimal distribution x, as we show in the follow-
ing theorem. In practice, we can solve the relevant convex optimization problem using standard
solvers, for example using the cvxpy package.12

Theorem 4.8. Given a preference profile 	σ and ε > 0, writing x∗ for the distribution optimizing

distortion with respect to proportional fairness, a distribution x with DPF(x, 	σ ) � DPF(x∗, 	σ ) + ε can

be computed in poly(n,m, 1/ε) time.

Proof. We apply the projected subgradient method described in Theorem 4.7 to the function
f (x) = DPF(x, 	σ ) = maxa∈A R(x,a), where R(x,a) = 1

n

∑
i ∈N 1/x(hi (a)). We have shown f to be

convex in x (Lemma 4.1). Note that for a given x ∈ Δ(A), f (x) can be computed in poly(n,m) time.
We want to minimize f over x ∈ Δ(A). However, the subgradients at points close to the boundary
of Δ(A) can be unbounded. We will avoid this issue by carefully restricting the domain of f .

For each a ∈ A, let pa be the fraction of agents who rank a as their top choice. Let β =
2(1+ ln(2m)) be the upper bound proven in Theorem 4.2 on the optimal distortion with respect to
proportional fairness. We set Q = {x ∈ Δ(A) : x(a) � pa/β,∀a ∈ A}.

First, we will show that an optimal distribution x∗ ∈ arg minx∈Δ(A) f (x) lies in Q , ensuring that
it is sufficient to optimize f over Q . Subsequently, we will show that the norm of any subgradient
of f at any point in Q is bounded by poly(n,m) and that such a subgradient can be computed in
polynomial time, giving us conditions (a) and (b) of Theorem 4.7. Then, the only missing piece left
to be able to apply Theorem 4.7 is a starting point: we can choose any x0 ∈ Q (e.g., x0(a) = pa for

each a ∈ A) and use D =
√

2, which is an upper bound on the Euclidean distance between any two
probability distributions.

Optimality. Let x∗ ∈ arg minx∈Δ(A) f (x). Assume for a contradiction that x∗ � Q . Thus, there

exists an alternative a ∈ A with pa > 0 such that x∗(a) < pa/β . Then,

DPF(x∗, 	σ ) � 1

n

∑
i ∈N

1

x∗(hi (a))
� pa · 1

x∗(a) > β .

This contradicts Theorem 4.2, where we proved that DPF(x∗, 	σ ) � β . Therefore, x∗ ∈ Q .

Bounding and computing subgradients. Take any x ∈ Q . For each fixed a ∈ A, the function R(x,a)
is differentiable and convex in x. More specifically, for all a,a′ ∈ A, we have

∂

∂xa′
R(x,a) = 1

n

∑
i ∈N :a′�i a

−1

x(hi (a))2
.

For each i ∈ N , let a∗i be the top alternative of agent i . Because pa∗
i
� 1/n and x ∈ Q , we have

x(hi (a)) � x(a∗i ) �
pa∗

i

β
�

1

2n(1 + ln(2m)) .

Therefore, ‖∇ R(x,a)‖∞ = O((n lnm)2) for all a. Furthermore, it is known that any gradient
∇R(x,a∗), where a∗ ∈ arg maxa∈A R(x,a) is a subgradient of DPF(x, 	σ ) = maxa∈A R(x,a). Hence, it

12Example code is available at https://gist.github.com/DominikPeters/8fced1e221783781129e24f4ac5dce8b
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follows that the norm of such a subgradient is bounded by poly(n,m) and we can compute such a
subgradient in poly(n,m) time. �

5 DISCUSSION

We have proved that the best distortion (with respect to the utilitarian welfare) that probabilistic
voting rules can achieve with ranked preferences is Θ(

√
m), resolving an open question by Boutilier

et al. [2015]. We have also initiated the study of the distortion of the proportional fairness objec-
tive, which focuses on fairness rather than efficiency. We proved that the worst-case distortion of
this objective with ranked preferences is Θ(logm). The same bound applies to the distortion with
respect to Nash welfare. Similarly, one can also focus on distortion with respect to other welfare
functions, such as the egalitarian welfare or, more generally, the p-mean welfare [Barman et al.
2020; Chaudhury et al. 2021]. For the egalitarian welfare, it is easy to see that the best distortion
for both unit-sum and approval utilities is Θ(m).13

In Appendix E, we discuss the case ofm = 2 alternatives, which is interesting for referenda and
for studying pairwise comparisons. We are able to characterize the instance-optimal voting rules
for all of our objective functions. Interestingly, compared to the utilitarian objectives, the rules for
the fairness objectives (proportional fairness and Nash welfare) stay closer to the 50/50 uniform

distribution. The worst-case distortion for m = 2 turns out to be
√

2 ≈ 1.41 for Nash welfare and
1.5 for proportional fairness. For utilitarian welfare, we find 1.5 for unit-sum utilities and 4/3 for
unit-range utilities. Beyond our setting, there is significant literature on studying distortion with
respect to the utilitarian welfare for ballot formats other than ranked preferences [Amanatidis et al.
2021; Benadè et al. 2021; Borodin et al. 2022; Mandal et al. 2019, 2020]. A natural direction for future
work is to study proportional fairness and distortion with respect to other welfare functions for
such ballot formats. One can also extend these ideas from single-winner selection to committee
selection, where the output of a voting rule is a (randomized) subset of alternatives of a given size,
and participatory budgeting, where each alternative has a cost and the output is a (randomized)
subset of alternatives with total cost at most a given budget.

Finally, centuries of research on voting theory has focused on simple voting rules (such as plu-
rality or Borda count) that are easy for voters to understand and satisfy appealing axiomatic prop-
erties. A significant barrier to the modern optimization-based approaches, which focus on quan-
titative objectives such as distortion or proportional fairness, is that they often yield rules that
are difficult to understand (and sometimes difficult to compute). Significant challenges lie ahead
in paving the path for increased practicability of such approaches: Can we design simple rules
that perform well on these quantitative metrics? Alternatively, can we convey the intricate rules
emerging from such approaches to the end users by providing simple-to-digest explanations of
either their end goal or their properties [Peters et al. 2021b]? Can we reconcile these quantita-
tive approaches with the classical axiomatic approach to find rules that achieve the best of both
worlds?

13The upper bound in both cases can be achieved by assigning a probability of 1/m to each alternative. For the lower bound,

consider a profile over m alternatives a1, . . . , am , in which the agents are partitioned into m − 1 equal-sized groups. For

i ∈ [m − 1], agents in group i rank ai first, am second, and the remaining alternatives arbitrarily. Any probabilistic voting

rule must assign probability at most 1/(m − 1) to at least one of a1, . . . , am−1, say to ai . It is possible that agents in group

i have utility 1 for ai and 0 for the remaining alternatives, while agents in every other group j have utility 1/2 (resp., 1) for

aj and am and 0 for the remaining alternatives in the unit-sum (resp., approval) case. The egalitarian welfare achieved by

the rule is at most 1/(m − 1) in both cases due to the agents in group i . In contrast, the distribution that assigns probability

1/2 to both ai and am achieves Ω(1) egalitarian welfare in both cases, yielding an Ω(m) lower bound on the best possible

distortion with respect to the egalitarian welfare in both cases.
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APPENDICES

A APPROVAL VS. UNIT-RANGE UTILITIES

In this section, we show that approval utilities are the worst case for distortion among the
broader class of unit-range utilities. Hence, any upper bounds derived for approval utilities (like
in Theorem B.2 in the next section) apply to the broader class of unit-range utilities as well. The
proof also implies that a distribution x that minimizes D(x, 	σ ,Uunit-range) thereby also minimizes
D(x, 	σ ,Uapproval), which means that we can use a linear program to optimize the latter quantity
(see the discussion after Example 2.2).

Lemma A.1. For every voting rule f , we have Dm(f ,Uunit-range) = Dm(f ,Uapproval).

Proof. As Uapproval ⊆ Uunit-range, we trivially have Dm(f ,Uapproval) � Dm(f ,Uunit-range). We
show that the inequality also holds in the opposite direction. We will prove a stronger argument:
for every distribution x and preference profile 	σ , we have D(x, 	σ ,Uunit-range) � D(x, 	σ ,Uapproval).
Fix any distribution x and preference profile 	σ .

Let 	u ∈ (Uunit-range)n be a utility profile consistent with 	σ that maximizes D(x, 	u), and among all
such utility profiles, let it be one that minimizes the number of agents who do not have approval
utilities. If 	u ∈ (Uapproval)n , then we are done. Suppose this is not the case. Fix any agent i such
that ui � Uapproval.

Let a∗ ∈ arg maxa∈A UW(a, 	u) be an alternative maximizing utilitarian welfare under 	u. Then,

D(x, 	u) = UW(a∗, 	u)
UW(x, 	u)

=
UW(a∗, 	u−i ) + ui (a∗)

UW(x, 	u−i ) +
∑

a∈A x(a) · ui (a)
, (7)

where 	u−i denotes the utility profile containing the utility functions of all agents except agent i .
If a∗ is the top alternative of agent i (i.e., σi (a∗) = 1), then by the definition of unit-range utilities,

we must have ui (a∗) = 1. In that case, it is easy to see that the expression in (7) is maximized when
ui (a) = 0 for all a ∈ A\ {a∗}. That is, define 	u∗ such that 	u∗

−i = 	u−i , u
∗
i (a∗) = 1, and u∗

i (a) = 0 for all
a ∈ A \ {a∗}. Then, D(x, 	u∗) � D(x, 	u), which is a contradiction because 	u∗ has at least one more
agent with an approval utility function compared to 	u.

Now, suppose σi (a∗) � 2. Denote by a+ the top alternative of agent i satisfying σi (a+) = 1.
Write h̄i (a∗) = {a ∈ A \ {a+} : a �i a∗}. Consider a different utility profile 	u ′, where 	u ′

−i = 	u−i ,

u ′
i (a+) = ui (a+) = 1, u ′

i (a) = ui (a∗) for all a ∈ h̄i (a∗), and ui (a) = 0 for all a ∈ A with a∗ �i a. Note
that we are reducing the utility of agent i for any alternative she ranks higher than a∗ toui (a∗), and
reducing her utility for any alternative she ranks lower than a∗ to 0, without changing her utility
for a∗. This can only (weakly) reduce the denominator in (7) without changing the numerator,
implying that D(x, 	u ′) � D(x, 	u).

Next, notice that

D(x, 	u ′) = UW(a∗, 	u−i ) + ui (a∗)
UW(x, 	u−i ) + x(a+) · 1 + x(h̄i (a∗)) · ui (a∗)

� max

(
UW(a∗, 	u−i ) + 1

UW(x, 	u−i ) + x(a+) · 1 + x(h̄i (a∗)) · 1
,

UW(a∗, 	u−i )
UW(x, 	u−i ) + x(a+) · 1

)
,

where the final transition holds due to the weighted mediant inequality which states that for
all t , all weights w ∈ Δ([t]), and all positive numbers a1, . . . ,at and b1, . . . ,bt , we have
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mini ∈[t ]
ai

bi
�

∑
i∈[t ] w(i)ai∑
i∈[t ] w(i)bi

� maxi ∈[t ]
ai

bi
. Here, we take t = 2 and

(a1,b1) = (UW(a∗, 	u−i ),UW(x, 	u−i ) + x(a+)),
(a2,b2) = (UW(a∗, 	u−i ) + 1,UW(x, 	u−i ) + x(a+) + x(h̄i (a∗))), and

(w(1),w(2)) = (1 − ui (a∗),ui (a∗)).

Hence, we can see that one of two choices — either increasing the utility of agent i for all the
alternatives in h̄i (a∗) to 1 or decreasing them all to 0 — does not reduce the distortion. Making this
choice yields another utility profile 	u∗ consistent with 	σ such that D(x, 	u∗) � D(x, 	u ′) � D(x, 	u),
but 	u∗ has at least one more agent having an approval utility function, which is a contradiction. �

In the proof of Lemma 4.1, we proved that the same conclusion holds for proportional fairness.
Because proportional fairness is scale-invariant, this conclusion actually holds with respect to the
class Uall of all utility functions.

Lemma A.2. For every voting rule f , we have DPF
m (f ,Uall) = DPF

m (f ,Uapproval).

Using a slight generalization of that argument, one can also prove this result for distortion with
respect to Nash welfare.

Lemma A.3. For every voting rule f , we have DNW(f ,Uall) = DNW(f ,Uapproval).

Proof. We prove a stronger result: for every distribution x and every preference profile 	σ , we
have DNW(x, 	σ ,Uall) = DNW(x, 	σ ,Uapproval). Recall that

DNW(x, 	σ ,Uall) = sup
	u ∈(Uall)n :	u� 	σ

sup
y

(∏
i ∈N

ui (y)
ui (x)

)1/n

.

First, as in the proof of Lemma 4.1, we see that we can take the worst case over the utility function
ui of each agent i separately as its contribution to the distortion expression is independent of that
of the other utility functions. Thus, it is sufficient to prove that for fixed distributions x and y and

agent i , there is an approval utility function ui that maximizes
ui (y)
ui (x) across all utility functions

consistent with 	σ . Fix any distributions x and y, agent i , and utility function ui : A → R�0.
For simplicity, label alternatives so that σi is a1 �i a2 �i · · · �i am , and hence ui (a1) � · · · �

ui (am). Take the m different approval utility functions consistent with σi : for all j ∈ [m], let vj be
the utility function that approves alternativesa1 toaj . Note thatui can be written as a non-negative
linear combination of the approval utilities, that is, ui =

∑
j ∈[m] α jvj for some α1, . . . ,αm � 0.

(Explicitly, we can take αm = ui (am) and α j = ui (aj ) − ui (aj+1) � 0 for each j < m.) Because the
Nash welfare is scale-free, we can rescale the utility function ui and the coefficients α j such that∑

j ∈[m] α j = 1. Then,

ui (y)
ui (x)

=

∑
j ∈[m] α jvj (y)∑
j ∈[m] α jvj (x)

� max
j ∈[m]

vj (y)
vj (x)

,

where the final transition is due to the weighted mediant inequality which states that for all t , all
weights w ∈ Δ([t]), and all positive numbers a1, . . . ,at and b1, . . . ,bt , we have

min
k ∈[t ]

ak

bk
�

∑
k ∈[t ] w(k)ak∑
k ∈[t ] w(k)bk

� max
k ∈[t ]

ak

bk
.

This proves that ui (y)/ui (x) � vj (y)/vj (x) for some approval utility function vj , as desired. �
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B THE HARMONIC RULE

In this section, we provide a detailed analysis of the harmonic rule fHR proposed by Boutilier
et al. [2015]. Recall that for each a ∈ A, we write hsc(a) :=

∑
i ∈N 1/σi (a) for its harmonic score.

With probability 1/2, fHR chooses an alternative uniformly at random, and with probability 1/2,
fHR chooses an alternative proportionally to its harmonic score. In other words, the rule chooses

each a ∈ A with probability x(a) := 1
2m
+

hsc(a)
2
∑

a′∈A hsc(a′) . Note that
∑

a′ ∈A hsc(a′) = nHm , where

Hm :=
∑

i ∈[m] 1/m is themth harmonic number, so we may rewrite x(a) = 1
2m
+

hsc(a)
2nHm

.

B.1 Distortion

Boutilier et al. [2015] show that the distortion of the harmonic rule for unit-sum utilities satisfies

Dm(fHR,Uunit-sum) = O(
√
m logm). Bhaskar et al. [2018] show that every strategyproof rule f

incurs distortion Dm(f ,Uunit-sum) = Ω(
√
m logm). Since fHR is a strategyproof rule, this implies

that the analysis of Boutilier et al. [2015] is tight and the harmonic rule has distortion exactly

Θ(
√
m logm).

For convenience, we include an explicit proof of the lower bound that does not use strategyproof-
ness.

Theorem B.1. Dm(fHR,Uunit-sum) = Ω
(√

m logm
)
.

Proof. Consider the preference profile 	σ with n = m − 1 agents (the construction also works
when n is a multiple ofm−1), in which each agent places a distinguished alternative a∗ at position

k =
√

m
2Hm

(for simplicity, assume this is an integer) and the remaining alternatives are arranged

cyclically in the remaining positions so that every remaining alternative appears in every remain-
ing position once. Consider a consistent utility profile 	u in which each agent has utility 1/k for her
k most preferred alternatives and utility 0 for all other alternatives.

First, note that the optimal social welfare is UW(a∗, 	u) = (m − 1) · 1
k
� m

2k
, where the last

transition holds for m � 2. In contrast, for any a ∈ A \ {a∗}, we have UW(a, 	u) = (k − 1) · 1
k
� 1

because alternative a is among the top k alternatives of precisely k − 1 agents.
Finally, the harmonic score of a∗ is hsc(a∗, 	σ ) = (m−1) ·1/k , meaning that the harmonic rule fHR

selects a∗ with probability x(a∗) = 1
2m
+

1/k
2Hm
� max( 1

m
, 1

kHm
). Hence, the distortion of fHR satisfies

Dm(fHR,Uunit-sum) � UW(a∗, 	u)
x(a∗) · UW(a∗, 	u) + (1 − x(a∗)) · 1

�
UW(a∗, 	u)

x(a∗) · UW(a∗, 	u) + 1

=
1

x(a∗) + 1
UW(a∗, 	u)

�
1

max
(

1
m
, 1

kHm

)
+ 2k

m

�
1

2 max
(

1
m
, 1

kHm
, 2k

m

)
= min

(
m

2
,
kHm

2
,
m

4k

)
.

Setting k =
√

m
2Hm

, we get that the distortion is at least min(m/2,
√
mHm/8) = Ω(m logm). �
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Next, we analyze the distortion of fHR for unit-range and approval utilities. Strikingly, while the
distortion of fHR for unit-sum utilities is only a sublogarithmic factor worse than the best possi-

ble distortion, we find that its distortion for approval and unit-range utilities is Θ(m2/3 log1/3m),
which is worse than the best possible distortion of Θ(

√
m) for these utility classes by a polynomial

factor. This contrast can be explained due to a result of Filos-Ratsikas and Miltersen [2014] and Lee
[2019]: for unit-range utilities, the best distortion achieved by any strategyproof voting rule (see

Definition C.1) is Θ(m2/3). Because fHR is known to be strategyproof [Bhaskar et al. 2018], it must
have distortion Ω(m2/3); further, its distortion for unit-range utilities is still only a sublogarithmic
factor worse than that of the best strategyproof voting rule. Note that our stable lottery rule fSLR

achieves Θ(
√
m) distortion for both unit-sum and approval utilities.

Theorem B.2. The distortion of the harmonic rule with respect to the class of unit-range and of

approval utilities is Dm(fHR,Uunit-range) = Dm(fHR,Uapproval) = Θ(m2/3 log1/3m).

Proof. We begin by proving the upper bound.

Upper bound. By Lemma A.1, for proving the upper bound for unit-range utilities, it suffices to
consider approval utilities. Fix an arbitrary profile 	σ , and let 	u be some consistent utility profile
of approval utilities. For each agent i ∈ N , let ri =

∑
a∈A ui (a) � 1 be the number of alternatives

approved by i . Let a∗ ∈ arg maxa∈A UW(a, 	u) be an optimal alternative, and let x = fHR(	σ ) be the
distribution selected by the harmonic rule.

Let τ be a threshold value to be set later. Consider two cases.

Case 1: Suppose hsc(a∗) � τ . Then x(a∗) � 1
2 · τ

n ·Hm
and so UW(x, 	u) � 1

2 · τ
n ·Hm

UW(a∗, 	u).
Thus, D(x, 	u) = UW(a∗, 	u)/UW(x, 	u) � 2nHm/τ .

Case 2: Suppose hsc(a∗) � τ . Let Y = {i ∈ N : ui (a∗) = 1} be the set of agents approving
a∗. Note that UW(a∗, 	u) = |Y |. Because x(a) � 1/(2m) for each a ∈ A, we have UW(x, 	u) �∑

i ∈N
ri

2m
. Thus,

D(x, 	u) = UW(a∗, 	u)/UW(x, 	u) � 2m |Y |/(
∑

i ∈N ri ). (8)

We will upper bound this quantity in two different ways.
First, we have D(x, 	u) � 2m |Y |/n because ri � 1 for each i ∈ N .
Second, we can observe that

τ � hsc(a∗) �
∑
i ∈Y

1

ri
�

|Y |2∑
i ∈Y ri

�
|Y |2∑
i ∈N ri

, (9)

where the first inequality is due to the assumption of Case 2, the second inequality is because
every i ∈ Y ranks a∗ among the first ri positions, and the third inequality is the inequality
of arithmetic and harmonic means. Rewriting (9), we have |Y |/(

∑
i ∈N ri ) � τ/|Y |. Plugging

this into (8), we see that D(x, 	u) � 2mτ/|Y |.
Combining the two bounds, and using min(x ,y) � √

xy, we see that in Case 2 we have

D(x, 	u) � min

(
2m |Y |
n
,

2mτ

|Y |

)
� 2m

√
τ
n
.

Finally, combining Case 1 and Case 2, we can see that the distortion is at most

D(x, 	u) � max
(
2nHm/τ , 2m

√
τ
n

)
.

Setting τ = n · (Hm/m)2/3 yields the optimal upper bound of 2H 1/3
m m2/3.
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Lower bound. Assume m � 2 without loss of generality. Let t = (Hm/m)1/3 and r = 1/t =
(m/Hm)1/3. Choose an arbitrary alternative a∗ ∈ A and construct a preference profile as follows:

— Alternative a∗ is ranked r -th by n · t “special” agents and m-th by the remaining n · (1 − t)
“ordinary” agents.

— The remaining preferences are filled arbitrarily subject to the condition that each of the
remaining m − 1 alternatives appear as the top choice of n · (1 − t)/(m − 1) ordinary agents
and in the first r − 1 positions in the preference rankings of n · t · (r − 1)/(m − 1) special
agents.

We set a consistent utility profile as follows:

— Every special agent has utility 1 for her top r alternatives and 0 for the rest.
— Every ordinary agent has utility 1 for her top alternative and 0 for the rest.

Let us analyze the harmonic scores and welfare of various alternatives. For the chosen alterna-
tive a∗, we have

hsc(a∗) = n ·
(
t

r
+

1 − t

m

)
� n · (t2 + 1/m) � 2nt2,

where the final transition uses the fact that 1/m � t2 = (Hm/m)2/3. Based on this, we get that the
probability of a∗ being chosen under fHR is

Pr(a∗) � 1

2
· 2t2

Hm
+

1

2m
�

3t2

2Hm
,

where the final transition uses the fact that 1/m � t2/Hm . Next, the social welfare of a∗ is

UW(a∗, 	u) = n · t ,
whereas the social welfare of every other alternative a ∈ A \ {a∗} is

UW(a, 	u) = n · t · (r − 1)
m − 1

+
n · (1 − t)
m − 1

�
n

m − 1
· (tr + 1) � 4n

m
,

where the final transition uses rt = 1 andm − 1 � m/2.
Hence, we get that the distortion of fHR is at least

n · t
n · t · 3t 2

2Hm
+ 4n

m
· 1
=

2 ·m · t
11

=
2

11
· H 1/3

m ·m2/3,

as needed. �

B.2 Proportional Fairness

We show that the harmonic rule is Θ(
√
m logm)-proportionally fair. Since we have shown that the

best voting rule is Θ(logm)-proportionally fair, the harmonic rule is worse by a polynomial factor.
Later, we explain this contrast once again via strategyproofness of the harmonic rule, by proving
that if an α-proportionally fair voting rule is strategyproof, then α = Ω(

√
m). Hence, the harmonic

rule is only a sublogarithmic factor worse than the best strategyproof voting rule according to the
proportional fairness metric.

Theorem B.3. The harmonic rule is Θ(
√
m logm)-proportionally fair.

Proof. Let us begin by proving the upper bound. Let 	σ be a preference profile and let x = fHR(	σ )
be the probability distribution returned by fHR on 	σ . From Lemma 4.1, recall that

PF(x, 	σ ) = max
a∈A

1

n
·
∑
i ∈N

1

x(hi (a))
, (10)
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where hi (a) = {b : b �i a} is the set of alternatives that agent i ranks at least as high as a. Let a∗

denote the arg max of the right-hand side of (10).
For r ∈ [m], let αr denote the fraction of agents who rank a∗ in position r . Note that

∑m
r=1 αr = 1.

Further, the harmonic score of a∗ is given by hsc(a∗) = n ·
∑m

r=1 αr /r . We consider two cases.

Case 1. Suppose
∑m

r=1
αr

r
�
√
Hm/m. Then, hsc(a∗) � n

√
Hm/m. Hence,

x(hi (a∗)) � x(a∗) � 1

2
· 1
√
mHm

.

Plugging this into (10), we get that PF(x, 	σ ) � 2
√
mHm , as desired.

Case 2. Suppose
∑m

r=1
αr

r
�
√
Hm/m. Note that x(a) � 1

2m
for every alternative a ∈ A. Hence, if

agent i ranks a∗ in position r , we have x(hi (a)) � r
2m

. Plugging this into (10), we get

PF(x, 	σ ) �
m∑

r=1

(2m) · αr

r
� 2

√
mHm ,

as desired.
Next, we prove the lower bound. Fix a special alternative a∗. Construct a preference profile 	σ

in which there are n = m − 1 agents. Alternative a∗ is ranked in position r =
√
m/Hm by all the

agents. The other alternatives are placed in the remaining positions in a cyclic manner, so that
every other alternative appears in every remaining position exactly once. Let x = fHR(	σ ) be the
probability distribution returned by the harmonic rule on this profile. Note that

x(a∗) = 1

2

hsc(a∗)
nHm

+
1

2

1

m
=

1

2

1

rHm
+

1

2

1

m
�

1
√
mHm

,

where the last inequality holds becausem � Hm . By symmetry, the remaining probability is equally
distributed among the remaining alternatives. Hence, we have x(a) � 1/(m−1) for all a ∈ A\ {a∗}.

Next, fix a utility profile 	u in which every agent i has utility 1 for her r most favorite alternatives.
Note that for every agent i ∈ N , we have

ui (x) �
1

√
mHm

+
r − 1

m − 1
�

1
√
mHm

+
r

m
=

2
√
mHm

.

In contrast, ui (a∗) = 1 for all agents i ∈ N . Hence,

PF(x, 	u) � 1

n

∑
i ∈N

ui (a∗)
ui (x)

�

√
mHm

2
,

as desired. �

C PROPORTIONAL FAIRNESS OF STRATEGYPROOF VOTING RULES

When considering distortion with respect to utilitarian social welfare under unit-sum utilities,
the harmonic rule fHR provides a distortion that is only a sublogarithmic factor worse than the
optimum. Because the harmonic rule is strategyproof, in this context, strategyproofness comes at
little cost.

In this section, we show that strategyproofness imposes a much larger cost with respect to
proportional fairness. While we have shown that O(logm)-proportional fairness is possible, we
prove that every strategyproof voting rule can only be Ω(

√
m)-proportionally fair. Note that since

the harmonic rule is Θ(
√
m logm)-proportionally fair, it is at most a sublogarithmic factor worse

than the best strategyproof voting rule.
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To prove our lower bound, we need to understand the class of strategyproof rules in detail. We
start with a formal definition.

Definition C.1 (Strategyproofness). A voting rule f is called strategyproof (also known as truthful)
if no agent can increase her utility by misreporting her vote. Formally, for any preference profile
	σ , any agent i ∈ N , any utility function ui consistent with σi , and any ranking of the alternatives
σ ′

i , we must have ui (f (	σ )) � ui (f ((σ ′
i , 	σ−i ))), where (σ ′

i , 	σ−i ) is the preference profile obtained by
replacing the vote of agent i in 	σ by σ ′

i .

Before proving the result, we need to introduce several other definitions. First, we define two
well-known and mild properties of (probabilistic) voting rules.

Definition C.2 (Anonymity). A voting rule f is called anonymous if its outcome does not depend
on the identities of the agents. Formally, for any preference profile 	σ and any permutation of the
agents πN : N → N , we must have f (πN ◦ 	σ ) = f (	σ ), where πN ◦ 	σ = (σπ N (i))i ∈N is the profile

obtained by permuting the votes in 	σ according to πN .

Definition C.3 (Neutrality). A voting rule f is called neutral if its outcome does not depend on
the names of the alternatives. Formally, for any preference profile 	σ and any permutation of the
alternatives πA : A → A, we must have f (πA ◦ 	σ ) = πA ◦ f (	σ ), where πA ◦ 	σ is the profile obtained
by permuting the alternatives in each vote σi according to πA, and πA ◦ f (	σ ) is the distribution
obtained by permuting the names of the alternatives in f (	σ ) according to πA.

Next, we introduce two classes of voting rules, following the work of Barberà [1978].

Definition C.4 (Point-Voting Schemes). A voting rule f is called a point-voting scheme if there
exists a vector 	w = (w1, . . . ,wm) with w1 � w2 � · · · � wm � 0 and

∑
r ∈[m]wr = 1, such that for

every preference profile 	σ , writing x = f (	σ ), we have

x(a) = 1
n

∑
i ∈N wσi (a) for all a ∈ A.

Informally, a point-voting scheme, parametrized by the vector 	w , resembles the positional scor-
ing rule parametrized by the same score vector 	w , except that the positional scoring rule would
choose the alternative a with the highest total score

∑
i ∈N wσi (a) whereas the point-voting scheme

chooses each alternative a with probability proportional to its score. Another way to view a point-
voting scheme is that it chooses an agent uniformly at random and then chooses her r -th ranked
alternative with probability wr , for each r ∈ [m].

Note that the first half of the harmonic rule fHR, which chooses each alternative with probability
proportional to its harmonic score, is a point-voting scheme. In fact, the entire harmonic rule fHR is
a point-voting scheme, obtained usingwr = (1/r )+ (Hm/m) for each r ∈ [m]; this can alternatively
be confirmed by noting that the set of point-voting schemes is closed under convex combinations
and the second half of the harmonic rule, which picks an alternative uniformly at random, is
obviously a point-voting scheme with wr = 1/m for each r ∈ [m].

Definition C.5 (Supporting-Size Schemes). A voting rule f is called a supporting-size scheme if
there exists a vector 	z = (z0, . . . , zn) with

— zn � zn−1 � · · · � z0, and
— zk + zn−k = 1 for each k ∈ [n] ∪ {0}

such that for every preference profile 	σ , writing x = f (	σ ), we have

x(a) = 1(m
2

) ∑
b ∈A\{a }

zV (a,b) for all a ∈ A, where V (a,b) = |{i ∈ N : a �i b}|.
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In other words, f chooses a pair of alternatives (a,b) uniformly at random. Writing k for the
number of voters that prefer a over b, the rule f then chooses a with probability zk and chooses b
with probability zn−k .

Barberà [1978] proved the following characterization result.

Proposition C.6. A voting rule is anonymous, neutral, and strategyproof if and only if it is a

probability mixture of a point-voting scheme and a supporting-size scheme.

The reason this result is useful is that by analyzing the best objective value (distortion or propor-
tional fairness) achievable by any mixture of a point-voting scheme and a supporting-size scheme,
we also obtain the best objective value achievable by any anonymous, neutral, and strategyproof
voting rule. Could a strategyproof voting rule that violates anonymity and/or neutrality achieve
a better objective value? For distortion, Filos-Ratsikas and Miltersen [2014] prove that this is not
the case, and this observation was used by them and by Bhaskar et al. [2018] to derive the afore-
mentioned lower bounds on the distortion of any strategyproof voting rule with respect to the
unit-range and unit-sum utility classes, respectively. It is easy to see that the same observation
holds for proportional fairness as well.

Lemma C.7. For every strategyproof voting rule f , there exists an anonymous, neutral, and strate-

gyproof voting rule f ′ such that DPF
m (f ′) � DPF

m (f ).
Proof. Like Filos-Ratsikas and Miltersen [2014], we consider a strategyproof voting rule f and

construct a voting rule f ′ which works as follows: given an input preference profile 	σ , it applies a
uniformly random permutation of the agents πN and an independently chosen uniformly random
permutation of alternatives πA to 	σ , then applies rule f on the resulting profile πA ◦ πN ◦ 	σ , and
finally applies the inverse of πA, denoted (πA)−1, on the resulting distribution to revert the change
of names of alternatives.

Filos-Ratsikas and Miltersen [2014] argue that if f is strategyproof, then f ′ is anonymous, neu-
tral, and strategyproof. Further, Dm(f ′,Uunit-range) � Dm(f ,Uunit-range) (and Dm(f ′,Uunit-sum) �
Dm(f ,Uunit-sum) using the same argument). We want to show that DPF

m (f ′) � DPF
m (f ) as well. The

argument for this is slightly more involved because, unlike the social welfare function, propor-
tional fairness is non-linear. Crucially, we use the fact that DPF(x, 	σ ) is convex in x, as we observed
after the proof of Lemma 4.1.

Take any preference profile 	σ , and let x = f ′(	σ ). Let ΠN and ΠA denote the set of permutations
of agents and alternatives, respectively. Note that

x =
1

|ΠN | · |ΠA |
∑

π N ∈ΠN ,π A ∈ΠA (πA)−1 ◦ f (πA ◦ πN ◦ 	σ ).

Hence, we have

DPF(x, 	σ ) � 1

|ΠN | · |ΠA |
∑

π N ∈ΠN ,π A ∈ΠA DPF((πA)−1 ◦ f (πA ◦ πN ◦ 	σ ), 	σ )

� maxπ N ∈ΠN ,π A ∈ΠA DPF((πA)−1 ◦ f (πA ◦ πN ◦ 	σ ), 	σ )
= maxπ N ∈ΠN ,π A ∈ΠA DPF((πA)−1 ◦ f (πA ◦ πN ◦ 	σ ),πN ◦ 	σ )
= maxπ N ∈ΠN ,π A ∈ΠA DPF(f (πA ◦ πN ◦ 	σ ),πA ◦ πN ◦ 	σ )
� max

	σ ′
DPF(f (	σ ′), 	σ ′) = DPF

m (f ),

where the first transition is due to convexity of the proportional fairness objective, the second
transition upper-bounds an average by the maximum, the third transition uses the fact that pro-
portional fairness is an anonymous objective (i.e., permuting the votes does not change the pro-
portional fairness value of a distribution on the preference profile), the fourth transition uses the
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fact that proportional fairness is a neutral objective (i.e., permuting the names of alternatives in
both the distribution and the preference profile keeps the proportional fairness value unchanged),
and the final transition upper-bounds the maximum over a subset of preference profiles by a
maximum over all preference profiles. Since this holds for each preference profile 	σ , we have
DPF

m (f ′) � DPF
m (f ), as required. �

We are now equipped to prove a lower bound on proportional fairness of any strategyproof
voting rule.

Theorem C.8. For every strategyproof voting rule f , we have DPF
m (f ) = Ω(

√
m).

Proof. Let f be a strategyproof voting rule. Due to Lemma C.7, we may assume that f is anony-
mous and neutral. Due to Proposition C.6, f is a probability mixture that implements some point-
voting scheme characterized by 	w with probability p ∈ [0, 1] and some supporting-size scheme
characterized by 	z with probability 1 − p.

Let α = DPF
m (f ). We will show that α = Ω(

√
m). Similarly to Bhaskar et al. [2018], we construct

a sequence of profiles 	σ r , one for each r ∈ [m], and show that f must select a distribution that is
at least Ω(

√
m)-proportionally fair on at least one of these profiles, so that α = Ω(

√
m).

Fix any r ∈ [m] and construct the preference profile 	σ r with n = m − 1 votes,14 such that a
special alternative a∗ appears in position r in all the votes, while the remainingm − 1 alternatives
fill the remaining positions in a cyclic order. Let xr = f (	σ r ). Then,

xr (a∗) = p · 1

n
·
∑
i ∈N

wσi (a∗) + (1 − p) · 1(m
2

) · ∑
a∈A\{a∗ }

zV (a∗,a)

� 1 · 1

n
·
∑
i ∈N

wr + 1 · 1(m
2

) · ∑
a∈A\{a∗ }

1

= wr +
2

m
. (11)

As argued by Bhaskar et al. [2018], this observation would effectively allow us to ignore the
impact of the supporting-size scheme, which can only select the “desired” alternative a∗ with a
small probability of 2/m, and focus on the impact of the point-voting scheme. Let us lower-bound
the proportional fairness of xr on 	σ r . We have

DPF(xr , 	σ r ) = max
a∈A

1

n

∑
i ∈N

1

xr (hi (a))
(by Lemma 4.1)

�
1

n

∑
i ∈N

1

xr (hi (a∗))

�
n∑

i ∈N xr (hi (a∗))
(by the AM-HM inequality)

=
n

n ·
(
xr (a∗) + r−1

m−1 · (1 − xr (a∗))
)

�
1

xr (a∗) + r
m

· (1 − xr (a∗))

�
1

xr (a∗) + r
m

,

14The profile can easily be replicated to make n any multiple of m − 1.
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where the fourth transition holds because anonymity and neutrality of f implies xr (a) = 1−xr (a∗)
m−1

for each a ∈ A \ {a∗}. By definition of α , we have α � DPF(xr , 	σ r ). Thus, it follows that

xr (a∗) + r

m
�

1

α
.

Using (11), we have

wr � max

(
1

α
− r + 2

m
, 0

)
.

Summing over all r ∈ [m], we get

1 =
∑

r ∈[m]
wr �

∑
r ∈[m]

max

(
1

α
− r + 2

m
, 0

)
=

� m
α
�−2∑

r=1

(
1

α
− r + 2

m

)
�

m
α
− 3

α
−

m
α

(
m
α
+ 1

)
− 6

2m

�
m

2α2
− 7

2α
+

6

2m
,

where the fourth transition usesm/α − 1 � �m/α� � m/α . The above expression simplifies to

(2m − 6)α2 + 7mα −m2 � 0,

which shows

α �
−7m +

√
49m2 + 4m2(2m − 6)
2(2m − 6) = Ω(

√
m),

as needed. �

D PROPORTIONAL FAIRNESS VIA APPROXIMATELY STABLE COMMITTEES

As indicated in Section 4, we prove that a rule similar to our stable lottery rule (fSLR), which uses a
deterministic committee satisfying approximate stability instead of a lottery over committees sat-
isfying exact stability, isO(

√
m)-proportionally fair, and therefore achievesO(

√
m) distortion with

respect to the Nash welfare. Let us first formally introduce approximate stability for committees.

Definition D.1 (Approximately Stable Committees). For a committee X with |X | = k and an alter-
native a∗, recall thatV (a∗,X ) = |{i ∈ N : a∗ �i X }| denotes the number of agents who prefer a∗ to
all alternatives inX . We say thatX is c-stable if for all alternatives a∗ � X , we haveV (a∗,X ) < c · n

k
.

Note that 1-stable committees are precisely the stable committees introduced in Section 3.1. As
mentioned in that section, there exist preference profiles and sizes k where no stable committee
of size k exists [Jiang et al. 2020, Thm. 4]. However, by derandomizing the stable lottery of Cheng
et al. [2020], Jiang et al. [2020] proved the following:

Theorem D.2 (Jiang et al. 2020). Given any ranked preference profile and k ∈ [m], a 16-stable

committee of size k exists and a (16+ε)-stable committee of size k can be computed in poly(n,m, 1/ε)
time for sufficiently small constant ε > 0.

Let us introduce a voting rule that uses an approximately stable committee in the same manner
in which the rule fSLR from Section 3 uses an exactly stable lottery. Note that despite the use of a
deterministic committee, the rule is still probabilistic in the end.
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Definition D.3 (c-Stable Committee Rule, fc-SCR). Let X be a c-stable committee of size k =
√
m.

The c-Stable Lottery Rule (fc-SCR) works as follows: With probability 1/2, choose an alternative
uniformly at random fromX , and with probability 1/2, choose an alternative uniformly at random
from A. Therefore, each alternative a ∈ A is selected with probability x(a) = 1

2
√

m
· I[a ∈ X ] + 1

2m
,

where I is the indicator function.

Next, we prove that fc-SCR is O(
√
m)-proportionally fair when c is constant.

Theorem D.4. We have DPF
m (fc-SCR) = O(c ·

√
m).

Proof. For constant c , consider the fc-SCR rule. Fix an arbitrary preference profile 	σ . Let X be
the c-stable committee of size

√
m that fc-SCR uses to output distribution x on this profile. We want

to prove that DPF(x, 	σ ) = O(
√
m).

By Lemma 4.1, we have that

DPF(x, 	σ ) = max
a∈A

1

n

∑
i ∈N

1

x(hi (a))
=

1

n

∑
i ∈N

1

x(hi (a∗))
, (12)

where x(hi (a)) is the probability placed on the set of alternatives hi (a) = {a′ : a′ �i a} under x

and a∗ is taken to be an arg max.
Let S ⊆ N denote the set of V (a∗,X ) many agents who prefer a∗ to every alternative in X .

Because X is c-stable, we know that |S | = V (a∗,X ) � c · n/
√
m. By definition of S , each agent

i ∈ N \ S satisfies hi (a∗) ∩ X � ∅, implying that x(hi (a∗)) � 1
2
√

m
. For each agent i ∈ S , we have

x(hi (a∗)) � x(a∗) � 1
2m

. Plugging these lower bounds into (12), we get

DPF(x, 	σ ) = 1

n

∑
i ∈N

1

x(hi (a∗))

=
1

n

���
∑
i ∈S

1

x(hi (a∗))
+

∑
i ∈N \S

1

x(hi (a∗))
���

�
1

n

(
|S | · 2m + |N \ S | · 2

√
m
)

�
1

n

(
c · n

√
m

· 2m + n · 2
√
m

)
= 2 · (c + 1) ·

√
m = O(c ·

√
m).

This completes the proof. �

Note that an upper bound on proportional fairness also applies to distortion with respect to the
Nash welfare.

Corollary D.5. The distortion of fc-SCR with respect to the Nash welfare satisfies

DNW
m (fc-SCR,Uall) = O(c ·

√
m).

For distortion with respect to the utilitarian social welfare, the proof of Theorem 3.4 can easily
be modified to show that for each constant c , the distortion of fc-SCR isO(

√
m) for balanced utilities

(and therefore also for unit-sum and unit-range utilities).

Theorem D.6. On the utility class Ubalanced, the distortion of fc-SCR with respect to utilitarian

social welfare satisfies DUW
m (fc-SCR,Ubalanced) = O(c ·

√
m).
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Fig. 1. The instance-optimal voting rules for the four types of distortion we consider. The plot shows the

probability β(	σ ) placed on alternative a1 as a function of the fraction α(	σ ) of voters who prefer a1 over a2.

In the main body, we focused on the Stable Lottery Rule instead of the Stable Committee Rule
because for the former it is easier to prove existence, its output is easier to compute, and due to
the existence of an exact stable lottery (as opposed to an approximately stable committee), we get
a distortion upper bound of 2

√
m, which is close to the lower bound of

√
m/2.

We end this section by recalling that in Section 4, we show that a better performance on pro-
portional fairness can be achieved, using a different technique based on the minimax theorem.

E THE CASE OF TWO ALTERNATIVES

In this section, we analyze the case of exactly two alternatives, say, a1 and a2, which is an important
special case, capturing referenda and pairwise comparisons. Consider a situation in which 60% of
the voters prefera1 and 40% of the voters prefera2. Given such a split, how much probability should
be placed on a1 and a2? The straightforward answers would be to place 100% on a1 (because this
is the outcome of majority voting), or perhaps to place 60% on a1 (for example, because this is the
outcome of random dictatorship). This section shows that the best answer need not be either of
those two, but rather something more complicated.

For each of the objectives that we studied in this paper (distortion with unit-sum utilities,
distortion with unit-range utilities, distortion with respect to Nash welfare, proportional fairness),
we will explicitly write down a voting rule that, for every preference profile, selects the instance-
optimal distribution. The result is depicted in Figure 1. There we see that the instance-optimal
rule for distortion with respect to unit range utilities is indeed random dictatorship (where the
probability of an alternative is proportional to the number of voters preferring it). However,
for the other three objectives, we see that output distributions that are closer to the uniform
distribution perform better. This effect is strongest for proportional fairness, which therefore
needs to be more “cautious” than random dictatorship.

We will also compute the worst-case distortion/proportional fairness of these rules and hence
the best possible values obtainable in the two-alternative case. These values turn out to be 3/2,

4/3,
√

2, and 3/2, respectively.
As there are only two possible rankings over two alternatives, we can summarize a preference

profile 	σ by a real number α(	σ ) ∈ [0, 1], which denotes the fraction of agents who prefer a1

to a2; then, the remaining 1 − α(	σ ) fraction of agents prefer a2 to a1. Similarly, the outcome
of a voting rule on a preference profile 	σ can also be viewed as a real number β(	σ ) ∈ [0, 1]
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which is the probability placed on a1. We will adapt our notation accordingly throughout this
section.

We can disregard the extreme cases where α(	σ ) ∈ {0, 1} because in such cases, one alternative
is preferred by all agents (a1 if α(	σ ) = 1 and a2 if α(	σ ) = 0); the voting rule should clearly choose
that alternative as it achieves the optimal distortion of 1 with respect to all our welfare functions
and utility classes as well as the optimal 1-proportional fairness.

E.1 Distortion with Unit-Sum Utilities

Given a preference profile 	σ , let f unit-sum
2-UW be the voting rule that selects β(	σ ) = (2−α ( 	σ ))·α ( 	σ )

1+2α ( 	σ )·(1−α ( 	σ )) . We

show that this rule always returns the instance optimal distribution minimizing DUW(	σ ,Uunit-sum).

Theorem E.1. For m = 2 alternatives, and for any preference profile 	σ , the voting rule f unit-sum
2-UW

selects a distribution x minimizing DUW(x, 	σ ,Uunit-sum).
The rule achieves distortion DUW

2 (f unit-sum
2-UW ,Uunit-sum) = 3/2, which is the best possible among all

voting rules.

Proof. Fix a preference profile 	σ . Let us write α = α(	σ ) and let

DUW(α) = min
x∈Δ(A)

DUW(x, 	σ ,Uunit-sum)

be the best achievable distortion on profile 	σ with unit-sum utilities. Then,

DUW(α) = min
β ∈[0,1]

max
	u ∈(Uunit-sum)n :	u� 	σ

max{UW(a1, 	u),UW(a2, 	u)}
β · UW(a1, 	u) + (1 − β) · UW(a2, 	u)

= min
β ∈[0,1]

max

{
max

	u ∈(Uunit-sum)n :	u� 	σ

UW(a1, 	u)
β · UW(a1, 	u) + (1 − β) · UW(a2, 	u)

,

max
	u ∈(Uunit-sum)n :	u� 	σ

UW(a2, 	u)
β · UW(a1, 	u) + (1 − β) · UW(a2, 	u)

}
. (13)

Worst-case utilities. In (13), let us analyze the worst-case utility profile 	u for the term with the
numerator UW(a1, 	u). Using the fact that UW(a1, 	u)+UW(a2, 	u) = n (by the unit-sum assumption),
the expression of interest in (13) is

UW(a1, 	u)
β · UW(a1, 	u) + (1 − β)(n − UW(a1, 	u))

=
1

β + (1 − β)(n − UW(a1, 	u))/UW(a1, 	u)
,

which is maximized when UW(a1, 	u) is maximized. To obtain the highest utilitarian welfare for a1,
the α fraction of agents i who rank a1 first must have (ui (a1),ui (a2)) = (1, 0) and the remaining
1 − α fraction of agents i who rank a1 second must have (ui (a2),ui (a1)) = (1/2, 1/2). Similarly, the
worst-case utility profile 	u for the term with the numerator UW(a2, 	u) is achieved when the α
fraction of agents i who rank a2 second have (ui (a1),ui (a2)) = (1/2, 1/2) and the remaining 1 − α
fraction of agents i who rank a2 first have (ui (a2),ui (a1)) = (1, 0). Therefore, (13) becomes

DUW(α) = min
β ∈[0,1]

max

{
α + 1−α

2

(α + 1−α
2 )β + 1−α

2 · (1 − β)
,

α
2 + 1 − α

(α
2 + 1 − α)(1 − β) + α

2 · β

}
= min

β ∈[0,1]
max

⎧⎪⎨⎪⎩ 1

β + (1−α )/2
α+(1−α )/2 · (1 − β)

,
1

α/2
α/2+1−α

· β + 1 − β

⎫⎪⎬⎪⎭ .
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The left term in the maximum is decreasing in β while the right term is increasing. Hence, the
maximum of the two is minimized when the two terms become equal, i.e.,

β +
(1 − α)/2

α + (1 − α)/2
· (1 − β) = α/2

α/2 + 1 − α
· β + 1 − β

⇐⇒ β ·
(

1
α/2
1−α
+ 1

)
= (1 − β) ·

(
1

1−α
2α
+ 1

)
⇐⇒ 1 − β

β
=

(1 − α)(1 + α)
(2 − α)α .

The solution to the equation above is precisely the β selected by f unit-sum
2-UW , proving that it returns

the distribution with the best possible distortion on all profiles. Further, at this value of β , the
distortion achieved is DUW

2 (f unit-sum
2-UW ) = maxα ∈[0,1] DUW(α) = 3/2, which is attained at α = 1/2 (for

which the optimal β is also β = 1/2). �

From Section 3, we know that, withm alternatives, the optimal distortion with respect to utilitar-
ian welfare and unit-sum utilities is Θ(

√
m), where the constant hidden in the asymptotic notation

lies in [ 1
2 , 2]. Interestingly, Theorem E.1 shows that the optimal distortion form = 2 is 3

2 =
3

2
√

2
·
√
m,

leading one to wonder whether the constant 3

2
√

2
≈ 1.06066 is (close to) the true constant for this

problem.

E.2 Distortion with Unit-Range Utilities

Given a preference profile 	σ , let f
unit-range

2-UW be the voting rule that selects β(	σ ) = α(	σ ).

Theorem E.2. For m = 2 alternatives, and for any preference profile 	σ , the voting rule f
unit-range

2-UW

selects a distribution x minimizing DUW(x, 	σ ,Uunit-range).
The rule achieves distortion DUW

2 (f unit-range
2-UW ,Uunit-range) = 4/3, which is the best possible among

all voting rules.

Proof. Fix a preference profile 	σ . Let us write α = α(	σ ), and let

DUW(α) = min
x∈Δ(A)

DUW(x, 	σ ,Uunit-range)

be the best achievable distortion on profile 	σ with unit-range utilities. Then, as in the proof of
Theorem E.1, we have

DUW(α) = min
β ∈[0,1]

max
	u ∈(Uunit-range)n :	u� 	σ

max{UW(a1, 	u),UW(a2, 	u)}
β · UW(a1, 	u) + (1 − β) · UW(a2, 	u)

= min
β ∈[0,1]

max

{
max

	u ∈(Uunit-range)n :	u� 	σ

UW(a1, 	u)
β · UW(a1, 	u) + (1 − β) · UW(a2, 	u)

,

max
	u ∈(Uunit-range)n :	u� 	σ

UW(a2, 	u)
β · UW(a1, 	u) + (1 − β) · UW(a2, 	u)

}
. (14)

Worst-case utilities. The only difference compared to the proof of Theorem E.1 is the analysis of
the worst-case utility profiles in the two expressions inside the maximum in (14). By Lemma A.1,
we know that the worst-case utility profile is an approval utility profile. All agents approve their
first-ranked alternative and the only question is whether they also approve their second-ranked
alternative.

Consider the first term inside the maximum in (14) with UW(a1, 	u) in the numerator. We want
to find the utility profile 	u that maximizes this term. For the α fraction of agents who rank a1

above a2, we can assume w.l.o.g. that ui (a2) = 0 as it can only increase this term. For the rest of
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the agents i that rank a2 above a1, we know ui (a2) = 1. Hence, UW(a2, 	u) = (1 − α) · n. Given this
fixed value of UW(a2, 	u), note that

UW(a1, 	u)
β · UW(a1, 	u) + (1 − β) · UW(a2, 	u)

=
1

β + (1 − β) · UW(a2, 	u)
UW(a1, 	u)

is increasing in UW(a1, 	u). Hence, the term is maximized when UW(a1, 	u) is the highest, meaning
that the agents who rank a2 above a1 also approve a1.

Similarly, for the term in (14) with UW(a2, 	u) in the numerator, the worst-case utility profile is
as follows: α fraction of agents i who rank a1 first have (ui (a1),ui (a2)) = (1, 1) and the remaining
1 − α fraction of agents i who rank a2 first have (ui (a2),ui (a1)) = (1, 0). Therefore, (14) becomes

DUW(α) = min
β ∈[0,1]

max

{
1

β + (1 − α)(1 − β) ,
1

αβ + (1 − β)

}
.

The left term in the maximum is decreasing in β while the right term is increasing. Hence,
the maximum of the two terms is minimized when the two terms are equal, which yields β = α .

This proves that f
unit-range

2-UW returns the distribution with the best possible distortion on all profiles.

Further, at this value of β , the distortion achieved is DUW
2 (f unit-range

2-UW ) = maxα ∈[0,1] DUW(α) = 4/3,
which is attained at α = β = 1/2. �

E.3 Distortion with Respect to Nash Welfare

Given a preference profile 	σ , let f2Nash be the voting rule that selects β(	σ ) = д−1(α(	σ )) where

д(x) = ln(1−x )
ln(x )+ln(1−x ) . This is well-defined since since д : [0, 1] �→ [0, 1] is strictly increasing and

invertible.

Theorem E.3. Form = 2 alternatives, and for any preference profile 	σ , the voting rule f2Nash selects

a distribution x minimizing DNW(x, 	σ ,Uall), the distortion with respect to Nash welfare.

The rule achieves distortion DNW
2 (f2Nash,Uall) =

√
2 with respect to Nash welfare, which is the best

possible among all voting rules.

Proof. Fix a preference profile 	σ . Write α = α(	σ ), and let DNW(α) = minx∈Δ(A) DNW(x, 	σ ,Uall)
be the best achievable distortion on the profile 	σ . Note that

DNW(α) = min
x∈Δ(A)

max
y∈Δ(A)

sup
	u ∈(Uall)n :	u� 	σ

(∏
i ∈N

ui (y)
ui (x)

)1/n

. (15)

Reduction to approval utilities. From Lemma A.3, we know that the worst case for distortion with
respect to Nash welfare is achieved at an approval utility profile. Under an approval utility profile
	u, the α fraction of agents i who prefer a1 to a2 have (ui (a1),ui (a2)) equal to (1, 0) or (1, 1), and
the remaining 1 − α fraction of agents i have (ui (a1),ui (a2)) equal to (0, 1) or (1, 1). If an agent

approves both alternatives, then
ui (y)
ui (x) = 1 regardless of x and y. Based on these observations, we

can rewrite DNW(α) from (15) as

DNW(α) = min
β ∈[0,1]

max
z∈[0,1]

(
max

{
z

β
, 1

}α

· max

{
1 − z

1 − β
, 1

}1−α
)
.

Finding the optimal distribution. If z > β , then 1−z
1−β
< 1 and the inner expression evaluates

to ( z
β
)α , which is maximized at z = 1. Similarly, when z < β , the inner expression evaluates to
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( 1−z
1−β

)1−α , which is maximized at z = 0. Therefore, we have

DNW(α) = min
β ∈[0,1]

max

{(
1

β

)α

,

(
1

1 − β

)1−α
}
.

This is minimized when α ln(β) = (1 − α) ln(1 − β), and the unique minimizer of this expression
is precisely the β selected by f2Nash. This proves that f2Nash always returns the distribution with
the best possible distortion with respect to the Nash welfare on all profiles. Further, at this β , the

distortion achieved is DNW
2 (f2Nash) = maxα ∈[0,1] DNW(α) =

√
2, which is attained at α = 1/2 (for

which the optimal β is also β = 1/2). �

E.4 Proportional Fairness

Given a preference profile 	σ , let f2PF be the voting rule that selects β(	σ ) =
√

α ( 	σ )√
1−α ( 	σ )+

√
α ( 	σ )

.

Theorem E.4. Form = 2 alternatives, and for any preference profile 	σ , the voting rule f2PF selects

a distribution x minimizing DPF(x, 	σ ).
The rule is (3/2)-proportionally fair, which is the best possible among all voting rules.

Proof. Fix a preference profile 	σ . Let us write α = α(	σ ) and let DPF(α) = minx∈Δ(A) DPF(x, 	σ ).
From Lemma 4.1, we have

DPF(α) = min
x∈Δ(A)

max
a∈A

1

n

∑
i ∈N

1

x(hi (a))

= min
β ∈[0,1]

max

{
α

β
+ (1 − α) , α + 1 − α

1 − β

}
.

This expression is minimized when

α

β
+ (1 − α) = α +

1 − α

1 − β
⇐⇒ α · 1 − β

β
= (1 − α) · β

1 − β
⇐⇒ α

1 − α
=

β2

(1 − β)2 ,

which precisely yields the β satisfying returned by f2PF. This shows that f2PF always returns the
distribution with the best possible proportional fairness on profile 	σ . Further, at this value of β , the
proportional fairness achieved is DPF

2 (f2PF) = maxα ∈[0,1] DPF(α) = 3/2, which is attained at α = 1/2

(for which the optimal β is also β = 1/2). �
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