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Abstract

To aggregate rankings into a social ranking, one can use scoring systems such as
Plurality, Veto, and Borda. We distinguish three types of methods: ranking by score,
ranking by repeatedly choosing a winner that we delete and rank at the top, and
ranking by repeatedly choosing a loser that we delete and rank at the bottom. The
latter method captures the frequently studied voting rules Single Transferable Vote
(aka Instant Runoff Voting), Coombs, and Baldwin. In an experimental analysis, we
show that the three types of methods produce different rankings in practice. We
also provide evidence that sequentially selecting winners is most suitable to detect
the “true” ranking of candidates. For different rules in our classes, we then study
the (parameterized) computational complexity of deciding in which positions a given
candidate can appear in the chosen ranking. As part of our analysis, we also consider
the Winner Determination problem for STV, Coombs, and Baldwin and determine
their complexity when there are few voters or candidates.

1. Introduction

Rank aggregation, the task of aggregating several rankings into a single ranking, sits at the
foundation of social choice as introduced by Arrow [1951]. Besides preference aggregation, it has
numerous important applications, for example in the context of meta-search engines [Dwork et al.,
2001], of juries ranking competitors in sports tournaments [Truchon, 1998], and multi-criteria
decision analysis.
One of the best-known methods for aggregating rankings is Kemeny’s [1959] method: A

Kemeny ranking is a ranking that minimizes the average swap distance (Kendall-tau distance) to
the input rankings. It is axiomatically attractive [Young and Levenglick, 1978, Can and Storcken,
2013, Bossert and Sprumont, 2014] and has an interpretation as a maximum likelihood estimator
[Young, 1995] making it well-suited to epistemic social choice that assumes a ground truth.
However, Kemeny’s method is hard to compute [Bartholdi et al., 1989, Hemaspaandra et al.,

2005] which makes the method problematic to use, especially when there are many candidates to
rank (for example, when ranking all applicants to a university). Even if computing the ranking
is possible, it is coNP-hard to verify if a ranking is indeed a Kemeny ranking [Fitzsimmons
and Hemaspaandra, 2021]. Thus, third parties cannot easily audit, interpret, or understand the
outcome, making systems based on Kemeny’s method potentially unaccountable. This limits its
applicability in democratic contexts.
These two drawbacks motivate the search for computationally simpler and more transparent

methods for aggregating rankings. There is a significant literature on polynomial-time approxi-
mation algorithms for Kemeny’s method [Coppersmith et al., 2006, Kenyon-Mathieu and Schudy,
2007, Ailon et al., 2008, van Zuylen and Williamson, 2009], but these algorithms are typically
not attractive beyond their approximation guarantee. In particular, they would typically not
fare well in an axiomatic analysis, and are unlikely to be understood by and appealing to the
general public (many are based on derandomization).
Instead, we turn to one of the fundamental tools of social choice: positional scoring rules.

These rules transform voter rankings into scores for the candidates. For example, under the
Plurality scoring rule, every voter gives 1 point to their top-ranked candidate. Under the Veto
(or anti-plurality) scoring rule, voters give −1 point to their last-ranked candidate and zero
points to all others. Under the Borda scoring rule, every voter gives m points to their top-ranked
candidate, m − 1 points to their second-ranked candidate, and so on, giving 1 point to their
last-ranked candidate. We study three ways of using scoring rules to aggregate rankings:

• Score: We rank the candidates in order of their score, higher-scoring candidates being
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ranked higher.

• Sequential-Winner : We take the candidate c with the highest score and rank it top in the
aggregate ranking. We then delete c from the input profile, re-calculate the scores, and put
the new candidate with the highest score in the second position, and so on.

• Sequential-Loser: We take the candidate c with the lowest score and rank it last. We then
delete c, re-calculate the scores, and put the new candidate with the lowest score in the
second-to-last position, and so on.

Ranking by score is the obvious way of using scoring rules for rankings, and so it has been studied
in the social choice literature [Smith, 1973, Levenglick, 1977]. Sequential-Loser captures as special
cases the previously studied rules Single Transferable Vote (also known as Instant Runoff Voting,
among other names), Coomb’s method, and Baldwin’s method. These are typically used as
voting rules that elect a single candidate, but they can also be understood as rank aggregation
methods. On the other hand, despite being quite natural, Sequential-Winner methods appear
not to have been formally studied in the literature (to our knowledge).

1.1. Our Contributions

Axiomatic Properties (Section 4) Based on the existing literature, we begin by describing
some axiomatic properties of the methods in our three families. For example, we check which of
the methods are Condorcet or majority consistent, and which are resistant to cloning. We also
consider independence properties and state some characterization results.

Simulations (Section 5) To understand how and whether the three families of methods
practically differ from each other, and how they relate to Kemeny’s method, we perform extensive
simulations based on synthetic data (sampled using the Mallows and Euclidean models). We
find that, for Plurality and Borda, ranking by score and Sequential-Loser usually produce very
similar results, whereas Sequential-Winner offers a new perspective (which is typically closer to
Kemeny’s method). Moreover, we observe that Sequential-Loser rules seem to be particularly
well suited to identify the best candidates (justifying their usage as single-winner voting rules),
while Sequential-Winner rules are best at avoiding low quality candidates.

Computational Complexity (Section 6) The rules in all three of our families are easy to
compute in the sense that their description implies a straightforward algorithm for obtaining an
output ranking. However, for the sequential rules there is a subtlety: During the execution of
the rule, ties can occur. It matters how these are broken, because candidates could end up in
significantly different positions. For high-stakes decisions and in democratic contexts, it would
be important to know which output rankings are possible.

Thus, we study the computational problem of deciding whether a given candidate can end up
in a given position. This and related problems have been studied in the literature under the name
of parallel universe tie-breaking, including theoretical and experimental studies for some of the
rules in our families [Conitzer et al., 2009, Brill and Fischer, 2012, Mattei et al., 2014, Freeman
et al., 2015, Wang et al., 2019]. We extend the results of that literature and find NP-hardness
for all the sequential methods that we study. We show that the problem becomes tractable if the
number of candidates is small. In contrast, for several methods we find that the problem remains
hard even if the number of input rankings is small. Curiously, for few input rankings, methods
based on Plurality, Borda, or Veto each induce a different parameterized complexity class.
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2. Preliminaries

For k ∈ N, write [k] = {1, . . . , k}.
Let C = {c1, . . . , cm} be a set of m candidates. A ranking ≻ of C is a linear order (irreflexive,

total, transitive) of C. We write L(C) for the set of all rankings of C.
A (ranking) profile P = (≻1, . . . ,≻n) is a list of rankings. We sometimes say that the rankings

are voters.
For a subset C ′ ⊆ C of candidates and ranking ≻ ∈ L(C), we write ≻|C′ for the ranking

obtained by restricting ≻ to the set C ′. For a profile P , we write P |C′ for the profile obtained by
restricting each of its rankings to C ′.

A social preference function1 f is a function that assigns to every ranking profile P a non-empty
set f(P ) ⊆ L(C) of rankings. Here, f(P ) may be a singleton but there can be more than one
output ranking in case of ties. For a ranking ≻, we say that f selects ≻ on P if ≻ ∈ f(P ).
For a ranking ≻ ∈ L(C) and a candidate c ∈ C, let pos(≻, c) = |{d ∈ C : d ≻ c}|+ 1 be the

position of c in ≻. For example, if pos(≻, c) = 1 then c is the most-preferred candidate in ≻. We
write cand(≻, r) ∈ C for the candidate ranked in position r ∈ [m] in ≻ ∈ L(C).

For a ranking ≻ ∈ L(C), rev(≻) denotes the ranking where the candidates are ranked in the
opposite order as in ≻, i.e., for each r ∈ [m], cand(≻, r) = cand(rev(≻),m− r+ 1). For a profile
P = (≻1, . . . ,≻n), we write rev(P ) = (rev(≻1), . . . , rev(≻n)).
For an integer m ∈ N, a scoring vector s(m) = (s1, . . . , sm) ∈ Rm is a list of m numbers.

A scoring system is a family of scoring vectors (s(m))m∈N one for each possible number m of
candidates. For the sake of conciseness, we sometimes write s instead of (s(m))m∈N. We will
mainly focus on three scoring systems:

• Plurality with s(m) = (1, 0, . . . , 0) for each m ∈ N,
• Veto with s(m) = (0, . . . , 0,−1) for each m ∈ N,
• Borda with s(m) = (m,m− 1, . . . , 1) for each m ∈ N.

Given a profile P over m candidates, the s-score of candidate c ∈ C is scores(P, c) =∑
i∈[n] s

(m)
pos(≻i,c)

. We say that a candidate is an s-winner if it has maximum s-score, and

an s-loser if it has minimum s-score. For a scoring system s we denote by s∗ the scoring system
where we reverse each scoring vector and multiply all its entries by −1, i.e., for each m ∈ N and

i ∈ [m], we have (s∗)
(m)
i = −s

(m)
m−i+1. Note that (s∗)∗ = s for every s, that Plurality∗ = Veto,

that Veto∗ = Plurality, and that Borda∗ is the same as Borda, up to a shift.
For two rankings ≻1 and ≻2, their swap distance (or Kendall-tau distance) κ(≻1,≻2) is the

number of pairs of candidates on whose ordering the two rankings disagree, i.e., κ(≻1,≻2) =
|{(c, d) ∈ C × C : c ≻1 d and d ≻2 c}|. Note that the maximum swap distance between two
rankings is

(
m
2

)
. Given a profile P , Kemeny’s rule selects those rankings which minimize the

average swap distance to the rankings in P , so it selects argmin≻∈L(C)

∑
i∈N κ(≻,≻i). We refer

to the selected rankings as Kemeny rankings.

3. Scoring-Based Rank Aggregation

We now formally define the three families of scoring-based social preference functions that we
study.

Definition 3.1 (s-Score). Let s be a scoring system. For the social preference function s-Score on
profile P , we have ≻ ∈ s-Score(P ) if and only if for all c, d ∈ C with scores(c, P ) > scores(d, P ),
we have c ≻ d.
1This terminology is due to Young and Levenglick [1978]. The term social welfare function from Arrow [1951]
usually refers to resolute functions that may only output a single ranking.

4



Definition 3.2 (Sequential-s-Winner; Seq.-s-Winner). Let s be a scoring system. The social
preference function Seq.-s-Winner is defined recursively as follows: For a profile P , we have
≻ ∈ Seq.-s-Winner(P ) if and only if

• the top choice c = cand(≻, 1) is an s-winner in P ,

• if |C| > 1, then ≻|C\{c} ∈ Seq.-s-Winner(P |C\{c}).

Definition 3.3 (Sequential-s-Loser; Seq.-s-Loser). Let s be a scoring system. The social
preference function Seq.-s-Loser is defined recursively as follows: For a profile P , we have
≻ ∈ Seq.-s-Loser(P ) if and only if

• the bottom choice c = cand(≻, |C|) is an s-loser in P ,

• if |C| > 1, then ≻|C\{c} ∈ Seq.-s-Loser(P |C\{c}).

Example 3.4. Let P be the following ranking profile:

3× a ≻ b ≻ c, 2× b ≻ c ≻ a, 2× c ≻ b ≻ a

Then for the three methods based on Plurality, we have:

• Plurality-Score(P ) = {a ≻ b ≻ c, a ≻ c ≻ b},
• Seq.-Plurality-Wi.(P ) = {a ≻ b ≻ c}, and
• Seq.-Plurality-Lo.(P ) = {b ≻ a ≻ c, c ≻ a ≻ b}.

We sometimes view Seq.-s-Winner (or Seq.-s-Loser) rules as round-based voting rules, where
in each round an s-winner (or an s-loser) is deleted from the profile and added in the highest
(or lowest) position of the ranking that has not yet been filled. Notably, if there are multiple
s-winners (or s-losers) in one round, each selection gives rise to different output rankings.
Seq.-Plurality-Loser is also known as STV, Seq.-Veto-Loser as Coombs, and Seq.-Borda-Loser as
Baldwin.

Sequential-Winner and Sequential-Loser rules are formally closely related: If a candidate is an
s-winner in some profile P , then it is an s∗-loser in the reverse profile rev(P ). Hence, we can
conclude the following:

Lemma 3.5. Let s be a scoring system. Then for each ranking profile P and for every ranking
≻ ∈ L(C), we have:

≻ ∈ Sequential-s-Winner(P )

⇐⇒ rev(≻) ∈ Sequential-s∗-Loser(rev(P )).

For example, this lemma establishes a close connection between Seq.-Veto-Winner and
Seq.-Plurality-Loser, as a ranking ≻ is selected under Seq.-Veto-Winner on profile P if and
only if rev(≻) is selected under Seq.-Plurality-Loser on profile rev(P ). This equivalence will
prove useful in our axiomatic analysis and in our complexity results.

4. Axiomatic Properties

In this section, we will briefly and informally discuss some axiomatic properties and characteriza-
tions of the methods in our three families. A more formal treatment appears in Appendix A. See
Table 1 for an overview.

A desirable property of a ranking aggregation rule is that if one candidate is deleted from
the profile, then the relative rankings of the other candidates does not change (independence
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Score Sequential-Winner Sequential-Loser

Kemeny Plurality Veto Borda Plurality Veto Borda Plurality Veto Borda

Independence at the top ✓ ✓ ✓ ✓
Independence at the bottom ✓ ✓ ✓ ✓

Reinforcement ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reinforcement at the top ✓ ✓ ✓ ✓ ✓ ✓
Reinforcement at the bottom ✓ ✓ ✓ ✓ ✓ ✓

Condorcet winner at top ✓ ✓
Copy majority ✓ ✓ ✓
Independence of clones ✓

Table 1: An overview of the axiomatic properties of our studied rules. See Appendix A for
definitions.

of irrelevant alternatives, IIA). Arrow’s [1951] impossibility theorem shows that this property
cannot be satisfied by unanimous non-dictatorial rules. Young [1988] proves that Kemeny’s
method satisfies a weaker version that he calls local IIA: removing the candidate that appears
in the first or last position in the Kemeny ranking does not change the ranking of the other
candidates. Splitting this property into its two parts, we can easily see from their definitions
that Seq.-s-Winner satisfies independence at the top, and Seq.-s-Loser satisfies independence at
the bottom.
Another influential axiom is known as consistency or reinforcement. A rule f satisfies rein-

forcement if whenever some ranking ≻ is chosen in two profiles, ≻ ∈ f(P ) ∩ f(P ′), then it is
also chosen if we combine the profiles into one, and in fact f(P + P ′) = f(P ) ∩ f(P ′). All the
methods in this paper satisfy reinforcement. Notably, Young [1988] shows that Kemeny is the
only anonymous, neutral, and unanimous rule satisfying reinforcement and local IIA. Focusing
on Seq.-s-Loser, Freeman et al. [2014] define reinforcement at the bottom to mean that if the
same candidate c is placed in the last position in the selected ranking in two profiles, then c
is also placed in the last position in the selected ranking in the combined profile. They show
that independence at the bottom and reinforcement at the bottom characterize Seq.-s-Loser
rules (under mild additional assumption). Using Lemma 3.5, a simple adaptation of their proof
shows that Seq.-s-Winner rules can be similarly characterized by independence at the top and
reinforcement at the top. (s-Score methods do not satisfy similar independence assumptions;
they have been characterized by Levenglick [1977] and Smith [1973].)
Refining their characterization of Seq.-s-Loser rules, Freeman et al. [2014] characterize

Seq.-Plurality-Loser (aka STV) as the only Seq.-s-Loser rule satisfying independence of clones
[Tideman, 1987], Seq.-Veto-Loser (aka Coombs) as the only one that, in case a strict majority of
voters have the same ranking, copies that ranking as the output ranking, and Seq.-Borda-Loser
(aka Baldwin) as the only one always placing a Condorcet winner in the first position. Using
Lemma 3.5, we can similarly characterize Seq.-Plurality-Winner as the only method in its class
that copies a majority ranking.

5. Simulations

We analyze our three families of scoring-based ranking rules for Plurality and Borda on syntheti-
cally generated profiles.

5.1. Setup

To deal with ties in the computation of our rules, each time we sample a ranking profile over
candidates C, we also sample a ranking ≻tie ∈ L(C) uniformly at random and break ties according

6



dashed green and
orange line overlap

0.0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

normalized dispersion parameter

n
or
m
al
iz
ed

sw
ap

d
is
ta
n
ce

Seq.-Lo. vs Seq.-Wi.
Seq.-Lo. vs Score
Seq.-Wi. vs Score

Plurality
Borda

(a) Pairs of scoring-based methods

dashed lines largely
overlap

0.0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

normalized dispersion parameter

n
or
m
al
iz
ed

sw
ap

d
is
ta
n
ce

Kemeny vs Seq.-Lo.
Kemeny vs. Score
Kemeny vs. Seq.-Wi.

Plurality
Borda

(b) Scoring-based methods vs Kemeny ranking

Figure 1: Pairwise average normalized swap distance between rankings produced by different
methods for Plurality (solid) and Borda (dashed) on Mallows profiles with 10 candidates
and 100 voters.

to ≻tie for all rules. To quantify the difference between two rankings ≻1,≻2 ∈ L(C), we use their
normalized swap distance, i.e., their swap distance κ(≻1,≻2) divided by the maximum possible
swap distance between two rankings

(
m
2

)
.

(Normalized) Mallows We conduct simulations on profiles generated using the Mallows model
Mallows [1957] (as observed by Boehmer et al. [2021] real-world profiles seem often to be close
to some Mallows profiles). This model is parameterized by a dispersion parameter ϕ ∈ [0, 1]
and a central ranking ≻∗ ∈ L(C). Then, a profile is assembled by sampling rankings i.i.d. so
that the probability of sampling a ranking ≻ ∈ L(C) is proportional to ϕκ(≻,≻∗). We use the
normalization of the Mallows model proposed by Boehmer et al. [2021], which is parameterized by
a normalized dispersion parameter norm-ϕ ∈ [0, 1]. This parameter is then internally converted
to a dispersion parameter ϕ such that the expected swap distance between a sampled vote and
the central vote is norm-ϕ · (m(m− 1)/4). Then norm-ϕ = 0 results in profiles only containing
the central vote, and norm-ϕ = 1 leads to profiles where all rankings are sampled with the
same probability, so that on average rankings disagree with the central ranking ≻∗ on half of
the pairwise comparisons. Choosing norm-ϕ = 0.5 leads to profiles where rankings on average
disagree with ≻∗ on a quarter of the pairwise comparisons.

5.2. Comparison of Scoring-Based Ranking Methods

We analyze the average normalized swap distance between the rankings selected by our three
families of scoring-based ranking methods on profiles containing 100 rankings over 10 candi-
dates. For this, we sampled 10 000 profiles for each norm-ϕ ∈ {0, 0.1, . . . , 0.9, 1} and depict
the results in Figure 1(a). Let us first focus on Plurality: We find that the rankings produced
by Seq.-Plurality-Loser and Plurality-Score are quite similar, whereas the ranking produced
by Seq.-Plurality-Winner is substantially different. This observation is particularly strong for
norm-ϕ ≤ 0.3: In such profiles, all the rankings are similar to each other. Accordingly, many
candidates initially have a Plurality score of zero, and thus there are many ties in the execution
of Plurality-Score and Seq.-Plurality-Loser (for the latter, ties occur in more than half of the
rounds). Thus, the rankings computed by the two rules fundamentally depend on the (shared)
random tie-breaking order ≻tie. In contrast, for Seq.-Plurality-Winner, for norm-ϕ ≤ 0.3, no ties
in its execution appear. In particular, Seq.-Plurality-Winner is thereby able to meaningfully
distinguish the weaker candidates on these profiles.
Turning to norm-ϕ ≥ 0.3 (where more candidates have non-zero Plurality score and thus the

tie-breaking is no longer as important), Seq.-Plurality-Loser and Plurality-Score are still clearly
more similar to each other than to Seq.-Plurality-Winner; this indicates that Seq.-Wi. rules
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indeed add a new perspective to existing scoring-based ranking rules.
Switching to Borda, the rankings returned by the three methods are quite similar. This is

intuitive given that Borda scores capture the general strength of candidates in a profile much
better than Plurality scores. Thus, the Borda score of a candidate also changes less drastically in
case some candidate is deleted. Increasing norm-ϕ, the selected rankings become more different
from each other (as profiles get more chaotic, leading to more similar Borda scores of candidates).
Interestingly, for larger values of norm-ϕ, Borda-Score has the same (small) distance to the other
two rules, whereas Seq.-Borda-Winner and Seq.-Borda-Loser are more different.

5.3. Comparison to Kemeny Ranking

To assess which method produces the “most accurate” rankings, we compare them to Kemeny’s
method. For 10 000 profiles for each norm-ϕ ∈ {0, 0.1, . . . , 0.9, 1}, in Figure 1(b), we show the
average normalized swap distance of the Kemeny ranking to the rankings selected by our rules.

For Plurality, independently of the value of norm-ϕ, Seq.-Plurality-Winner produces the rank-
ing most similar to the Kemeny ranking, then Seq.-Plurality-Loser and lastly Plurality-Score,
indicating the advantages of sequential rules. What sticks out is that for norm-ϕ ≤ 0.3,
Seq.-Plurality-Loser and Plurality-Score are far away from the Kemeny ranking. As discussed
above, the reason is that, for both methods, large parts of the ranking are simply determined by
the random tie-breaking order in such profiles. In contrast, Seq.-Plurality-Winner is not affected,
and its output ranking is very close to the Kemeny ranking until norm-ϕ ≤ 0.5 (when their
average normalized distance is only 0.004). For a larger dispersion parameter and in particular
for norm-ϕ ≥ 0.7, the distance from the Kemeny ranking become more similar for our three
methods. This behavior is intuitive, recalling that for norm-ϕ = 1, profiles are “chaotic”, with
many different rankings having comparable quality.
For Borda, the rankings produced by the three methods are all around the same (small)

distance from the Kemeny ranking. This distance increases steadily from 0 for norm-ϕ = 0 to
around 0.1 for norm-ϕ = 1.

5.4. Further Simulations

In Appendix B, we describe the results of further experiments. For instance, we analyze in
which parts of the computed ranking the considered methods agree or disagree most. We find
that for both Plurality and Borda, for the top positions the Kemeny ranking agrees frequently
with the Seq.-Loser rule. For the bottom positions it agrees with the Seq.-Winner rule. This
suggests that one should use Seq.-Loser for identifying the best candidates and Seq.-Winner for
avoiding the worst candidates. Moreover, Seq.-Winner and Score agree more commonly on the
top half of candidates, whereas Seq.-Loser and Score agree more commonly on the bottom half
of candidates.

We repeat all our experiments on profiles sampled from Euclidean models. Obtaining similar
results, this confirms that our general observations from above also hold for profiles sampled
from other distributions. We also analyze the influence of the number of voters and candidates
on the results, observing that increasing the number of voters leads to an increased similarity of
the rankings for Plurality and Borda, whereas increasing the number of candidates leads to an
increased similarity for Borda but not for Plurality. We also consider additional scoring vectors.
For instance, we find that for Veto the roles of Seq.-Loser and Seq.-Winner are reversed, which
is to be expected, recalling Lemma 3.5.
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n m

Sequential-Plurality-Loser (STV) NP-c. (Thm. 6.2) FPT (Obs. 6.4) FPT (Thm. 6.1)
Sequential-Veto-Loser (Coombs) NP-c. (Thm. 6.6) W[1]-h. (Thm. 6.6), XP (Thm. 6.7) FPT (Thm. 6.1)
Sequential-Borda-Loser (Baldwin) NP-c. (Thm. 6.8) NP-c. for n = 8 (Thm. 6.8) FPT (Thm. 6.1)

Table 2: Our results for Sequential-Loser rules. All hardness results hold for Winner Deter-
mination; all algorithmic results also apply to Position-k Determination. The
unparameterized NP-hardness results in the first column were already stated or proven
by Conitzer et al. [2009] and Mattei et al. [2014]

6. Complexity

We study various computational problems related to Sequential-Winner and Sequential-Loser
rules. By breaking ties arbitrarily, it is easy to compute some ranking that is selected by such a
rule. However, in some (high-stakes) applications, it might not be sufficient to simply output
some ranking selected by the rule. For instance, some candidate could claim that there also
exist other rankings selected by the same rule where that candidate is ranked higher. To check
such claims, and understand which rankings can be selected in the presence of ties, we need an
algorithm that for a given candidate d and position k, decides whether d is ranked in position
k in some ranking selected by the rule. Accordingly, we introduce the following computational
problem:

Position-k Determination for social preference function f

Given: A ranking profile P over candidate set C, a designated candidate d ∈ C, and
an integer k ∈ [|C|].

Question: Is there a ranking ≻ selected by f on P where d is in position k, i.e., ≻ ∈ f(P )
with pos(≻, d) = k?

Where possible, we will design (parameterized) algorithms that solve this problem. We also
prove hardness results, which will apply even to restricted versions of this problem that are most
relevant in practice. Specifically, we would expect candidates to mainly be interested if they
can be ranked highly. Thus, we introduce the Top-k Determination problem, where we ask
whether a given candidate can be ranked in one of the first k positions.2 Lastly, the special
case of both problems with k = 1 is of particular importance: The Winner Determination
problem asks whether the designated candidate is ranked in the first position in some ranking
selected by the rule.

For the three Sequential-Loser rules, it is known that their Winner Determination problem
is NP-complete. For STV, this was stated by Conitzer et al. [2009], and for Baldwin and
Coombs, this was proven by Mattei et al. [2014]. We will see that the corresponding Top-k
Determination problems for the Sequential-Winner rules are also NP-complete. Thus, since
almost all of our problems turn out to be NP-hard, we take a more fine-grained view. In particular,
we will study the influence of the number n of voters and the number m of candidates on the
complexity of our problems. This analysis is not only of theoretical interest but also practically
relevant, as in many applications one of the two parameters is considerably smaller than the
other (e.g., in political elections m is typically much smaller than n, while in applications such
as meta-search engines or ranking applicants, n is often much smaller than m). Tables 2 and 3
provide overviews of our results.

2If we have an algorithm for Position-k Determination, we can solve the Top-k Determination problem by
using the algorithm for positions i = 1, . . . , k. (This is a Turing reduction.)
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6.1. Parameter Number of Candidates

We start by considering the parameter m, the number of candidates. It is easy to see that
Position-k Determination for all Sequential-Winner and Sequential-Loser rules is fixed-
parameter tractable with respect to m (by iterating over all m! possible output rankings).
However, it is possible to improve the dependence on the parameter in the running time.

[Proof]Theorem 6.1. For every scoring system s, Position-k Determination can be solved in

• O(2m · nm2) time and O(mk · nm2) time for Sequential-s-Winner, and

• O(2m · nm2) time and O(mm−k · nm2) time for Sequential-s-Loser.

Proof (algorithm). We present an algorithm for Seq.-s-Winner (the results for Seq.-s-Loser di-
rectly follow from this by applying Lemma 3.5). We solve the problem via dynamic programming.
We call a subset C ′ ⊆ C of candidates an elimination set if there is a selected ranking where the
candidates from C ′ are ranked in the first |C ′| positions. We introduce a table T with entry T [C ′]
for each subset C ′ ⊆ C of candidates. T [C ′] is set to true if C ′ is an elimination set. We initialize
the table by setting T [∅] to true. Now we compute T for each subset C ′ ⊆ C in increasing order
of the size of the subset using the following recurrence relation: We set T [C ′] to true if there is a
candidate c ∈ C ′ such that T [C ′ \ {c}] is true and c is an s-winner in P |C\(C′\{c}).
After filling the table, we return “true” if and only if there is a subset C ′ ⊆ C \ {d} with

|C ′| = k − 1 such that T [C ′] is true and d is an s-winner in P |C\C′ . By filling the complete table
we get a running time in O(2m ·nm2). However, it is sufficient to only fill the table for all subsets
of size at most k − 1, resulting in a running time in O(mk · nm2).

6.2. Sequential Loser

We study Seq.-Plurality/Veto/Borda-Loser (aka STV, Coombs, and Baldwin). The Winner
Determination problem is NP-hard for all three rules. Table 2 shows an overview of our results.
In particular, we get a clear separation of the rules for the number n of voters:

• Seq.-Plurality-Loser admits a simple FPT algorithm,

• Seq.-Veto-Loser is W[1]-hard but in XP,

• Seq.-Borda-Loser is NP-hard for 8 voters.

6.2.1. Plurality

Conitzer et al. [2009] stated that Winner Determination for Seq.-Plurality-Loser (aka STV)
is NP-hard. This result has been frequently cited and used. The proof was omitted in the
conference paper, and to our knowledge no proof has ever appeared in published work. To aid
future research, we include a simple reduction here.

Theorem 6.2. Winner Determination for Sequential-Plurality-Loser (aka STV) is NP-hard.

Proof. We reduce from the NP-hard variant of Satisfiability where each clause contains at
most three literals and each literal appears exactly twice Berman et al. [2003]. Let φ be a formula
fulfilling these restrictions with clause set F = {c1, . . . , cm} and variable set X = {x1, . . . , xn}.
Let L = X ∪ X be the set of literals. We construct a ranking profile with candidate set
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n k n+ k m

Sequential-Plurality-Winner NP-c. W[1]-h., XP W[1]-h., XP FPT FPT
Sequential-Veto-Winner NP-c. FPT W[2]-h., XP FPT FPT
Sequential-Borda-Winner NP-c. NP-h. for n = 8 W[1]-h., XP ? FPT

Table 3: Our results for Sequential-Winner rules. All hardness results hold for the Top-k
Determination problem; all algorithmic results also apply to the general Position-k
Determination problem.

C = {d,w} ∪ F ∪ L, where d is our designated candidate, and the following voters:

100 voters d ≻ . . .

99 voters w ≻ d ≻ . . .

98 voters cj ≻ w ≻ d ≻ . . . ∀j ∈ [m]

60 voters ℓ ≻ ℓ ≻ w ≻ d ≻ . . . ∀ℓ ∈ L

2 voters ℓ ≻ cj ≻ w ≻ d ≻ . . . ∀ℓ ∈ L, j ∈ [m] where ℓ appears in cj

For this ranking profile, in every execution of Sequential-Plurality-Loser the first n eliminated
candidates must be a subset L′ ⊆ L of literals such that for every variable we select either
its positive literal or its negative literal (but not both). In other words, L′ must satisfy
ℓ ∈ L′ ↔ ℓ /∈ L′. To see this, note that all literal candidates initially have a Plurality score
of 64, which is the lowest Plurality score in the profile, and that all other candidates have
a higher Plurality score. Thus, in the first round an arbitrary literal ℓ of some variable x is
eliminated. This increases the Plurality score of the opposite literal ℓ to over 120. In the second
round, we have to eliminate again an arbitrary literal (however, this time a literal corresponding
to a variable different from x). We repeat this process for n rounds until for each variable
exactly one of the corresponding literals has been eliminated. We claim that an execution of
Sequential-Plurality-Loser eliminates d last if and only if the assignment that sets all literals
from L′ to true satisfies φ.
Suppose φ is satisfied by some variable assignment α, and consider an execution of

Sequential-Plurality-Loser that begins by eliminating the n literals set to true in α. After
this, the scores of the remaining candidates are:

(i) d has 100 points,

(ii) w has 99 points,

(iii) cj for j ∈ [m] has between 100 and 104 points (as at least one of the literals occurring in cj
has been eliminated), and

(iv) each literal ℓ ∈ L set to false by α has 124 points.

In the next round, w is eliminated, reallocating its 99 points to d. Then, in the next m rounds,
each clause candidate cj is eliminated, in each round reallocating its points to d. Finally, the
remaining literals are eliminated, also each reallocating their points to d. Thus, d is the last
remaining candidate and ranked in the first position in the selected ranking.
Let L′ ⊆ L be the set of literals eliminated in the first n rounds in some execution of the

Sequential-Plurality-Loser rule (recall that ℓ ∈ L′ ↔ ℓ /∈ L′). Suppose that the assignment
α setting all literals from L′ to true does not satisfy φ. After the literals from L′ have been
eliminated, the scores of the remaining candidate are:
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(i) d has 100 points,

(ii) w has 99 points,

(iii) cj for j ∈ [m] where α satisfies cj has between 100 and 104 points,

(iv) cj for j ∈ [m] where α does not satisfy cj has 98 points, and

(v) each literal ℓ ∈ L set to false by α has 124 points.

Thus, in the next round, one of the unsatisfied clauses is eliminated, redistributing its 98 points
to w bringing the score of w to 197. Because all but 100 voters prefer w to d, the Plurality score
of d will never exceed the score of w in consecutive rounds, so d cannot be eliminated last.

Motivated by this hardness result, we now turn to the problem’s parameterized complexity.
We have already seen in Theorem 6.1 that the problem is solvable in O(2m · nm2) time. Indeed,
we show that unless the Exponential Time Hypothesis (ETH)3 is false, we cannot hope to
substantially improve the exponential part of this running time.

[Proof]Theorem 6.3. If the ETH is true, then Winner Determination for Sequential-Plurality-Loser
(aka STV) cannot be solved in 2o(m) · poly(n,m) time.

Turning to the number n of voters, we can observe that initially only at most n candidates
have a non-zero Plurality score. All other candidates (which are not ranked first in any ranking)
will be eliminated immediately, without thereby changing the Plurality scores of other candidates.
After these eliminations, we are left with at most n candidates. This makes it easy to see
that Position-k Determination is fixed-parameter tractable with respect to n (by using
Theorem 6.1).

Observation 6.4. Position-k Determination for Sequential-Plurality-Loser (aka STV) is
solvable in O(2n · nm2) time.

6.2.2. Veto

We now turn to Seq.-Veto-Loser (aka Coombs). Mattei et al. [2014] showed that the Winner
Determination problem for this rule is NP-hard. We give an alternative NP-hardness proof
that also implies an ETH-based lower bound for the parameter m.

[Proof]Theorem 6.5. Winner Determination for Sequential-Veto-Loser (aka. Coombs) is NP-
complete. If the ETH is true, then the problem cannot be solved in 2o(m) · poly(n,m) time.

For the parameter n, we show that the problem is W[1]-hard with respect to the number of
voters. This is shown via an involved reduction from Multicolored Independent Set. This
result suggests that Seq.-Veto-Loser behaves quite differently from Seq.-Plurality-Loser, even if
these two rules might seem “symmetric” to each other.

[Proof]Theorem 6.6. Winner Determination for Sequential-Veto-Loser (aka. Coombs) is W[1]-hard
with respect to the number n of voters.

However, on the positive side, Winner Determination and even Position-k Determi-
nation are solvable in polynomial-time if the number of voters is a constant. The intuition
behind this result is that for Seq.-Veto-Loser, the “status” of an execution is fully captured by
the bottom list of the ranking profile, i.e., a list containing the bottom-ranked candidate of each
voter. Indeed, if we know the current bottom list, we can deduce exactly which candidates have
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been eliminated thus far. As there are only mn many possibilities for the bottom list, dynamic
programming yields an XP algorithm for Position-k Determination.

[Proof]Theorem 6.7. Position-k Determination for Sequential-Veto-Loser is in XP with respect to
the number n of voters.

6.2.3. Borda

We conclude by studying Seq.-Borda-Loser (aka Baldwin). Mattei et al. [2014] proved that
Winner Determination for this rule is NP-hard, adapting an earlier reduction about hardness
of manipulation due to Davies et al. [2014]. In fact, by giving a construction based on weighted
majority graphs and using tools from Bachmeier et al. [2019], we prove that this NP-hardness
persists even for only n = 8 voters. This result suggests that the Borda scoring system leads to
the hardest computational problems.

[Proof]Theorem 6.8. Let n ≥ 8 be a fixed even integer. Then Winner Determination for
Sequential-Borda-Loser (aka Baldwin), restricted to instances with exactly n voters, is NP-
complete. In addition, if the ETH is true, then the problem cannot be solved in 2o(m) · poly(m)
time.

6.3. Sequential Winner

In this subsection, we briefly summarize our results for Seq.-Plurality/Veto/Borda-Winner, which
to the best of our knowledge have not been previously studied (for formal statements and proofs
see Appendix D). As Winner Determination is trivial for these rules, we focus on Top-k
Determination. Table 3 displays an overview of our results. For all three rules, it turns out
that Top-k Determination is NP-hard and W[1]-hard with respect to k. In contrast, for
the parameter n, the picture is again more diverse: For Borda, we once more get NP-hardness
for a constant number of voters (n = 8), while Plurality and Veto switch their role (we have a
fixed-parameter tractable algorithm for Veto and W[1]-hardness for Plurality). Recalling the
equivalence from Lemma 3.5, this switch is unsurprising. Indeed, similar reductions are used
here as for the corresponding results for Sequential-Loser for the other scoring system.

7. Future Directions

There are many directions for future work. In our complexity study, we have focused on the
analysis of the space of possible outcomes. However, if we are happy to break ties immediately
(e.g. by some fixed order), one could focus on finding the fastest algorithms for computing the
output ranking. Interestingly, it is known that computing STV is P-complete [Csar et al., 2017],
so its computation is unlikely to be parallelizable. An additional challenging open problem
will be to determine if the hard problems we have identified become tractable if preferences
are structured, for example single-peaked. Note that for single-peaked preferences, it is known
that Coombs becomes a Condorcet extension and easy to compute [Grofman and Feld, 2004,
Prop. 2]. Further, ranking candidates by Borda score is known to give a 5-approximation of
Kemeny’s method [Coppersmith et al., 2006]. This raises the question whether any other of the
rules from our families provide an approximation? Other specific questions left open by our work
are whether ETH lower bounds can be obtained for additional problems, and whether they can
be strengthened to SETH bounds. Finally, one could try to extend our results to other scoring
vectors, and potentially prove dichotomy theorems.

3The ETH was introduced by Impagliazzo et al. [2001] and states that 3-SAT cannot be solved in 2o(n) · poly(n)
time where n is the number of variables.

13



8. Bibliography

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: ranking
and clustering. Journal of the ACM, 55(5):1–27, 2008. [→ p. 2]

Saeed Akhoondian Amiri. A note on the fine-grained complexity of MIS on regular graphs.
Information Processing Letters, 170:106123, 2021. [→ p. 26]

Kenneth J. Arrow. Social Choice and Individual Values. New Haven: Cowles Foundation, 1st
edition, 1951. [→ p. 2, 4, 6]

Georg Bachmeier, Felix Brandt, Christian Geist, Paul Harrenstein, Keyvan Kardel, Dominik
Peters, and Hans Georg Seedig. k-majority digraphs and the hardness of voting with a constant
number of voters. Journal of Computer and System Sciences, 105:130–157, 2019. [→ p. 13, 36]

John Bartholdi, Craig A. Tovey, and Michael A. Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare, 6(2):157–165, 1989. [→ p. 2]

Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short symmetric
instances of MAX-3SAT. Electronic Colloquium on Computational Complexity, 2003. [→ p. 10]

Niclas Boehmer, Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, and Stanislaw Szufa.
Putting a compass on the map of elections. In Proceedings of the 30th International Joint
Conference on Artificial Intelligence (IJCAI), pages 59–65, 2021. [→ p. 7]

Walter Bossert and Yves Sprumont. Strategy-proof preference aggregation: Possibilities and
characterizations. Games and Economic Behavior, 85:109–126, 2014. [→ p. 2]

Markus Brill and Felix Fischer. The price of neutrality for the ranked pairs method. In Proceedings
of the 26th AAAI Conference on Artificial Intelligence (AAAI), pages 1299–1305, 2012. [→ p.
3]

Burak Can and Ton Storcken. Update monotone preference rules. Mathematical Social Sciences,
65(2):136–149, 2013. [→ p. 2]

Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference functions that score rankings
and maximum likelihood estimation. In Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), pages 109–115, 2009. [→ p. 3, 9, 10]

Don Coppersmith, Lisa Fleischer, and Atri Rudra. Ordering by weighted number of wins gives
a good ranking for weighted tournaments. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 776–782, 2006. [→ p. 2, 13]

Theresa Csar, Martin Lackner, Reinhard Pichler, and Emanuel Sallinger. Winner determination
in huge elections with MapReduce. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence (AAAI), pages 451–458, 2017. [→ p. 13]

Jessica Davies, George Katsirelos, Nina Narodytska, Toby Walsh, and Lirong Xia. Complexity of
and algorithms for the manipulation of Borda, Nanson’s and Baldwin’s voting rules. Artificial
Intelligence, 217:20–42, 2014. [→ p. 13]
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A. Additional Material for Section 4

In the main body, in Section 4, we have given an informal overview of axiomatic properties
satisfied by the rules in our three families. In this appendix, we give formal statements of these
results. In particular, we will give formal definitions of the relevant axioms.
Let us introduce some additional notation. For two ranking profiles P = (≻1, . . . ,≻n) and

P ′ = (≻′
1, . . . ,≻′

n), both defined over the same candidate set, we write P + P ′ = (≻1, . . . ,≻n

,≻′
1, . . . ,≻′

n) for the ranking profile obtained by concatenating the two lists. For an integer k,
we write kP = P + · · · + P obtained by concatenating k copies of P . For a set S ⊆ L(C) of
rankings, we write cand(S, r) = {cand(≻, r) : ≻ ∈ S} for the set of candidates that appear in
position r in at least one of the rankings in S. If ≻ ∈ L(C) is a ranking and ρ : C → C is
a permutation of the candidate set, then ρ(≻) is the ranking where for all pairs a, b ∈ C of
candidates, we have ρ(a) ρ(≻) ρ(b) if and only if a ≻ b. For a set S ⊆ L(C) of rankings, we write
ρ(S) = {ρ(≻) : ≻ ∈ S}.

Let f be a social preference function, defined for profiles with any number of voters and over
all possible candidate sets. (We assume this large domain to be able to state axioms that reason
about variable agendas (i.e. different candidate sets) and about variable electorates (i.e., different
numbers of voters).) Whenever we do not specify otherwise, in the following axioms we implicitly
quantify over all possible finite sets C of candidates.
We begin with some basic axioms.

• The rule f is anonymous if for all profiles P = (≻1, . . . ,≻n) and all permutations σ : [n] →
[n], we have f(P ) = f((≻σ(1), . . . ,≻σ(n))). Thus, reordering the rankings does not change
the outcome.

• The rule f is neutral if for all profiles P = (≻1, . . . ,≻n) and all permutations ρ : C → C,
we have f(ρ(P )) = ρ(f(P )). Thus, a relabeling of candidates leads to the same relabeling
of the output.

• The rule f is unanimous if for all rankings ≻ ∈ L(C) and all profiles P = (≻, . . . ,≻), where
all rankings in P are equal to ≻, we have f(P ) = {≻}.

• The rule f is continuous (sometimes known as the overwhelming majority axiom) if for
any two profiles P and P ′ over the same candidate set, there exists an integer k such that
f(P + kP ′) ⊆ f(P ′).

The following are axioms about combining profiles.

• The rule f satisfies reinforcement if for all profiles P and P ′ over the same candidate set,
we have f(P + P ′) = f(P ) ∩ f(P ′) whenever the intersection is non-empty.

• The rule f satisfies reinforcement at the top if for all profiles P and P ′ over the same
candidate set, we have cand(f(P + P ′), 1) = cand(f(P ), 1) ∩ cand(f(P ′), 1) whenever the
intersection is non-empty.

• The rule f satisfies reinforcement at the bottom if for all profiles P and P ′ over the
same candidate set C, we have cand(f(P + P ′), |C|) = cand(f(P ), |C|) ∩ cand(f(P ′), |C|)
whenever the intersection is non-empty.

The following are independence axioms, describing that the output should not change when
deleting certain candidates.

• The rule f satisfies independence at the top if for all profiles P and for all candidates
a ∈ cand(f(P ), 1) that can appear in first position in f(P ), we have that for all rankings
≻′ ∈ L(C \ {a}), ≻′ ∈ f(P |C\{a}) if and only if the ranking ≻′′, obtained by placing a at
the top of ranking ≻′, is a member of f(P ).
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• The rule f satisfies independence at the bottom if for all profiles P and for all candidates
a ∈ cand(f(P ), |C|) that can appear in last position in f(P ), we have that for all rankings
≻′ ∈ L(C \ {a}), ≻′ ∈ f(P |C\{a}) if and only if the ranking ≻′′, obtained by placing a at
the bottom of ranking ≻′, is a member of f(P ).

Next, we introduce axioms that require a rule to follow the view of a majority of voters.

• The rule f places Condorcet winners at top if for all profiles P = (≻1, . . . ,≻n) where there
exists a candidate a ∈ C such that for all other candidates b ∈ C \ {a}, a majority of voters
prefers a to b (i.e., |{i ∈ [n] : a ≻i b}| > |{i ∈ [n] : b ≻i a}|), we have cand(f(P ), 1) = {a}.
Thus, in profiles where a Condorcet winner exists, all output rankings must place it in the
first position.

• The rule f copies a majority ranking if for all profiles P = (≻1, . . . ,≻n) where there exists
a ranking ≻ which makes up more than half the profile (i.e., |{i ∈ [n] : ≻i = ≻}| > n/2),
we have f(P ) = {≻}.

We will state Tideman’s independence of clones property later.
We will now state some axiomatic characterization results, taken or adapted from the literature.

The first is a characterization of Kemeny’s rule.

Theorem A.1 (Young, 1988). A social preference function f satisfies anonymity, neutrality,
unanimity, reinforcement, independence at the top, and independence at the bottom, if and only
if it is Kemeny’s rule.

Next, there is an existing characterization of Sequential-Loser rules.

Theorem A.2 (Freeman et al., 2014, Lemma 1). A social preference function f satisfies
anonymity, neutrality, unanimity, continuity, reinforcement at the bottom, and independence
at the bottom, if and only if there exists a scoring system s = (s(m))m∈N such that f equals
Sequential-s-Loser.

Proof. This is exactly Lemma 1 from Freeman et al. [2014], except that instead of continuity they
use a condition called “continuity at the bottom”, but this condition is weaker than continuity
as we have defined it, because f(P + kP ′) ⊆ f(P ′) implies that cand(f(P + kP ′), |C|) ⊆
cand(f(P ′), |C|).

We will now “turn around” Theorem A.2 to obtain an axiomatic characterization of Sequential-
Winner rules. To do so, we will use Lemma 3.5. For a social preference function f , let us write
f∗ for the social preference function defined as follows:

f∗(P ) = rev(f(rev(P ))) for every profile P .

From Lemma 3.5, we know that if f is Seq.-s-Winner then f∗ is Seq.-s∗-Loser, and if f is
Seq.-s-Loser then f∗ is Seq.-s∗-Winner. One can also easily deduce the following equivalences.

Lemma A.3. Lef f be a social preference function, and let f∗ be defined as above. Then the
following equivalences hold:

• f satisfies anonymity (resp., neutrality, unanimity, continuity, reinforcement, copying a
majority ranking) if and only if f∗ satisfies the respective axiom.

• f satisfies reinforcement at the top (resp., at the bottom) if and only if f∗ satisfies rein-
forcement at the bottom (resp., at the top).
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• f satisfies independence at the top (resp., at the bottom) if and only if f∗ satisfies indepen-
dence at the bottom (resp., at the top).

Theorem A.4. A social preference function f satisfies anonymity, neutrality, unanimity, conti-
nuity, reinforcement at the top, and independence at the top, if and only if there exists a scoring
system s = (s(m))m∈N such that f equals Sequential-s-Winner.

Proof. It is routine to check that Seq.-s-Winner satisfies the mentioned axioms for every scoring
system s. Now let f be a social preference function satisfying these axioms. By Lemma A.3,
the social preference function f∗ then satisfies anonymity, neutrality, unanimity, continuity,
reinforcement at the bottom, and independence at the bottom. By Theorem A.2, there exists a
scoring system s such that f∗ equals Seq.-s-Loser. By Lemma 3.5, f equals Seq.-s∗-Winner, as
desired.

Freeman et al. [2014] also provided characterizations of specific rules. For example, they char-
acterize Seq.-Borda-Loser (aka Baldwin) as the only Sequential-Loser rule that places Condorcet
winners at the top.

Theorem A.5 (Freeman et al., 2014, Theorem 3). A social preference function f satisfies
anonymity, neutrality, unanimity, continuity, reinforcement at the bottom, independence at the
bottom, and places Condorcet winners at the top if and only if f equals Sequential-Borda-Loser.

If desired, one could similarly characterize Seq.-Borda-Winner as the only Sequential-Winner
rule that places Condorcet losers at the bottom, using Lemma A.3.
Freeman et al. [2014] also characterize Seq.-Veto-Loser (aka Coombs) as the only Sequential-

Loser rule that copies a majority ranking.

Theorem A.6 (Freeman et al., 2014, Theorem 2). A social preference function f satisfies
anonymity, neutrality, unanimity, continuity, reinforcement at the bottom, independence at the
bottom, and copies majority rankings if and only if f equals Sequential-Veto-Loser.

Using Lemmas 3.5 and A.3, we can deduce a characterization of Seq.-Plurality-Winner as the
only Sequential-Winner rule that copies majority rankings.

Theorem A.7. A social preference function f satisfies anonymity, neutrality, unanimity, conti-
nuity, reinforcement at the top, independence at the top, and copies majority rankings if and
only if f equals Sequential-Plurality-Winner.

Turning towards Tideman’s [1987] independence of clones property, Freeman et al. [2014]
adapt the axiom to the ranking context. Given a profile P , we say that C ′ ⊆ C is a clone set if
in every ranking in P , the candidates in C ′ appear consecutively (i.e., for each ≻ ∈ P and each
a ∈ C \ C ′ we either have a ≻ c′ for all c′ ∈ C ′ or c′ ≻ a for all c′ ∈ C ′.

• The rule f satisfies independence of clones (with top replacement) if the following property
is satisfied. Let P be a profile and let C ′ be a clone set. Let P ′ be a profile obtained from
P by replacing the set C ′ by a single candidate a ̸∈ C. Then for all rankings ≻ ∈ L(C),
we have ≻ ∈ f(P ) if and only if ≻′ ∈ f(P ′) where ≻′ is the ranking obtained from ≻ by
deleting the candidates in C ′ and putting a at the position of the highest-ranked member
of C ′ in ≻.

Freeman et al. [2014] prove that within the family of Sequential-Loser rules, Seq.-Plurality-Loser
(aka STV) is characterized by this axiom.4

4In their statement of the characterization, they appear to have forgotten to include continuity.
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Figure 2: Pairwise average normalized swap distance between rankings produced by different
methods for Plurality (solid) and Borda (dashed) on Euclidean profiles with 10 candi-
dates and 100 voters.

Theorem A.8 (Freeman et al., 2014, Theorem 1). A social preference function f satis-
fies anonymity, neutrality, unanimity, continuity, reinforcement at the bottom, independence
at the bottom, and independence of clones (with top replacement) if and only if f equals
Sequential-Plurality-Loser.

By invoking Lemmas 3.5 and A.3, we can again obtain a related characterization of
Seq.-Veto-Winner, but using a slightly different version of the clones axioms. In particular,
let us define the axiom independence of clones (with bottom replacement) exactly as before,
except that the definition should end in saying “putting a at the position of the lowest-ranked
member of C ′ in ≻.”

Theorem A.9. A social preference function f satisfies anonymity, neutrality, unanimity, conti-
nuity, reinforcement at the top, independence at the top, and independence of clones (with bottom
replacement) if and only if f equals Sequential-Veto-Winner.

In the main body (and in particular Table 1), we have taken the “official” version of indepen-
dence of clones to be the one with top replacement.

B. Additional Material for Section 5

B.1. Setup—Euclidean Model

In addition to ranking profiles generated from the Mallows model, we have also considered
profiles generated from the Euclidean model. This model is parameterized by the dimension
d ≥ 1. To sample a Euclidean profile, for each candidate and voter we sample a point from the
d-dimensional hypercube [0, 1]d uniformly at random. In the corresponding profile, each voter
ranks the candidates in increasing order of their Euclidean ℓ2-distance to the voter.

B.2. Comparison of Ranking Methods—Euclidean Model

In the main body, in Section 5.2 and Section 5.3, we have analyzed the relation between rankings
selected by the different rules on profiles generated using the Mallows model. To verify our
results, we reran these experiments on profiles generated using the Euclidean model. Specifically,
for each dimension d ∈ {1, 2, 3, 4, 5, 10, 15, 20}, we generated 10 000 profiles with 100 voters and
10 candidates. We depict the results in Figure 2 (which is analogous to Figure 1).
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Figure 3: For pairs of rankings, average position displacement on each position for profiles
generated using the Mallows model with norm-ϕ = 0.8 with 10 candidates and 100
voters.

Comparison of Scoring-Based Ranking Methods We start by analyzing Figure 2(a), where we
compare the rankings selected by our different scoring-based rules. The general trend here is quite
similar to Mallows profiles for a large dispersion parameter (see Figure 1(a)): For Borda, the
agreement of the three methods is much higher than for Plurality, with Borda-Score producing
rankings close to the other two. For Plurality, Seq.-Plurality-Loser and Plurality-Score produce
again similar results, whereas the ranking produced by Seq.-Plurality-Winner differs more. The
general level of disagreement between the rules for Plurality is remarkably high here. For d = 1,
the difference between Seq.-Plurality-Winner and the other two methods is around 0.4, which
is almost 0.5 (the expected distance of two rankings drawn uniformly at random). Moreover,
even for larger d, the level of disagreement remains high and is in particular around the level of
disagreement for Mallows profiles with parameter norm-ϕ = 1. This is somewhat surprising, as
profiles produced by the Mallows model with norm-ϕ = 1 are “maximally chaotic” and thus give
the rules only limited information to distinguish the strength of candidates.

Comparison to Kemeny Ranking We now turn to the comparison of scoring-based ranking
rules to Kemeny’s method (Figure 2(b)). For Plurality, like we have seen in Mallows profiles,
Seq.-Plurality-Winner produces the best results, followed by Seq.-Plurality-Loser, and lastly
Plurality-Score. Considering the influence of the dimension d, the difference between the
method’s distance to the Kemeny ranking is more or less the same for all dimensions with
d = 1 being the only exception: At d = 1, Seq.-Plurality-Loser and Plurality-Score are at
normalized swap distance 0.43 from the Kemeny ranking, whereas Seq.-Plurality-Winner is at
distance 0.27, highlighting again that Euclidean profiles with d = 1 are particularly challenging
and that Seq.-Plurality-Winner does best.
In contrast, for Borda, the rankings produced by the three methods are all around the same

small distance from the Kemeny ranking (mostly independently of the dimension).

B.3. Similarity in Different Vote Parts

To shed some further light on the relation of the different methods, we next analyze in which
parts of the computed ranking the considered methods agree or disagree most. For this, for two
rankings ≻,≻′ ∈ L(C), we define the position displacement in position i ∈ [|C|] as

1
2

(
|i− pos(≻, cand(≻′, i))|+ |i− pos(≻′, cand(≻, i))|

)
.
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The position displacement quantifies how far away the candidates ranked in position i in one
ranking are ranked in the other ranking. Consider as an example the following two rankings:

a ≻ b ≻ c ≻ d

d ≻′ c ≻′ a ≻′ b

Then, the position displacement on position 1 is 1
2 · (|1 − pos(≻, d)| + |1 − pos(≻′, a)|) =

1
2 ·(|1−4|+ |1−3|) = 5

2 , whereas the position displacement on position 2 is 1
2 ·(|2−3|+ |2−4|) = 3

2 .
In Figure 3, we show the average position displacement on 10 000 profiles with 100 voters and 10
candidates sampled from the Mallows model with norm-ϕ = 0.8.5 (We chose norm-ϕ = 0.8 in
order to ensure that the tie-breaking rule plays no critical role, while still keeping some structure
in the profile.)

First, the general picture for Plurality and Borda is similar in the sense that for all comparisons
of rules, the shape of the respective curves is similar. Thus, all observations described in the
following hold for both Plurality and Borda. Second, all four methods have a generally higher
agreement on the top and bottom positions than on the middle positions. Third, focusing on
the comparison of the different scoring-based methods (Figure 3(a)), by design Seq.-Winner and
Score always place the same candidate in the first position. However, the agreement of the rules
remains high in the second position and decreases continuously until position 7. This indicates
the intuitive behavior that the more candidates are present in the current round, the higher is
the correlation between the scores of the candidates in the initial profile and their score in this
round. Comparing Seq.-Loser to Score, a reverse effect is present. For Seq.-Loser compared to
Seq.-Winner, we almost have a symmetric curve with a generally slightly higher agreement on the
top than on the bottom. Fourth, focusing on the comparison of the scoring-based methods and
the Kemeny ranking (Figure 3(b)), interestingly, on the top positions the Kemeny ranking agrees
most with Seq.-Loser while on the bottom it agrees most with Seq.-Winner. This suggests that
one should use Seq.-Loser for identifying the best candidates and Seq.-Winner for identifying
the worst candidates.

B.4. Number of Ties in Executions of the Rules

The main motivation for our complexity analysis is that ties might occur in the execution
of our rules. To better understand whether ties actually occur in practice (and to provide
evidence for the explanation we gave in the main body about the behavior of Plurality-Score and
Seq.-Plurality-Loser for small dispersion parameters), we conducted the following experiment.
We again sampled 10 000 profiles from the Mallows model, for each norm-ϕ ∈ {0, 0.1, . . . , 1}. For
each profile, we executed our rules, as usual breaking ties according to a tie-breaking order ≻tie

that we sampled randomly, and checked in each round whether a tie is present.6 The average
number of rounds when a tie occurred is shown in Figure 4.

For Plurality, we previously observed that on Mallows profiles with a small dispersion parameter,
Seq.-Plurality-Loser and Plurality-Score produce very similar rankings. We mentioned that this
could be explained by a large number of ties (that get resolved via the same tie-breaking order).
This observation is clearly confirmed here (see Figure 4(a)). In contrast, for Seq.-Plurality-Winner
there are only very few (or no) ties for a small dispersion parameter, while more ties appear if

5We rerun this experiment using profiles sampled from the Euclidean model with d = 10 producing a very similar
picture.

6We use the following interpretation of the Score method. We start by computing the scores of the candidates in
the initial profile. Subsequently, we eliminate a candidate with the highest number of points and add it at
the first position in the selected ranking. However, we do not recompute the scores. In the second round, we
eliminate the remaining candidate with the maximum number of points (in the initial profile) and add it in the
second position. We repeat this process until all candidates are eliminated.
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Figure 4: Average number of rounds in which a tie occurs for Seq.-Plurality-Winner,
Seq.-Plurality-Loser, and Plurality-Score on profiles with 10 candidates and 100 voters
sampled from the Mallows model.

the dispersion parameter is increased. In general, for each choice of the normalized dispersion
parameter, Seq.-Plurality-Winner produces the smallest number of ties among the three methods
based on Plurality. For norm-ϕ = 1, for all three rules, there are ties in around 2 rounds on
average (we were slightly surprised that this number is so high). Overall, these results show the
importance of tie-breaking for ranking methods based on Plurality scores. They also provide
an argument in favor of Seq.-Plurality-Winner over the other Plurality-based rules, as this rule
leaves fewer decisions to the tie-breaking rule.
For Borda (Figure 4(b)), Borda-Score produces the least number of ties. Seq.-Borda-Winner

and Seq.-Borda-Loser have more ties, at very similar rates to each other. The number of rounds
with ties increases with a higher dispersion parameter. However, even for norm-ϕ = 1, there
are only very few ties for all Borda-based rules: on average around 0.6 rounds with a tie for
Seq.-Borda-Winner and Seq.-Borda-Loser, and only 0.2 rounds for Borda-Score. (Compare this
to 2 rounds for the Plurality-based rules.)
For Euclidean models, the number of rounds with a tie mostly does not vary with the

dimension, and there are many fewer ties than for the Mallows model. In particular, for
Sequential-Plurality-Winner, the average number of rounds with a tie is around 0.7, for
Plurality-Score it is around 1, and for Sequential-Plurality-Loser it is around 1.4. Again we
see that Sequential-Plurality-Winner produces the fewest ties among the Plurality-based rules.
Moreover, for Borda the number of ties is again much lower than for Plurality, with Borda-Score
producing the fewest ties, while Seq.-Borda-Winner and Seq.-Borda-Loser give results very simi-
lar to each other. Specifically, for Borda-Score the average number of rounds with a tie is around
0.05, and for Seq.-Borda-Winner and Seq.-Borda-Loser it is around 0.2.

B.5. Influence of Profile Size

So far, we have focused on profiles with n = 100 voters and m = 10 candidates. Now, we examine
the influence of the size of our profile on the results. First, we will analyze the influence of
varying the number of voters and second, we will analyze the influence of varying the number of
candidates.

Varying the number of voters In Figure 5, we depict the pairwise difference of our ranking
methods for Plurality and the Kemeny ranking, for profiles with 10 candidates and a varying num-
ber of voters. The profiles are generated using the Mallows model with norm-ϕ = 0.8 (Figure 5(a))
and the Euclidean model with d = 10 (Figure 5(b)). For each n ∈ {25, 50, 100, 200, 300, 400, 500},
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Figure 5: Pairwise average normalized swap distance between the Kemeny method,
Seq.-Plurality-Winner, Seq.-Plurality-Loser, and Plurality-Score rankings on profiles
with 10 candidates and a varying number of voters.
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Figure 6: Pairwise average normalized swap distance between the Kemeny ranking and rankings
produced by our three scoring-based methods on profiles sampled from Mallows model
with norm-ϕ = 0.8 with 100 voters and a varying number of candidates.

we generated 10 000 profiles. For both generation models, the different methods become pairwise
more similar with a higher number of voters. For Mallows the distance between the rankings
decreases steeply, while for the Euclidean model the decrease (after n = 100) is slower. Generally
speaking, increasing the number of voters gives us additional information about the strengths of
the candidates and reduces the probability of artifacts. For Mallows profiles, there exists a clear
ordering of the candidates in terms of their strengths (namely the central order), and additional
voters clarify this situation. For Euclidean profiles, candidates are less clearly distinguishable;
explaining why the four approaches do not all “converge” to the same ranking as the number
of voters increases (unlike for Mallows). For both models, the ordering of pairs of our three
scoring-based ranking methods in terms of their similarity is independent of the number of
voters (the same is also the case for their ordering with respect to their similarity to the Kemeny
ranking).
The above described general trends are also present if we use Borda instead of Plurality.

Varying the number of candidates We now turn to analyzing the influence of the number of
candidates. In Figure 6, we depict the pairwise distances between our methods for Plurality
(Figure 6(a)) and Borda (Figure 6(b)) in profiles with 100 voters and a varying number of
candidates. The profiles are generated using the Mallows model with norm-ϕ = 0.8. For
the Euclidean model with d = 10, the results are similar, so we omit them. For each m ∈
{5, 10, 25, 50, 75}, we generated 100 profiles. Note that our use of normalized distances is
particularly convenient when comparing results with differing numbers of candidates.
We start by examining the results for Plurality (Figure 6(a)). Here, as the number of

candidates increases, the average number of Plurality points per candidate decreases and in
particular more candidates get a Plurality score of zero. This leads to more ties in the execution
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Figure 7: Pairwise average normalized swap distance between the Kemeny ranking and rankings
produced by our three scoring-based methods for two different scoring systems on
Mallows profiles with 100 voters and 10 candidates.

of Seq.-Plurality-Loser and Plurality-Score when determining the ordering of candidates at the
bottom of the output ranking. Because both methods break ties using the same tie-breaking order
≻tie, Seq.-Plurality-Loser and Plurality-Score become more similar as the number of candidates
increases. On the flip side, when comparing Seq.-Plurality-Winner to Seq.-Plurality-Loser (or
when comparing Seq.-Plurality-Winner to Plurality-Score), they become less similar as the
number of candidates increases. This is because Seq.-Plurality-Winner is able to distinguish
candidates who initially have low Plurality scores and does not need to rely on tie-breaking.
Indeed, when Seq.-Plurality-Winner starts to rank the weak candidates, all other candidates
have already been deleted and thus the average Plurality score of the weak candidates is higher
and more informative.

Comparing our three scoring-based methods to the Kemeny ranking, we see that the distance
increases with more candidates. This is because decreasing the average number of Plurality points
per candidates makes it harder for our three scoring-based methods to distinguish the strengths
of candidates; intuitively speaking, as we increase the number of candidates, the information
provided by only examining the first position decreases (but, as discussed above, this effect is
smaller for Seq.-Plurality-Winner).

For Borda (Figure 6(b)), the general trend is reversed. With small exceptions, the higher the
number of candidates, the more similar are the rankings produced by the different methods.
One effect that potentially contributes to this is that for a higher number of candidates the
range of awarded points increases thereby allowing for a clearer distinction of the candidates.
Nevertheless, for both Plurality and Borda, the ordering of the pairs of methods remains largely
unaffected by changing the number of candidates.

Overall, the results from this section suggest that while the size of the profile in question
influences the level of similarity of the different methods, the general trends observed in the
previous sections hold mostly independent of the size of the profile.

B.6. Further Voting Rules

In this section, we briefly examine two additional scoring systems. In accordance with our
theoretical analysis, we start by examining ranking methods based on the Veto scoring system
with scoring vector (0, . . . , 0,−1). Figure 7(a) shows the results of our experiment for the Mallows
model (again we generated 10 000 profiles for each norm-ϕ ∈ {0, 0.1, . . . , 0.9, 1}). Comparing
Figure 7(a) to the analogous plots for Plurality (see Figure 1(a) and Figure 1(b)), we see
that the results are very similar to each other after swapping the roles of Seq.-Winner and
Seq.-Loser: For Plurality, Seq.-Plurality-Loser and Plurality-Score are closely related, while
Seq.-Plurality-Winner produces results most similar to the Kemeny ranking. In contrast, for
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Veto, Seq.-Veto-Winner and Veto-Score are closely related and Seq.-Veto-Loser is most similar
to Kemeny. The switched role of Seq.-Winner and Seq.-Loser is to be expected, recalling our
equivalence Lemma 3.5. (For profiles sampled using the Euclidean model, similar conclusions
apply.)
Recalling that for Veto, Seq.-Winner is similar to Score, whereas for Plurality Seq.-Loser is

similar to Score, we wanted to check the behavior of our rules in between these two extremes.
Thus, we introduce a new scoring system, which we call Half. This scoring system assigns one
point to the first

⌊
m
2

⌋
candidates and zero points to all other candidates, where m is the number

of candidates. We depict the results for profiles sampled from the Mallows model in Figure 7(b)
(again we generated 10 000 profiles for each norm-ϕ ∈ {0, 0.1, . . . , 0.9, 1}). Indeed, in this case
Seq.-Winner and Seq.-Loser are both at the same distance to Score and at the same distance to
the Kemeny ranking. Nevertheless, naturally the rankings produced by Seq.-Half-Winner and
Seq.-Half-Loser are still different. Remarkably, our three scoring-based ranking methods based
on Half produce rankings that are closer to the Kemeny ranking then the rankings produced by
any of our methods based on Plurality or Veto. This indicates the advantage of allowing voters
to distinguish between many candidates to identify candidate strength.

C. Additional Material for Section 6.2

[Main]
Theorem 6.1. For every scoring system s, Position-k Determination can be solved in

• O(2m · nm2) time and O(mk · nm2) time for Sequential-s-Winner, and

• O(2m · nm2) time and O(mm−k · nm2) time for Sequential-s-Loser.

Proof. It remains to prove the correctness of the algorithm described in the main body. For
this, it is sufficient to prove that the recurrence relation is correct. To this end, assume a
subset C ′ ⊆ C of candidates is an elimination set as witnessed by the selected ranking ≻ and let
c := cand(≻, |C ′|). Then, as witnessed by ≻, C ′ \ {c} is an elimination set, and no candidate
has a higher s-score than c after deleting all candidates from C ′ \ {c}. If T [C ′] is set to true
because C ′ \ {c} is an elimination set (as witnessed by ≻) for some candidate c ∈ C ′, then C ′ is
clearly an elimination set as we can eliminate candidates from C ′ \ c in the first |C ′| − 1 rounds
(breaking ties according to ≻) and c in round |C ′|.

C.1. Plurality

Before we present our ETH-based lower bound for the parameter m, we state some relevant
results.

Proposition C.1 (Amiri, 2021, extending results about subcubic vertex cover by Johnson and
Szegedy, 1999 and Komusiewicz, 2018 ). If the Exponential Time Hypothesis (ETH) is true,
there does not exist an algorithm solving Cubic Vertex Cover in time 2o(n) · poly(n), where n
is the number of vertices.

Corollary C.2. If the ETH is true, there does not exist an algorithm solving Regular Clique
(the Clique problem restricted to graphs where every vertex has the same degree) in time
2o(n) · poly(n), where n is the number of vertices.

Proof. Suppose there was such an algorithm. Let G = (V,E) be a cubic graph, and k be a target
size for a vertex cover. Then the complement graph G is regular. Recall that a set T ⊆ V is a
vertex cover in G if and only if V \ T is an independent set in G if and only if V \ T is a clique
in G. Hence by applying the algorithm to find a clique of size at least n− k in G, we can find a
vertex cover of size at most k in G in time 2o(n) · poly(n), contradicting Proposition C.1.
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[Main]Theorem 6.3. If the ETH is true, then Winner Determination for Sequential-Plurality-Loser
(aka STV) cannot be solved in 2o(m) · poly(n,m) time.

Proof. We reduce from Cubic Vertex Cover (given a graph where each vertex has degree
three and an integer t, the problem asks whether there is a vertex cover of size t, that is, a set of
t vertices such that each edge is incident to at least one of these vertices).
Given a cubic graph G with n vertices and 3n/2 edges, and some integer t, we will create an

equivalent instance of Winner Determination for Seq.-Plurality-Loser. Since our reduction
will only use 2n+ 3n/2 + 3 candidates, this implies the claimed ETH-result by Proposition C.1.

Candidates For each vertex i, we create two vertex candidates vi and v′i. For each edge j, we
create one edge candidate ej . Moreover, we reference the edge candidates corresponding to edges
incident to vertex i by ei1, e

i
2, and ei3. Finally we have the candidates d, w, and q.

Idea The idea is as follows. In the first n rounds, for each i ∈ [n] either vi or v
′
i is eliminated.

Eliminating vi will correspond to selecting the ith vertex as part of the vertex cover. In round n+1,
in order to make candidate d win the election, we must eliminate candidate w, because this is the
latest point where it has smaller Plurality score than d. Eliminating any other candidate that can
be eliminated in round n+ 1 will result in w having score larger than the score of d and this can
never change afterwards. To be able to eliminate w in round n+1, however, we must ensure that
the candidates ej , j ∈ [3n/2], and candidate q have at least the same score as w. This can only
happen if the set {i | vi is eliminated before round n+ 1} is a vertex cover. (Whenever some
vi is eliminated, the edge candidate corresponding to edges incident to vertex i gain one point and
reach at least the same score as w.) Moreover the set {i | v′i is eliminated before round n+ 1}
must be of size at least n− t, ensuring that we have only selected t vertices to be part of the
vertex cover. (Whenever some v′i is eliminated, candidate q gains three points and needs in total
at least 3(n− t) additional points to reach at least the same score as w in round n+ 1.)

Voters We have the following voters.

105n voters d ≻ w ≻ . . .

99n voters w ≻ d ≻ . . .

99n− 1 voters ej ≻ w ≻ d ≻ . . . ∀j ∈ [m]

99n− 3(n− t) voters q ≻ w ≻ d ≻ . . .

60n− 3 voters vi ≻ v′i ≻ w ≻ d ≻ . . . ∀i ∈ [n]

1 voter vi ≻ ei1 ≻ w ≻ d ≻ . . . ∀i ∈ [n]

1 voter vi ≻ ei2 ≻ w ≻ d ≻ . . . ∀i ∈ [n]

1 voter vi ≻ ei3 ≻ w ≻ d ≻ . . . ∀i ∈ [n]

60n− 3 voters v′i ≻ vi ≻ w ≻ d ≻ . . . ∀i ∈ [n]

3 voters v′i ≻ q ≻ w ≻ d ≻ . . . ∀i ∈ [n]

This completes the construction.

Key Observations Observe that in round ℓ, ℓ ∈ [n] either vi or v′i for some i ∈ [n] must be
eliminated, since these candidates have score 60n, while every other candidate has score at least
99n− 3(n− t) > 96n. If some vertex candidate is eliminated, then the respective other vertex
candidate gains 60n − 3 additional points and, hence, will not be eliminated before all edge
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candidates. In round n + 1 either some edge candidate ej (with score between 99n − 1 and
99n+ 1), candidate q (with score between 96n and 102n), or candidate w (with score 99n) is
eliminated. If any candidate different from w is eliminated in round n+ 1, than w gains more
than 95n additional points and will finally win the election. If candidate w is eliminated in
round n+ 1, then candidate d wins the election. Independent of whether we have eliminated
candidate w in round n+1 or we are still in round n+1, next, all edge candidates and candidate q
will be eliminated. Candidate w or, if w is eliminated than d receives the votes of all candidates
eliminated after round n. If w is not eliminated, than d has still score 105n and will be eliminated
next. Then, the remaining vertex candidates are eliminated and finally either w or d wins.

Correctness We show that d is a winner for Seq.-Plurality-Loser of the constructed profile if
and only if graph G contains a vertex cover of size t.
For the “if”-part, assume that there is a vertex cover of size t. Without loss of generality,

let the first t vertices denote such a vertex cover. To see that d is a winner of the election,
consider the following elimination order. In round ℓ, ℓ ∈ [t], eliminate candidate vℓ. In round
ℓ, t+1 ≤ ℓ ≤ n, eliminate candidate v′ℓ. Now, each edge candidate has score at least 99n and also
candidate q has score 99n. Thus, we next eliminate w, then q and then the edge candidates in an
arbitrary order that is consistent with their scores (some may have score 99n being covered once,
some have score 99n+ 1 being covered twice). Finally eliminate the remaining vertex candidates
(with scores between 120n− 6 and 120n− 3) so that only candidate d remains and wins. It is
easy to verify that this elimination ordering is indeed consistent with the Plurality scores in the
respective rounds.
For the “only if”-part, recall the idea and key observations. Assuming d wins, it must be

that w is eliminated in round n+ 1. To do this, V ∗ = {i | vi is eliminated before round n+ 1}
must be a vertex cover, since each edge candidate must have gained at least one additional point
in the first n rounds to have a score of 99n in round n + 1 where w is eliminated. Moreover,
since candidate q also needs score at least 99n in round n+ 1 to allow w to be eliminated in this
round, it must hold that {i | v′i is eliminated before round n+ 1} is of size at least n− t. Thus,
V ∗ is a vertex cover of size at most t.

C.2. Veto

[Main]
Theorem 6.5. Winner Determination for Sequential-Veto-Loser (aka. Coombs) is NP-
complete. If the ETH is true, then the problem cannot be solved in 2o(m) · poly(n,m) time.

Proof. We reduce from Regular Clique, i.e. Clique restricted to regular graphs (where all
vertices have the same degree). Our reduction will imply NP-hardness and also the claimed
ETH-result by Corollary C.2. Let (G, k) be an instance of Regular Clique, where G = (V,E) is
regular and each vertex has degree r. We construct a profile on candidate set C = {d,w}∪V ∪{sv :
v ∈ V } (the candidates from {sv : v ∈ V } act as dummy candidates). The question is whether d
is a Coombs winner.

k(k − 2) + r + 1 voters · · · ≻ d

r + 1 voters · · · ≻ w

k(k − 2) voters · · · ≻ sv ≻ v for each v ∈ V

1 voter · · · ≻ d ≻ v for each v ∈ V

1 voter · · · ≻ w ≻ u ≻ v for each v ∈ V and each u ∈ V with {v, u} ∈ E

In these votes, “· · · ” is replaced by all unmentioned candidates according to some common
canonical order in which d is ranked first. To avoid doubt, for each edge {v, u} ∈ E, we introduce

28



two votes of the bottom type, one with v ≻ u and one with u ≻ v. For convenience (to avoid
talking about negative numbers), we say that the bottom count of a candidate is the number of
times the candidate is ranked in last position. Thus the bottom count is the negative of the
veto score, and Coombs proceeds by eliminating candidates with the highest bottom count.
Throughout the proof, for a vertex v ∈ V , we write Nghbhd(v) = {u ∈ V : {u, v} ∈ E} for the
neighborhood of v in G.

The intuition behind the construction is that to avoid eliminating d (so as to make d a winner),
we need to first eliminate w, despite its initially low bottom count. The way to increase its count
is to eliminate vertices forming a dense subgraph, since then many ‘edge’ votes (of the bottom
type) are transferred to w. The rule will start by eliminating vertices. Once some are eliminated,
it is then only possible to eliminate vertices which are adjacent to all previously eliminated
vertices. Thus, elimination sequences encode cliques.

We start by proving the forward direction. Suppose G contains a clique T = {v1, . . . , vk} of
size k. Note that in the initial profile, the bottom counts are:

• d has count k(k − 2) + r + 1,

• w has count r + 1,

• every v ∈ V has count k(k − 2) + r + 1,

• every sv, v ∈ V , has count 0.

Thus, we can eliminate v1. After that,

• d has count k(k − 2) + r + 2,

• w has count r + 1,

• every v ∈ Nghbhd(v1) has count k(k − 2) + r + 2,

• every v ̸∈ Nghbhd(v1) has count k(k − 2) + r + 1,

• sv1 has count k(k − 2),

• every sv, v ̸= v1, has count 0.

Thus, we can eliminate v2 (since it is a neighbor of v1). After this, since we have eliminated
both endpoints of the edge {v1, v2}, the votes of the two voters corresponding to that edge are
transferred to w.

In fact, we can eliminate candidates in the order v1, . . . , vk. After we have eliminated candidates
v1, . . . , vp, p ≤ k, we have the following situation.

• d has count k(k − 2) + r + 1 + p,

• w has count r + 1 + p(p− 1),

• every v ∈ V has count k(k − 2) + r + 1 + |{v1, . . . , vp} ∩Nghbhd(v)|,
• sv1 , . . . , svp have count k(k − 2),

• every other sv has count 0.

In particular, if p < k, then vp+1 can be eliminated in the next step, since its bottom count is
k(k − 2) + r + 1 + p. After all members of the clique have been eliminated, we reach bottom
counts

• d has count k(k − 2) + r + 1 + k = k(k − 1) + r + 1,

• w has count r + 1 + k(k − 1),
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• every v ∈ V has count k(k − 2) + r + 1 + |{v1, . . . , vk} ∩Nghbhd(v)| ≤ k(k − 1) + r + 1,

• sv1 , . . . , svk have count k(k − 2),

• every other sv has count 0.

Hence, w is a candidate with highest bottom count, and thus now be eliminated. All its votes
are transferred to the last (uneliminated) candidate in the canonical order, call it x. Because
previously w had maximum bottom count, x now has maximum bottom count and can be
eliminated. This argument applies repeatedly, and hence from now on the remaining candidates
are eliminated in the canonical order, finishing with d (which was placed first in the canonical
order), so d is a Coombs winner.

Conversely, suppose d is a Coombs winner. Thus, there is a way to eliminate candidates so that
d is eliminated last. Now, at each of the first k elimination steps (assuming that d is eliminated
last) the set of eliminateable candidates is a subset of {d} ∪ V . To see this by induction, note
that it holds at the first step. Further, after we have eliminated some candidates W ⊆ V with
|W | = p < k, writing eW for the number of edges between vertices in W , the resulting bottom
counts are

• d has count k(k − 2) + r + 1 + p,

• w has count r + 1 + 2 · eW ,

• every v ∈ V has count k(k − 2) + r + 1 + |W ∩Nghbhd(v)|,
• for v ∈ W , sv has count k(k − 2),

• every other sv has count 0.

Since 2 · eW ≤ 2 ·
(
p
2

)
= p(p− 1) < k(k − 2) + p (since p < k), the bottom count of w is smaller

than the score of d, so the candidate w cannot be eliminated in round p; also clearly no candidate
sv can be eliminated. Thus, only a subset of {d} ∪ V can be eliminated at this step. In fact,
we see that a vertex v ∈ V \W can be eliminated at this step if and only if v is adjacent to all
candidates from W . It follows that if during the first k steps we do not eliminate d, then we
eliminate k vertices. These vertices must form a clique in G.

[Main]
Theorem 6.6. Winner Determination for Sequential-Veto-Loser (aka. Coombs) is W[1]-hard
with respect to the number n of voters.

Proof. We prove this statement by proving the hardness of an equivalent problem for
Seq.-Plurality-Winner: Specifically, we show that it is W[1]-hard parameterized by n to de-
cide whether given a ranking profile P and a designated candidate d there is a selected ranking by
Seq.-Plurality-Winner where d is ranked last. Then by applying Lemma 3.5 the theorem follows.
In some round, we call the elimination of a candidate c valid if c is a Plurality winner in the

election from this round.
We say that a candidate is present in some round if the candidate has not been deleted in

some previous round.
For a set S and an element s ∈ S, we write S − s as a shorthand notation for S \ {s}

Construction We prove hardness by a reduction from the W[1]-hard Multicolored Indepen-
dent Set problem parameterized by the solution size ℓ. In Multicolored Independent Set,
we are given a ℓ-partite graph (V 1 ∪· V 2 ∪· . . . ∪· V ℓ, E) and the question is whether there is an
independent set X of size ℓ with X ∩ V j ̸= ∅ for all j ∈ [ℓ]. To simplify notation, we assume that
V j = {vj1, . . . , v

j
ν} for all j ∈ [ℓ]. We refer to the elements of [ℓ] as colors and say that a vertex v

has color j ∈ [ℓ] if v ∈ V j .
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g1 ≻ g2 ≻ g3 ≻ g4 ≻ [T ] ≻ c1ν ≻ c1ν−1 ≻ · · · ≻ c11 ≻ c2ν ≻ · · · ≻ c21 ≻ · · · ≻ cℓν ≻ · · · ≻ cℓ1 ≻ [B] ≻ d

g2 ≻ g3 ≻ g4 ≻ [T ] ≻ c11 ≻ q11 ≻ c12 ≻ q12 ≻ · · · ≻ c1ν ≻ q1ν ≻ c21 ≻ q21 ≻ · · · ≻ c2ν ≻ q2ν ≻ · · · ≻ cℓ1 ≻ qℓ1 ≻ · · · ≻ cℓν ≻ qℓν ≻ [B] ≻ d

g3 ≻ g4 ≻ [T ] ≻ c11 ≻ q11 ≻ c12 ≻ q12 ≻ · · · ≻ c1ν ≻ q1ν ≻ c21 ≻ q21 ≻ · · · ≻ c2ν ≻ q2ν ≻ · · · ≻ cℓ1 ≻ qℓ1 ≻ · · · ≻ cℓν ≻ qℓν ≻ [B] ≻ d

g4 ≻ [T ] ≻ c11 ≻ q11 ≻ c12 ≻ q12 ≻ · · · ≻ c1ν ≻ q1ν ≻ c21 ≻ q21 ≻ · · · ≻ c2ν ≻ q2ν ≻ · · · ≻ cℓ1 ≻ qℓ1 ≻ · · · ≻ cℓν ≻ qℓν ≻ [B] ≻ d

Figure 8: Global rankings from the construction for Theorem 6.6.

For each j ∈ [ℓ] and i ∈ [ν], we introduce two vertex candidates cji and qji . Moreover, for each

edge e ∈ E, we introduce an edge candidate fe. Let F = ∪e∈Efe. For j ∈ [ℓ] and i ∈ [ν], let F j
i

be the set of all edge candidates corresponding to edges incident to vji . Moreover, we introduce
ℓ blocker candidates B = {b1, . . . , bℓ}. Lastly, we add dummy candidates G = {g1, . . . , g4} and
T = {t1, . . . , t4}, and add the designated candidate d.
For a subset C ′ of candidates, let [C ′] be the lexicographic strict ordering of the candidates

in C ′. In particular let [T ] be t1 ≻ t2 ≻ t3 ≻ t4, [B] be b1 ≻ · · · ≻ bℓ, and [B − bj ] be
b1 ≻ · · · ≻ bj−1 ≻ bj+1 ≻ · · · ≻ bℓ.

We now describe the ranking profile. We complete each ranking by appending the remaining
candidates in an arbitrary order. First for each color j ∈ [ℓ], we introduce two color rankings
and refer to them as the first and second color ranking:

cj1 ≻ [F j
1 ] ≻ qj1 ≻ cj2 ≻ [F j

2 ] ≻ qj2 ≻ · · · ≻
cjν ≻ [F j

ν ] ≻ qjν ≻ bj ≻ [B − bj ] ≻ d

qjν ≻ [F j
ν ] ≻ cjν ≻ qjν−1 ≻ [F j

ν−1] ≻ cjν−1 ≻ · · · ≻
qj1 ≻ [F j

1 ] ≻ cj1 ≻ bj ≻ [B − bj ] ≻ d

Moreover, we introduce four global rankings as depicted in Figure 8 (note that the last three
rankings only “differ” in the beginning).

Lastly, we add five dummy rankings (these will be the rankings that contribute to the Plurality
score of d at some point):

t1 ≻ t2 ≻ t3 ≻ t4 ≻ d

t2 ≻ t3 ≻ t4 ≻ d

t3 ≻ t4 ≻ d

t4 ≻ d

d

All rankings are completed arbitrarily. The general intuition is that we need to eliminate g1 in
some “early” round where all candidates still have a Plurality score of at most one, as g1 is only
ranked before d in one ranking. The elimination of g1 then triggers immediately some uniquely
determined follow-up eliminations (specifically of all candidates in G ∪ T ). After that d has a
Plurality score of five. As d needs to be eliminated last, all candidates that are still present after
this need to have at least Plurality score five when they are eliminated. As each edge candidate
appears only in four rankings before d, this implies that all edge candidates must have already
been deleted. Moreover, in Statement 5 of Claim C.3, we prove that for each color j ∈ [ℓ], there
is some i ∈ [ν] such that cjij and qjij are still present in the round where g1 is eliminated. As all

edge candidates must have been deleted before, from this one can conclude that {v1i1 , . . . , v
ℓ
iℓ
} is

an independent set.

Forward Direction For the forward direction, assume that we are given a multicolored indepen-
dent set V ′ = {v1i1 , . . . , v

ℓ
iℓ
}.
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We now describe a valid elimination order of the candidates for which d is eliminated last. We
proceed in four phases.

In the first phase every candidate has Plurality score at most one in each round and it is thus
valid to delete a candidate if it is ranked first in at least one ranking. For each j ∈ [ℓ], we do the
following: We delete all candidates that are ranked before cjij in the first color ranking for color
j in the order in which they appear in this ranking. After that we delete all candidates that are
ranked before qjij in the second color ranking for color j in the order in which they appear in this
ranking.
As V ′ is an independent set, after this, for each j ∈ [ℓ] the color rankings for color j are:

cjij ≻ qjij ≻ bj ≻ [B − bj ] ≻ d

qjij ≻ cjij ≻ bj ≻ [B − bj ] ≻ d

At the end of phase one, every candidate has a Plurality score of at most one.
Subsequently in the second phase, we start by eliminating candidate g1. After that, for the

next few rounds the elimination order is unique because one candidate is the unique Plurality
winner. Specifically, afterwards we eliminate g2, then g3, then g4, then t1, then t2, then t3, and
lastly t4. Afterwards, d is ranked in the first position in the five dummy rankings. The global
rankings became:

c1i1 ≻ c2i2 ≻ · · · ≻ cℓiℓ ≻ [B] ≻ d,

and three times:
c1i1 ≻ q1i1 ≻ c2i2 ≻ q2i2 ≻ · · · ≻ cℓiℓ ≻ qℓiℓ ≻ [B] ≻ d.

In the third phase, for j = 1 to j = ℓ, we first eliminate cjij and then qjij (and subsequently

increment j by one). To argue why all these eliminations are valid observe that in each round
in this phase the Plurality score of all candidates is at most five: For d this follows directly
from the fact that d appears after the blocker candidates in all but five rankings. For the
blocker candidates, observe that in each round in the third phase at least one vertex candidate is
present. Thus, no blocker candidate is ever ranked in first place in one of the last three global
rankings. Ignoring the last three global rankings and all rankings where the blocker candidates
appear after d, each blocker candidate appears in at most three rankings before all other blocker
candidates. Thus, each blocker candidate has at most a Plurality score of three in some round in
this phase. To see why vertex candidates have a Plurality score of at most give, fix some j ∈ [ℓ].
For candidate qjij the statement clearly holds, as qjij only appears in five rankings before d. For

candidate cjij , observe that cjij appears before d in six rankings; however, in one of these rankings

cjij is ranked after qjij . As q
j
ij
is eliminated after cjij , the Plurality score of cjij is at most five in

each round.
Using that the Plurality score of all candidates in each round in the third phase is upper

bounded by five, we now argue why all eliminations are valid. For this, let us examine the
situation for j = 1 (so the first round in the third phase): As c1i1 is ranked first by the four global
rankings and the first color ranking for color 1, c1i1 has Plurality score five and eliminating it is
valid. Subsequently, q1i1 is ranked first by the last three global rankings and both color rankings
for color 1. Thus, q1i1 has Plurality score five and eliminating it is valid. The same argument also
applies for increasing j, establishing the validity of this phase. After the third phase only blocker
candidates and d remain.
In the fourth phase, we eliminate bi for i = 1 to i = ℓ. The designated candidate d has a

Plurality score of five in each round of the fourth phase. Note that after the third phase, b1 has
six Plurality points and is thus the unique Plurality winner. After eliminating b1, b2 has eight
Plurality points and is thus the unique Plurality winner. The same reasoning applies until i = ℓ.
Afterwards, only d is left, which completes the argument.
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Backward direction For the backward direction, assume that there is an execution of
Seq.-Plurality-Winner such that d is eliminated in the last round. We will now reason about
the elimination order of the candidates in this execution of Seq.-Plurality-Winner. Let x be the
round in which candidate g1 is eliminated. We will now prove a series of claims that are the
cornerstone of the proof of correctness:

Claim C.3. Assume that d is eliminated last and let x be the round in which g1 is eliminated.
Then,

1. Every candidate has at most Plurality score one in round x.

2. All candidates from G ∪ T are present in round x. Every candidate which is not part of
G ∪ T and that is present in round x has a Plurality score of at least five in the round in
which it is eliminated.

3. All candidates from F have been eliminated before round x.

4. For each j ∈ [ℓ], there are i, i′ ∈ [ν] such that cji and qji′ are present in round x.

5. For each j ∈ [ℓ], there is some i ∈ [ν] such that both cji and qji are present in round x.

Proof. Proof of Statement 1. As g1 is only ranked once before d and d is eliminated last, g1
has a Plurality score of one in round x. Thus, all candidates have a Plurality score of at most
one in round x.

Proof of Statement 2. We prove the following from which Statement 2 directly follows, as d
is the last candidate to be eliminated: In rounds x to x+ 8 exactly the candidates G ∪ T are
eliminated. The Plurality score of d is at least five in every round after round x+ 8.
Assume that no candidate from G ∪ T has been eliminated before round x. Then, after g1 is

eliminated, in round x+ 1 g2 has Plurality score two and all other candidates have a Plurality
score of at most one. Thus, g2 will be eliminated. Following this reasoning, g3 will be eliminated
in round x+ 2, g4 in round x+ 3, t1 in round x+ 4, t2 in round x+ 5, t3 in round x+ 6, and t4
in round x+ 7. Afterwards d is ranked first in the five dummy rankings.
For the sake of contradiction, assume that some candidate from G ∪ T is eliminated before

round x. Let h be the first candidate from G ∪ T that is eliminated. Then in the round where
h is eliminated h has a Plurality score of one, as in all rankings where h is not ranked first
and appears before d it is ranked after some candidates from G ∪ T . As the elimination of h
distributes one Plurality point to some other candidate from G ∪ T , the elimination of h triggers
the above described elimination procedure from this candidate onwards ultimately leading to d
gaining at least one Plurality point. Accordingly, d has a Plurality score of at least two in round
x in this case, a contradiction to Statement 1.
Proof of Statement 3. Assume that for some e ∈ E, fe is eliminated after round x − 1.

Observe that each edge candidate appears only in four rankings before d (the four color rankings
of colors of its endpoints). Thus, before d is eliminated the Plurality score of fe is at most four,
a contradiction to Statement 2 and d being eliminated last.
Proof of Statement 4. Fix some j ∈ [ℓ]. We prove the statement in three steps by

first excluding that no vertex candidate for color j is present, then excluding that only vertex
candidates of the form qji are present, and finally excluding that only vertex candidates of the

form cji are present. From these three parts the statement directly follows.

First, assume for the sake of contradiction that for all i ∈ [ν], cji and qji have been eliminated
before round x. By this and Statement 3, it follows that either some blocker candidate or d is
ranked first in the two color rankings for color j in round x. However, this implies that this
candidate has Plurality score at least two in round x, a contradiction to Statement 1.
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Second, assume for the sake of contradiction that for all i ∈ [ν] cji has been eliminated before

round x but that there is some i′ ∈ [ν] such that qji′ is present in round x.

We make a case distinction based on whether qji′ is the only present vertex candidate for this

color or not: We claim that if there is an i′′ ∈ [ν]− i′ such that qji′′ is present in round x, then the

Plurality score of both qji′ and qji′′ is at most four in any round before d is eliminated. To see this

note that there are only five rankings in which qji′ and qji′′ are ranked before d and that in fact
these are the same five rankings for both. However, for the two color rankings for color j it holds
that in one of them qji′ is ranked before qji′′ and in the other qji′′ is ranked before qji′ . Thus, as

long as both qji′ and qji′′ are not eliminated, both of them can have at most four Plurality points.

As qji′ and qji′′ are present in round x, using Statement 2 it follows that none of qji′ and qji′′ can
reach a Plurality score of five before d’s elimination, a contradiction to d being eliminated last.
Otherwise for all i′′ ∈ [ν] − i′ qji′′ has been eliminated before round x (and by our initial

assumption for all i ∈ [ν] cji has also been eliminated before round x). Using Statement 3, it

follows that qji′ is ranked first in both color rankings for color j in round x, a contradiction to
Statement 1.
Third, assume for the sake of contradiction that for all i ∈ [ν] qji has been eliminated before

round x but that there is some i′ ∈ [ν] such that cji′ has not been eliminated before round x.
We make a case distinction similar as above. We claim that if there is a i′′ ∈ [ν]− i′ such that
cji′′ is present in round x, then both cji′ and cji′′ have at most four Plurality points in any round

before d is eliminated. Assume without loss of generality hat i′ < i′′. Both cji′ and cji′′ are only
ranked before d in the two color rankings for color j and the four global rankings. However, in
four of these six rankings cji′ is ranked before cji′′ (i.e., the first color ranking for color j and the

last three global rankings), while in the other two cji′′ is ranked before cji′ . Thus, as long as cji′ ,

cji′′ , and d are present, both cji′ and cji′′ have at most four Plurality points. With the help of
Statement 2, we again reach a contradiction to d being eliminated last.
Otherwise for all i′′ ∈ [ν]− i′, cji′′ has been eliminated before round x. Using Statement 2, it

follows that cji′ is ranked first in both color rankings for color j in round x, a contradiction to
Statement 1.
Proof of Statement 5. Fix some j ∈ [ℓ]. Let i′ be the smallest i such that cji is present

in round x (form Statement 4 we know that such an i needs to exist). Assume for the sake of
contradiction that there is some i′′ < i′ such that qji′′ is present in round x. We argue that in this

case neither cji′ nor q
j
i′′ can ever reach five Plurality points before d is eliminated, a contradiction

to Statement 2 and d being eliminated last: The only rankings in which one of cji′ and qji′′ appears
before d are the two color rankings for color j and the four global rankings. However, in the first
color ranking and the last three global rankings qji′′ appears before cji′ , whereas in the other two

rankings cji′ appears before qji′′ . Thus, as long as the other candidate is present none of the two
can get a Plurality score of five.

Finally, assume for the sake of contradiction that qji′ is not present in round x, implying that
it was eliminated in round y for some y < x. Together with our above observation that excludes
the presence of qji′′′ for all i

′′′ < i′ in round x and Statement 4, this implies that there is some

i′′ > i′ such that qji′′ is present in round x. Clearly, qji′ was ranked in first position by at least one

ranking in round y. As all candidates from G∪T are still present in round x (Statement 2), qji′ is
not ranked first in one of the global rankings in round y. The only remaining two rankings where
qji′ appears before d are the two color rankings for color j. However, as cji′ and qji′′ are present in

round y and qji′ is ranked behind cji′ in the first color ranking and behind qji′′ in the second color

ranking for color j, qji′ is also not ranked first in these rankings in round y, a contradiction. ♦

By Statement 5 of Claim C.3, we get that for each color j ∈ [ℓ], there is some ij ∈ [ν] such that
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cjij and qjij are present in round x. We claim that V ′ = {v1i1 , . . . , v
ℓ
iℓ
} is an independent set in the

given graph. Assume for the sake of contradiction that there are two colors j ̸= j′ ∈ [ℓ] such that

e = {vjij , v
j′

ij′
} ∈ E. From Statement 3 of Claim C.3, we get that fe has been eliminated before

round x. The only rankings where fe is ranked before d are the four color rankings for colors j

and j′. In each of these rankings fe is ranked between cjij and qjij or between cj
′

ij′
and qj

′

ij′
. As all

these four candidates are still present in round x, it follows that fe was never ranked in the first
position in some ranking before round x, a contradiction to fe being eliminated before round x.
Thus, V ′ is an independent set, which is clearly multicolored.

[Main]Theorem 6.7. Position-k Determination for Sequential-Veto-Loser is in XP with respect to
the number n of voters.

Proof. For a ranking profile P ′ = (≻′
1, . . . ,≻′

n′) over m′ candidates, the bottom-list (cand(≻1

,m′), . . . , cand(≻n′ ,m′)) of P ′ contains for each voter its least preferred candidate.
Assume we are given a set C of m candidate and a ranking profile P = (≻i, . . . ,≻n) of n

voters. Knowing for each round in an execution of Sequential-Veto-Loser the bottom-list is clearly
sufficient for us to reconstruct the selected ranking. Even more, if we only know the bottom-list
in some round, then we can reconstruct which candidates have been deleted in previous rounds.
These are exactly the candidates that appear behind the currently bottom candidate of a voter in
its original vote (note that they clearly need to be deleted and that not more candidates could have
been deleted because they have never appeared in the last place and thus never had the lowest Veto
score). To formalize this, for a tuple x = (x1, . . . , xn) ∈ Cn, let D(x) be the set of candidates that
are ranked behind xi for i ∈ [n] in ≻i, i.e., D(x) = {c ∈ C | ∃i ∈ [n] : pos(xi,≻i) < pos(c,≻i)}.
Intuitively speaking, we need to delete all candidates from D(x) to make x a bottom-list of
our profile. However, in case that D(x) contains some of the candidates appearing in x, x will
actually not be the bottom list of the resulting profile. Accordingly, we call x valid if x is the
bottom list of P |C\D(x).
Using this notation, we solve the problem via dynamic programming. For this we introduce

a table T [i, c, c1, . . . , cn] for i ∈ [k] and c, c1, . . . , cn ∈ C. Moreover, we add a dummy cell
T [0, ∅, cand(≻1,m), . . . , cand(≻n,m)], which we set to true. An entry T [i, c, c1, . . . , cn] is true if
there is an execution of Sequential-Veto-Loser resulting in ranking ≻ such that c is ranked in
position i in ≻ and the bottom list of the profile after round i is (c1, . . . , cn).

For increasing i ∈ [k], we fill table T by setting T [i, c, c1, . . . , cn] to true if (c1, . . . , cn) is valid
and there exists candidates c′, c′1, . . . , c

′
n ∈ C such that

• D((c1, . . . , cn)) = D((c′1, . . . , c
′
n)) ∪ {c}

• no candidate appears more often than c among c′1, . . . , c
′
n, and

• T [i− 1, c′, c′1, . . . , c
′
n] is true.

After T is filled, we can simply check whether there are candidates c1, . . . , cn ∈ C such that
T [k, d, c1, . . . , cn] is true in which case we return yes and no otherwise.

C.3. Borda

We now prove that Winner Determination for Sequential-Borda-Loser is NP-hard, even
for a constant number of voters. We begin with a useful observation for reasoning about
Sequential-Borda-Loser.

Remark C.4 (Weighted majority graph, C2-Borda scores). Every ranking profile induces a
weighted majority graph (aka the C2-graph) which is an edge-weighted directed graph whose
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D1 D2 D3 D4 = ∅

Figure 9: A bilevel graph as described in Lemma C.5.

vertex set is the set of candidates, and for c, d ∈ C, the weight of the edge c → d is wcd = |{i ∈
N : c ≻i d}|−|{i ∈ N : d ≻i c}|. Given a ranking profile and its induced weighted majority graph,
the C2-Borda score of an alternative c ∈ C is

∑
d∈C\{c}wcd. It is well-known that the Borda

score of an alternative is an affine transformation of its C2-Borda score (indeed, the C2-Borda
score is equivalent to the difference between the candidates’ Borda score and the average Borda
score of candidates). Hence, to obtain the output of Sequential-Borda-Loser at a given profile,
we only need to know the profile’s weighted majority graph.

In the construction of our reduction we build a weighted majority graph to reason about
the scores of candidates. Using well-known results of McGarvey [1953] and Debord [1987], any
arc-weighted digraph (in which all arc weights have the same parity; in our reductions we only
ever use weights 0 and 2) can be realized as the weighted majority graph of a ranking profile,
and this profile can be constructed in polynomial time. In some of our reductions, we will need
to prove that a particular digraph can be constructed using a small number of rankings. For
this, we use the following lemma:

Lemma C.5 (Erdős and Moser, 1964, Bachmeier et al., 2019). We call an edge-weighted digraph
G = (V,A) bilevel if we can partition its vertex set as V = (C1 ∪ · · · ∪ Cs) ∪ (D1 ∪ · · · ∪Ds),
where all subsets are pairwise disjoint but some of them may be empty, such that

A = (C1 ×D1) ∪ · · · ∪ (Cs ×Ds)

with all arcs having weight 2 (see Figure 9).
If G is bilevel, then it can be induced as the weighted majority graph of a 2-voter profile.

Proof. Consider the sets C1, . . . , Cs, D1, . . . , Ds as sets that are linearly ordered in some arbitrary
way. Then construct the following two rankings ≻1 and ≻2:

C1 ≻1 D1 ≻1 C2 ≻1 D2 ≻1 · · · ≻1 Cs ≻1 Ds,

rev(Cs) ≻2 rev(Ds) ≻2 · · · ≻2 rev(C1) ≻2 rev(D1).

It is easy to check that these two voters induce D as their weighted majority graph.

We are now ready to prove the theorem.

[Main]Theorem 6.8. Let n ≥ 8 be a fixed even integer. Then Winner Determination for
Sequential-Borda-Loser (aka Baldwin), restricted to instances with exactly n voters, is NP-
complete. In addition, if the ETH is true, then the problem cannot be solved in 2o(m) · poly(m)
time.

Proof. We will give the proof for the case n = 8. It can be extended to any larger even number
of voters by repeatedly adding 2 opposite rankings (one the reverse of the other) to the profile
constructed in the reduction. Adding opposite rankings does not change the induced weighted
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Figure 10: An illustration of the reduction of Theorem 6.8. All arcs have weight 2. Red
superscripts denote the difference between the weight of outgoing and ingoing arcs for
a candidate.

majority scores. Thus, the C2-Borda scores of the candidates do not change, and hence this does
not change the result of Sequential-Borda-Loser.
We reduce from Cubic Vertex Cover. (Then the ETH-based claim follows using Propo-

sition C.1.) Let G = (V,E) be a graph with q vertices where each vertex v ∈ V is incident
to exactly 3 edges, and let t be the target vertex cover size. We construct an instance of the
Winner Determination problem as follows.
The candidate set consists of one candidate for each vertex, one candidate for each edge,

a designated candidate d, and dummy candidates B = {b1, b2, b3, b4}, F = {f1, . . . , fq−t+8},
G = {g1}, H = {h1, h2, h3, h4}, and K = {k1, . . . , k5}. Let C = V ∪E∪{d}∪B∪F ∪G∪H ∪K.
The ranking profile will be constructed so as to induce a desired weighted majority graph,

where all arcs will have weight 2. The arcs are as follows:

A ={(e, v) ∈ E × V : v ∈ e} ∪ (B × V ) ∪ (G× E) ∪
(H × E) ∪ (F ×B) ∪ (K ×H) ∪ (H × {d})

The constructed weighted majority graph is depicted in Figure 10. We now describe how to
write the weighted majority graph (C,A) as a sum of 4 bilevel graphs (as defined in Lemma C.5).
For each vertex v, we label the three edges incident to it arbitrarily as e1v, e

2
v, e

3
v. Consider the

following arc sets:

A1 = (B × V ) ∪ ((H ∪G)× E),

A2 = {(e1v, v) : v ∈ V } ∪ (F ×B),

A3 = {(e2v, v) : v ∈ V } ∪ (K ×H),

A4 = {(e3v, v) : v ∈ V } ∪ (H × {d}).

It is clear that each of these sets describe bilevel graphs, that they are pairwise disjoint, and that
A = A1 ∪A2 ∪A3 ∪A4. By invoking Lemma C.5, we get a profile P containing 8 voters with the
depicted weighted majority graph.
The C2-Borda scores (see Remark C.4) in this profile are:

• d has score −8 (since it is beaten by 4 H-candidates)

• each b ∈ B has score 2t− 16

• each v ∈ V has score −14 (since v is beaten by 3 edge candidates, and by 4 B-candidates)
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• each e ∈ E has score −6 (since e beats 2 vertex candidates but is beaten by 4 H-candidates
and 1 G-candidate).

• each h ∈ H has score 2|E| − 8 (since it beats |E| edge candidates and d, but is beaten by 5
K-candidates)

• Candidates in F , G, and K will always have non-negative scores (since they are beaten by
no candidates)

Suppose that T = {v1, . . . , vt} is a vertex cover of G. Then the following is a valid elimination
ordering according to Seq.-Borda-Loser, where d is eliminated last and thus ranked first in the
corresponding selected ranking.

• Eliminate T : In the first t rounds, vertex candidates have the lowest C2-Borda score (−14),
so we can eliminate T in an arbitrary ordering. Each time we eliminate a vertex candidate,
the score of the B-candidates goes down by 2, and the score of all incident edge candidates
also goes down by 2.

• Eliminate B: Starting in round t+ 1, candidates in B have the uniquely lowest C2-Borda
score of −16, so we can eliminate B in an arbitrary ordering. As we do so, the scores of
the remaining vertex candidates go up.

• Eliminate E: The remaining vertex candidates in V \ T currently have score −6 because B
has been eliminated. Edge candidates have a C2-Borda score of either −8 or −10 depending
on whether T contains one or both of the endpoints of the edge (note that for each edge
at least one endpoint has been deleted because T is a vertex cover). These are the lowest
C2-Borda scores, so we can eliminate all edge candidates (in an arbitrary ordering except
that the −10 edges get eliminated first). As we eliminate edge candidates, the scores of
H-candidates go down.

• Eliminate H: Just after we finish eliminating E, the score of H has dropped to −8, which
is the lowest C2-Borda score. So we can eliminate H in an arbitrary order.

• Eliminate F ∪G ∪K: At this point, all remaining candidates have C2-Borda score 0 (and
they have no arcs between them, so eliminating candidates does not change the scores). So
we can eliminate all candidate except d in an arbitrary order.

• Eliminate d.

Conversely, suppose there is a ranking selected by Seq.-Borda-Winner where d is eliminated
last. In the first t − 1 rounds, only vertex candidates can be eliminated since only they have
the lowest C2-Borda score of −14. But then, in round t, the B-candidates also have score −14.
We distinguish two cases: whether another vertex is eliminated, or whether a B-candidate is
eliminated.

• Case 1: In round t, a vertex candidate is eliminated. Define T to be the set of vertices whose
candidates were eliminated in the first t rounds. Starting in round t+ 1, the B-candidates
have score −16, which is uniquely lowest, so they will then all be consecutively eliminated.

• Case 2: In round t, a B-candidate is eliminated. Then the C2-Borda score of the remaining
vertex candidates goes up to −12 while the remaining B-candidates have score −14, which
makes them the candidates with the uniquely lowest C2-Borda score. Thus, in the following
rounds, all the B-candidates will be consecutively eliminated. Define T to be the set of
vertices whose candidates were eliminated in the first t− 1 rounds.
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In either of the two cases, we have now reached a stage where for a set T of at most t vertices (to
be precise, either t or t− 1 vertices), the corresponding vertex candidates have been eliminated,
followed by the elimination of set B. We will prove that T is a vertex cover.

After the above-described eliminations, since B is eliminated, the remaining vertex candidates
in V \ T have score −6. Candidate d has score −8. Edge candidates have score −6 if neither of
their endpoints were contained in T , and otherwise they have a score of −8 or −10. All other
candidates have score −6 or higher. Thus, in the next rounds, edges that were covered have their
candidates eliminated. While this happens, the score of H-candidates goes down, but they do
not become eliminateable before all covered edge candidates are eliminated. If in this way all
edge candidates are eliminated, then T was a vertex cover and we are done. If there is an edge
that is not covered by T , then after all covered edge candidates are eliminated, we end up in a
situation where d has score −8, but all other candidates have score −6 or higher, so d would
need to be eliminated next, a contradiction.

D. Additional Material for Section 6.3

We start by observing that for each scoring system s our general problem Position-k Determi-
nation is in XP, as we can simply guess which candidates are ranked on the first k positions (in
which ordering) in the selected ranking and then verify whether it gives rise to a valid execution
of Sequential-s-Winner.

Observation D.1. For every scoring system s, Position-k Determination for
Sequential-s-Winner is in XP.

D.1. Plurality

In this section, we consider Seq.-Plurality-Winner. We start by showing that Top-k Determi-
nation is NP-hard and W[1]-hard with respect to k.

Proposition D.2. Top-k Determination for Sequential-Plurality-Winner is NP-hard and
W[1]-hard with respect to k.

Proof. We reduce from Independent Set, which is W[1]-hard when parameterized by the
solution size. Given a graph G = (V,E) with |V | = ν, and an integer ℓ, Independent Set asks
whether there is an independent set of size ℓ in G (we assume without loss of generality that
ν > 2, ℓ > 2, |E| > 1, and ℓ < ν). From an instance of Independent Set, we construct an
instance of Top-k Determination as follows. We add a candidate cv for each vertex v ∈ V .
Moreover, we introduce 2ν3(ℓ− 1) + ν3 dummy candidates, a designated candidate d, a blocker
candidate b, and an edge candidate e.
We now turn to the description of the ranking profile. We first add the following rankings:

2ν2 voters cv ≻ b ≻ d ≻ . . . ∀v ∈ V

2ν2 voters cv ≻ e ≻ . . . ∀v ∈ V

1 voter cv ≻ b ≻ cw ≻ e ≻ . . . ∀{v, w} ∈ E

Moreover, for each v ∈ V , as long as cv has less than 2ν2(ℓ− 1) + ν2 Plurality points in the
current profile, we add a ranking where cv is ranked first and some so far never in second place
appearing dummy candidate is ranked second. We set k := ℓ+ 2.
Note that dummy candidates will clearly not be eliminated in the first k rounds so we can

ignore them.
Assume that V = {v1, . . . , vℓ} is an independent set. Then, we eliminate in the first ℓ − 1

rounds candidates cv1 , . . . , cvℓ−1
. Note that by this eliminations only the Plurality scores of
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dummy candidates, of b, and of e have changed. After round ℓ − 1, e has score 2ν2(ℓ − 1).
Moreover, b has score at most 2ν2(ℓ − 1) + (ℓ − 1) · ν. Thus, the vertex candidates still have
the highest score and we can eliminate cvℓ . After round ℓ, candidate b clearly has the highest
Plurality score, so we eliminate b. The elimination of b redistributes 2ℓν2 points to d, at most ν
points to each vertex candidates, and no point to e (because V is an independent set and thus in
each of the voters of the third type at least one vertex candidate ranked before e is still present).
Thus, we can eliminate d in the next round ℓ+ 2.

Conversely, assume that there is an execution of Seq.-Plurality-Winner such that d is eliminated
in round ℓ+ 2 or before. As argued before clearly in the first ℓ rounds vertex candidates need
to be deleted. Let V ′ ⊆ V be the subset of vertices corresponding to these vertex candidates.
We claim that V ′ needs to be an independent set. As argued above, b will be eliminated in
round ℓ+ 1. Thus, d has a Plurality score of 2ℓν2 in round ℓ+ 2. In round ℓ+ 2, candidate e is
also ranked in the first position in the 2ℓν2 votes of the second type. Moreover, if there is an
edge {v, u} ∈ E with v, u ∈ V ′, then we have eliminated all candidates ranked before e in the
corresponding vote, giving e a Plurality score of at least 2ℓν2 + 1. This leads to a contradiction,
as this implies that e has a higher score than d in round ℓ+ 2.

Moreover, also when we parameterized by the number of n of voters we still get W[1]-hardness
by reusing some ideas for the reduction for Winner Determination for Seq.-Veto-Loser from
Theorem 6.6.

Theorem D.3. Top-k Determination for Sequential-Plurality-Winner is W[1]-h. with respect
to the number n of voters.

Proof. We prove hardness by a reduction from the W[1]-hard Multicolored Independent
Set problem parameterized by the solution size ℓ.

Construction In Multicolored Independent Set, we are given an ℓ-partite graph (V 1 ∪·
V 2 ∪· . . . ∪· V ℓ, E) and the question is whether there is an independent set X of size ℓ with
X ∩ V j ̸= ∅ for all j ∈ [ℓ]. To simplify notation, we assume that V j = {vj1, . . . , v

j
ν} for all j ∈ [ℓ].

We refer to the elements of [ℓ] as colors and say that a vertex v has color j ∈ [ℓ] if v ∈ V j .
Moreover, let |E| = µ.
We construct an instance of our problem by setting k := µ + ℓ · (ν − 1) + 1. We start by

describing the candidate set. For each j ∈ [ℓ] and i ∈ [ν + 1], we introduce a vertex candidates cji
(notably candidates cjν+1 do not correspond to a vertex but act more like a dummy candidate).

Moreover, for each edge e ∈ E, we introduce an edge candidate fe. For j ∈ [ℓ] and i ∈ [ν], let F j
i

be the set of all edge candidates corresponding to edges incident to vji . Further, for j ̸= j′ ∈ [ℓ],
let F j,j′ be the set of all edge candidates corresponding to edges between a vertex of color j and
a vertex of color j′ (note that there are no edges between vertices of the same color). Moreover,
we introduce k blocker candidates B = {b1, . . . , bk}. Lastly, we add our designated candidate d.
For a subset C ′ of candidates, let [C ′] be the lexicographic strict ordering of the candidates in C ′.
Turning to the input rankings, we introduce for each color j ∈ [ℓ],

(
ℓ
2

)
copies of two types of

color rankings:

cj1 ≻ [F j
1 ] ≻ cj2 ≻ [F j

2 ] ≻ · · · ≻ cjν ≻ [F j
ν ] ≻ cjν+1 ≻ [B] ≻ d, ∀t ∈ [

(
ℓ
2

)
]

cjν+1 ≻ [F j
ν ] ≻ cjν ≻ [F j

ν−1] ≻ cjν−1 ≻ · · · ≻ [F j
1 ] ≻ c1j ≻ [B] ≻ d. ∀t ∈ [

(
ℓ
2

)
]

Moreover, for each pair of colors j ̸= j′ ∈ [ℓ], we introduce the following critical rankings:

[F j,j′ ] ≻ d ≻ [B].

We complete all rankings arbitrarily.
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Forward Direction For the forward direction, assume that we are given a multicolored indepen-
dent set V ′ = {v1i1 , . . . , v

ℓ
iℓ
}.

We now describe a valid elimination order of the candidates for which d is eliminated in round
k. For j = 1 to j = ℓ, we do the following: We delete all candidates that are ranked before cjij
in the first type of color rankings for color j in the order in which they appear in this type of
ranking. Afterwards, we delete all candidates that are ranked before cjij+1 in the second type
of color ranking for color j in the order in which they appear in this type of ranking. Thus,
all candidates ranked before the blocker candidates in the color rankings, except cjij , c

j
ij+1, and

candidates from F j
ij

got deleted. Thus, as V ′ is an independent set, all edge candidates got

deleted. As for each color two vertex candidates remain, this implies that µ+ ℓ · (ν − 1) = k − 1
candidates got deleted. The resulting profile looks as follows:

cjij ≻ cjij+1 ≻ [B] ≻ d, ∀j ∈ [ℓ], t ∈ [
(
ℓ
2

)
]

cjij+1 ≻ cjij ≻ [B] ≻ d, ∀j ∈ [ℓ], t ∈ [
(
ℓ
2

)
]

d ≻ [B], ∀j ̸= j′ ∈ [ℓ]

Notably, d is a Plurality winner in this profile so we can eliminate d in round k.

Backward Direction For the backward direction, assume that there is an execution of
Seq.-Plurality-Winner for which d is ranked in one of the first k positions in the selected
ranking. Let k∗ ≤ k be the round in which d is eliminated. Notably, as there exist

(
ℓ
2

)
identical

rankings, the Plurality winner in each round, needs to have Plurality score at least
(
ℓ
2

)
. Moreover,

as d only appears in the
(
ℓ
2

)
critical rankings in one of the first k∗ positions, this implies that

d needs to be ranked first in all critical rankings in round k∗ and that all candidates have a
Plurality of score at most

(
ℓ
2

)
in round k∗. From the first part of this observation it follows that

all edge candidates need to be deleted before round k∗. Using this and that all candidates have
Plurality score at most

(
ℓ
2

)
in round k∗, we get that for each color j ∈ [ℓ], at least two vertex

candidates corresponding to vertices of this color are present in round k∗: If there is a color with
no remaining vertex candidates in round k∗, then some blocker candidate will be ranked in the
first position in the 2

(
ℓ
2

)
rankings corresponding to this color in round k∗. If there is a color with

only one vertex candidate from this color remaining, then this candidate is ranked first in the
first position in the 2

(
ℓ
2

)
rankings corresponding to this color in round k∗.

Now, for each color j ∈ [ℓ], let ij be the smallest i such that cji is present in round k∗ and let

tj ̸= ij be some other index such that cjtj is present in round k∗ (by our above observation both

of these need to exist). We claim that {v1i1 , . . . , v
ℓ
iℓ
} is an independent set in the given graph.

Assume for the sake of contradiction that there are j ̸= j′ ∈ [ℓ] with {vjij , v
j′

ij′
} = e ∈ E. We

claim that in this case fe has not been eliminated before round k∗: Recall that a candidate can
only get eliminated if its Plurality score is at least

(
ℓ
2

)
. Moreover, as fe only appears in one of

the first k∗ positions in one of the critical rankings, this means that in the round in which fe is
eliminated it needs to be ranked in the first position in one of the color rankings for either color
j or j′. However, note that in all of these rankings fe is either ranked between cjij and cjtj or

between cj
′

ij′
and cj

′

tj′
. As all these four candidates are still present in round k∗ (and thus also in

all previous rounds), it follows that fe was never ranked in the first position in one of the color
rankings, a contradiction to all edge candidates being deleted before round k∗.

From Theorem 6.7, using the equivalence between Seq.-Loser and Seq.-Winner from Lemma 3.5,
we can directly conclude the following:
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Corollary D.4. Position-k Determination for Sequential-Plurality-Winner is in XP with
respect to the number n of voters.

Moreover, if we combine the two parameter n and k, for each of which we have proven W[1]-
hardness, then we can obtain fixed-parameter tractability. The core observation here is that in
the first k rounds of an execution of Seq.-Plurality-Winner at most n · k candidates can have a
non-zero Plurality in one of the rounds (these are the candidates which are ranked in one of the
first k positions of some voter). All other candidates will be eliminated immediately (in some
arbitrary order). Subsequently we can apply our algorithm from Theorem 6.1.

Observation D.5. Position-k Determination for Sequential-Plurality-Winner is solvable in
O(2nk · nm2) time.

D.2. Veto

We now turn to Seq.-Veto-Winner and start by proving that Top-k Determination is NP-hard
and W[2]-hard with respect to k for this rule.

Proposition D.6. Top-k Determination for Sequential-Veto-Winner is NP-hard and W[2]-
hard with respect to k.

Proof. We reduce from Hitting Set, where given a universe U and a family of sets S and an
integer ℓ, the question is whether there is an ℓ-subset of the universe containing at least one
element from each set from S, i.e., U ′ ⊆ U with |U ′| = ℓ and S ∩ U ′ ̸= ∅ for all S ∈ S. Hitting
Set is W[2]-hard when parameterized by ℓ. Let ν := |U | and µ := |S|. For an element u ∈ U , let
Su denote the family of sets in which u appears. That is, Su = {S ∈ S | u ∈ S}.
We construct an instance of Top-k Determination as follows. For each element u ∈ U , we

introduce an element candidate cu. For each set S ∈ S, we introduce a set candidate eS . Lastly,
we introduce a blocker candidate b and the designated candidate d. We set k := ℓ+ 1.

For convenience (to avoid talking about negative numbers), we say that the bottom count of a
candidate is the number of times the candidate is ranked in last position. Thus the bottom count
is the negative of the veto score, and Sequential-Veto-Winner proceeds by eliminating candidates
with the lowest bottom count.
We now turn to the description of the ranking profile. We first add the following rankings:

· · · ≻ b ≻ eS ≻ cu, ∀u ∈ U and S ∈ Su

· · · ≻ b ≻ cu′ ≻ cu, ∀u ∈ U and u′ ∈ U \ {u}
· · · ≻ b ≻ eS , ∀S ∈ S and i ∈ [ν + µ+ ℓ− 1]

· · · ≻ d, ∀i ∈ [ν + µ+ ℓ]

· · · ≻ b, ∀i ∈ [ν + µ+ ℓ+ 1]

Note that with these rankings, for each element u ∈ U , the candidate cu has bottom count at
most ν + µ. For each element u ∈ U , we add several copies of the ranking · · · ≻ b ≻ cu until cu
has bottom count exactly ν + µ. Thus, the bottom counts of the candidates in the initial profile
are as follows:

• For each u ∈ U , cu has a count of ν + µ.

• For each S ∈ S, eS has a count of ν + µ+ ℓ− 1.

• Candidate b has a count of ν + µ+ ℓ+ 1.

• The designated candidate d has a count of ν + µ+ ℓ.
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Initially, all element candidates cu are Veto winners, having the lowest bottom count. Note that
the bottom count of uneliminated candidates can only increase over time. Thus, for d to be a
Veto winner in some round, each element candidate needs to be either deleted or ranked last in
at least ℓ additional rankings, and also each set candidate needs to be either deleted or ranked
last in at least one additional vote.
Let U ′ = {u1, . . . , uℓ} be a hitting set of size ℓ. Then, in the first round we eliminate cu1 ,

increasing the count of each other element candidate by 1, and increasing the score of each set
candidate corresponding to a set from Su1 by 1. All remaining element candidates are still veto
winners and we continue eliminating cui for i = 2, . . . , ℓ. After round ℓ, each remaining element
candidate has count ν + µ+ ℓ. Moreover, as U ′ is a hitting set, each set candidate also has count
at least ν +µ+ ℓ. This means that d is a Veto winner in round ℓ+1 = k and we can eliminate it.

Conversely, assume that there is an execution of Seq.-Veto-Winner such that d is eliminated in
round ℓ+ 1 or earlier. As each element candidate either needs to be ranked last in ℓ additional
rankings or deleted, in the first ℓ rounds element candidates need to be eliminated. Let U ′ ⊆ U
be the subset of elements that correspond to the eliminated element candidates. Then in case U ′

does not form a hitting set, there is a set candidate that still has count ν + µ+ ℓ− 1 in round
ℓ+ 1, and thus in particular a lower count than the designated candidate d, a contradiction.

By applying Lemma 3.5 to Observation 6.4, we get that Position-k Determination for
Seq.-Veto-Winner is fixed-parameter tractable with respect to n.

Corollary D.7. Position-k Determination for Sequential-Veto-Winner is solvable in O(2n ·
nm2) time.

D.3. Borda

We conclude by studying Seq.-Borda-Winner. Recall Remark C.4 which showed that it suffices
to reason about the weighted majority graph induced by a profile.

Theorem D.8. Top-k Determination for Sequential-Borda-Winner is NP-complete for n = 8.

Proof. We reduce from Cubic Vertex Cover. Let G = (V,E) be a graph with q vertices
where each vertex v ∈ V is incident to exactly 3 edges, and let t be the target vertex cover size.
We construct an instance of the Top-k Determination problem as follows.
The candidate set consists of one candidate for each vertex, one candidate for each edge, a

designated candidate d, and dummy candidates f , candidates B = {b1, . . . , b6}, and candidates
H = {h1, . . . , hq+3−t}. Let C = V ∪ E ∪ {d} ∪ {f} ∪ B ∪ H. We set k = t + 7. The ranking
profile will be constructed so as to induce a desired weighted majority graph, where all arcs will
have weight 2. The arcs are as follows:

A ={(e, v) ∈ E × V : e ∈ E, v ∈ e} ∪
{(d, f)} ∪ (V ×B) ∪ (B ×H).

The constructed weighted majority graph is depicted in Figure 11. We now describe how to
write the weighted majority graph (C,A) as a sum of 4 bilevel graphs (as defined in Lemma C.5).
For each vertex v, we label the three edges incident to it arbitrarily as e1v, e

2
v, e

3
v. Consider the

following arc sets:

A1 = (V ×B),

A2 = {(e1v, v) : v ∈ V } ∪ (B ×H),

A3 = {(e2v, v) : v ∈ V } ∪ {(d, f)},
A4 = {(e3v, v) : v ∈ V }.
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Figure 11: An illustration of the reduction of Theorem D.8. All arcs have weight 2. Red
superscripts denote the difference between the weight of outgoing and ingoing arcs for
a candidate.

It is clear that each of these sets describe bilevel graphs, that they are pairwise disjoint, and that
A = A1 ∪A2 ∪A3 ∪A4. By invoking Lemma C.5, we get a profile P containing 8 voters with the
depicted weighted majority graph.
The C2-Borda scores (for a definition, see Remark C.4) in this profile are:

• d has score 2

• each b ∈ B has score 6− 2t

• each v ∈ V has score 6 (since v is incident to 3 edges, and beats 6 b-candidates)

• each e ∈ E has score 4 (since e is incident to 2 vertices).

• each h ∈ H as well as f have negative scores (and can only have non-positive scores
throughout the elimination process because they do not beat any candidates) and will not
be selectable in the first k rounds.

Suppose that T = {v1, . . . , vt} is a vertex cover of G. Then the following is a valid start of an
elimination ordering, with d eliminated in round k = t+ 7: First, we eliminate all candidates
from T in some arbitrary ordering, then all candidates from B in some arbitrary ordering, and
then d. Explicitly, in the first t rounds, the maximum Borda score of a candidate is 6 and all
vertex candidates have a Borda score of 6 (no other candidates have a Borda score of 6 in these
rounds). Thus we can select members of the vertex cover T in each of these rounds. In round
t+1, the remaining vertex candidates and the candidates in B have the maximum Borda score of
6. Thus, we can eliminate candidates in B (while doing so, the Borda scores of vertex candidates
decrease, so candidates in B continue having the maximum Borda score). After all 6 candidates
in B are eliminated, we are in the following situation with respect to the remaining candidates’
C2-Borda score:

• d has score 2

• each e has score at most 2 (since we have eliminated a vertex cover, and thus have eliminated
at least one candidate that e beats)

• each remaining v ∈ V has score −6; each h ∈ H and f have non-positive scores.

Hence, at this point, candidate d has the highest Borda score and can be eliminated.
Conversely, suppose there is a ranking selected by Sequential-Borda-Winner where d is elim-

inated in round k = t + 7 or earlier. As observed above, in the first t rounds, only vertex
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Figure 12: An illustration of the reduction of Theorem D.9. All arcs have weight 2. Red
superscripts denote the C2-Borda score of the candidates (after adding dummy
candidates).

candidates can be eliminated. Let T = {v1, . . . , vt} be the set of vertices whose candidates are
eliminated in these rounds. From round t+ 1 until t+ 6, all candidates in B have score at least
6 (it cannot go lower because the candidates that B beats, namely H, cannot be eliminated).
Because d has score only 2, all the 6 candidates in B are eliminated before d. This brings us to
round t+ 7 where by assumption d is eliminated. Hence at this point, no candidate has score
higher than 2. In particular, for every edge e ∈ E, its score is less than 4. This can only have
happened if at least one of the vertices incident to e has been eliminated and is thus part of T .
It follows that T is a vertex cover.

Theorem D.9. Top-k Determination for Sequential-Borda-Winner is W[2]-hard with respect
to k.

Proof. We reduce from Hitting Set, using a similar construction as in Theorem D.8. Let U
be a given universe of elements and let S be a given family of subsets of U . We are also given
an integer t, and the question is whether there is a t-subset of the universe containing at least
one element from each set from S, i.e., U ′ ⊆ U with |U ′| = t and S ∩ U ′ ̸= ∅ for all S ∈ S. Let
q = |U |.
We construct an instance of the Top-k Determination problem as follows.
We first give an incomplete description of the constructed instance. Later, we will add some

dummy candidates that have no influence except that they increase the Borda scores of some of
the candidates to a desired level. The candidate set consists of one candidate for each element,
one candidate for each set S ∈ S, a designated candidate d, and a set B = {b1, b2} of two blocking
candidates. Let Cbase = V ∪ E ∪ {d} ∪ B (again, we will add to this set later). The ranking
profile will be constructed so as to induce a desired weighted majority graph, where all arcs
will have weight 2 (using standard arguments; McGarvey, 1953, Debord, 1987). The arcs are as
follows:

Abase ={(S, e) ∈ S × U : e ∈ S} ∪ (U ×B)

The constructed weighted majority graph is depicted in Figure 12.
The C2-Borda scores (for a definition, see Remark C.4) in this profile are:

• d has score 0

• each S ∈ S has score 2|S|

• each e ∈ U has score 2|{S : e ∈ S}| − 4

• each b ∈ B has score −2|U |.
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Choose α to be an even integer such that the number α + 2 − 2t is larger than all the Borda
scores just mentioned. (Clearly we can take an α that is polynomial size.)

Now we go through every candidate c ∈ Cbase and add dummy candidates Dc and arcs {c}×Dc

to increase the C2-Borda score so that we now have the following scores (see Figure 12):

• d has score α− 2

• each S ∈ S has score α

• each e ∈ U has score α+ 2

• each b ∈ B has score α+ 2− 2t.

Explicitly, if a candidate’s target C2-Borda score is R and its current score is S < R, then
we need to add |Dc| = (R − S)/2 dummy candidates. Thus, the complete candidate set is
C = Cbase ∪

⋃
c∈Cbase

Dc and the final arc set is A = Abase ∪
⋃

c∈Cbase
({c} ×Dc). This weighted

majority graph can be realized by a polynomial-size ranking profile [McGarvey, 1953].7 We set
k = t+ 3.
We now prove that our reduction is correct. Note that throughout the argument, all the

dummy candidates have non-positive C2-Borda score and it will never be possible to eliminate
any of them, so they can essentially be ignored.
Suppose that T = {e1, . . . , et} is a hitting set. Then the following is a valid start of an

elimination ordering, with d eliminated in round k = t+ 3: First, we eliminate all candidates
from T in some arbitrary ordering, then the two candidates from B in some arbitrary ordering,
and then d. Explicitly, in the first t rounds, the maximum Borda score of a candidate is α+ 2
and all element candidates have a Borda score of α+ 2 (no other candidates have a Borda score
of α + 2 in these rounds). Thus we can select members of the hitting set T in each of these
rounds. In round t + 1, the remaining element candidates and the candidates in B have the
maximum Borda score of α+ 2. Thus, we can eliminate candidates in B (while doing so, the
Borda scores of element candidates decrease, so candidates in B continue having the maximum
Borda score). After all 2 candidates in B are eliminated, we are in the following situation with
respect to the remaining candidates’ C2-Borda score:

• d has score α− 2

• each S ∈ S has score at most α− 2 (since we have eliminated a hitting set, and thus have
eliminated at least one candidate that S beats)

• each remaining e ∈ U has score α− 2

• dummy candidates have non-positive score

Hence, at this point, candidate d has the highest Borda score and can be eliminated.
Conversely, suppose there is a ranking selected by Sequential-Borda-Winner where d is elim-

inated in round k = t + 3 or earlier. As observed above, in the first t rounds, only element
candidates can be eliminated. Let T = {e1, . . . , et} be the set of elements whose candidates are
eliminated in these rounds. In rounds t+1 and t+2, all candidates in B have score at least α+2
(it cannot go lower because the candidates that B beats are all dummy candidates which cannot
be eliminated). Because d has score only α − 2, the two candidates in B must be eliminated
before d. This brings us to round t+3 where by assumption d is eliminated. Hence at this point,

7Note that we are not claiming that this weighted majority graph can be realized by constantly many voters.
The reason that a construction like in Theorem D.8 does not translate is that we do not have a constant upper
bound on the number of occurrences of each element. Such bounds typically cannot be imposed while retaining
W[1]-hardness.
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no candidate has score higher than α− 2. In particular, for every set S ∈ S, its score is less than
α. This can only have happened if at least one of the elements of S has been eliminated and is
thus part of T . It follows that T is a hitting set.
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