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A B S T R A C T

The design and analysis of numerical methods are usually guided by the following: (a) von Neumann analysis
using Fourier series expansion of unknowns, (b) the modified differential equation approach, and (c) a more
generalized approach that analyzes numerical methods globally, using Fourier–Laplace transform to treat the
total or disturbance quantities in terms of waves. This is termed as the global spectral analysis (GSA). GSA can
easily handle non-periodic problems, by invoking wave properties of the field through the correct numerical
dispersion relation, which is central to the design and analysis. This has transcended dimensionality of the
problem, while incorporating various physical processes e.g. by studying convection, diffusion and reaction
as the prototypical elements involved in defining the physics of the problem. Although this is used for fluid
dynamical problems, it can also explain many multi-physics and multi-scale problems. This review describes
this powerful tool of scientific computing, with new results originating from GSA: (i) providing a common
framework to analyze both hyperbolic and dispersive wave problems; (ii) analyze numerical methods by
comparing physical and numerical dispersion relation, which leads to the new class of dispersion relation
preserving (DRP) schemes; (iii) developing error dynamics as a distinct tool, identifying sources of numerical
errors involving both the truncation and round-off error. Such studies of error dynamics provide the epistemic
tool of analysis rather than an aleatoric tool, which depends on uncertainty quantification for high performance
computing (HPC). One of the central themes of GSA covers the recent advances in understanding numerical
phenomenon like focusing, which defied analysis so far. An application of GSA shown here for the objective
evaluation of the so-called DNS by pseudo-spectral method for spatial discretization along with time integration
by two-stage Runge–Kutta method is performed. GSA clearly shows that this should not qualify as DNS for
multiple reasons. A new design of HPC methods for peta- and exa-flop computing tools necessary for parallel
computing by compact schemes are also described.

1. Introduction

Scientific computing has evolved significantly over a short period
of time due to the early analysis and design of numerical methods
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by mathematicians. Such early attempts have been noted [1] as basic
advances in numerical technique made in previous centuries encouraged
Richardson [2] to seek a solution of system of equations for weather fore-
casting using a desk calculator. However, the results were not successful
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due to lack of proper analysis which showed the method [3] to be
unconditionally unstable for the numerical mode invoked by the time
discretization of the heat equation, as explained in [1,4].

von Neumann is credited with developing the Fourier analysis
method [4–6] which has been used ever since. However, the use of
Fourier analysis has few restrictions. First, the approach only works
for spatially periodic problems, with constant coefficients appearing
in the differential equation. Also, implicit in such an analysis is the
fact that each Fourier mode acts independently, with no provisions for
any interactions among all the Fourier modes. This prompted Zingg to
note [7,8] that Fourier analysis is easy to apply, yet it is difficult to
interpret, due to the fact that non-periodic problems are excluded (and
hence no effects of boundary conditions are included).

There is also another method of analysis practiced which converts
the discrete equation back to its equivalent differential equation, shown
in [9]. In [10,11], the authors claim to show the similarity of these
two approaches, and furthermore noted that the modified equation
approach has been in practice since 1950s. Linear problems with vari-
able coefficients have been studied in [12] and nonlinear problems are
shown in [13]. However, Li and Yang [11] claim that the modified
equation approach is very heuristic, unfortunately just valid for solutions
in smooth regions or at low frequency modes [9]: Therefore the connection
with the von Neumann analysis is only restricted there.

Some researchers have raised concerns about the utility of modified
equation approach, as Li and Yang [11] have quoted from [14] that
there is lack of theoretical foundation in this approach and the results
obtained are viewed with apprehension. It is to be noted however that
modified equation approach has been in use for the design of numerical
methods for parabolic equations to increase accuracy [15] and stabil-
ity [16]. It is known that in the quest of stability [16], one faces the
problem of consistency [1,17]. Additionally for hyperbolic equations,
Lax and Wendroff [18,19] have used modified equation approach
for enhanced accuracy and stability. Having noted the importance of
analyzing difference equations by its equivalent differential form, one
also notes a vast source of literature with sufficient mathematical rigor
from the Russian school, as reported in the monograph of Shokin [20]
and Yanenko et al. [21], and references contained therein. In the mod-
ified equation approach, if one converts the difference equation into
its equivalent differential equation form by retaining space and time
derivatives, it is called the 𝛤 - form analysis. If the discrete equation is
reverted back in the differential representation, with all the truncation
terms converted only in terms of the spatial derivatives, the resultant
approach is known to be in the 𝛱-form. The variants of these 𝛤 - and
𝛱-forms of the modified equation approach along with Fourier–Laplace
representation of the unknowns are used in the development of the
global spectral analysis (GSA) of numerical methods.

The goal of the present article is to summarize both the key elements
(see Sections 2, 3 and 5) and the recent developments and results in
the field of GSA of advanced numerical methods for the linear 1D
convection equation (CE) (see Sections 4 and 8), the Navier–Stokes
equation (NSE) (see Sections 7 and 8) and the rotating shallow water
equations (Section 9). The present survey emphasizes several very
important issues, such as the derivation of the true numerical phase
speed and group speed of the numerical solution, along with the related
stability analysis. It is of major importance here to point out that GSA
accounts for all effects, i.e. space discretization, time integration and
boundary conditions.

Another important point addressed in the present review deals with
collective interactions between modes, in both linearized and nonlinear
regime. In the linear case, these interactions can lead to instability
because of focusing or side-band instabilities, that are not detected
when carrying out the usual single-mode Fourier analysis. In practice,
this is done by considering wave packets instead of monochromatic
disturbances to perform the stability analysis. The analysis in terms of
occurrence of spurious numerical caustics is discussed in Section 6.
2

The review of GSA is supplemented by an extension to the nonlinear
case and the resonant mode analysis (Section 11). Also, the application
of GSA is shown in the novel review of the Fourier spectral method
for homogeneous isotropic turbulence; subdomain boundary closure for
high performance computing using compact schemes and analysis of
convection diffusion reaction equation.

2. Global spectral analysis (GSA)

2.1. A primer to GSA

Apart from strict boundary value problems, rest of scientific com-
puting for solving partial differential equation can be viewed as space–
time dependent problems, for which the unknowns can be written in
their most general form as,

𝑢(𝑥, 𝑡) = ∫ ∫ 𝑈 (𝜔0, 𝑘)𝑒𝑖𝑘(𝑥−𝑐𝑡)𝑑𝜔0𝑑𝑘 (1)

where the wavenumber 𝑘 and circular frequency 𝜔0 are related via
the dispersion relation or the phase speed given as, 𝑐 = 𝜔0∕𝑘. The
disturbance field is nothing but an ensemble of wave components with
the parameters (𝑘, 𝜔0) defining the continuum field. This representation
applies equally to dynamical systems consisting of waves or eddies [1,
22]. The rudiments of GSA are demonstrated with the help of the space–
time dependent one-dimensional (1D) CE (see the schematic view in
Fig. 1), which is the simplest in appearance (admitting exact solution,
in terms of initial condition), and yet provides one of the toughest tests
for the accuracy of any numerical method [1,23]. This is given as,
𝜕𝑢
𝜕𝑡

+ 𝑐 𝜕𝑢
𝜕𝑥

= 0 (2)

Substituting Eq. (1) in (2), one notices that the partial differential
equation transforms into an algebraic relation,

𝜔0 = 𝑘𝑐 (3)

This is the physical dispersion relation, and is the central ele-
ment for the analysis and design of high accuracy DRP schemes. It is
worth realizing that this relation can originate from governing differ-
ential equation (as is usually the case for hyperbolic partial differen-
tial equation), or from the boundary condition (which are noted to
create dispersive waves). For example, for surface gravity waves [1,
24], the governing equation is a time-independent elliptic partial dif-
ferential equation, while the dispersion relation originates from the
time-dependent interface condition. Similar situations prevail in other
interfacial instability problems, for which the equilibrium state can
be time-independent, and the physical dispersion relation can indicate
physical instability [25,26]. The physical implication of dispersion rela-
tion is simultaneous consideration of spatial and temporal scales. But in
numerical computing of partial differential equations, this is often not
satisfied rigorously, as can be seen in various methods known as the
method of lines or fractional methods [27,28]. Such an approach can
be even traced to Eq. (8) of [4], where the parabolic partial differential
equation is converted into a boundary value problem, often credited
with the beginning of the analysis of numerical methods.

It is worth noting that a wave equation can be derived from (2) by
applying a time derivative operator, leading to

𝜕2𝑢
𝜕𝑡2

− 𝑐2 𝜕
2𝑢
𝜕𝑥2

= −
[ 𝜕𝑐
𝜕𝑡

− 𝑐 𝜕𝑐
𝜕𝑥

] 𝜕𝑢
𝜕𝑥

(4)

in the most general case in which a space–time-dependent advection
speed 𝑐(𝐱, 𝑡) is considered. The right-hand side term originates in the
variations of the advection speed. It can be interpreted as a source
term responsible for some diffraction/refraction effects. In the case of
a uniform steady 𝑐, an homogeneous wave equation is recovered. A
space–time-dependent advection velocity can appear in many cases,
e.g. when considering the advection of a passive scalar 𝑢 by a velocity



Fig. 1. Schematic view of GSA analysis level. The mass matrix is assumed to be the identity matrix for the sake of simplicity, i.e. 𝐶 = 𝐼𝑑 . The time integration scheme is described
as a Padé approximant to the exact exponential solution, i.e. 𝑒−𝑀 ∼ 𝑄−1(𝑀)𝑃 (𝑀), where 𝑄 and 𝑃 are polynomials of the matrix 𝑀 .
field 𝑐, or when investigating the linearized behavior of a small distur-
bance 𝑢 about a base flow 𝑐 as classically done in the hydrodynamic
stability theory.

Despite the approximate attempt by Li and Yang [11] in relat-
ing Fourier analysis of von Neumann [4] and modified equation ap-
proach [9], more mathematically rigorous analysis can be performed
by GSA, which has been introduced in [29–31]. This begins with
the representation of numerical discretization in spectral space. To
facilitate the description of the developed GSA, one represents the
unknown 𝑢(𝑥, 𝑡), in the hybrid spectral plane as,

𝑢(𝑥, 𝑡) = ∫ �̂� (𝑘, 𝑡)𝑒𝑖𝑘𝑥𝑑𝑘 (5)

Here �̂� is the Fourier amplitude and 𝑘 is treated as the independent
variable for analysis. The exact spatial derivative can be obtained from
Eq. (5) as,

𝜕𝑢
𝜕𝑥

|

|

|

|𝑒𝑥𝑎𝑐𝑡

= ∫ 𝑖𝑘�̂�𝑒𝑖𝑘𝑥𝑑𝑘

One can write an equivalent spatial derivative obtained numerically as,

𝜕𝑢
𝜕𝑥

|

|

|

|𝑛𝑢𝑚

= ∫ 𝑖𝑘𝑒𝑞�̂�𝑒
𝑖𝑘𝑥𝑑𝑘

Thus, the Fourier–Laplace amplitude is multiplied by 𝑖𝑘𝑒𝑞 (instead of
𝑖𝑘 used in Fourier spectral method), in order to obtain the spatial
derivative, originally made popular by Vichnevetsky and Bowles [32]
and later on has been used in [29,33–35] among many other references.

There are two aspects of introducing 𝑘𝑒𝑞 , with the first providing
a yardstick for comparing different discretization methods used in
computing. Before we show some typical cases from finite difference
methods, it is to be noted that in Chapter 12 of [1] and in [36],
the finite volume and finite element methods have been similarly
compared with many such discretization schemes. Ideally the ratio
𝑘𝑒𝑞∕𝑘, should be equal to one and is treated as the measure of resolution
of discretization schemes plotted as function of nondimensional wave
number 𝑘ℎ, with ℎ as the uniform grid spacing.

The second aspect of 𝑘𝑒𝑞 is its mathematical implication for numer-
ical computation, in expressing the numerical dispersion relation. If
one ignores all errors due to temporal discretization, then using the
form of the spatial derivative in terms of 𝑘𝑒𝑞 in Eq. (2), one obtains the
numerical dispersion relation as,

𝜔 = 𝑘 𝑐 (6)
3

𝑁 𝑒𝑞
It appears intuitive that 𝑐 is held constant in the formulation of
Eq. (2), and thus the above representation could be viewed as a semi-
discrete analysis [37–39] used for numerical stability analysis. One
of the greatest drawbacks of this approach is its inability to incorpo-
rate information about temporal discretization. Thus, no quantitative
analysis is possible by this semi-discrete approach using the numerical
dispersion relation given by Eq. (6). For example, if one were to
compute a numerical group velocity [1,40–42] as,

𝑉𝑔𝑁 =
𝑑𝜔𝑁
𝑑𝑘

= 𝑐
𝑑𝑘𝑒𝑞
𝑑𝑘

(7)

This numerical dispersion relation is wrong, as the group velocity
is independent of time discretization scheme for Eq. (2). Propagation
of wave-packet has been studied [1] showing that the group velocity
is a strong function of both space and time discretizations considered
together. It is somewhat ironical that authors in [43] have proposed this
wrong numerical dispersion relation in Eq. (6) to derive a DRP scheme
by considering spatial discretization alone. The authors [43] actually
took a four-time level method for their DRP scheme, without noting
that such multi-time level methods invoke spurious numerical modes,
a topic which will be highlighted here, as reported in [1,44,45].

In contrast to using Eq. (6), researchers [30,46] have shown that
while solving Eq. (2) numerically, the phase speed does not retain the
constant value which is hard-coded. This appears paradoxical, but it
has been clearly explained by the authors in [30,31,44] that the choice
of space–time discretization methods immediately fixes the phase shift
after every time step. This along with the time step determines the
numerical phase speed (𝑐𝑁 ), which will not be equal to the prescribed
phase speed, 𝑐. This simple and subtle cause for 𝑐𝑁 ≠ 𝑐, is one of the
central results of GSA.

Thus, the correct numerical dispersion relation and group velocity
that accounts for both spatial discretization and time integration are
written as,

𝜔𝑁 = 𝑘𝑐𝑁 and 𝑉𝑔𝑁 = 𝑐𝑁 + 𝑘
𝑑𝑐𝑁
𝑑𝑘

(8)

One notes that the wavenumber 𝑘 is truly the independent variable,
which along with the spatial and temporal discretization schemes fix all
the numerical dispersion parameters and wave properties. The fact that
𝑐 changes to 𝑐𝑁 applies equally to coefficients of many other transport
and diffusion equations, as have been noted already in introduction.



2.2. Rationale for GSA

The justification to use GSA is explained here with an example. We
would like to demonstrate the utility of Eq. (8) for the 1D CE, with leap-
frog and 𝐶𝐷2 schemes employed for time and space discretizations,
respectively, on a uniformly spaced grid of spacing ℎ. Using these
discretizations in Eq. (2), one obtains the difference equation for a
discrete node at (𝑥𝑗 , 𝑡𝑛) as,

𝑢𝑛+1𝑗 − 𝑢𝑛−1𝑗

2𝛥𝑡
+ 𝑐

(

𝑢𝑛𝑗+1 − 𝑢
𝑛
𝑗−1

2ℎ

)

= 0 (9)

where 𝛥𝑡 is the uniform time-step used for integrating Eq. (2).
We note that the numerical phase shift derived using Eq. (5) will be

different from the expression given by the 𝛱-form analysis [20]. This
is due to the fact that the numerical dispersion relations used by these
two approaches are different, as demonstrated.

In the discrete relation obtained in Eq. (9), the unknown is rep-
resented by the Fourier–Laplace transform as 𝑢(𝑥𝑗 , 𝑡𝑛) = ∬ �̂� (𝑘, 𝜔0)
𝑒(𝑘𝑥𝑗−𝜔0𝑡

𝑛)𝑑𝑘 𝑑𝜔0. Substituting this into Eq. (2), we obtained the dis-
persion relation given in Eq. (3). The implication of existence of such
a relationship is that the wavenumber and circular frequency both
cannot be independent of each other. While this may appear as ob-
vious, numerical analysis using 𝛱-form overlooks this for discrete
computations.

In 𝛱-form analysis, the numerical phase speed is computed from
the dispersion relation 𝜔𝛱 = 𝑘𝑒𝑞𝑐 as 𝑐𝑁𝛱 = 𝑘𝑒𝑞

𝑘 𝑐 where 𝜔𝛱 = 𝑘𝑐𝑁𝛱 . For
the chosen numerical method 𝑘𝑒𝑞 = sin(𝑘ℎ)

ℎ . Thus, the numerical phase
speed from 𝛱-form for the leap-frog and CD2 scheme is given by
𝑐𝑁𝛱
𝑐

=
sin(𝑘ℎ)
𝑘ℎ

(10)

The same 𝛱-form analysis has been performed in [32] and the
above expression has been derived (cf. Eq. (2.13)). There are a few
distinctive features of this result presented above, which requires high-
lighting. First, we note that the time-integration is performed by a
three-time level method and hence one would expect two distinct
numerical phase speeds, which is not given here. Secondly, and most
importantly, the assumption that the numerical phase speed is de-
pendent on time discretization is not used in this form of analysis.
A consistent approach is used, as demonstrated next by GSA analysis
which is based on 𝛤 -form approach.

The importance of GSA comes into picture with its emphasis in
representing the dependent variable in Eq. (5) using the wavenumber
which is ascribed the role of the sole independent variable. Then
the circular frequency and phase speed are calculated based on not
only the governing differential equation, but also its discretization is
considered in writing the numerical dispersion relation by Eq. (8).
Based on different difference equations, one first obtains the numerical
amplification following the hybrid representation of Eq. (5). Such nu-
merical amplification factors would enforce phase shifts per time step,
based on the discretization schemes, providing the glimpse of numerical
phase speed. This is explained with the help of the leap-frog and 𝐶𝐷2
discretization schemes.

For the GSA analysis using 𝛤 -form, the unknown variable 𝑢 is
represented in the hybrid spectral plane as already given by Eq. (5).
Representing the initial condition for the governing equation in (2) as,

𝑢(𝑥𝑗 , 𝑡 = 0) = 𝑢0𝑗 = ∫ 𝑈0(𝑘) 𝑒
𝑖𝑘𝑥𝑗 𝑑𝑘 (11)

where the subscript and superscript denotes the spatial and temporal
indices respectively. The solution at any later time 𝑡 = 𝑛𝛥𝑡 is written
using the definition of amplification factor as

𝑢𝑛 = 𝑈0(𝑘) [|𝐺𝑗 |]𝑛 𝑒
𝑖(𝑘𝑥𝑗−𝑛𝜙𝑗 )𝑑𝑘 (12)
4

𝑗 ∫
where 𝐺𝑗 =
(

�̂� (𝑘,𝑡𝑛+𝛥𝑡)
�̂� (𝑘,𝑡𝑛)

)

is the amplification factor and is, in general, a
complex quantity i.e. 𝐺𝑗 = 𝐺𝑟𝑗 + 𝑖𝐺𝑖𝑗 . |𝐺𝑗 | is the modulus as given by
|𝐺𝑗 | = (𝐺2

𝑟𝑗 + 𝐺
2
𝑖𝑗 )

1∕2. The phase is calculated as tan𝜙𝑗 = −𝐺𝑖𝑗∕𝐺𝑟𝑗 .
From the relation for 𝜙, the numerical phase speed (𝑐𝑁𝛤 ) is obtained

by noting that 𝜙𝑗 is the phase shift per time step and is given below.

𝑐𝑁𝛤 =
𝜙𝑗
𝑘𝛥𝑡

(13)

The physical phase speed is 𝑐 for all wavenumbers, but 𝑐𝑁𝛤 is noted
to depend on 𝑘. Thus, the numerical solution is dispersive, in contrast
to the non-dispersive nature of 1D CE. Thus, both the 𝛱- and 𝛤 -form
analyses show the numerical phase speed to depend upon the length
scale 𝑘, with the important difference that the latter uses the actual
temporal discretization used for computing. In contrast, the 𝛱-form
analysis, like the semi-discrete analysis ignores the information orig-
inating from the temporal discretization, making such results of very
limited value, despite its very wide-spread use among practitioners.

Representing the variable 𝑢 in the hybrid spectral plane given by
Eq. (5) and substituting this into Eq. (9), we obtain the relation

�̂�𝑛+1
𝑗 − �̂�𝑛−1

𝑗 + 𝑐𝛥𝑡
ℎ

(

𝑒𝑖𝑘ℎ − 𝑒−𝑖𝑘ℎ
)

�̂�𝑛
𝑗 = 0 (14)

where the variables with hat superscript denote the spectral ampli-
tudes. Noting the definition of numerical amplification factor 𝐺𝑗 , de-

fined as 𝐺𝑗 =
(

�̂�𝑛+1𝑗
�̂�𝑛𝑗

)

=
(

�̂�𝑛𝑗
�̂�𝑛−1𝑗

)

, a quadratic relation for 𝐺𝑗 is obtained
and the two roots or amplification factors are determined as

𝐺𝑗1,2 = −𝑖𝑁𝑐 sin(𝑘ℎ) ±
√

1 −𝑁𝑐
2 sin2(𝑘ℎ) (15)

where 𝑁𝑐 =
𝑐𝛥𝑡
ℎ denotes the CFL number. From the above relations, the

numerical phase speeds 𝑐𝑁𝛤 can be calculated from Eq. (13) as

𝑐𝑁𝛤1,2
𝑐

=
𝜙𝑗

(𝑘ℎ)𝑁𝑐
=
(

1
(𝑘ℎ)𝑁𝑐

)

tan−1
⎛

⎜

⎜

⎜

⎝

𝑁𝑐 sin(𝑘ℎ)

±
√

1 −𝑁𝑐
2 sin2(𝑘ℎ)

⎞

⎟

⎟

⎟

⎠

(16)

Vichnevetsky and Bowles [32] also employed the 𝛤 -form analysis in
determining the numerical phase speed. If the unknown is represented
by the Fourier–Laplace transform whose form is as given earlier and
substituting this in Eq. (9) one obtains the spectral plane representation
for leap-frog and 𝐶𝐷2 schemes as,

𝑒−𝑖𝜔0𝛥𝑡 − 𝑒𝑖𝜔0𝛥𝑡 +𝑁𝑐
(

𝑒𝑖𝑘ℎ − 𝑒−𝑖𝑘ℎ
)

= 0

which upon simplification yields

sin(𝜔0𝛥𝑡) = 𝑁𝑐 sin(𝑘ℎ)

This provides the frequency as

𝜔0 =
1
𝛥𝑡

sin−1(𝑁𝑐 sin(𝑘ℎ)) (17)

Having obtained the expression for the circular frequency in terms
of the wavenumber, numerical phase speed is computed by dividing
the circular frequency by the wavenumber as, 𝑐𝑁𝑉 𝐵 = 𝜔0

𝑘 , which upon
simplification yields
𝑐𝑁𝑉 𝐵
𝑐

= 1
(𝑘ℎ)𝑁𝑐

sin−1(𝑁𝑐 sin(𝑘ℎ)) (18)

We note that Vichnevetsky and Bowles obtain amplification factors
given by Eq. (4.8c) in [32] and show the above expression for nu-
merical phase speed in Table 4.3 in [32]. Although, at a first glance
the numerical phase speeds computed from the 𝛤 -form GSA analysis
(Eq. (16)) and the expression given by Vichnevetsky and Bowles [32]
(Eq. (18)) appear different, one notices on closer scrutiny that these
two expressions are equivalent, following the trigonometric identity:
sin−1(𝑥) = tan−1

(

𝑥
√

1−𝑥2

)

.
Thus, one notes four phase speeds have been described in the above

analysis: With 𝑐- as the physical phase speed; 𝑐 as the numerical
𝑁𝛱



phase speed obtained from the 𝛱-form analysis; 𝑐𝑁𝛤1,2 are the numer-
ical phase speeds from the GSA analysis based on 𝛤 -form and 𝑐𝑁𝑉 𝐵
as the phase speed derived by Vichnevetsky and Bowles [32], also
based on 𝛤 -form analysis. The numerical phase speed(s) obtained from
the 𝛤 -form analysis is the correct approach providing the quantities
consistent with the definition of phase speed, whereas 𝑐𝑁𝛱 and the
same expression obtained for semi-discrete analysis is incorrect due to
the use of wrong numerical dispersion relation. Finally, the expression
for numerical phase speed provided by the analysis due to Vichnevetsky
and Bowles [32] gives only one numerical phase speed (𝑐𝑁𝑉 𝐵 ) which is
identical to 𝑐𝑁𝛤1 . The discerning readers would note that the expression
of 𝑐𝑁𝑉 𝐵 also contains the expression for the spurious numerical mode,
provided one identifies the correct range of the argument for the
expression of 𝑐𝑁𝑉 𝐵 . However, the authors in [32] failed to identify and
discuss the importance of the spurious mode in practical computations.
One also notes that Haltiner and Williams [46] obtained the same
expressions for 𝑐𝑁𝛤1,2 , but their implications in long range weather
forecasting calculation was not seized upon. Although the 𝛤 -form
analysis has been introduced by Shokin [20], only a discussion on the
analysis was made without a derivation of the numerical phase speeds.
The foundation of GSA was founded and the implications noted in a
series of articles by the authors in [1,29–31,47–49].

2.3. Elements of matrix analysis

Being a global method that accounts for spatial discretization, time
integration and boundary conditions, GSA can be recast as a matrix
analysis method. Starting from the linear parabolic equation

𝜕𝑢
𝜕𝑡

+ 𝑐 𝜕𝑢
𝜕𝑥

= 𝜈 𝜕
2𝑢
𝜕𝑥2

, 𝜈 ≥ 0 (19)

with the hyperbolic linear problem (2) recovered for a null diffusion,
i.e. 𝜈 = 0. The first step of matrix analysis consists of deriving the time-
continuous semi-discrete problem by taking into account of only the
spatial discretization that leads to:

𝐶
𝑑𝐮ℎ(𝑡)
𝑑𝑡

= −𝐴𝐮ℎ(𝑡) + 𝐬(𝑡), 𝑡 > 0, 𝐮ℎ(0) = 𝐮0 (20)

where matrices 𝐶 and 𝐴 are related to the spatial numerical scheme
and the vector 𝐬(𝑡) accounts for Dirichlet-like boundary conditions
(Neumann and periodic conditions are inserted into 𝐴). 𝐶 is the mass
matrix, which simplifies as the identity matrix in finite differences
methods, and is lumped into a diagonal matrix in many Finite Element
Methods. Both 𝐶 and 𝐴 are assumed to be time-independent hereafter
for the sake of simplicity. Assuming that the numerical method is such
that the mass matrix 𝐶 is invertible, one obtains the following ordinary
matrix equation:
𝑑𝐮ℎ(𝑡)
𝑑𝑡

= −𝐶−1𝐴𝐮ℎ(𝑡) + 𝐶−1𝐬(𝑡), 𝑡 > 0 (21)

whose solution is

𝐮ℎ(𝑡) = 𝑒−𝑡𝐶
−1𝐴𝐮0 + 𝑒−𝑡𝐶

−1𝐴
∫

𝑡

0
𝑒−𝑡

′𝐶−1𝐴𝐶−1𝐬(𝑡′)𝑑𝑡′, 𝑡 ≥ 0 (22)

For the case of time-independent 𝐬, this solution simplifies as

𝐮ℎ(𝑡) = 𝐴−1𝐬 + 𝑒−𝑡𝐶−1𝐴(𝐮0 − 𝐴−1𝐬), 𝑡 ≥ 0 (23)

This solution can be interpreted as the sum of a steady-state solution
plus a transient term, and thus can be rewritten as,

𝐮ℎ(𝑡 + 𝑑𝑡) = 𝐴−1𝐬 + 𝑒−𝑑𝑡𝐶−1𝐴(𝐮ℎ(𝑡) − 𝐴−1𝐬) (24)

The fully discrete problem is now obtained considering the time-
integration method, which amounts to finding an approximation
𝑀𝐺𝑆𝐴(𝑡) of the exponential matrix exp(−𝑡𝐶−1𝐴) in Eq. (23) or 𝑀𝐺𝑆𝐴(𝑑𝑡)
for exp(−𝑑𝑡𝐶−1𝐴) in Eq. (24). This can be done in several ways,
among which using Taylor-series expansion, Padé approximants or even
Chebyshev rational approximations of the matrix exponential function
5

(e.g. see [50]). The case of the Padé approximant is of particular
interest, since several popular time integration methods can be recast
as particular cases of this approach. Writing the Padé approximant as

𝑒𝑧 =
𝑃𝑛(𝑧)
𝑄𝑚(𝑧)

(25)

where 𝑃𝑛(𝑧) and 𝑄𝑚(𝑧) are 𝑛th order and 𝑚th order polynomial in 𝑧,
respectively, the first values and related time-integration methods are
given in Table 1.

As a consequence, a time-marching numerical method can be in the
following compact form:

𝐮𝑛+1 =𝑀𝐺𝑆𝐴𝐮𝑛 + �̃�, �̃� = (𝐼𝑑 −𝑀𝐺𝑆𝐴)𝐴−1𝐬 (26)

where the vector �̃� is related to boundary conditions and 𝑢𝑛𝑖 denotes the
computed value of 𝑢 at node 𝑖 at the 𝑛th time step. The 𝑑𝑡 dependency
in 𝑀𝐺𝑆𝐴 has been omitted for the sake of simplicity. A commonly used
stability criterion is

𝜌(𝑀𝐺𝑆𝐴) ≤ 1, (27)

where 𝜌(𝑀𝐺𝑆𝐴) denotes the spectral radius of 𝑀𝐺𝑆𝐴, i.e. the maximum
eigenvalue modulus of 𝑀𝐺𝑆𝐴. This condition ensures that ‖𝐮𝑛‖ remains
bounded over arbitrary time, and then the error will also be bounded,
provided �̃� remains bounded. However, in [31], it has been shown
that phase and dispersion errors do not allow �̃� to remain bounded.
In the special case of CE, �̃� = 0, and then the more restrictive condition
𝜌(𝑀𝐺𝑆𝐴) < 1 guaranties that the numerical solution vanishes over very
long integration time. If the physical solution also vanishes (which is
true for the diffusive parabolic problem (19) with periodic boundary
conditions), the difference between the physical and numerical solu-
tions also vanishes over long times, but does not preclude transient
error growth over finite time [51–55].

We can now think about the hyperbolic problem adopted to explain
GSA. During the course of our discussion, it appears that there is some
conflict in using GSA for the hyperbolic problem solved numerically for
the following reasons.

(a) A truly hyperbolic problem can be analyzed as a Cauchy problem
in an unbounded domain, as advocated in [32]. However, to compute
it we need a finite domain and therefore, boundary conditions. One
of the strong points of GSA is that one can analyze non-periodic
problems incorporating boundary closure, as in the case of parabolic
problem [4,48].

(b) There are hyperbolic problems with boundary conditions, for
which one uses a method of characteristics, with characteristics pro-
viding necessary boundary conditions. This class of problems can be
easily analyzed by GSA.

(c) For periodic hyperbolic problems, use of GSA is straightforward.
Thus, one must consider the problems of type (a) above for the use

of GSA for Eq. (2). There is an indirect way to solve this by considering
1D CE in a finite domain and analyze the methods by GSA. We consider
the solution of the following,

(i) The right running wave problem of Eq. (2) by considering
propagation of a wave-packet, given as the initial condition. One places
the packet and the domain in a way that the initial condition does
not reach out to the numerical boundaries. Thus on the left or inflow
boundary, the boundary condition can be the trivial solution (u = 0).
Thus the inflow boundary will never be the source of any error, as has
been analyzed in [31].

(ii) Let us say that we have 𝑁 points in the domain with equi-spaced
points. Then one can obtain the spatial derivatives at𝑡 = 0 at all the
nodes, the usual way applying any explicit or implicit method [29].

(iii) Next, one solves Eq. (2) for the next time step at 𝑡 = 𝛥𝑡
for all the points. One accepts the solution up to 𝑗 = (𝑁 − 1). At
𝑗 = 𝑁 , one uses a backward first order formula using the solution at
𝑗 = (𝑁 − 1) at the current time step and time advance the solution
at 𝑗 = 𝑁 by using 𝑁𝑐 = 1 (the reason for which will be apparent,
as explained in [1]). This will provide a solution at 𝑗 = 𝑁 which is



Table 1
Padé approximants to 𝑒𝑧. From [50].
𝑃𝑛(𝑧)∕𝑄𝑚(𝑧) m = 0 1 2 3 4

n = 0 1
1

1
1−𝑧

(Backward Euler) 2
2−2𝑧+𝑧2

6
6−6𝑧+3𝑧2−𝑧3

24
24−24𝑧+12𝑧2−4𝑧3+𝑧4

1 1+𝑧
1

(Forward Euler) 2+𝑧
2−𝑧

(Crank-Nicholson) 6+2𝑧
6−4𝑧+𝑧2

24+6𝑧
24−18𝑧+6𝑧2−𝑧3

120+24𝑧
120−96𝑧+36𝑧2−8𝑧3+𝑧4

2 2+2𝑧+𝑧2

2
(RK 2) 6+4𝑧+𝑧2

6−2𝑧
12+6𝑧+𝑧2

12−6𝑧+𝑧2
60+24𝑧+3𝑧2

60−36𝑧+9𝑧2−𝑧3
360+120𝑧+12𝑧2

360−240𝑧+72𝑧2−12𝑧3+𝑧4

3 6+6𝑧+3𝑧2+𝑧3

2
(RK 3) 24+18𝑧+16𝑧2+𝑧3

24−6𝑧
60+36𝑧+9𝑧2+𝑧3

60−24𝑧+3𝑧2
120+60𝑧+12𝑧2+𝑧3

120−60𝑧+12𝑧2−𝑧3
840+360𝑧+60𝑧2+4𝑧3

840−480𝑧+120𝑧2−16𝑧3+𝑧4

4 24+24𝑧+12𝑧2+4𝑧3+𝑧4

24
120+96𝑧+36𝑧2+8𝑧3+𝑧4

120−24𝑧
360+240𝑧+72𝑧2+12𝑧3+𝑧4

360−120𝑧+12𝑧2
840+480𝑧+120𝑧2+16𝑧3+𝑧4

840−360𝑧+60𝑧2−4𝑧3
1680+840𝑧+180𝑧2+20𝑧3+𝑧4

1680−840𝑧+180𝑧2−20𝑧3+𝑧4
‘exact’ for the time step corresponding to 𝑁𝑐 = 1. Note that the time
step for interior points will be dictated by GSA, ensuring |𝐺| = 1, and
𝑐𝑁∕𝑐 = 1 and 𝑉𝑔𝑁∕𝑐 = 1 [1,31]. This is the way, one also uses the
Sommerfeld boundary condition, while solving the NSE that requires
a convection speed at the boundary. In this test case, the convection
speed is determined by the CFL condition.

This is the way, one can time march the solution ensuring the
property of the exact, non-dissipative, non-dispersive nature of the 1D
CE everywhere.

3. Global resolution in GSA: Diffusion and anti-diffusion

In the previous section, it is noted that GSA views the numerical
dispersion relation (Eq. (8)) differently from the intuitive assumption
of numerical dispersion given by Eq. (6). These appear as difference
in interpretation of numerical discretization, by considering constant
phase speed as input to the problem. Whereas, for a dispersive case,
the phase speed is different from the constant value, and is dictated by
the spatial and temporal discretization applied globally in the compu-
tational domain. Thus, it is important to understand more carefully the
nature of spatial and temporal discretizations used.

Considering for the moment the solution of Eq. (2) for a structured
grid with uniformly distributed points, one treats the unknowns as
a vector, {𝑢}, and the corresponding first spatial derivative as the
vector, {𝑢′}, with the prime indicating the spatial derivative. Without
going into specific nature of the scheme chosen to obtain the spatial
derivative, one can represent the generic spatial discretization scheme
as,

[𝐴]{𝑢′} = 1
ℎ
[𝐵]{𝑢} (28)

where in usual discretization schemes, [𝐴] and [𝐵] matrices are band-
limited with constant elements. While this is for the general implicit
discretization scheme, one can also alternately express an equivalent
explicit discretization scheme using [𝐶] = [𝐴]−1[𝐵] as,

{𝑢′} = 1
ℎ
[𝐶]{𝑢} (29)

It is to be noted that despite [𝐴] and [𝐵] matrices being very band-
limited (tri-diagonal or penta-diagonal non-zero entries), the [𝐶] matrix
may have many non-zero entries and is not necessarily band-limited.
Thus, the derivative at the 𝑗th-node can, in general, depend upon the
values of the function at all 𝑁-nodes, and can be alternately written as,

𝑢′𝑗 =
1
ℎ

𝑁
∑

𝑙=1
𝐶𝑗𝑙𝑢𝑙 (30)

If one project all the functions on the right hand side to the 𝑗th node
in spectral form as, 𝑢𝑙 = ∫ 𝑈 (𝑘)𝑒𝑖𝑘(𝑥𝑙−𝑥𝑗 )𝑒𝑖𝑘𝑥𝑗 𝑑𝑘, then one can rewrite
Eq. (30) as,

𝑢′𝑗 =
1
ℎ ∫

𝑁
∑

𝑙=1
𝐶𝑗𝑙𝑈 (𝑘)𝑒𝑖𝑘(𝑥𝑙−𝑥𝑗 )𝑒𝑖𝑘𝑥𝑗 𝑑𝑘 (31)

This immediately enables one to note,

𝑖𝑘𝑒𝑞|𝑥=𝑥𝑗 =
1

𝑁
∑

𝐶𝑗𝑙𝑒
𝑖𝑘(𝑥𝑙−𝑥𝑗 ) (32)
6

ℎ 𝑙=1
There are few noteworthy features of Eq. (32), which highlight the
subsequent discussion on GSA. Adoption of matrix notation in Eqs. (28)
and (29), enables one to incorporate the boundary condition treatment
in the constituent matrices, which will provide global information of 𝑘𝑒𝑞
at all the nodes where solution is sought. Full-domain analysis of nu-
merical methods is the central strength of GSA. Secondly, one notes that
for central difference schemes (both explicit and implicit), viewed as
a full-domain problem with non-periodic boundary conditions, the [𝐴],
[𝐵] and [𝐶] matrices are non-Hermitian. For this reason alone, the GKS-
stability analysis [56] is inapplicable, as propounded by Gustaffson,
Kreiss and Sundström. This problem has also been highlighted in [29].
Thirdly, one also notices from Eq. (32) that 𝑘𝑒𝑞 is in general complex,
i.e. 𝑘𝑒𝑞 = 𝑘𝑟𝑒𝑎𝑙 + 𝑖𝑘𝑖𝑚𝑎𝑔 . Then the real part of 𝑘𝑒𝑞 contributes to the first
spatial derivative, so that one can rewrite Eq. (2) as,

𝜕𝑢
𝜕𝑡

+ ∫ 𝑖𝑘𝑟𝑒𝑎𝑙𝑐�̂�𝑒
𝑖𝑘𝑥𝑑𝑘 = ∫ 𝑖𝑘𝑖𝑚𝑎𝑔𝑐�̂�𝑒

𝑖𝑘𝑥𝑑𝑘 (33)

Compare this with the convection–diffusion equation (CDE) given
by,

𝜕𝑢
𝜕𝑡

+ 𝑐 𝜕𝑢
𝜕𝑥

= 𝛼 𝜕
2𝑢
𝜕𝑥2

(34)

where 𝛼 is the coefficient of diffusion and for many physical phenomena
is characterized as a positive quantity. For 𝛼 ≥ 0, the right-hand side of
Eq. (34) will have a negative sign, when represented in the spectral
plane, as 𝜕2𝑢

𝜕𝑥2
= − ∫ 𝑘2�̂� (𝑘)𝑒𝑖𝑘𝑥𝑑𝑘, for this reason diffusion connotes

often as dissipation. In contrast, negative value of 𝛼 is referred to as
anti-diffusion [1,29,34,57,58] and its unintended presence in numerical
computation leads to catastrophic breakdown of the solution process,
as the action of this term is to pump in energy to the system. Thus, if the
imaginary part of 𝑘𝑒𝑞 turns out to be positive, it leads to anti-diffusion
and the numerical solution will break down.

3.1. High accuracy schemes

High accuracy schemes are those which have extensive resolution
across the wavenumbers. This is represented by 𝑘𝑒𝑞∕𝑘 having the ideal
value of unity over as large a range of 𝑘ℎ as possible in the resolved
Nyquist limit of 𝜋 [34]. Quite often in the literature, instead of high
accuracy schemes, one comes across high order schemes to denote
higher resolution. However, it has been explained in [1,29] that one
can derive optimal compact schemes with lower formal order, yet one
will have extremely high resolution, as has been derived in [59] for
solving Eq. (2) with periodic boundary condition.

To avoid numerical diffusion and anti-diffusion introduced in dis-
cretizing first derivative, one prefers using central explicit and compact
schemes [1,29]. In [60,61], the first and second derivatives at the
sub-domain boundary have been calculated using eighth order central
difference (CD8) scheme with stencils given by,

𝑢′𝑖 =
4
5ℎ

(𝑢𝑖+1 − 𝑢𝑖−1) −
1
5ℎ

(𝑢𝑖+2 − 𝑢𝑖−2) +
4

105ℎ
(𝑢𝑖+3 − 𝑢𝑖−3)

− 1
280ℎ

(𝑢𝑖+4 − 𝑢𝑖−4) (35)

𝑢′′𝑖 = 8
5ℎ2

(𝑢𝑖+1 + 𝑢𝑖−1) −
1

5ℎ2
(𝑢𝑖+2 + 𝑢𝑖−2) +

8
315ℎ2

(𝑢𝑖+3 + 𝑢𝑖−3)

− 1 (𝑢 + 𝑢 ) −

560ℎ2 𝑖+4 𝑖−4
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72ℎ2

𝑢𝑖 (36)

One also comes across a class of combined compact difference (CCD)
schemes [62–65], which discretize first (indicated with a prime) and
second derivatives (indicated with double prime), simultaneously. The
interior stencils of this scheme for a periodic problem are given by [63],

7
16ℎ

(𝑢′𝑖+1 + 𝑢
′
𝑖−1) +

𝑢′𝑖
ℎ

− 1
16

(𝑢′′𝑖+1 − 𝑢
′′
𝑖−1) =

15
16ℎ2

(𝑢𝑖+1 − 𝑢𝑖−1) (37)

9
8ℎ

(𝑢′𝑖+1 − 𝑢
′
𝑖−1) −

1
8
(𝑢′′𝑖+1 + 𝑢

′′
𝑖−1) + 𝑢

′′
𝑖 = 3

ℎ2
(𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1) (38)

To solve non-periodic problems, the following explicit boundary
closure schemes have been proposed in [64,65] for the nodes at 𝑗 = 2
and (𝑁 − 1)

𝑢′2 =
1
ℎ

[(

2𝛽2
3

− 1
3

)

𝑢1−
(

8𝛽2
3

+ 1
2

)

𝑢2+(4𝛽2+1)𝑢3−
(

8𝛽2
3

+ 1
6

)

𝑢4+
2𝛽2
3
𝑢5

]

(39)

𝑢′𝑁−1 = − 1
ℎ

[(

2𝛽𝑁−1
3

− 1
3

)

𝑢𝑁 −
(

8𝛽𝑁−1
3

+ 1
2

)

𝑢𝑁−1 + (4𝛽𝑁−1 + 1)𝑢𝑁−2

−
(

8𝛽𝑁−1
3

+ 1
6

)

𝑢𝑁−3 +
2𝛽𝑁−1

3
𝑢𝑁−4

]

(40)

𝑢′′2 = (𝑢1 − 2𝑢2 + 𝑢3)∕ℎ2 (41)

𝑢′′𝑁−1 = (𝑢𝑁 − 2𝑢𝑁−1 + 𝑢𝑁−2)∕ℎ2 (42)

with 𝛽2 = −0.025 and 𝛽𝑁−1 = 0.09, as given in [29,64,65].
The steps of GSA are provided for a new combined compact dif-

ference noted in shorthand as NCCD-scheme for solving non-periodic
problems in [1,64,65]. For the sake of analysis, one writes the NCCD-
scheme as
1
ℎ
[𝐴1]{𝑢′} + [𝐵1]{𝑢′′} = 1

ℎ2
[𝑅1]{𝑢}

1
ℎ
[𝐴2]{𝑢′} + [𝐵2]{𝑢′′} = 1

ℎ2
[𝑅2]{𝑢}

These can be alternatively written in an equivalent explicit form for
the first and second derivatives as,

{𝑢′} = 1
ℎ

[𝐶]{𝑢}

{𝑢′′} = 1
ℎ2

[𝐶2]{𝑢}

where [𝐶] = ([𝐴1] − [𝐵1][𝐵2]−1[𝐴2])−1 ([𝑅1] − [𝐵1][𝐵2]−1[𝑅2]) ℎ (43)

and [𝐶2] = ([𝐵2] − [𝐴2][𝐴1]−1[𝐵1])−1 ([𝑅2] − [𝐴2][𝐴1]−1[𝑅1]) ℎ2 (44)

The sixth order compact scheme in [33] is shown next, for an
internal node given by,

𝛼6𝑢
′
𝑖−1 + 𝑢

′
𝑖 + 𝛼6𝑢

′
𝑖+1 =

𝑎6
2ℎ

(𝑢𝑖+1 − 𝑢𝑖−1) +
𝑏6
4ℎ

(𝑢𝑖+2 − 𝑢𝑖−2) (45)

which must satisfy, 1 + 2𝛼6 = 𝑎6 + 𝑏6 for consistency of the scheme,
and it has been deduced that for sixth order accuracy these coefficients
become, 𝛼6 = 1∕3, 𝑎6 = 14∕9 and 𝑏6 = 1∕9. This will be referred
to as Lele6 scheme for the purpose of identification. This scheme has
been used in [66] to solve non-periodic problems with the following
boundary closure scheme,

𝑗 = 1 ∶ 2𝑢′1 + 4𝑢′2 =
−5𝑢1 + 4𝑢2 + 𝑢3

ℎ
(46)

𝑗 = 2 ∶ 𝑢′ + 4𝑢′ + 𝑢′ = 3 (𝑢 − 𝑢 ) (47)
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The stencils for 𝑗 = 𝑁 − 1 and 𝑁 , are similar to Eqs. (46) and (47).
The near-boundary point stencil at 𝑗 = 2 is fourth order accurate. We
will refer to this as Adams’ scheme, consisting of Eqs. (45) to (47).

In comparison to higher order, high accuracy compact schemes,
Haras and Ta’asan [59] initiated an optimal search for extremely high
accuracy central schemes in spectral plane for 1D CE with periodic
boundary condition. This is equivalent to minimizing integrated error
for first spatial derivative over the resolved length scales up to the
Nyquist limit for a basic representation as given in Eq. (45), while
treating the consistency condition as the constraint.

This lead from [59] has been further extended for the same problem,
but with non-periodic boundary conditions to derive the OUCS3 scheme
in [29]. For the interior points the stencil is written as,

𝑟−1𝑢
′
𝑖−1+𝑢

′
𝑖+𝑟+1𝑢

′
𝑖+1 =

1
ℎ

(

𝑠−2𝑢𝑖−2+𝑠−1𝑢𝑖−1+𝑠0𝑢𝑖+𝑠+1𝑢𝑖+1+𝑠+2𝑢𝑖+2

)

(48)

The boundary closure schemes are those already given in the fol-
lowing for the boundary closure at 𝑗 = 1 and 2,

𝑢′1 =
1
2ℎ

[−3𝑢1 + 4𝑢2 − 𝑢3] (49)

𝑢′2 =
1
ℎ

[(

2𝛽2
3 − 1

3

)

𝑢1 −
(

8𝛽2
3 + 1

2

)

𝑢2
]

+ 1
ℎ

[

(

4𝛽2 + 1
)

𝑢3 −
(

8𝛽2
3 + 1

6

)

𝑢4 +
2𝛽2
3 𝑢5

]

(50)

Similar boundary closure can be obtained for 𝑗 = 𝑁 and (𝑁 − 1)
from Eqs. (49) and (50), respectively, with right hand side terms’ sign
made opposite and introduce 𝛽𝑁−1, instead of 𝛽2. The optimal values
of these two parameters have been reported in [1,29] with 𝛽2 = −0.025
and 𝛽𝑁−1 = 0.09. The upwinding of the scheme is introduced via a
fourth diffusion term with a coefficient, 𝜂3. The resultant scheme, with
optimized parameters from [59] are given by, 𝑟±1 = 𝐷𝐻 ± 𝜂3

60 ; 𝑠±2 =
± 𝐹𝐻

4 + 𝜂3
300 ; 𝑠±1 = ±𝐸𝐻

2 + 𝜂3
30 and 𝑠0 = − 11𝜂4

150 , with 𝐷𝐻 = 0.3793894912;
𝐸𝐻 = 1.57557379; 𝐹𝐻 = 0.183205192. This is formally only a second
order scheme, but it will be demonstrated that the OUCS3 scheme is
superior over many other explicit and implicit schemes.

Another fifth order upwind scheme has been proposed in [39], with
stencils given as,

𝑗 = 1 ∶ 6𝑢′1 + 18𝑢′2 =
−17𝑢1 + 9𝑢2 + 9𝑢3 − 𝑢4

ℎ
(51)

𝑗 = 2 ∶ 𝑢′1 + 4𝑢′2 + 𝑢
′
3 =

3
ℎ
(𝑢3 − 𝑢1) (52)

3 ≤ 𝑗 ≤ 𝑁 − 2 ∶ 𝑏𝑗−1 𝑢
′
𝑗−1 + 𝑏𝑗 𝑢

′
𝑗 + 𝑏𝑗+1 𝑢

′
𝑗+1 =

1
ℎ

2
∑

𝑙=−2
𝑎𝑗+𝑙 𝑢𝑗+𝑙 (53)

where 𝑎𝑗±2 = ±5
3
+

5𝜂𝑧
6

; 𝑎𝑗±1 = ±140
3

+
20𝜂𝑧
3

; 𝑎𝑗 = −15𝜂𝑧,

𝑏𝑗±1 = 20 ± 𝜂𝑧 and 𝑏𝑗 = 60.

The boundary closure schemes for 𝑗 = 𝑁 − 1 and 𝑁 can be
analogously written using Eqs. (51) and (52), respectively. The quantity
𝜂𝑧 is the upwind coefficient that is explicitly added as the diffusion term
𝜂𝑧
6! ℎ

5 𝜕6𝑢
𝜕𝑥6

. It is noted that if one fixes 𝜂𝑧 = 0, then one recovers the Lele6
or Adams’ scheme. This class of discrete schemes will be referred to as
the Zhong’s scheme.

Zhong [39] tested the design of the fifth order upwind compact
scheme by investigating numerical instability of the scheme for Eq. (2)
by semi-discrete matrix analysis for 𝜂𝑧 = −2,−1 and 0. It is pertinent
to note that the author performed semi-discrete analysis, due to the
confusion between correct numerical dispersion relation in Eq. (8), and
the wrong approach based on treating the phase speed as constant
resulting in wrong dispersion relation given in Eq. (6).



Fig. 2. Spectral resolution of different central explicit and implicit spatial discretization schemes for first derivative by plotting the real part of 𝑘𝑒𝑞∕𝑘 as function of 𝑘ℎ. The
schemes are calibrated for interior nodes, unaffected by boundary closure.
3.2. Resolution of explicit and implicit spatial discretization

In the discussion so far, we have introduced a few typical high
accuracy schemes. The resolution of these schemes are investigated
by looking at 𝑘𝑒𝑞

𝑘 , as can be obtained from Eq. (32). In Fig. 2, the
resolution of the compact schemes (Lele6 or Adams, Zhong, OUCS3 or
Haras–Ta’asan and NCCD) are compared with various central difference
explicit schemes. In this figure only the central node resolution is
shown for the sake of clarity. It is noted that the OUCS3 (𝜂3 = −2),
Haras–Ta’asan scheme for non-periodic problem (with 𝜂3 = 0) and
NCCD scheme have resolution which is better than twentieth order
explicit central difference scheme. This once again justifies the superior
performance of compact schemes, as compared to very high order
explicit scheme. It is also noted that the order of schemes is not very
relevant, as one notes from this figure that the formally second order
OUCS3 scheme displays higher resolution (𝑘𝑒𝑞∕𝑘 attains the ideal unity
value over a large range of 𝑘ℎ) as compared to the sixth order Lele6 or
Adams’ scheme.

The spatial discretization of first derivative invokes numerical dif-
fusion and/ or anti-diffusion for non-central scheme. This can be noted
from the imaginary part of 𝑘𝑒𝑞

𝑘 , as obtained from Eq. (32). One notes
that the GSA obtained for the full domain, will make the [𝐶] matrix
non-symmetric due to one-sided stencils used for the boundary and
near-boundary points. This is clearly evident in Fig. 3, where repre-
sentative points are displayed as part of full-domain analysis [29].
The resolution (on the left frames) and diffusion/anti-diffusion of the
spatial discretization (on the right frames) are shown for the compact
schemes (Lele6 or Adams, Zhong, OUCS3 or Haras–Ta’asan and NCCD).
In the top frame, Adams’ scheme results are shown with the resolution
shown to be variable from 𝑗 = 1 to points in the interior. Although the
first node (𝑗 = 1) shows large phase distortion, this is of hardly any
concern, as the governing equation is never going to be discretized at
the boundary node. However, the major concern is about the presence
of anti-diffusion noted in the imaginary part of 𝑘𝑒𝑞∕𝑘, as shown on top
right frame for Adams’ scheme. This is evident for the nodes which
are near the inflow of the domain, with maximum effects near the
Nyquist limit (𝑘ℎ = 𝜋). It is to be realized that the problem of anti-
diffusion arises due to boundary closure schemes. As the global schemes
are implicit, any problem created at one node percolates over the full
domain, with maximum effects noted for near-boundary nodes.

One notes from the second row from the top in Fig. 3(b), the
resolution and diffusion properties of spatial discretization for first
derivative for the Haras and Ta’asan scheme [59], which uses the
interior stencil and boundary closure schemes given in Eqs. (46) to (48),
with 𝜂3 = 0. Once again, one notices small variations for resolution from
one node to other (except that is for 𝑗 = 1), as noted from the real part
of 𝑘 ∕𝑘 for this scheme. This scheme uses the same boundary closure
8

𝑒𝑞
as in Adams’ schemes (Eqs. (46) and (47)), and yet the effects of anti-
diffusion is severer for the Haras–Ta’asan scheme. This is despite the
fact that the interior stencil for Haras–Ta’asan scheme has displayed
much superior resolution in Fig. 2, as compared to Adams’ or Lele6
scheme.

In the third row from the top in Fig. 3(c), the resolution and
diffusion properties are shown for the Zhong’s scheme [39], where one
notes stronger effects near the boundary for resolution shown by the
real part of 𝑘𝑒𝑞∕𝑘 for almost the complete domain. It is equally noted
in the imaginary part of 𝑘𝑒𝑞∕𝑘 that the anti-diffusion is significantly
higher for the Zhong’s scheme, affecting more number of points. These
two frames are drawn for 𝜂𝑍 = −1, and if one wants to control
the anti-diffusion more, then one needs to take larger value of 𝜂𝑍 in
magnitude.

This leads to the conclusion that the problems of compact high
accuracy schemes originate in the use of implicit schemes for boundary
closure. This observation was used in [1,29] by replacing implicit
boundary closure schemes by explicit boundary closure schemes. Not-
ing that explicit schemes have only local effects, one can control
anti-diffusion by such replacements. The results are evident in the bot-
tom two rows of Fig. 3 showing two such carefully designed schemes,
OUCS3 and NCCD schemes, showing their properties in discretizing
first derivative. Two such boundary closure schemes are given in
Eqs. (49) and (50). In Fig. 3(d), the real and imaginary parts of 𝑘𝑒𝑞∕𝑘
have some specific features depending upon the interior and boundary
closure stencils. Since the stencils for 𝑗 = 1 and 𝑁 are symmetric,
one notes the real part to be identical, while the imaginary part
show numerical diffusion and anti-diffusion in identical magnitude.
However, the closure given by Eq. (50) is dispersive due to effects of
𝛽2, and also 𝛽𝑁−1 are of different sign and magnitudes, which results in
different values for the real and imaginary parts of 𝑘𝑒𝑞∕𝑘 for this pair of
points. As these boundary closures are essentially lower order schemes,
the resolution degradation is noted for near boundary points. However,
the main benefit is noted in reducing the intensity and extent of anti-
diffusion for OUCS3 scheme. It is to be noted that the authors in [29],
additionally suggested using explicit fourth order diffusion terms with
specified coefficient values, so that one has a practical compact scheme.
In [1], it is also noted that in actual applications, one would discard
the derivative obtained by compact scheme at 𝑗 = 2, by a simple CD2
scheme, so that there is no anti-diffusion for any nodes.

The above concept of using explicit boundary closure schemes have
been also used for the proposed NCCD scheme [1,64,65], whose results
are shown in Fig. 3(e) as the bottom frames. The resolution for the near-
boundary points are similar for NCCD scheme with those for the OUCS3
scheme. However, the anti-diffusion property of NCCD scheme for near-
boundary points are even better than that is noted for the OUCS3
scheme. This aspect has been highlighted in computing the lid-driven



Fig. 3. Numerical resolution and diffusion/anti-diffusion introduced for different central and upwind compact schemes used for spatial discretization of first derivative are shown
by plotting the real (left) and imaginary parts of 𝑘𝑒𝑞∕𝑘 as function of 𝑘ℎ for the indicated nodes.
cavity problem by solving the NSE in [64,65] by NCCD scheme in
capturing gyrating polygonal core vortex at the center of the cavity. It
has been noted in [1] that Lele6 scheme with different closure schemes
failed due to aliasing error.

3.3. Resolution of schemes for second derivative

One can compare the efficacy of different schemes in representing
second derivatives by again displaying the quantities in spectral plane.
Using the representation for the unknown given in Eq. (5) (omitting
the time as the other independent variable, without any scope for
confusion), the second spatial derivative can be written using Eq. (5)
9

as, 𝑢′′𝑗 |𝑒𝑥𝑎𝑐𝑡 = − ∫ 𝑘2𝑈 (𝑘)𝑒𝑖𝑘𝑥𝑗 𝑑𝑘. As it has been done for first derivative,
one can also notationally represent numerical second derivative by,

𝑢′′𝑗 |𝑛𝑢𝑚 = −∫ 𝑘(2)𝑒𝑞 𝑈 (𝑘)𝑒𝑖𝑘𝑥𝑗 𝑑𝑘

Thus, the resolution of second derivative can be represented in the
spectral plane by plotting −𝑘(2)𝑒𝑞 ∕𝑘2 as a function of 𝑘ℎ.

Some of the methods of discretization for the second derivative is
described next, with the CD8 scheme already given in Eq. (36). For the
NCCD scheme which provides both the first and second derivatives, the
interior stencils are given as in Eqs. (37) and (38), and the boundary
closure schemes given in Eqs. (39) to (42). Additionally, the compact
scheme given in [33] for second derivative are given for the boundary



Fig. 4. Spectral resolution of different central explicit and implicit spatial discretization schemes for second derivative shown by plotting the real part of 𝑘(2)𝑒𝑞 ∕𝑘2 as function of 𝑘ℎ.
The CD-schemes are explicitly central differenced, and here shown up to twentieth order accurate. The Haras–Ta’asan and OUCS3 schemes for first derivative have been applied
twice to obtain second derivative and marked as (.)2 in the legend.
and interior nodes as [1],

𝑗 = 1 ∶ 𝑢′′1 + 11𝑢′′2 = (13𝑢1 − 27𝑢2 + 15𝑢3 − 𝑢4)∕ℎ2 (54)

𝑗 = 2 ∶ 𝑢′′1 + 10𝑢′′2 + 𝑢′′3 = 12 (𝑢3 − 2𝑢2 + 𝑢1)∕ℎ2 (55)

3 ≤ 𝑗 ≤ 𝑁 − 2 ∶ 𝛼 𝑢′′𝑗−1 + 𝑢
′′
𝑗 + 𝛼 𝑢′′𝑗+1

= 𝑏
4ℎ2

(𝑢𝑗−2 − 2𝑢𝑗 + 𝑢𝑗+2) +
𝑎
ℎ2

(𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1) (56)

with 𝛼 = 2∕11, 𝑎 = 12∕11 and 𝑏 = 3∕11 required for formal sixth
order accuracy based on truncation error. This will also be identified
as Lele6 implicit closure scheme. To show the importance of using
explicit boundary closure scheme, we also consider another variant of
this scheme, for which one will use Eq. (56) for the interior nodes and
use Eqs. (42) for 𝑗 = 𝑁 and CD2-scheme stencil for 𝑗 = 𝑁 −1. This will
be referred to as Lele6 explicit closure scheme.

In Fig. 4, the resolution of the interior points are compared among
various explicit and implicit schemes, with appropriate boundary clo-
sure scheme by plotting −𝑘(2)𝑒𝑞 ∕𝑘2 as a function of 𝑘ℎ. The central explicit
schemes have been shown for representative formal order of accuracy
up to twentieth order. The CD8 central scheme has been used for high
performance computing in [61]. One also notes another possibility of
computing second derivative by using compact scheme for the first
derivative twice for the Haras–Ta’asan and OUCS3 schemes. However,
this brings down the resolution to zero value, at the Nyquist limit,
which will appear inferior, as compared to even CD2 scheme above
𝑘ℎ = 0.85𝜋. The Lele6 scheme provides good resolution up to 𝑘ℎ = 𝜋
and provide identical resolution for both implicit and implicit closure
for the interior nodes. This scheme has marginal superior resolution
as compared to CD8 scheme. In contrast, CD20 has overall better
resolution than the rest of the schemes shown, except for the NCCD
scheme. NCCD scheme is unique in that for the complete range of
𝑘ℎ, nowhere the quotient −𝑘(2)𝑒𝑞 ∕𝑘2 is less than one. It actually shows
that the numerical second derivative is slightly more than the physical
value and its importance has been highlighted in [64,65] from the
physical and numerical reason. As the scales near the Nyquist limit
are most important from the point of view of resolving the enstrophy
and dissipation, its proper resolution cannot be over-estimated. Also, at
and near the maximum resolved scales, aliasing error deposits spurious
values there, and the displayed feature of NCCD scheme helps alleviate
this major source of error. This has been shown and explained in [1,65].

In Fig. 5, results of GSA for the representative nodes are shown,
by plotting the real and imaginary parts of 𝑘(2)𝑒𝑞 ∕𝑘2 as function of 𝑘ℎ.
In Fig. 5(a) the real and imaginary parts of 𝑘(2)𝑒𝑞 ∕𝑘2 are shown as
function of 𝑘ℎ for representative nodes. We note the attribute of GSA
by which the effectiveness of 𝑘(2)𝑒𝑞 ∕𝑘2 does not vanish due to full domain
analysis, which is noted for the deep interior points. Results are shown
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for the upwind constant value of 𝜂3 = −2, and induced dispersion
caused by the imaginary part of 𝑘(2)𝑒𝑞 ∕𝑘2 are mostly noted for near-
boundary points, while such dispersion is absent for interior nodes for
a significant range of 𝑘ℎ. Of specific interest is the comparison between
implicit and explicit boundary closures used with Lele’s scheme for
second derivative. In the implicit closure, the use of one sided scheme
at 𝑗 = 1 and 𝑁 creates an unphysical bias of the computed second
derivative. This creates a strong deviation of 𝑘(2)𝑒𝑞 ∕𝑘2 from the ideal
unity value, shown in Fig. 5(b) and (c), as function of 𝑘ℎ. Also,
the closure being implicit in frame (b), one notices strong distortion
from ideal effectiveness percolating to the next inner points. However,
from 𝑗 = 3 onwards one notices very desirable effectiveness. Similar
non=ideal behavior is noted mostly at 𝑗 = 1 and 𝑁 . In contrast to the
implicit boundary closure case, in frame (c) one notices significantly
reduced distortion for real and imaginary parts of 𝑘(2)𝑒𝑞 ∕𝑘2 as function
of 𝑘ℎ, which is reduced by an order of magnitude. This clearly shows
that even though the compact schemes are implicit, one would violate
the physical nature of information propagation, if one chooses implicit
boundary closure. In Fig. 5(d), the resolution and dispersion properties
are shown for NCCD scheme. The resolution of NCCD scheme for the
second derivative is noted to be even better than that provided by
the Lele explicit closure scheme. The dispersion error of NCCD scheme
is slightly inferior, as compared to the explicit closure scheme, and
this once again should convince discerning readers that high accuracy
compact schemes with good interior stencils (as shown in Fig. 4) would
perform better with explicit boundary closure schemes. Any loss of
accuracy of explicit closure confines itself locally.

4. Properties of space-time discretization: Canonical 1D CE

So far the spatial discretization methods have been described with
typical measure for their effectiveness. While one can analyze time
discretization schemes, as if ordinary differential equation is being
solved, we are interested in solving space–time dependent equations,
for which the concept of dispersion relation has been introduced in
Section 2, identifying correct way of interpreting dispersion relation
for the 1D CE. In the quest for tracking numerical error, it is essential
that various sources of it should be understood. Starting with early
work in [4], one of the main preoccupations of analysts has been to
somehow prevent numerical instability. The authors in [4] clearly have
articulated this with their famous von Neumann stability analysis that
our concern here is with stability rather than with accuracy. For parabolic
partial differential equations, such as that for heat conduction, one is
often interested in the time-asymptotic solution and for which overtly
stable method may converge faster to steady state. However, if one were
to be also interested in the transient state, then correct physical stability

is to be sought, and numerical stability should mimic this, as shown



Fig. 5. Spectral resolution and dispersion of non-periodic, explicit-central and implicit spatial discretization schemes for second derivative shown by plotting the real and imaginary
parts of 𝑘(2)𝑒𝑞 ∕𝑘2 as function of 𝑘ℎ. The OUCS3 scheme for first derivative have been applied twice and marked as OUCS32 to obtain second derivative and all other schemes are
specifically designed to discretize second derivative.
in [48] for heat equation. This makes a search for good model space–
time dependent equation very necessary. A good case in point is the
consideration of 1D CE [1,23,31,34] or the 1D convection diffusion
equation [49], which admits an exact solution. For example, the 1D
CE shows the solution to be neutrally stable. To test a method for
neutral stability a precise analysis of the method is required as opposed
to a qualitative answer such as the method is stable or unstable. An
unstable method will readily display its pathology. It is the so-called
stable method, which adds to the confusion. Thus, using 1D CE as the
canonical problem is a very useful approach and is followed next.

In writing this in Eq. (2), one notices the presence of a first deriva-
tive with respect to time. That in turn needs the time integration to
be a two-step method. In this context, it has been shown that four
stage, Runge–Kutta (RK4) method to be very efficient [31] given for
a semi-discrete equation in the form as,
𝜕𝑢
𝜕𝑡

= 𝐿(𝑢),

with 𝐿 representing the operator after performing all spatial discretiza-
tions. The four steps of RK4 method are given in terms of the time step
𝛥𝑡 for the time integration by,

First Stage: 𝑢(1) = 𝑢(𝑛) + 𝛥𝑡𝐿[𝑢(𝑛)],
11

2

Second Stage: 𝑢(2) = 𝑢(𝑛) + 𝛥𝑡
2
𝐿[𝑢(1)],

Third Stage: 𝑢(3) = 𝑢(𝑛) + 𝛥𝑡𝐿[𝑢(2)],

Fourth Stage: 𝑢(𝑛+1) = 𝑢(𝑛) + 𝛥𝑡
6

[

𝐿[𝑢(𝑛)] + 2𝐿[𝑢(1)] + 2𝐿[𝑢(2)] + 𝐿[𝑢(3)]
]

For the space–time advancement of the unknown given in Eq. (5)
from 𝑡 to 𝑡 + 𝛥𝑡 is notationally represented by the numerical amplifica-
tion factor given as, 𝐺(𝑘ℎ,𝑁𝑐 ) = 𝑈 (𝑘ℎ, 𝑡 + 𝛥𝑡)∕𝑈 (𝑘ℎ, 𝑡), with 𝑁𝑐 as the
CFL number equal to 𝑐𝛥𝑡∕ℎ. For the RK4-time integration method, this
is given for the 𝑗th node by [1,32],

𝐺𝑗 = 1 − 𝐴𝑗 +
𝐴2
𝑗

2
−
𝐴3
𝑗

6
+
𝐴4
𝑗

24
(57)

where 𝐴𝑗 = 𝑁𝑐
∑𝑁
𝑙=1 𝐶𝑗𝑙 𝑒

𝑖𝑘(𝑥𝑙−𝑥𝑗 ). This equation for RK4 scheme is for
any spatial discretization of non-periodic problems obtained by GSA for
the full-domain analysis, as given for some explicit and implicit spatial
schemes in [1,67,68]. While |𝐺𝑗 | as the nodal amplification factor is a
source of error, additional error can arise due to dispersion, which can
be severe as compared to error caused by stable algorithm.



𝑢

The dispersion error is obtained using GSA, that identifies its pri-
mary source as due to the constant prescribed phase speed becom-
ing wavenumber dependent. If the initial condition is represented for
Eq. (2) to be given by Eq. (11), then the solution at any time, 𝑡 = 𝑛𝛥𝑡, is
written using the definition of amplification factor 𝐺𝑗 given by Eq. (12).
We also recollect that |𝐺𝑗 | = (𝐺2

𝑟𝑗 +𝐺
2
𝑖𝑗 )

1∕2 and tan𝜙𝑗 = −𝐺𝑖𝑗∕𝐺𝑟𝑗 , with
𝐺𝑟𝑗 and 𝐺𝑖𝑗 as the real and imaginary parts of 𝐺𝑗 , respectively. One
calculates 𝜙𝑗 appropriately, by considering signs of 𝐺𝑟𝑗 and 𝐺𝑖𝑗 .

The numerical phase speed (𝑐𝑁 ) is obtained from 𝜙𝑗 as the phase
shift per time step so that 𝑛𝜙𝑗 = 𝑘𝑐𝑁𝑛𝛥𝑡 as given by Eq. (13). The
physical phase speed is 𝑐 for all wavenumber, but 𝑐𝑁 is noted to depend
on 𝑘. Thus, the numerical solution is dispersive, in contrast to the non-
dispersive nature of 1D CE, with the computed solution is given by,

̄𝑁 = ∫ 𝑈0(𝑘) [|𝐺|]𝑡∕𝛥𝑡 𝑒𝑖𝑘(𝑥−𝑐𝑁 𝑡)𝑑𝑘 (58)

The numerical dispersion relation is given in Eq. (8), instead of the
wrong dispersion relation given in Eq. (6). Having obtained the correct
dispersion relation and the non-dimensional numerical phase speed,
numerical group velocity at the 𝑗th-node can be expressed as
[𝑉𝑔𝑁
𝑐

]

𝑗
= 1
ℎ𝑁𝑐

𝑑𝜙𝑗
𝑑𝑘

(59)

It is important to understand the roles played by these numer-
ical parameters in ensuring the accuracy of scientific computing. It
has been very effectively achieved in [31], where the concept of
error propagation was introduced in the correct perspective. This sub-
ject of error dynamics has been subsequently shown for the diffusion
equation [48], CDE [49], the KdV equation [69] and the NSE [70].
Following demonstration is following the presentation in [1] for 1D CE.

Defining the numerical error by, 𝑒(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − �̄�𝑁 (𝑥, 𝑡), one can
derive the governing equation for 𝑒(𝑥, 𝑡) in the manner shown next.
Using Eq. (58) one obtains the expressions for 𝜕�̄�𝑁

𝜕𝑥 and 𝜕�̄�𝑁
𝜕𝑡 , with the

help of which one writes the error dynamics equation as,

𝜕𝑒
𝜕𝑡

+ 𝑐 𝜕𝑒
𝜕𝑥

= −[1 −
𝑐𝑁
𝑐
]𝑐
𝜕�̄�𝑁
𝜕𝑥

− ∫
𝑉𝑔𝑁 − 𝑐𝑁

𝑘

[

∫ 𝑖𝑘′𝑈0 [|𝐺|]𝑛 𝑒𝑖𝑘
′(𝑥−𝑐𝑁 𝑡)𝑑𝑘′

]

𝑑𝑘

− ∫
Ln |𝐺|
𝛥𝑡

𝑈0 [|𝐺|]𝑛 𝑒𝑖𝑘(𝑥−𝑐𝑁 𝑡) 𝑑𝑘 (60)

This error dynamics equation is different in form and concept that
can be deduced following the assumption of von Neumann analysis [4].
In the latter, the right-hand side of Eq. (60) is equated to zero, on
the premise that the basic governing 1D CE is linear, so signal and
error follow the identical governing equation. Quite revealingly the
von Neumann analysis does not even quantify the error due to sta-
bility/instability as given by the last term on the right-hand side of
Eq. (60). Of course, another major advantage of adopted GSA lies in
its ability to quantify the dispersion and phase error, as given by the
right hand side terms, which are absent from any discussion on von
Neumann analysis. From Eq. (60), one readily notes that |𝐺|, 𝑐𝑁∕𝑐 and
𝑉𝑔𝑁∕𝑐 are the main metrics which contribute to error for 1D CE.

To understand the utility of Eq. (60), one must inspect the numerical
properties of a specific combination of spatial and temporal discretiza-
tion methods. As noted already, for 1D CE for the first derivative with
respect to time, RK4 time integration is adopted, as it provides high
accuracy, without invoking spurious numerical modes. The obtained
properties are shown next in Figs. 6 to 8, where the correct interpre-
tation of numerical dispersion relation is explained. The error metrics
|𝐺|, 𝑐𝑁∕𝑐 and 𝑉𝑔𝑁∕𝑐 are used for the comparison, as obtained by GSA
and those obtained following the wrong dispersion relation given by
Eq. (6). In the wrong approach, the numerical phase speed is taken as
that is given by the physical phase speed. Hence, for this approach,
𝑐𝑁∕𝑐 is identically equal to one and is therefore not shown. One must
also appreciate the fact that the numerical dispersion relation is one of
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interpretation, after the space and time discretization have been fixed.
Thus, in both these view points, the discrete equation remains the same.
As a consequence, the numerical amplification rate shown are one and
the same, when plotted in the (𝑁𝑐 , 𝑘ℎ)-plane.

In Fig. 6, the spatial discretization considered is the CD8 scheme,
as used in [61]. For all the plotted quantities in various frames, the
maximum and minimum values are printed to understand the dynamic
range of the quantities plotted. As mentioned above, the |𝐺| contour
plots obtained by following the GSA and incorrect dispersion relation
approach shows the same portrait in both the frames. As for the CE,
ideally the amplification factor should be neutrally stable, this figure
shows that one must choose a very small value of 𝑁𝑐 close to the origin,
so that |𝐺| ≈ 1. One notes from Eq. (60), that the quotient 𝑐𝑁∕𝑐 not
being equal to one contributes to forcing of the error, when 𝜕𝑢𝑁

𝜕𝑥 takes
large non-negligible values. Such conditions prevail when there is a
sharp front in low speed flow, or when there is a sharp discontinuity,
as in a shock for transonic/supersonic flows. Large phase error is
noted for high wave numbers at low values of 𝑁𝑐 , or for moderate
wavenumbers at high values of 𝑁𝑐 . It is the group velocity, for which
one notices major differences between the correct and incorrect numer-
ical dispersion relations. While the range of maximum and minimum
values are distinctly different, there is the value of 𝑘ℎ for which both
these show zero group velocity. Above this range the group velocity
becomes negative, and these are called as the 𝑞-waves, following the
nomenclature in [32,36,71]. For central schemes, this is related to
𝑑𝑘𝑒𝑞
𝑑𝑘 = 0, which is the case for both of these interpretations that occurs

for 𝑘ℎ slightly greater than 2. However, for all other combinations of
𝑘ℎ and 𝑁𝑐 values the numerical group velocity has to be obtained by
GSA accurately/correctly.

In Fig. 7, the spatial discretization is chosen as the sixth order
central compact scheme, used along with RK4 time integration scheme
for the solution of 1D CE. Once again, the |𝐺| contours are same from
both these perspectives. As the Lele’s scheme [33] is more accurate as
compared to CD8 scheme, this will improve the resolution and provide
better neutral stability of the schemes shown in Fig. 7. At the same
time, the maximum value of |𝐺| will be higher for Lele-RK4 scheme, as
compared to CD8-RK4 scheme. The numerical phase speed obtained by
GSA is also noted to be better for the Lele-RK4 scheme, as compared
to the CD8-RK4 scheme. One also notices that 𝑞-waves appear for
higher value of 𝑘ℎ for the scheme in Fig. 7, showing better numerical
properties for Lele-RK4 scheme.

In Fig. 8, the same three error metrics (|𝐺|, 𝑐𝑁∕𝑐, 𝑉𝑔𝑁∕𝑐) are
compared when the spatial discretization is replaced by OUCS3 scheme.
In comparing the spatial discretizing of first derivatives, it has been
noted that the OUCS3 scheme provides extremely high accuracy. This
aspect is noted in the property charts shown in Fig. 8. Because of
the upwind nature of this scheme, the numerical amplification factor
shows attenuation as compared to the previous two methods. However,
the dispersion and phase error properties of OUCS3-RK4 scheme is
superior, as compared to CD8-RK4 and Lele-RK4 schemes. The onset
𝑘ℎ value for 𝑞-waves is also the highest for this scheme. It is noted that
dispersion errors are the major source of problems for high accuracy
computing, and thus OUCS3-RK4 scheme is found to be preferable as
compared to other high order schemes.

4.1. Proof of GSA dispersion relation

We have noted above that the existence and interpretation of dis-
persion is one of concept, as both the GSA-based and the traditional
methods use the same discrete equation that is actually solved nu-
merically. As a consequence, the numerical amplification factor is one
and the same for both the methods. It is the supposition that the
numerical and physical phase speed for Eq. (2) are same, is at the root
of the problem. Because application of GSA in Section 2 shows that the
numerical phase speed cannot be assumed to be a constant with respect
to wavenumber, while the discrete equation enforces a phase shift via



Fig. 6. Numerical properties of CD8 spatial discretization and RK4 time integration schemes in solving Eq. (2). The properties obtained using correct dispersion relation, Eq. (8)
are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in Eq. (6) leads to the properties shown on the right frames. Shown are |𝐺|, 𝑐𝑁∕𝑐 and
𝑉𝑔𝑁∕𝑐 in various frames and compared for a typical interior point.
the discrete equation. This enabled us to show in Figs. 6 to 8 that
numerical phase speed to be wavenumber dependent, and consequently
the group velocity provided by Eqs. (6) and (8) are qualitatively and
quantitatively different.

Thus, it is possible to design a test in which an initial wave-packet
will be allowed to propagate following Eq. (2). The wave-packet is
considered such that it can be traced distinctly with a small range
of 𝑘ℎ, such that the property of the wave-packet can be identified
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by a mean location without very large spread about this mean. Also,
to compare the correct dispersion relation based on GSA, with the
incorrect dispersion relation used by many authors by treating the
numerical phase speed as constant [43], we need this wave-packet to
have properties which are easily visualized. Propagation speed of the
wave-packet given by the group velocity computed from Eqs. (6) and
(8) is the appropriate quantity to check, as the numerical amplification
factors are same, while the numerical phase speed is the subject of



Fig. 7. Numerical properties of Lele’s compact discretization and RK4 time integration schemes used for solving Eq. (2). The properties obtained using correct dispersion relation,
Eq. (8) are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in Eq. (6) leads to the properties shown on the right frames. Shown are |𝐺|, 𝑐𝑁∕𝑐
and 𝑉𝑔𝑁∕𝑐 in various frames and are compared for a typical interior point.
contention. To perform the test, OUCS3-RK4 method is chosen with
𝜂3 = 0.

For the ease of such a comparison and to demonstrate existence of
numerical 𝑞-wave, we carefully choose the wave packet as,

𝑢 = 𝑒−𝑥
2
sin(𝑘𝑖𝑛𝑥) (61)

where the input wavenumber is fixed from 𝑘𝑖𝑛 = 𝑘ℎ𝑖𝑛∕ℎ, with 𝑘ℎ𝑖𝑛
considered as 0.7981𝜋. The periodic domain considered is given by,
−2.5𝜋 < 𝑥 ≤ 2.5𝜋 with equi-distant 2505 points, so that the grid spacing
is given by, ℎ = 0.002𝜋. In Eq. (2), the physical phase speed is taken
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as 𝑐 = 𝜋∕2 and the time step is taken as 𝛥𝑡 = 0.00511, so that the CFL
number is 𝑁𝑐 = 1.2775. The reason for the choice of these numerical
parameters are explained with the help of the property charts shown
in Fig. 9, with the top two frames showing superposition of numerical
amplification factors and numerical group velocity obtained by GSA
and by considering numerical phase as identical to physical phase
speed. The combinations of 𝑘ℎ𝑖𝑛 and 𝑁𝑐 is marked by a circle in frames
(a) and (b). Also note the vertical dash–dot–dot line plotted tangential
to |𝐺| = 1 line, to the right of which, some length scales are found
to be unstable. Thus, this dash–dot–dot line provides the critical value



Fig. 8. Numerical properties of OUCS3 spatial discretization and RK4 time integration schemes used in solving Eq. (2). The properties obtained using correct dispersion relation,
Eq. (8) are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in Eq. (6) leads to the properties shown on the right frames. Shown are |𝐺|, 𝑐𝑁∕𝑐
and 𝑉𝑔𝑁∕𝑐 in various frames and are compared for a typical interior point.
of 𝑁𝑐 above which some length scales are inherently unstable, and
omnipresent background numerical disturbances will magnify without
being explicitly excited in the problem, an issue known as focusing in
the literature [45,57,72–75].

In Fig. 9(a), |𝐺𝑁 |-contours are shown by thick lines and flood, while
the thin contour lines depict 𝑉𝑔𝑁∕𝑐, as obtained from GSA using the
correct dispersion relation given by Eq. (8). One also notices that only
a small range of 𝑁𝑐 is chosen for investigation, while the full range
for wavenumber is chosen (0 ≤ 𝑘ℎ ≤ 𝜋), with properties obtained
using a uniformly distributed (1000 × 1000) values of 𝑘ℎ and 𝑁 . The
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𝑐

intention for this choice of numerical parameter values is to consider
the propagation of the wave-packet which does not attenuate in very
few time steps. For both the dispersion relation cases the |𝐺𝑁 |-contours
are the same. It is the numerical group velocity value that will be
different, due to the conceptual error in writing Eq. (6). In Fig. 9(b),
the numerical group velocity obtained from the wrong dispersion re-
lation shows it to be independent of 𝑁𝑐 , i.e. time integration method.
However, for very low values of 𝑁𝑐 close to zero, both the GSA and
incorrect dispersion relation provide 𝑉𝑔𝑁∕𝑐-values, which are visually
indistinguishable. Hence, in the range of Fig. 9(a), a region of interest



Fig. 9. The iso-contours of numerical amplification factor and group velocity is plotted in the (𝑘ℎ,𝑁𝑐 )-plane obtained by (a) present GSA and (b) treating phase speed as constant.
The thick vertical strip shows the spectral extent of the chosen wave-packet. (c) Numerical solutions of Eq. (2) obtained by OUCS3-RK4 (with 𝜂3 = 0) scheme are compared with
exact solution. The numerical results are normalized with its time-dependent maximum value indicated as 𝑢𝑚 𝑁 . The vertical lines show the approximate center of wave-packet
(𝑥𝑐 ). The 𝑢𝑚 𝑁 and 𝑥𝑐 obtained by GSA and constant phase speed analysis is compared with numerical results.
is where |𝐺𝑁 | is very close to one for the chosen wave-packet, while
𝑉𝑔𝑁∕𝑐 values given by correct and incorrect dispersion relations are
distinctly different for Eq. (2). For the chosen numerical parameter of
𝑘ℎ = 0.7981𝜋 and 𝑁𝑐 = 1.2775, numerical properties in solving Eq. (2)
are given by, |𝐺| = 0.891, the numerical group velocity calculated by
correct dispersion relation is given by, 𝑉𝑔𝑁𝑐 = −1.2093, while numerical
group velocity obtained by constant phase speed assumption is given
by, 𝑉𝑔𝑁𝑤 = −0.6213.

The spectral extent of the wave packet is marked by a black vertical
strip in Fig. 9(a) and (b), with the filled circle marking the center of the
packet. The numerical simulation of Eq. (2) for the initial condition
given by Eq. (61) using the above grid parameters and time steps are
shown in Fig. 9(c). It is to be noted that for chosen parameters, at every
time step, the magnitude of the numerical solution reduces 10.9% of
the current value. Thus, the plotted numerical results in Fig. 9(c) are
normalized with the time-dependent maximum value (denoted as 𝑢𝑚𝑁 ).
The group velocity of the numerical result can be calculated by measur-
ing the speed of propagation of the wave-packet. The variable 𝑥𝑐 shows
the approximate center of the wave-packet, which is used to approxi-
mately calculate the numerical group velocity and compared with 𝑉𝑔𝑁𝑐
and 𝑉𝑔𝑁𝑤. The table in frame (d) compares the numerically measured
𝑢𝑚 𝑁 and 𝑥𝑐 with the values obtained by present GSA and constant
phase speed analysis. It is to be noted that the measured value of 𝑢𝑚𝑁
from the simulation is higher than the estimated value from analyses.
While 𝑢𝑚𝑁 from the analyses is obtained for a wave with 𝑘ℎ𝑖𝑛 = 0.7981𝜋,
the numerical simulation is performed for a wave-packet centered at
𝑘ℎ𝑖𝑛. The spectral extent of the chosen wave-packet marked in the top
two frames of Fig. 9 shows that different wavenumbers of the wave-
packet decays with different |𝐺|. Due to this effect, the estimated 𝑢𝑚𝑁
from analyses slightly differ from the numerical simulation. Further, in
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the chosen wave-packet, the wavenumbers less that 𝑘ℎ𝑖𝑛 have |𝐺| >
0.891 and are dominant over time. The corresponding group velocity
of these wavenumbers are less in magnitude. Thus it is expected that
the analyses will slightly overestimate the magnitude of the 𝑥𝑐 . The
table in Fig. 9(d) conforms that present analysis give the appropriate 𝑥𝑐 .
The constant phase speed analysis highly underestimates the magnitude
of the 𝑥𝑐 which indicates that the numerical wave-packet follows the
properties of the present GSA.

4.2. Proof of q-waves in computing: Identification and demonstration for
1D CE using GSA

In performing numerical computations some researchers have re-
ported an interesting phenomena where spurious numerical waves are
created in addition to physical waves [32,71,76,77]. The spurious
numerical waves are termed as q-waves and they are called so as
they propagate in the opposite direction of the physical waves. Tre-
fethen [40] conjectured that these q-waves are related to the group
velocity property based on earlier work by Vichnevetsky and Pfeif-
fer [75] but provided no quantitative measure for their occurrence
except for suggesting that they occur close to the Nyquist limit. It is also
noted that Vichnevetsky and co-authors [32,75] qualitatively explained
the spurious waves for CD2 and Galerkin FEM schemes for the 1D
convection equation using semi-discrete analysis. Sengupta et al. [36]
finally explained the existence of q-waves for finite difference, finite
volume and finite element methods using numerical properties de-
rived for the model convection equation using GSA for the first time.
Furthermore, the authors conclusively demonstrated an excellent corre-
spondence with GSA using numerical simulations of 1D, 2D convection
equation and 2D linearized rotating shallow water equations. Following



Fig. 10. Analytical proof and demonstration of q-waves using GSA for 1D linear convection equation. Top left panel shows the ratio of numerical group velocity to physical group
velocity for the indicated numerical schemes. Top right and bottom panels show the numerical solution of 1D convection equation at the given time instants for the same schemes
demonstrating the presence of q-waves.
the success of GSA, q-waves have also been demonstrated using the
same analysis for convection–diffusion [49] and convection–diffusion–
reaction [47] systems thus establishing their omnipresent nature in
numerical computing of wave phenomena.

In this subsection, a proof of q-waves in numerical computing is
presented using GSA and their existence is demonstrated using solution
of linear 1D convection equation. For the purpose of demonstration,
two different spatial explicit second order central difference scheme
(CD2) and an optimized upwind compact scheme (OUCS3) are used for
spatial derivatives while the classical fourth order Runge–Kutta 𝑅𝐾4
method is employed for time integration. For the two schemes the
ratio of numerical group velocity to its physical counterpart (𝑉 𝑔) is
determined using GSA as given by Eq. (59) and the contours are plotted
in the top left panel of Fig. 10. From the plot one immediately notes
the existence of upstream propagating waves with 𝑉 𝑔 < 0. For the 1D
convection equation, the information should travel downstream when
𝑐 > 0 in Eq. (2). Thus, these upstream propagating waves are spurious
in nature and are therefore the q-waves.

Having established the existence of q-waves using GSA, a numer-
ical solution of the 1D convection equation is performed in order to
demonstrate their presence in computing. An initial solution in the form
of a wave packet is considered with its central wavenumber chosen
as indicated by a green dot in the Vg contours in the top left panel
of Fig. 10. According to GSA, the chosen initial solution should lead
to the appearance of q-waves for the RK4-CD2 scheme whereas they
are noted to be absent for the high accuracy compact scheme case
i.e. RK4-OUCS3 scheme. The top right and bottom panels of Fig. 10
show the evolution of numerical solution plotted at different times for
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the two numerical schemes. In Fig. 11, a multimedia link showing
the animation of numerical solutions of the 1D convection equation
using the two schemes is presented. It is evident from the results that
the solution from the RK4-OUCS3 scheme propagates in the physical
direction whereas for the RK4-CD2 scheme upstream propagation is
noted which is in accordance with GSA thereby demonstrating the
presence of q-waves in numerical computing.

The present demonstration unequivocally establishes the presence
of spurious, upstream propagating q-waves and highlights the power of
GSA in identifying and accurately quantifying these waves. Although
the demonstration is shown for the 1D linear convection equation,
it should be noted that these q-waves are ubiquitous in numerical
computation of wave phenomena as shown in [36,47,49].

5. Multi time-level methods

The four stage Runge–Kutta method, introduced earlier, belongs to
the class of higher order time integration schemes known as single-step
multistage methods. Another class of methods also exist in the literature
for higher order integration, called the multi time-level schemes. As
the name indicates, these schemes involve at least three levels for
time integration. Popular methods such as Adams–Bashforth [78–80],
Leap-frog [5,80], EXT2 [81,82] and Gear schemes belong to this class.

Here, only three-time level methods are considered, particularly
second order Adams–Bashforth method (𝐴𝐵2), to illustrate the per-
formance of multi time-level methods. Any generic three-time level
method for solving the equation 𝜕𝑢

𝜕𝑡 = 𝐿(𝑢) can be written as

𝑢𝑛+1 = 𝜅 𝑢𝑛 + 𝜅 𝑢𝑛−1 + 𝛾 𝛥𝑡𝐿(𝑢𝑛) + 𝛾 𝛥𝑡𝐿(𝑢𝑛−1) (62)
𝑗 1 𝑗 2 𝑗 1 𝑗 2 𝑗



Fig. 11. Demonstration of q-waves for the numerical solution of 1D convection equation. q-waves are displayed by the numerical method employing RK4-CD2 where as the solution
using optimized compact scheme RK4-OUCS3 shows physical waves. (Multimedia View).
where, 𝑛 + 1, 𝑛 and, 𝑛 − 1 are the three time levels. The parameters 𝜅1,
𝜅2, 𝛾1 and, 𝛾2 give rise to a family of three-time level schemes. One such
scheme, the second order 𝐴𝐵2 scheme, is obtained by setting 𝜅1 = 1,
𝜅2 = 0, 𝛾1 =

3
2 and, 𝛾2 = − 1

2 . The 𝐴𝐵2 scheme is given below as

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 +
3
2
𝛥𝑡𝐿(𝑢𝑛𝑗 ) −

1
2
𝛥𝑡𝐿(𝑢𝑛−1𝑗 ) (63)

For the model CE given in Eq. (2), one obtains the discrete equation
by noting the generic representation of the first derivative scheme
(Eq. (30)) as

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
3
2
𝑁𝑐

𝑁
∑

𝑙=1
𝐶𝑗𝑙𝑢

𝑛
𝑙 +

1
2
𝑁𝑐

𝑁
∑

𝑙=1
𝐶𝑗𝑙𝑢

𝑛−1
𝑙 (64)

where, superscript 𝑛 indicates the time index, subscripts 𝑙 and 𝑗 indicate
the index of the spatial nodes and 𝑁𝑐 is the CFL number as defined
earlier.

Employing the space–time representation in the hybrid spectral
plane given by Eq. (5), and by noting the definition of numerical ampli-
fication factor as 𝐺 = �̂� (𝑘ℎ,𝑡+𝛥𝑡)

�̂� (𝑘ℎ,𝑡)
, one obtains the numerical amplification

factor for the 𝐴𝐵2 scheme as

𝐺𝑗 = 1 − 3
2
𝑁𝑐

𝑁
∑

𝑙=1
𝐶𝑗𝑙𝑒

𝑖𝑘(𝑥𝑙−𝑥𝑗 ) + 1
2
𝑁𝑐

( 𝑁
∑

𝑙=1
𝐶𝑗𝑙𝑒

𝑖𝑘(𝑥𝑙−𝑥𝑗 )

)

1
𝐺𝑗

(65)

We note that the above equation is a quadratic equation and it has
two roots, 𝐺𝑗1 and 𝐺𝑗2, which are given by

𝐺𝑗1,2 =
1
2

⎡

⎢

⎢

⎢

⎣

1 − 3
2
𝑁𝑐

𝑁
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√

√
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√
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⎥
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(66)

where, 𝑃𝑙𝑗 = 𝑒𝑖𝑘(𝑥𝑙−𝑥𝑗 ) is the projection matrix. Of the two roots, one
notes that 𝐺𝑗1 corresponds to the physical mode whereas 𝐺𝑗2 is the nu-
merical mode. The basis of this classification is due to the requirement
of the physical mode to have numerical amplification factor |𝐺𝑗 | equal
to one in the continuum limit (as 𝑘ℎ→ 0 then |𝐺𝑗 | → 1). The presence
of two modes is a characteristic feature of all three-time level methods.
One will note from the ensuing discussion the spurious nature of the
numerical mode which is an additional source of contribution to the
numerical error of the scheme.
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Due to the formulation of the multi time-level methods, these cannot
be employed for the initial advancement of numerical solution. Rather,
one uses single-step methods for the first time step. This is called
boot-strapping in literature. It should also be noted that the numerical
solution is a superposition of the contributions due to the physical
and numerical modes for the multi time-level methods. For the 𝐴𝐵2
method, this distribution of the numerical solution between the two
modes can be evaluated as described next. It should be noted that the
same procedure is applicable for any generic multi time-level methods.
The contribution for the two modes is denoted by spectral weights 𝑀
and 𝑁 for the physical and computational modes, respectively. The
weights are constrained by the relation 𝑀 + 𝑁 = 1. Noting that the
initial stage employs a single-step method for solution evaluation, one
represents the solution in the hybrid spectral plane as

𝑢(1)𝑗 = ∫ �̂� (𝑘ℎ, 𝛥𝑡)𝑒𝑖𝑘𝑥𝑗 𝑑𝑘 = ∫ �̂� (𝑘ℎ, 0)𝐺𝑗𝐸 (𝑘ℎ,𝑁𝑐 )𝑒
𝑖𝑘𝑥𝑗 𝑑𝑘 (67)

where, 𝐺𝑗𝐸 is the numerical amplification factor of the corresponding
single-step method. If 𝑅𝐾4 scheme is employed then this quantity
is given by Eq. (57). From the above equation, it is noted that the
amplitude �̂� (𝑘ℎ, 𝛥𝑡) = �̂� (𝑘ℎ, 0)𝐺𝑗𝐸 .

The solution from the next time step is obtained using the 𝐴𝐵2
time integration method. Noting that the solution at 𝑡 = 2𝛥𝑡 is split
into a numerical and physical mode as given by �̂� (𝑘ℎ, 2𝛥𝑡) = (𝑀𝐺1𝑗 +
𝑁𝐺2𝑗 )�̂� (𝑘ℎ, 𝛥𝑡), the solution is obtained as

𝑢(2)𝑗 = ∫ (𝑀𝐺1𝑗 +𝑁𝐺2𝑗 )�̂� (𝑘ℎ, 𝛥𝑡)𝑒𝑖𝑘𝑥𝑗 𝑑𝑘 (68)

From the discrete equation Eq. (63), one obtains at 𝑡 = 2𝛥𝑡 the
following equation

�̂� (𝑘ℎ, 2𝛥𝑡) =

(

1 − 3
2
𝑁𝑐

𝑁
∑

𝑙=1
𝐶𝑗𝑙𝑃𝑙𝑗

)

�̂� (𝑘ℎ, 𝛥𝑡)+

(

1
2
𝑁𝑐

𝑁
∑

𝑙=1
𝐶𝑗𝑙𝑃𝑙𝑗

)

�̂� (𝑘ℎ, 0)

(69)

Equating Eqs. (68) and (69) by noting that �̂� (𝑘ℎ, 𝛥𝑡) = �̂� (𝑘ℎ, 0)𝐺𝑗𝐸
and using the constraint 𝑀 +𝑁 = 1, a system of equations is obtained
for 𝑀 and 𝑁 . Solving these equations for 𝑀 and 𝑁 , one obtains,

𝑀 =
(1 − 3

2𝑁𝑐
∑𝑁
𝑙=1 𝐶𝑗𝑙𝑃𝑙𝑗 ) + ( 1

2𝐺𝑗𝐸
𝑁𝑐

∑𝑁
𝑙=1 𝐶𝑗𝑙𝑃𝑙𝑗 ) − 𝐺2𝑗

(70)

𝐺1𝑗 − 𝐺2𝑗
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𝑁 =
(1 − 3

2𝑁𝑐
∑𝑁
𝑙=1 𝐶𝑗𝑙𝑃𝑙𝑗 ) + ( 1

2𝐺𝑗𝐸
𝑁𝑐

∑𝑁
𝑙=1 𝐶𝑗𝑙𝑃𝑙𝑗 ) − 𝐺1𝑗

𝐺2𝑗 − 𝐺1𝑗
(71)

Having obtained the spectral weights 𝑀 and 𝑁 , the numerical
phase, phase speed and group velocity can be determined. Due to the
presence of two modes, each mode has its corresponding numerical
amplification factor |𝐺𝑗1𝑀|, |𝐺𝑗2𝑁|, phase (𝜙𝑁1, 𝜙𝑁2), phase speed
(𝑐𝑁1, 𝑐𝑁2) and group velocity (𝑉𝑔𝑁1, 𝑉𝑔𝑁2), respectively. The numerical
phase, phase speed and group velocity are given by

𝜙𝑁1
|

|𝑗 = − tan−1
( (𝑀𝐺𝑗1)𝑖
(𝑀𝐺𝑗1)𝑟

)

; 𝜙𝑁2
|

|𝑗 = − tan−1
( (𝑁𝐺𝑗2)𝑖
(𝑁𝐺𝑗2)𝑟

)

(72)

[ 𝑐𝑁1
𝑐

]

𝑗
=

𝜙𝑁1
𝑁𝑐𝑘ℎ

|

|

|

|𝑗
;
[ 𝑐𝑁2
𝑐

]

𝑗
=

𝜙𝑁2
𝑁𝑐𝑘ℎ

|

|

|

|𝑗
(73)

[𝑉𝑔𝑁1

𝑐

]

𝑗
= 1
𝑁𝑐

𝑑𝜙𝑁1
𝑑𝑘ℎ

|

|

|

|𝑗
;
[𝑉𝑔𝑁2

𝑐

]

𝑗
= 1
𝑁𝑐

𝑑𝜙𝑁2
𝑑𝑘ℎ

|

|

|

|𝑗
(74)

where the subscripts 𝑟 and 𝑖 in Eq. (72) denote the real and imaginary
parts of the complex quantity.

The properties obtained from GSA of 𝐴𝐵2 time integration scheme
for the model 1D CE are shown in Figs. 12–14 where 𝐶𝐷8, sixth
order Lele’s compact scheme and OUCS3 scheme are employed for
spatial discretizations, respectively. The properties, viz. the numerical
amplification factor, phase speed and group velocity, are presented
for the physical and numerical modes for the first time application of
the 𝐴𝐵2 scheme. For bootstrapping, RK4 method is employed. As in
the previous section, these figures also show the comparison between
the correct interpretation of the dispersion relation from GSA and the
wrong approach. It should be noted that the wrong dispersion relation,
by its very construction, cannot distinguish between the physical and
numerical modes. Hence, the numerical phase speed and group velocity
are identical for both modes.

In Fig. 12(a) and 12(b), properties are presented at 𝑡 = 2𝛥𝑡 for
the physical and numerical modes respectively, with CD8 scheme as
the spatial discretization method. For this discretization, the method
is unstable as the physical mode has |𝐺1| ≥ 1, even for very low
values of 𝑁𝑐 (not shown here). Hence, this method is unsuitable for
the solution of the CE. From the numerical amplification contours, it is
evident that the numerical mode |𝐺2𝑁| is highly damped compared to
the physical mode |𝐺1𝑀|, for the considered range of 𝑁𝑐 values. One
notes high damping of the spurious mode at low values of 𝑁𝑐 and it
decreases progressively with increasing 𝑁𝑐 . The ratio of the numerical
phase speed to exact phase speed ( 𝑐𝑁𝑐 ) contours show overprediction
of phase speed for low values of wavenumber 𝑘ℎ for the physical mode
and the error increases for higher wavenumbers. For the spurious mode,
however, the error is large even for very small wavenumbers. The
ratio of numerical group velocity to exact group velocity 𝑉𝑔𝑁

𝑐 shows
the signal to propagate at a faster speed compared to the exact speed
at low wavenumbers for the physical mode. The propagation speed
decreases progressively for increasing wavenumbers and one notes the
appearance of q-waves (𝑉𝑔𝑁 < 0) beyond 𝑘ℎ = 2.03. This is a typical
feature of numerical schemes. Interestingly, the spurious mode shows
the signal to propagate in the opposite direction at low wavenumbers
and at higher wavenumbers it propagates in the correct direction albeit,
at erroneous speeds.

Fig. 13(a) and 13(b), show the numerical properties for the phys-
ical and spurious modes for the sixth order Lele’s scheme as the
spatial discretization method. As noted in the case of CD8 scheme,
this discretization is also unstable due to the amplification factor
for the physical mode being greater than 1 (not shown here). The
same observations for the CD8 case are noted here. The sixth order
spatial discretization improves the numerical phase speed and group
velocity properties of the physical mode. However, the improvement is
inconsequential due to the unstable nature of the scheme.

Fig. 14(a) and 14(b), show the numerical properties for the physical
and spurious modes for the optimized upwind compact scheme OUCS3.
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Unlike the instability noted for CD8 and Lele’s schemes, a small region
of stability is noted. The same observations for numerical phase speed
and group velocity for the CD8 case are noted in this case too. However,
an interesting observation can be made in this case where the numer-
ical amplification factor for the physical and spurious modes changes
discontinuously after a certain value of 𝑁𝑐 . This is attributed to the
change in sign of the imaginary part of the complex quantity under the
square root term in Eq. (66) which leads to a discontinuity in the square
root term. This is not noted for the central schemes — CD8 and Lele’s
scheme and hence, the discontinuity is absent.

The GSA of the 𝐴𝐵2 scheme demonstrates the typical nature of
multi time-level integration schemes which involves spurious mode(s)
in the computation of solutions. The spurious mode is omnipresent;
it exists even at small values of 𝑁𝑐 although its amplitude is small.
Due to the distribution of the solution between physical and numerical
modes, and noting the spurious mode to propagate in the direction
opposite to the correct propagation direction, accurate propagation of
energy is impossible. This demonstrates a major limitation of multi
time-level integration methods and is the reason why such methods are
undesirable for high accuracy computing.

In the next section, we show the existence of the spurious mode by
a demonstration case using the 𝐴𝐵2 scheme for time integration. The
numerical parameters are specifically chosen to highlight the numerical
instability which arises when the spurious mode is the dominant mode
for solution propagation.

5.1. Evidence for existence of numerical mode in Adams–Bashforth method

The existence of numerical modes for three-time level methods has
been conclusively shown for the mid-point leapfrog method in [1],
when Euler and 𝑅𝐾4 time integration methods are used to boot-strap
the mid-point leapfrog scheme at the first time-step. In this method,
the numerical amplification factor of the physical and spurious modes
are perfectly neutral, with opposite group velocities. As a consequence,
the given initial condition splits into two branches, as graphically
demonstrated in [1].

For 𝐴𝐵2 time integration scheme, the strong asymmetry of the
numerical amplification factors for the physical and numerical modes
has been shown in [44], with the latter contributing very insignifi-
cantly. This prompted Lilly [79] to recommend the 𝐴𝐵2 scheme to
be of practical use, provided the time of computing is kept to a
minimum. From the property charts shown in [44], this allows the
use of 𝐴𝐵2 − 𝐶𝐷2 in this context, as the numerical instability of the
physical mode is marginal, allowing one to compute for some time.
However, one should keep in mind that the numerical mode also exists
however insignificant its contribution may be. For example, for the
results shown in Figs. 13 and 14, for 𝐴𝐵2 method used with Lele’s
compact scheme and 𝑂𝑈𝐶𝑆3, both the physical and numerical mode
can be unstable. Here, we will establish the existence of the numerical
mode unambiguously, by considering the third order upwind (𝑈𝐷3)
scheme for spatial discretization with 𝐴𝐵2. The numerical experiment
is designed for a scenario in which the contribution from the spurious
mode is dominant.

The 𝑈𝐷3 method displays unusual numerical properties in Figs. 15
and 16. The numerical amplification rates, |𝐺1𝑀| and |𝐺2𝑁|, are
shown in Fig. 15. For the physical mode, one notes the method to be
strictly unstable for a critical CFL of (𝑁𝑐 )𝑐𝑟 = 0.66051, above which
the method displays violent instabilities. For the numerical mode, one
notices another critical CFL of (𝑁𝑐 )𝑐𝑟 = 0.20866 above which the nu-
merical mode displays strong numerical instabilities. Thus, this method
is special as the contribution of the numerical mode is significant for
a wide range of 𝑘ℎ and 𝑁𝑐 . For some such combinations, numerical
mode may be more dominant than the physical mode. One such point
is identified in Fig. 15, given by: 𝑘ℎ = 1.0 and 𝑁𝑐 = 2.2 for which
|𝐺1𝑀| = 0.020608 (denoted by point 𝑃 ) and |𝐺2𝑁| = 2.99656 (denoted

by point 𝑄).



Fig. 12(a). Numerical properties of the physical mode obtained by CD8 spatial discretization and AB2 time integration schemes in solving Eq. (2). The properties obtained using
correct dispersion relation, Eq. (8) are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in Eq. (6) leads to the properties shown on the right
frames. Shown are |𝐺1𝑀|, 𝑐𝑁1∕𝑐 and 𝑉𝑔𝑁1∕𝑐 in various frames and compared for a typical interior point.
In Fig. 16, the numerical group velocity 𝑉𝑔𝑁∕𝑐 contours are shown
for both physical and numerical modes. The point of interest (𝑃 ) has
𝑉𝑔𝑁1∕𝑐 = −0.10903. This would have been of concern to us as the
physical mode is propagating in the unphysical direction and upwind
scheme does not accommodate this, however on observing the low
value of |𝐺1𝑀| = 0.020608, one can be assured that the physical mode
shall not exist for long in any simulation. For the spurious mode, the
point of interest is marked as 𝑄 for which 𝑉𝑔𝑁2∕𝑐 = 0.371861.
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The existence of the numerical mode has been established in Fig. 17
by solving the 1D CE using the combination of 𝐴𝐵2 method for time
integration and 𝑈𝐷3 for spatial discretization. The numerical properties
for the chosen values of 𝑘ℎ and 𝑁𝑐 are shown in Fig. 15, in terms of the
product of the amplification factor and the fraction of the signal being
propagated by the corresponding mode and in Fig. 16, the numerical
group velocity of the respective modes are shown. The wave-packet
propagation in Fig. 17 is described by a periodic signal convoluted by



Fig. 12(b). Numerical properties of the spurious mode obtained by CD8 spatial discretization and AB2 time integration schemes in solving Eq. (2). The properties obtained using
correct dispersion relation, Eq. (8) are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in Eq. (6) leads to the properties shown on the right
frames. Shown are |𝐺2𝑁|, 𝑐𝑁2∕𝑐 and 𝑉𝑔𝑁2∕𝑐 in various frames and compared for a typical interior point.
the Gaussian as,

𝑢(𝑥, 0) = 𝑒−𝛼(𝑥−𝑥0)
2
𝑠𝑖𝑛(𝑘0𝑥) (75)

where 𝛼 = 0.01, 𝑥0 = 250, 𝑐 = 300 in a domain of 0 < 𝑥 < 500
with 144 000 points. The first time step is obtained by Euler time
integration scheme. From the second time step onwards, 𝐴𝐵2 time
integration is employed with periodic boundaries to avoid the problem
of reflection from the domain boundaries. We will highlight aspects of
numerical instability cropping up due to this issue in the next section.
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Here our primary and only intention is to show the existence of the
numerical mode and reflections from the wall complicate interpretation
of computational solution. Due to this focus on the primary goal, we
will also display the solution only up to the first time step of 𝐴𝐵2
scheme.

A Fourier transform of the initial wave-packet is conducted to
ensure localization of the wave-packet at the chosen value of 𝑘ℎ = 1.
This becomes particularly important for 𝐴𝐵2 −𝑈𝐷3, as is evident from
the peculiar numerical properties’ rapid variations with 𝑘ℎ in Figs. 15



Fig. 13(a). Numerical properties of the physical mode obtained by sixth order Lele’s compact scheme for spatial discretization and AB2 time integration schemes in solving Eq. (2).
The properties obtained using correct dispersion relation, Eq. (8) are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in Eq. (6) leads to the
properties shown on the right frames. Shown are |𝐺1𝑀|, 𝑐𝑁1∕𝑐 and 𝑉𝑔𝑁1∕𝑐 in various frames and compared for a typical interior point.
and 16. In Fig. 17, the initial solution is shown in the top frame, while
the computed solution at 𝑡 = 𝛥𝑡 and 2𝛥𝑡 are shown in the middle and
bottom frames. For the computed solution shown in the middle frame,
the maximum 𝑢 value attained is 2.19338 which can be attributed to
the unstable nature of the Euler time integration. In the subsequent
frame at 𝑡 = 2𝛥𝑡, the maximum value of the wave-packet is noted as
6.56574 which is found to be 2.99343 times the value at 𝑡 = 𝛥𝑡 and
this is the value of |𝐺2𝑁| recorded in Fig. 15 for the chosen 𝑘ℎ and
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𝑁𝑐 combination. This fact is conclusive proof of the branching of the
signal into physical and computational modes by the 𝐴𝐵2 method.

Also from Fig. 16, for the numerical mode, the value of the nor-
malized group velocity is given by 𝑉𝑔𝑁2∕𝑐 = 0.371861. As noted
already that following the growth of the initial solution by Euler time
integration, the solution is split into physical and numerical modes.
However, the quantum of signal going to the physical mode is about
only 2% of the solution at 𝑡 = 𝛥𝑡. Also, this small part of the signal



Fig. 13(b). Numerical properties of the spurious mode obtained by sixth order Lele’s compact scheme for spatial discretization and AB2 time integration schemes in solving
Eq. (2). The properties obtained using correct dispersion relation, Eq. (8) are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in Eq. (6) leads
to the properties shown on the right frames. Shown are |𝐺2𝑁|, 𝑐𝑁2∕𝑐 and 𝑉𝑔𝑁2∕𝑐 in various frames and compared for a typical interior point.
will travel in the wrong direction (as given by 𝑉𝑔𝑁1∕𝑐 = −0.10903). In
contrast, the wave-packet will travel in the correct physical direction,
carried by the numerical mode with 𝑉𝑔𝑁2∕𝑐, in an unstable manner as
|𝐺2𝑁| = 2.99656. Thus, the signal would have traveled a distance of
2.840604 × 10−3, if it was purely monochromatic. From Fig. 17, it is
noted that the signal has traveled a distance of 2.82 × 10−3. This also
convinces one that the numerical mode is responsible for carrying a part
of the signal in all applications of the 𝐴𝐵2 scheme. In the framework
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of the 𝐴𝐵2 −𝑈𝐷3 method, it is established as the most dominant mode
carrying the signal.

6. Beyond classical linearized stability analysis of nonlinear PDEs:
introduction to local energy growth, side-band instabilities and
focusing

The use of linear equations to study the stability and accuracy of
discretized non-linear equations relies on the key assumptions that the



Fig. 14(a). Numerical properties of the physical mode obtained by optimized compact scheme OUCS3 for spatial discretization and AB2 time integration schemes in solving Eq. (2).
The properties obtained using correct dispersion relation, Eq. (8) are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in Eq. (6) leads to the
properties shown on the right frames. Shown are |𝐺1𝑀|, 𝑐𝑁1∕𝑐 and 𝑉𝑔𝑁1∕𝑐 in various frames and compared for a typical interior point.
errors, that are modeled as fluctuations around the exact solution, are
small, allowing for the use of a linearized system. This is illustrated
considering the nonlinear advection equation
𝜕𝑢
𝜕𝑡

+ (𝑐 + 𝑢) 𝜕𝑢
𝜕𝑥

= 0 (76)

where 𝑐 is related to a base flow. In common cases, 𝑢 is interpreted
as a fluctuation about the base flow solution. The associated linearized
problem often used to perform numerical scheme analysis is equivalent
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to (2), i.e.

𝜕𝑢
𝜕𝑡

+ 𝑐 𝜕𝑢
𝜕𝑥

= 0 (77)

under the key assumption that 𝑢 is small in some sense, i.e. for a given
norm:

‖𝑢‖≪ 𝑐 (78)



Fig. 14(b). Numerical properties of the spurious mode obtained by optimized compact scheme OUCS3 compact scheme for spatial discretization and AB2 time integration schemes
in solving Eq. (2). The properties obtained using correct dispersion relation, Eq. (8) are shown in the left frames. Use of the incorrect dispersion relation (i.e. using 𝑐𝑁 ≅ 𝑐) in
Eq. (6) leads to the properties shown on the right frames. Shown are |𝐺2𝑁|, 𝑐𝑁2∕𝑐 and 𝑉𝑔𝑁2∕𝑐 in various frames and compared for a typical interior point.
It is worth keeping in mind since we are dealing with finite discrete
solutions when analyzing realistic numerical solutions, the choice of
the norm is not a key problem, since all norms are equivalent in this
finite discrete case.

It has been observed by many authors, e.g. [72,83,84], that some
computed numerical solutions of Eq. (76) become unstable, while the
stability analysis based on (77) predicts a stable solution, even consid-
ering very small initial noise, i.e. satisfying the key condition (78) at
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𝑡 = 0 and in the absence of spurious source terms which may play the
role of error energy source.

While the nonlinear nature of the instability that is responsible for
the exponential growth of the error is commonly admitted in such
cases, the question arises of the existence of linear mechanisms that
may lead to the triggering of nonlinear instability in linearly stable
cases. The key point here is the breakdown of hypothesis (78), i.e. the
occurrence of instantaneous local high values of 𝑢 that are strong



Fig. 15. The split numerical amplification factors for the (a) physical (|𝐺1𝑀|) and (b)numerical modes (|𝐺2𝑁|) of the 𝐴𝐵2 time integration method used with 𝑈𝐷3 for spatial
discretization.
enough to locally trigger dominant nonlinear mechanisms, whose sta-
bility can be investigated thanks to dedicated methods (mostly based
on the dynamical system theory).

In the absence of spurious error source terms, and for energy-
preserving schemes for which ‖𝑢‖2 = 𝑐𝑜𝑛𝑠𝑡, the occurrence of local high
values of 𝑢, i.e. high values of ‖𝑢‖∞ is observed to be due to the local
instantaneous concentration of energy of 𝑢, a phenomenon referred to
as focusing [72]. While nonlinear focusing mechanisms are commonly
reported in classical physics and numerical analysis, the possibility of
linear transient error growth in linearly stable discrete solutions has
been addressed by a few authors only, mostly using matrix analysis and
extensions of the classical Fourier-based Von Neumann analysis.

6.1. Focusing of energy due to dispersive errors

It has been shown via GSA analysis that both the numerical phase
speed 𝑐𝑁 and the group velocity 𝑉𝑔𝑁 are scale- and frequency-
dependent, even if the physical phase speed 𝑐 is uniform and con-
stant. Therefore, the intrinsic numerical errors transform the original
continuous non-dispersive problem into a dispersive one. Starting from
that observation, several researchers have proposed to apply the math-
ematical tools and the theoretical concepts developed to describe
wave propagation through dispersive media to analyze the dispersive
effects on the numerical solution. More precisely, these works aim at
interpreting the local pile up of energy and error observed in numerical
simulations by looking at the similarities with the physics of continuous
dispersive waves.
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The local focusing of wave energy is classically described using the
caustics theory, which originates in the ray theory in geometrical optics
and geometrical acoustics, see e.g. [85]. The ray theory is a Lagrangian
approach to the wave propagation, that provides models for the propa-
gation of energy and phase of the wave along characteristic lines. The
key elements of ray and caustic theories are now reminded to illustrate
the dispersive mechanisms that may lead to a local instantaneous very
large growth of the energy of the solution.

The ray theory is based on the local approximation of waves whose
amplitude and direction of propagation vary slowly over one wave-
length as a plane wave. Rays are characteristic lines along which the
energy is transported, precisely defined as the bicharacteristics of the
Helmholtz equation.

Considering the propagation of a scalar monochromatic wave in a
linear isotropic medium, the solution can be written as

𝑢(𝐱, 𝑡) = 𝑈 (𝐱)𝑒−𝑖(𝜔𝑡−𝑘𝜓(𝐱)) (79)

where 𝑘 and 𝜔 denote the wave number and the frequency, respec-
tively. 𝜓(𝐱) is referred to as the eikonal function, and whose isosurfaces
𝜓(𝐱) = 𝑐𝑜𝑛𝑠𝑡 are the wavefronts. In the general case, there exist an
infinite number of couple (𝑈 (𝑘), 𝜓(𝐱)) at fixed (𝑘, 𝜔). In the present case,
it is assumed that 𝑢(𝐱, 𝑡) obeys the following scalar Helmholtz wave
equation

1 𝜕2𝑢 + ∇2𝑢 = 0 (80)

𝑐(𝐱)2 𝜕𝑡2



Fig. 16. The normalized numerical group velocities for the (a) physical (𝑉𝑔𝑁1∕𝑐) and (b)numerical modes (𝑉𝑔𝑁2∕𝑐) of the 𝐴𝐵2 time integration method used with 𝑈𝐷3 for spatial
discretization.
where the propagation speed 𝑐(𝐱) = 𝑐0∕𝑛(𝐱) may be space dependent
in heterogeneous media. Here, 𝑐0 and 𝑛(𝐱) are related to a reference
propagation speed and local variations due to medium heterogeneities,
respectively. Plane wave solutions are exactly preserved for uniform
𝑐(𝐱) = 𝑐0. It is worth noting that (80) is an approximation of (4)
in which the rhs term is neglected (this is reasonable for slowly and
weakly varying 𝑐), but first dispersive effects are captured by ac-
counting for the local value of 𝑐(𝐱) in the wave propagation operator.
Inserting (79) into (80), one obtains:

∇2𝑈 + 2𝑖𝑘(∇𝜓 ⋅ ∇𝑈 ) + 𝑖𝑈𝑘∇2𝜓 − 𝑈𝑘2(∇𝜓)2 +
𝑛(𝐱)2

𝑐20
𝜔2𝑈 = 0 (81)

which can be rewritten by considering the real and imaginary parts
separately and introducing the wavelength 𝜆 = 2𝜋∕𝑘 as

∇2𝑈 − 𝑈𝑘2
[

(∇𝜓)2 + 𝑛2
]

𝑈 = 0 (82)

and

𝑘
[

2(∇𝜓 ⋅ ∇𝑈 ) + 𝑈∇2𝜓
]

= 0 (83)

Geometrical theories address small perturbations about plane wave so-
lutions, due to small perturbations in the propagation speed. Therefore,
𝑐(𝐱) is assumed to exhibit small amplitude variations at the wavelength
scale 𝜆 = 2𝜋∕𝑘. Restricting the analysis this way, the solution is
approximated as an asymptotic series in negative powers of the wave
number 𝑘 = 𝜔∕𝑐 :

𝑢(𝐱) =
(

𝑈0(𝐱) +
𝑈1(𝐱) +

𝑈2(𝐱) +⋯
)

𝑒𝑖𝑘𝜓(𝐱) (84)
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𝑖𝑘 (𝑖𝑘)2
Inserting this expansion in (82), one recovers at the leading order in 𝑘
the Eikonal equation

(∇𝜓)2 = 𝑛2 (85)

along with the transfer equations in the amplitudes that originate in
(83) :

2∇𝑈0 ⋅ ∇𝜓 + 𝑈0∇2𝜓 = 0 (86)
2∇𝑈1 ⋅ ∇𝜓 + 𝑈1∇2𝜓 = −∇2𝑈0 (87)

...

Solutions of this problem can be expressed in a Lagrangian form, in a
way similar to the characteristic solutions for compressible hydrody-
namics and more generally for hyperbolic systems, in which Riemann
invariants are advected along characteristic lines. For the sake of
efficiency the Eikonal equation is recast in the following canonical
Hamiltonian form:
𝑑𝐱
𝑑𝜏

= 𝐩, 𝑑𝐩
𝑑𝜏

= 1
2
∇𝑛2 (88)

where 𝐩 = ∇𝜓 is the pseudo-momentum of the ray and 𝜏 is a time-like
parameter defined along the ray tied to its length 𝑙 by 𝑑𝜏 = 𝑑𝑙∕𝑛. The
direction of propagation of the ray is 𝐩∕‖𝐩‖.

For a given initial condition 𝑢0 = 𝑈0𝑒𝑖𝑘𝜓
0 , the solution is obtained

by integration along the ray:

𝜓 = 𝜓0 +
𝜏
𝑛2(𝐱(𝜏))𝑑𝜏 (89)
∫0



Fig. 17. Numerical solution of the 1D CE in the physical plane for 𝐴𝐵2 −𝑈𝐷3 scheme at times (a) 𝑡 = 0, (b) 𝑡 = 𝛥𝑡 and (c) 𝑡 = 2𝛥𝑡. For the chosen parameters, numerical instability
is mostly due to the numerical mode, while effect of physical mode is negligible.
Relations (88) emphasize the characteristic nature of rays, and show
that the local instantaneous solution at (𝐱, 𝑡) can be obtained from the
initial solution by summing contributions from all rays reaching (𝐱, 𝑡):

𝑢(𝐱) =
∑

𝑗=1,𝑁
𝑈 (𝑗)
0 𝑒𝑖𝑘𝜓𝑗 (90)

where 𝑁,𝑈 (𝑗)
0 and 𝜓𝑗 denote the number of rays converging at point 𝐱,

the amplitude and the eikonal of the 𝑗th ray, respectively.
If the propagation speed 𝑐 is uniform, rays are parallel straight

lines, corresponding to a non-dispersive solution, while curved lines
may exist in the case of dispersive solution associated to non-uniform
propagation speed, i.e. space and/or time-varying 𝑛(𝐱, 𝑡). Rays are lines
along which energy is transported, i.e. they are energy trajectories. This
is seen by introducing the vector of density of energy flux of 𝑢:

𝐈 = 1
2𝑖𝑘

(

𝑢∗∇𝑢 − 𝑢∇𝑢∗
)

(91)

which is such that

div(𝐈) = 0 (92)

according to (80). In the geometrical approximation (84), the leading
order expansion yields 𝐈 ≃ 𝐩𝑈2

0 , yielding

div(𝐩𝑈2) = 0 (93)
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0

which is identical to (86) since 𝐩 = ∇𝜓 . Therefore, the density of energy
flux vector is parallel to 𝐩, i.e. the energy flows along the rays.

Caustics (surfaces or lines) are mathematically defined as envelopes
of the family of rays at which the field intensity increases sharply
compared to the neighborhood. This phenomena has been analyzed
using the catastrophe theory by many authors. This occurs when a
large number of rays converge to the same location, resulting in a
local concentration of a huge amount of energy. This phenomenon is
illustrated in Fig. 18. This kind of singularity shares several features
with shock waves in hydrodynamic, which occur at singular points in
the space–time plane at which characteristic lines of the same family
interact, leading to a ill-posed multi-valued problem. By analogy, the
concentration of the error associated to the discretized version of
Eq. (77) due to the dispersive nature of the numerical error can be
understood as the result of the superimposition of the error energy
carried by characteristic lines. In the case of a uniform base flow
𝑐, this can originate only in the scale-dependence of the numerical
propagation speed 𝑐𝑁 given by (13). Therefore, the linear focusing
phenomenon is out of reach of the classical monochromatic plane-wave
analysis, which must be replaced by a polychromatic analysis, as done
in GSA.

In order to recover a local initial perturbation (or at least a perturba-
tion with a compact support) and to mimic ray-like phenomena, wave



Fig. 18. Schematic view of the caustics phenomenon due to the focusing of rays.
packets should be considered, as done by Giles and Thompkins [86]
who developed the concept of wavepacket particle to analyze the
motion of wavepackets. These authors modeled wave packets as a
solution of the form

𝑢𝑛𝑗 = 𝐴(𝑘, 𝑗, 𝑛)𝑒𝑖𝛹 (𝑘,𝑗,𝑛) (94)

where 𝐴(𝑘, 𝑗, 𝑛) is assumed to be a slowly varying amplitude and
𝛹 (𝑘, 𝑗, 𝑛) is the phase, with 𝜔𝑁 = −𝜕𝛹∕𝜕𝑛 being the frequency and 𝑘 =
𝜕𝛹∕𝜕𝑗 the wavenumber. An asymptotic analysis yields the following
evolution equation for the amplitude:
𝜕𝐴
𝜕𝑛

+ 𝑉𝑔𝑁
𝜕𝐴
𝜕𝑗

= 𝜖𝐴 (95)

where 𝑉𝑔𝑁 is the discrete group velocity and 𝜖 is a scheme-dependent
function of 𝑘, 𝜔 and 𝑗. Since 𝑉𝑔𝑁 depends on 𝑘, one can see that wave
packets with different wave numbers will travel at different speeds,
permitting the occurrence of the focusing phenomenon. This can be
recast in a Lagrangian framework closer to the ray theory by defining
the total derivative:
𝑑
𝑑𝑛

= 𝜕
𝜕𝑛

+ 𝑉𝑔𝑁
𝜕
𝜕𝑗

(96)

yielding the Lagrangian formulation of the wave packet evolution:
𝑑𝑗
𝑑𝑛

= 𝑉𝑔𝑁 ,
𝑑𝐴
𝑑𝑛

= 𝜖𝐴, 𝑑𝑘
𝑑𝑛

= 𝑉𝑔𝑁
𝜕𝑘
𝜕𝑗

(97)

These relations show that wavepackets travel along characteristic lines
associated with the group velocity, along which both the amplitude
of the envelope and the wavenumber may evolve. These theoretical
predictions have been assessed by some numerical experiments, e.g. see
Section 4.1.

Defining the energy of the wavepacket, 𝐸(𝑛) by integration over its
compact support, one has

𝐸(𝑛) = 𝛥𝑥
𝑁
∑

0
|𝐴(𝑗, 𝑛)|2 (98)

along with the following discrete evolution equation (the asterisk de-
notes the complex conjugate)

𝑑𝐸
𝑑𝑛

=
(

𝜖 + 𝜖∗ +
𝜕𝑉𝑔𝑁
𝜕𝑗

)

𝐸 (99)

These relations illustrate the similarities between the theory of wave
propagation in dispersive media and the dynamics of discrete dispersive
numerical solutions.
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Numerical experiments were conducted on the linear scalar advec-
tion equation in [87] in which the authors identified local blow-up of
the local error due to the pile-up of two wavepackets with different
scales. The authors also proposed a criterion to identify schemes for
which the rise of spurious caustics is favored. More precisely, spurious
caustics are likely to occur if there exist a wavenumber 𝑘𝑐 with 0 <
𝑘𝑐𝛥𝑥 ≤ 𝜋 such that the numerical group velocity exhibits an extremum,
i.e.
𝑑𝑉𝑔𝑁
𝑑𝑘

(𝑘𝑐 ) = 0 (100)

where 𝑉𝑔𝑁 is given by the GSA relations (8) and (59). The GSA analysis
of several cases is detailed in the following sections.

6.2. Non-uniform base flow: collective interactions and side-band instabili-
ties

The previous developments are related to the focusing phenomenon,
i.e. the concentration of the energy of the initial error due to the
numerical dispersive error in the presence of a uniform base flow 𝑐.

Another linear error growth mechanism for polychromatic solutions
has also been identified considering fluctuations about a sinusoidal base
flow, e.g. [72,74,88–93]. In such a case, which can be interpreted as
a model for error growth about a non-uniform discrete solution of the
model nonlinear equation
𝜕𝑢
𝜕𝑡

+ (𝑐 + 𝑢) 𝜕𝑢
𝜕𝑥

= 0 (101)

a linear growth of the error can be triggered by so-called sideband insta-
bilities, which originate in resonance (coined as grid resonance by Cloot
and Herbst [88]) between the base flow and the fluctuations. Such a
mechanism is observed in the Benjamin–Feir instability in free-surface
wave dynamics [94] or more general wavetrain instabilities [95].

This is now illustrated by considering a second-order centered finite
difference scheme and a Leapfrog time integration, one obtains the
following linearized equation for the fluctuations 𝐮 around the base
flow solution (𝑐 + 𝑈𝑛

𝑗 ):

𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑗 + 𝛼(𝑢𝑛𝑗+1 − 𝑢
𝑛
𝑗−1) + 𝛾𝜃(𝑈

𝑛
𝑗+1𝑢

𝑛
𝑗+1 − 𝑈

𝑛
𝑗−1𝑢

𝑛
𝑗−1)

+ 𝛾(1 − 𝜃)[(𝑈𝑛
𝑗+1 − 𝑈

𝑛
𝑗−1)𝑢

𝑛
𝑗 + 𝑈

𝑛
𝑗 (𝑢

𝑛
𝑗+1 − 𝑢

𝑛
𝑗−1)] = 0

(102)

where 𝛾 = 𝛥𝑡∕𝛥𝑥 and 𝜎 = 𝑐𝛥𝑡∕𝛥𝑥, and the 𝜃 parameter is a weighting
coefficient used to mix the conservative and the quasi-linear formula-
tion of the convection term. The base flow selected for the stability



analysis is made of the sum of a uniform base flow, 𝑐 and a space–time
dependent component :

𝑈𝑛
𝑗 = 𝜖

(

∑

𝑙=1,2
𝑒𝑖(𝑘𝑥𝑗−𝜔

𝑙
𝑘𝑡𝑛) + 𝑐.𝑐.

)

+ 𝑂(𝜖2) (103)

which is a so-called 2-modes stable solution of the nonlinear discrete
equation with a small amplitude 𝜖 ≪ 1, and the fluctuating error field
is taken equal to

𝑢𝑛𝑗 = 𝜁

(

∑

𝑚=0,𝑁∕2
𝛼𝑛𝑚𝑒

𝑖𝑚𝑥𝑗 + 𝑐.𝑐.

)

, 𝜁 ≪ 𝜖 (104)

where 𝑁 is the number of grid points. It is worth noting that the key
mechanisms at play for the growth of the error are related to wave
resonance between a nonlinear solution and small superimposed distur-
bances, rather that the local pile-up of energy due to the convergence of
characteristic lines due to the scale-dependence of the numerical phase
speed. The splitting of the total solution as

𝑣𝑛𝑗 = 𝑐 + 𝑈𝑛
𝑗 + 𝑢𝑛𝑗 (105)

can be seen as the result of a multiscale expansion of the full solution.
Several theoretical approaches have been proposed in mathematical
physics to perform such a decomposition that will not be discussed
here for the sake of brevity, e.g. the Wentzel–Kramers–Brillouin (WKB)
method . Frequencies of the two modes of the base flow are obtained
considering dispersion relation associated with the linear discretized
problem, i.e.

sin(𝜔𝑘𝛥𝑡) = 𝜎 sin(𝑘𝛥𝑥) (106)

yielding

𝜔1
𝑘 =

1
𝛥𝑡

arcsin(𝜎 sin(𝑘𝛥𝑥)), 𝜔2
𝑘 =

1
𝛥𝑡

(𝜋 − 𝛥𝑡𝜔1
𝑘) (107)

Inserting (103) and (104) into Eq. (102), one obtains discrete equations
for the amplitude coefficients 𝛼𝑛𝑚:

𝛼𝑛+1𝑠 − 𝛼𝑛−1𝑠
2𝛥𝑡

+ 𝑖𝑤𝑠𝛼𝑛𝑠 = −𝑖𝜖𝐶𝑠

(

∑

𝑙=1,2
𝑒−𝑖𝜔

𝑙
𝑘𝑡𝑛

)

(𝛼𝑛𝑠−𝑘 + 𝛼
𝑛∗
𝑠−𝑘)

− 𝑖𝜖𝐷𝑠

(

∑

𝑙=1,2
𝑒−𝑖𝜔

𝑙
𝑘𝑡𝑛

)

(𝛼𝑛𝑠+𝑘 + 𝛼
𝑛∗
𝑠+𝑘)

(108)

with 𝑤𝑠 = (𝑈0∕𝛥𝑥) sin(𝑠𝛥𝑥) and

𝐶𝑠 = 1
𝛥𝑥

(𝜃 sin(𝑠𝛥𝑥) + (1 − 𝜃) [sin(𝑘𝛥𝑥) + sin((𝑠 − 𝑘)𝛥𝑥)]) (109)

𝐷𝑠 = 1
𝛥𝑥

(𝜃 sin(𝑠𝛥𝑥) − (1 − 𝜃) [sin(𝑘𝛥𝑥) − sin((𝑠 + 𝑘)𝛥𝑥)]) (110)

Considering that 𝜖 is very small, the right-hand-side is interpreted as a
source term that must slightly perturb the solution of the homogeneous
equation, whose solution is

𝛼𝑛𝑠 ∼ 𝑒−𝑖𝜔
𝑙
𝑠𝑡𝑛 , 𝑙 = 1, 2 (111)

Substituting this solution in the right-hand-side, it is shown that insta-
bility will occur, i.e. 𝛼𝑠 will grow linearly in time if one of the two
resonance conditions is fulfilled:

𝜔𝑚𝑠 =

{

𝜔𝑙𝑘 + 𝜔
𝑝
𝑠−𝑘

−𝜔𝑙𝑘 + 𝜔
𝑝
𝑠+𝑘,

𝑚, 𝑙, 𝑝 = 1, 2 (112)

In this case, the error fluctuations get in resonance with the base flow
variations, leading to a constructive interaction (without feedback on
the base flow solution). Looking at Eq. (107), the resonance conditions
is fulfilled if:

𝑠 =

⎧

⎪

⎨

⎪

⎩

𝑘 𝑚 = 𝑙 = 1, 2, 𝑝 = 1
𝑁∕2 𝑚 = 2, 𝑙 ≠ 𝑝, 𝑙, 𝑝 = 1, 2
𝑁∕2 − 𝑘 𝑚 = 2, 𝑙 = 1, 𝑝 = 2

(113)

showing that the solution is numerically unstable, since at least the two
modes 𝑠 = 𝑁∕2 and 𝑠 = 𝑁∕2 − 𝑘 are unstable.
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7. Explaining focusing using GSA: The mechanisms for the CE and
focusing due to reflection of q-waves from NSE

In this section, focusing mechanism(s) for a wave-packet propa-
gation following model linear CE as described using GSA in [57] is
discussed and a mechanism is demonstrated for the solution of NSE.
Focusing is a phenomenon which is observed during numerical solution
of PDEs where the solution progresses smoothly for a long time accom-
panied by a quick solution break down due to a spectacular growth
of numerical error at the fixed preferential node and the error-packet
wavenumber. In the ensuing subsections, the focusing mechanisms
for the linear CE are presented followed by the demonstration of a
mechanism involving reflection of spurious q-waves at the boundary
for the NSE.

7.1. Focusing mechanisms for linear CE

We recall that the model CE is given by Eq. (2). As discussed
in the earlier section, GSA accurately incorporates the variation of
numerical properties due to boundary closure schemes for explicit
and implicit methods. It was also noted from the analyses that high
accuracy methods suffer from numerical instability at the boundary
and the near boundary nodes. Furthermore, for non-periodic problems,
the instability when noted near the boundaries, is observed to be
violently unstable compared to events in the interior of the domain.
This prompted researchers in [72,74,83,84] to investigate the focusing
phenomena as due to nonlinear mechanism(s).

Briggs et al. [72] proposed a nonlinear mechanism where the error
gets focused at one point in the computational domain with respect
to a nonlinear partial differential equation. They considered a periodic
nonlinear problem which was quasilinearized and a three time level
leap-frog method was used for time advancement, along with second
order central difference scheme. As noted in an earlier section, the use
of three time level method introduces a spurious computational mode,
in addition to the physical mode. In their results, the spurious mode was
found to be central for this nonlinear instability. For the employed leap-
frog method for time advancement, Sloan & Mitchell [74] highlighted
Fourier side-band instability in the context of envelope modulation. The
same time discretization method was also employed in [83], for the
nonlinear instability problem.

In [57], the instability is shown as due to a linear mechanism. This is
enabled using GSA, where the violent instability is related to the nodal
properties of the discretization, owing to the non-periodic nature of
the problem. In demonstrating the results, the authors have employed
a symmetrized OUCS3 scheme [67] and two time level RK4 method
for time integration. The choice for the time integration method as
noted by the authors, is to ensure that the instability is not due to
computational mode.

In Figs. 19 and 20, the variation of numerical amplification, phase
speed and group velocity contours with nodal locations is shown for
the RK4-SOUCS3 scheme. In plotting these properties, 101 grid points
are chosen for analysis and the results are plotted for near boundary
nodes 𝑗 = 2, 4, 6, 96, 98, 100 and the interior point 𝑗 = 51. It is
noted that the interior point, which is also the middle point, is not
influenced by the boundary stencils. As the symmetrization removes the
directional bias of the upwind compact scheme, the nodal properties
of points which are equidistant from the boundaries will remain the
same. Comparison of numerical properties at near boundary nodes
shows significant differences from the interior node. It is also noted
that the interior node has a larger stability region compared to the
nodes, 𝑗 = 2 and 100. The comparison also shows large errors to be
introduced at the near boundary nodes for numerical phase speed and
numerical group velocity even for small values of 𝑁𝑐 and 𝑘𝛥𝑥. As
a result, qualitatively different numerical solution is obtained at the
interior and near boundary nodes for a propagating wave. Furthermore,

in these plots, a dashed line along with a circle corresponding to 𝑁𝑐 =



Fig. 19. Comparison of |𝐺𝑗 |, 𝑉𝑔𝑁∕𝑐 and 1− 𝑐𝑁∕𝑐 contours for the near-boundary nodes 𝑗 = 2, 100 (left column) and central node 𝑗 = 51 (right column), using RK4-SOUCS3 scheme
for the solution of 1D CE Eq. (2). The line at 𝑁𝑐 = 2 corresponds to the cases computed and shown in Fig. 22.
2 is marked. This corresponds to the numerical test case chosen to
demonstrate focusing, as described next.

Three different cases of focusing mechanism are shown in [57] by
solving the propagation of wave-packet. The first is attributed to the
instability arising at the near boundary nodes. The second case was
shown as a consequence of discontinuity in the numerical solution.
It was shown that focusing arising out of solution discontinuity starts
at the location of discontinuity instead of boundary nodes. The third
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mode of focusing was attributed to the chosen numerical method of
discretization. In this case, the error was always focused at a specific
wavenumber scale which corresponded to numerical group velocity
equal to zero, and was referred to as absolute instability. It should be
noted this is not a necessary and sufficient condition of all spectacular
error growth as the results correspond to the central spatial discretiza-
tion schemes and does not hold for upwind spatial discretization stencil.
In the next subsections, the three mechanisms are described.



Fig. 20. Comparison of |𝐺𝑗 |, 𝑉𝑔𝑁∕𝑐 and 1 − 𝑐𝑁∕𝑐 contours for the near-boundary nodes 𝑗 = 4, 98 and nodes 𝑗 = 6, 96, using RK4-SOUCS3 scheme for the solution of 1D CE Eq. (2).
The line at 𝑁𝑐 = 2 corresponds to the cases computed and shown in Fig. 22.
7.1.1. Focusing phenomenon at a near-boundary node
Focusing is demonstrated using the propagation of a wave-packet

whose initial solution is given by

𝑢(𝑥, 0) = 𝑒−𝛼(𝑥−𝑥0)
2
sin(𝑘0𝑥) (114)

where 𝑥0 indicates the center of the packet, 𝑘0 denotes the central
wavenumber and 𝛼 defines the spectral bandwidth of the packet. For
the numerical simulation, the considered domain is 0 ≤ 𝑥 ≤ 3 with 𝑥 =
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0

1 and two different values of 𝛼 equal to 10 and 24. The initial solutions
are shown in panels (a) and (b) of Fig. 21 considering the packet
to be centered at 𝑘0𝛥𝑥 = 1.45. The computational domain employs
512 equi-spaced points. Although, both wave-packets look albeit with
different width, major differences are noted for the tail signal of these
wave-packets as shown by the enlarged views in the left panels of
(a) and (b) in Fig. 21. The implications of the small differences are
understood from the spectral band-width of the wave-packets as shown



Fig. 21. Initial wave-packets given by Eq. (114) used for solving Eq. (2) are shown for (a) 𝛼 = 10 and (b) 𝛼 = 24. For both the cases 𝑥0 = 1. In (a) and (b), the left panels are
the enlarged view near the upstream boundary. Bottom frame (c) shows the FFT of the wave-packets in (a) and (b).
in Fig. 21(c). In the property charts in Fig. 19, the simulation conditions
are indicated by the dotted line (𝑁𝑐 = 2) and the central wavenumber
of the packet by a solid circle 𝑘0𝛥𝑥 = 1.45. The differences of spectral
band-widths of the packets and the values of the signal amplitude in the
tail of the packets cause different numerical solutions as demonstrated
next.

Figs. 22(a) and 22(b) show the evolution of numerical solution
for 𝛼 = 10 and 24, respectively for the indicated times. The speed
of propagation in these cases i.e. 𝑐, is equal to 0.01. For the chosen
central wavenumber (𝑘0𝛥𝑥 = 1.45) and CFL number 𝑁𝑐 = 2, the nodal
amplification factor is noted as |𝐺𝑗 | = 1.089 from Fig. 19 for the interior
node, i.e. 𝑗 = 51. The unstable case is specifically chosen to demonstrate
error growth and the focusing phenomenon where error localizes on a
spatial grid as a high wavenumber instability. The numerical solutions
in Figs. 22(a) and 22(b) display instability over the entire domain with
the rates corroborating with the analyses in Figs. 19 and 20. In contrast,
the computed solution using CD2 and leapfrog time marching scheme
was identified as nonlinear growth in [72]. For the case of 𝛼 = 24 shown
in Fig. 22(b), the wave-packet is noted to travel from left to right as
the numerical group velocity, 𝑉𝑔𝑁 (𝑘0𝛥𝑥)

𝑐 > 0, as shown in Fig. 19 for the
central node 𝑗 = 51. For the case of 𝛼 = 10 as shown in Fig. 22(a),
one notes a rapidly growing wave-packet near the inflow boundary in
addition to the original wave-packet. Following [57], this is attributed
to (i) the location in the computational domain of the site where the
error appears and (ii) the wavenumber selection procedure of this
additional wave-packet. It was noted in [57] that such error was also
numerically obtained in [75] but could not be explained satisfactorily.

Researchers have investigated error growth from different
perspectives-as in [75,96,97]. In [96,97], phase error was calculated
for different numerical methods for propagation of the monochromatic
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waves i.e. 𝑐 − 𝑐𝑛(𝑘0). However, the effect and quantification of phase
error on signal error 𝑢 − 𝑢𝑁 was not discussed. The authors also stated
that the phase error could be reduced to very small values by refining
the mesh alone for a fixed Nc. However, 1 − 𝑐𝑁∕𝑐 contours shown
in the property charts in Figs. 19 and 20 show that the error does
not decay monotonically with wavenumber for any 𝑁𝑐 . It should also
be noted that according to the assertion in [75], the rapidly growing
localized error originates from the decoupled solution at even and odd
nodes implying that the error would correspond to 𝑘𝛥𝑥 = 𝜋. However,
the present numerical solutions clearly show that is not the case in
Fig. 22(a).

The FFT of the computed signals in Fig. 22(a) are shown in
Fig. 22(c) to reveal the scale selection of errors. FFT results show the
dominant error-packet corresponds to the central wavenumber 𝑘𝑒𝛥𝑥 =
2.355 for 𝑡 ≥ 9𝛥𝑡. This is explained by noting the distinction between the
cases of Figs. 22(a) and 22(b), regarding the wavenumber content and
bandwidth of the initial signal. For 𝛼 = 10, the wavenumber bandwidth
is less than 𝛼 = 24, as seen in Fig. 21(c). However the amplitude
of the tail i.e. solution away from the packet center, is noted to be
higher by a order of magnitude for the lower 𝛼 case from Fig. 21(a)
and (b). Hence, the larger signal for the tail is magnified more and
as a result the error becomes visible near the left boundary as shown
in Fig. 22(a). As noted before, the differences of instability between
interior and near-boundary nodes manifest in focusing phenomenon.

From the FFT of the computed signal, the wavenumber correspond-
ing to the maximum error growth is identified as 𝑘𝑒𝛥𝑥 = 2.355. In
order to understand the node selection process for the focusing of error,
the numerical properties for 𝑁𝑐 = 2 and wavenumbers 𝑘0𝛥𝑥 and 𝑘𝑒𝛥𝑥
are plotted for all the nodes in Fig. 22(d). From the figure, one notes
that at few nodes, the numerical amplification factor |𝐺 | is almost 9
𝑗



Fig. 22(a). Computed solution of Eq. (2), using RK4-SOUCS3 scheme, for the case of Fig. 21(a) with 𝛼 = 10 in Eq. (114). Focusing is evident from the appearance of the additional
packet near the upstream boundary.
to 10 times larger for 𝑘𝑒𝛥𝑥 = 2.355. This is the reason for the rapid
increase of amplitude of the error-packet as compared to the input
wave-packet. One also notes from the figure that the sixth node has
highest numerical amplification factor thus explaining the observed
maximum growth of error at the node 𝑗 = 6. This is again corroborated
by plotting the numerical properties for the node at 𝑗 = 6 across the
entire wavenumber range for 𝑁𝑐 = 2, in Fig. 22(e). In all the frames
of the figure, wavenumbers corresponding to 𝑘0𝛥𝑥 = 1.45 and 𝑘𝑒𝛥𝑥 =
2.355 are marked as A and B, respectively. This demonstrates the utility
of GSA in explaining the mechanism by which the error is focused at
the specific node and at the specific wavenumber for a given spatio-
temporal discretization scheme. We also note that |𝐺| value at 𝑘0𝛥𝑥
is 1.022 which indicates mild instability compared to value of 13.22
at 𝑘𝑒𝛥𝑥 implying violent instability. Furthermore, the contribution of
numerical phase speed error 1 − 𝑐𝑁∕𝑐 to the numerical error can be
quantified by noting that it has a value of 1.55 at 𝑘0𝛥𝑥 and 1.059 at
𝑘𝑒𝛥𝑥.

7.1.2. Focusing phenomenon due to solution discontinuity
In this section, focusing phenomenon is demonstrated at the interior

nodes of the domain, with the help of a small discontinuity in the initial
condition. The presence of the discontinuity in the numerical solution
excites all the resolved wavenumbers and leads to focusing. The initial
wave-packet solution with the small discontinuity is given by,

𝑢(𝑥, 0) = 𝑒−32(𝑥−𝑥0)
2
sin(𝑘 𝑥) + 0.1𝑒−50000(𝑥−𝑥1)

2 (115)
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where the first term on the right hand side of Eq. (115) is the regular
wave-packet and is denoted by packet-A. The second term on the right
hand side is the small discontinuity and is denoted as B. Results of the
computations are shown in Fig. 23(a) with the top panel showing the
initial solution. Packet-A is located at 𝑥0 = 2.5 while disturbance B is at
𝑥1 = 1 at 𝑡 = 0. For the simulation, a domain of size 0 ≤ 𝑥 ≤ 3 with 512
equi-spaced points is chosen. The central wavenumber corresponding to
packet-A is chosen to be 𝑘0𝛥𝑥 = 1.45. As before, the convection speed 𝑐
is chosen as 0.01. Time-step is chosen such that the CFL number 𝑁𝑐 = 2.
The results of the computation in Fig. 23(a) show a spectacular growth
of the small disturbance B. Due to the small convection speed, the error-
packet moves slowly towards the right side from its starting position
𝑥1 = 1. In Fig. 23(b), the FFT of the corresponding numerical solution
is shown for different time instants. One notes the wavenumber for the
dominant error to be centered at 𝑘𝑒𝛥𝑥 = 2.411. For this wavenumber,
the corresponding numerical group velocity is 𝑉𝑔𝑁

𝑐 = 0.8359 for a
central node as shown in Fig. 23(c). From this figure, one also notes
the maximum 𝐺𝑗 value to attain at 𝑘𝑒𝛥𝑥 and thus leads to focusing.

7.2. Focusing due to reflections of q-waves from NSE

The focusing phenomenon is not only observed in a numerical
solution of the model wave propagation problem but also observed
in the solutions of NSE. A particular case is demonstrated in this
section which is attributed to the reflection of spurious q-waves at
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Fig. 22(b). Computed solution of Eq. (2), using RK4-SOUCS3 scheme, for the case of Fig. 21(b) with 𝛼 = 24 in Eq. (114). Here, the wave-packet growth is spectacular and the
amplitude of the error-packet is very small as compared to Fig. 22(a).

Fig. 22(c). FFT of the wave-packets are shown corresponding to wave-packets in Fig. 22(a), at the indicated time instants. A line AB at 𝑘𝑒𝛥𝑥 = 2.355 is drawn to represent the
central wavenumber of the error-packet.



Fig. 22(d). Variations of |𝐺𝑗 |, 𝑉𝑔𝑁∕𝑐 and 1− 𝑐𝑁∕𝑐 are shown, using RK4-SOUCS3 scheme, at different nodes of the domain corresponding to 𝑁𝑐 = 2, for (i) the input wave-packet
with 𝑘0𝛥𝑥 = 1.45 (left column) and (ii) dominant response at 𝑘𝑒𝛥𝑥 = 2.355 (right column).
the boundaries. As noted earlier q-waves are spurious waves which
have negative group velocity. It is noted that while these q-waves have
been demonstrated in solution of model convection [36], convection–
diffusion [49] and convection–diffusion–reaction equations [47], the
present results demonstrate this from the direct solution of NSE. It is
interesting to note that the observations and subsequent conclusions
drawn from the solutions of model wave propagation equations provide
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important clues for explaining the focusing phenomenon in fluid flow
simulations.

Here, we consider a propagation of a discrete shielded vortex along
with the flow. Consider a two-dimensional rectangular domain (−1 ≤
𝑥 ≤ 7), (−1 ≤ 𝑦 ≤ 1) containing equi-spaced grid points with grid
spacing 𝛥𝑥 = 𝛥𝑦 = 0.008. A uniform flow enters the domain from the
left boundary (𝑥 = −1) and leaves the domain from the right hand



Fig. 22(e). Variations of |𝐺𝑗 |, 𝑉𝑔𝑁∕𝑐 and 1 − 𝑐𝑁∕𝑐 are shown, using RK4-SOUCS3 scheme, for 𝑗 = 6 node across the whole 𝑘𝛥𝑥 range for 𝑁𝑐 = 2.
side boundary. As an initial condition, we have considered a discrete
shielded vortex centered at the origin (0, 0) and superimposed on a
uniform flow. If 𝑟 denotes the distance between any point in the domain
and the center of the vortex then the discrete shielded vortex can be
prescribed as in [98,99],

𝜔 = 𝑘 (1 − 100 𝑟2) 𝑒−100 𝑟
2 (116)

where, 𝑘 denotes initial maximum vorticity centered at the origin and
is prescribed as 𝑘 = 500 in the present simulations. Propagation of
the vortex along with the flow has been simulated using the NSE
formulated in the stream function (𝜓) - vorticity (𝜔) formulation which
are given as [100],

𝜕2𝜓
𝜕𝑥2

+
𝜕2𝜓
𝜕𝑦2

= −𝜔 (117)

𝜕𝜔
𝜕𝑡

+ 𝑢 𝜕𝜔
𝜕𝑥

+ 𝑣 𝜕𝜔
𝜕𝑦

= 1
𝑅𝑒

[

𝜕2𝜔
𝜕𝑥2

+ 𝜕2𝜔
𝜕𝑦2

]

(118)

Eqs. (117) and (118) are non-dimensionalized using free-stream
velocity 𝑈∞ as a reference velocity and 1∕𝑘 as the time scale. The
Reynolds number is defined as 𝑅𝑒 = 𝑈2

∞
𝜈𝑘 . Simulations have been

performed for 𝑅𝑒 = 105. Here, we have used the 𝑂𝑈𝐶𝑆3 scheme for
discretization of the convective derivative terms while second order
central discretization scheme has been used for the discretization of
the second order derivative terms. Time integration has been performed
using four stage, fourth order Runge–Kutta (𝑅𝐾4) scheme. Calculations
are performed using a time step of 𝛥𝑡 = 0.0007. A uniform flow has been
prescribed at the inflow boundary 𝑥 = −1 while the stream function and
vorticity values at the remaining boundaries have been updated using
a convective outflow boundary condition.

Fig. 24 shows the propagation of the shielded vortex along with the
flow using vorticity contours at the indicated instants. We have pur-
posefully taken a steep vortex as an initial condition. One observes that
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the vortex moves with a unit non-dimensional velocity along the posi-
tive 𝑥-axis. However, one also observes nonphysical high wavenumber
components propagating towards left hand side of the domain against
the flow direction. These waves are identified as 𝑞-waves which have
been generated due to the strong vorticity gradient associated with the
shielded vortex. Solutions display 𝑞-waves as the numerical method
is not able to preserve the physical dispersion relation numerically
at high wavenumber region as observed before for the solution of
the 1𝐷 wave equation. Although amplitude of these 𝑞-waves is small,
these spurious waves can trigger numerical instability. Fig. 25 displays
variation of vorticity on the line 𝑦 = 0 at the indicated instants. One
does not observe 𝑞-waves as the amplitude of these waves is small
and are only observed in the zoomed view as displayed in Fig. 26.
One observes small amplitude 𝑞-waves are propagating towards left
boundary of the domain and their subsequent reflection from the left
boundary. Although one does not observe any numerical instability in
this example, if large amount of nonphysical 𝑞-waves are generated in
the simulation, then one does observe numerical instability.

Authors in [100] reported numerical instability for a laminar flow
past a rotary oscillating cylinder due to generation of spurious 𝑞-waves
upon reflection of a convecting vortex from the outflow boundary. It
was observed that if the convecting vortex has sufficient vorticity upon
reaching the outflow boundary, then spurious high wavenumber oscil-
lations are triggered at the outflow boundary which lead to numerical
instability. This particular aspect has been highlighted here by reducing
the domain size (−1 ≤ 𝑥 ≤ 1), (−1 ≤ 𝑦 ≤ 1) and carrying out simulations
with the same initial condition. The grid spacing 𝛥𝑥 = 𝛥𝑦 = 0.008
and time step 𝛥𝑡 = 0.0007 have been also kept same. As the outflow
boundary has been brought from 𝑥 = 7 to 𝑥 = 1, it is expected that the
vortex will create spurious high wavenumber oscillations at the outflow
boundary which will lead to numerical instability.



Fig. 23(a). Computed solution of Eq. (2) corresponding to the initial condition given in Eq. (115) using RK4-SOUCS3 scheme. Note the initial small disturbance at 𝑥 = 1 undergoes
spectacular amplification displaying focusing phenomenon.
Fig. 27 shows propagation of a shielded vortex in the reduced size
domain at the indicated instants. The figure also displays spurious
𝑞-waves propagating towards the left boundary of the domain. It is ob-
served that the simulation experienced numerical instability at 𝑡 = 0.93
as the vortex reaches the outflow boundary. This is due to generation
of large amount of spurious reflected waves at the domain outflow
boundary. The numerical instability takes place over a very small
duration as observed in the vorticity time variation at the locations
close to outflow boundary as shown in Fig. 28. The vorticity close to
outflow boundary (𝑥 = 1) starts picking up after 𝑡 = 0.9 and magnitude
increases by few orders over a small duration which indicates focusing
phenomenon.

8. Explaining focusing using GSA: Focusing mechanisms for CDE
and NSE

In this section, we analyze the 2D CDE using GSA in the context
of calibrating numerical methods and understanding focusing phe-
nomenon reported for numerical solution of nonlinear NSE. As dis-
cussed in the previous section, focusing is an instability reported for
problems involving long time integration. Focusing, first reported by
weather community, was observed during simulations using three time-
level leapfrog method where the solution suddenly blew up after run-
ning successfully for a long time when corrective actions were not
taken [101,102]. Phillips [102] hypothesized the blow-up/focusing to
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a non-linear computational instability and also proposed an adhoc
rectification by filtering high wavenumber(𝑘) components of the com-
puted solution which yielded non-physical results [102]. Since then,
different authors [72,74,83,84] have also led support to the nonlinear
numerical instability hypothesis until recent studies [44,45,49,57,73]
which showed the mechanism to be of linear origins.

In Section 7, a linear mechanism for focusing was discussed which
is based on the analysis of CE. In this section, new linear mechanisms of
focusing will be presented using the analysis of 2D CDE and simulation
of NSE which establishes further evidence on the linear origins of the
instability. This work is reported recently in [49,73] and is discussed in
brief details. Furthermore, focusing for solution of NSE using the three
time-level 𝐴𝐵2 method is demonstrated here for the first time.

8.1. GSA of 2D CDE and mechanisms for focusing

The model linear 2D CDE for a single dependent variable (𝑢) is given
in the Cartesian frame by,

𝜕𝑢
𝜕𝑡

+ 𝑐𝑥
𝜕𝑢
𝜕𝑥

+ 𝑐𝑦
𝜕𝑢
𝜕𝑦

= 𝛼
(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

(119)

where 𝑐𝑥, 𝑐𝑦 denote the constant convection speeds in 𝑥- and 𝑦-
directions, respectively, and 𝛼 denotes the constant coefficient of dif-
fusion. Generally, 𝛼 is positive, indicating the stabilizing nature of
diffusion. It should be noted that when 𝛼 is a negative value, it is
called anti-diffusion. Anti-diffusion can be physical, as in interface



Fig. 23(b). FFT of the wave-packets are shown corresponding to wave-packets in Fig. 23(a), at the indicated time instants. A line AB at 𝑘𝑒𝛥𝑥 = 2.411 is drawn to represent the
central wavenumber of the error-packet.
Fig. 23(c). Variations of |𝐺𝑗 |, 𝑉𝑔𝑁∕𝑐 and 1 − 𝑐𝑁∕𝑐 are shown, using RK4-SOUCS3 scheme, for 𝑗 = 51 node across the whole 𝑘𝛥𝑥 range for 𝑁𝑐 = 2.
steepening in two-phase incompressible flow [103], in granular trans-
port, considering an interplay between drift and anti-diffusion [104],
in solving geomagnetic storm problem at near-Earth [105], etc. In the
context of coupling between heat flow and diffusion to create order
in a chaotic system, anti-diffusion is discussed and is related to a
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negative contribution to entropy production [106]. In the context of image
processing, a relation between deconvolving an image resulting from a
Gaussian filter and integrating anti-diffusion equation is noted [107].
In interfacial flow instabilities, e.g. Rayleigh–Taylor instability, effects
of anti-diffusion is related to negentropy [108,109].



Fig. 24. Propagation of a shielded vortex in the domain at the indicated instants has been shown. Figure also displays spurious 𝑞-waves propagating towards left boundary of the
domain.
In performing GSA of Eq. (119), 𝑢(𝑥, 𝑦, 𝑡) is expressed in the hybrid-
spectral plane as,

𝑢(𝑥, 𝑦, 𝑡) = ∬ �̂� (𝑘𝑥, 𝑘𝑦, 𝑡)𝑒
𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 (120)

where �̂� is the Fourier–Laplace amplitude and 𝑘𝑥, 𝑘𝑦 are the wavenum-
ber components in the 𝑥- and 𝑦-directions, respectively. Substituting the
expression for 𝑢 in Eq. (119) gives the transformed equation as,

𝜕�̂� + 𝑖𝑐 𝑘 �̂� + 𝑖𝑐 𝑘 �̂� = −𝛼(𝑘2 + 𝑘2)�̂� (121)
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𝜕𝑡 𝑥 𝑥 𝑦 𝑦 𝑥 𝑦
Representing the initial condition as

𝑢(𝑥, 𝑦, 0) = 𝑓 (𝑥, 𝑦) = ∬ 𝑈0(𝑘𝑥, 𝑘𝑦)𝑒
𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

one obtains the exact solution of Eq. (119) as,

�̂� (𝑘𝑥, 𝑘𝑦, 𝑡) = 𝑈0(𝑘𝑥, 𝑘𝑦) 𝑒
−𝛼(𝑘2𝑥+𝑘

2
𝑦)𝑡𝑒−𝑖(𝑘𝑥𝑐𝑥+𝑘𝑦𝑐𝑦)𝑡 (122)

Expressing 𝑢 in the Fourier–Laplace transform as 𝑢(𝑥, 𝑦, 𝑡) = ∭
�̂� (𝑘 , 𝑘 , 𝜔) 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦−𝜔𝑡)𝑑𝑘 𝑑𝑘 𝑑𝜔, one obtains the physical dispersion
𝑥 𝑦 𝑥 𝑦



Fig. 25. Variation of vorticity on the line 𝑦 = 0 has been shown at the indicated instants.
relation for the 2D CDE as

𝜔 = 𝑐𝑥𝑘𝑥 + 𝑐𝑦𝑘𝑦 − 𝑖𝛼(𝑘2𝑥 + 𝑘
2
𝑦) (123)

In solving the CDE accurately the numerical schemes must obey
the dispersion relation to minimize phase and dispersion errors [1,31].
From the physical dispersion relation, one obtains the complex phase
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speed as given by,

𝑐 = 𝜔
√

𝑘2𝑥 + 𝑘2𝑦
=
𝑐𝑥𝑘𝑥 + 𝑐𝑦𝑘𝑦 − 𝑖𝛼(𝑘2𝑥 + 𝑘

2
𝑦)

√

𝑘2𝑥 + 𝑘2𝑦
(124)

Also, the physical group velocity components are obtained from
Eq. (123) as,

𝑉𝑔𝑥 = 𝜕𝜔 = 𝑐𝑥 − 2𝑖𝛼𝑘𝑥 (125)

𝜕𝑘𝑥



Fig. 26. Zoomed view of the variation of vorticity on the line 𝑦 = 0 has been shown at the indicated instants. Figure shows small amplitude 𝑞-waves propagating towards left
boundary of the domain and subsequent reflection.
𝑉𝑔𝑦 =
𝜕𝜔
𝜕𝑘𝑦

= 𝑐𝑦 − 2𝑖𝛼𝑘𝑦 (126)

From the exact solution of the CDE Eq. (121), the physical amplifi-
cation factor is obtained as,

𝐺 =
�̂� (𝑘𝑥, 𝑘𝑦, 𝑡 + 𝛥𝑡)

�̂� (𝑘𝑥, 𝑘𝑦, 𝑡)

= 𝑒−𝛼(𝑘
2
𝑥+𝑘

2
𝑦)𝛥𝑡𝑒−𝑖(𝑘𝑥𝑐𝑥+𝑘𝑦𝑐𝑦)𝛥𝑡
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= 𝑒−[𝑃𝑒𝑥(𝑘𝑥ℎ𝑥)
2+𝑃𝑒𝑦(𝑘𝑦ℎ𝑦)2]𝑒−𝑖[𝑁𝑐 𝑥𝑘𝑥ℎ𝑥+𝑁𝑐 𝑦𝑘𝑦ℎ𝑦] (127)

where 𝛥𝑡 is the discrete time-step and ℎ𝑥 and ℎ𝑦 are the grid spacings in
𝑥- and 𝑦-directions, respectively. We also introduce the CFL and Peclet
numbers in 2D as, 𝑁𝑐𝑥 = 𝑐𝑥𝛥𝑡

ℎ𝑥
; 𝑁𝑐𝑦 =

𝑐𝑦𝛥𝑡
ℎ𝑦

; 𝑃𝑒𝑥 = 𝛼𝛥𝑡
ℎ𝑥2

; 𝑃𝑒𝑦 =
𝛼𝛥𝑡
ℎ𝑦2

,

which are the relevant parameters for analysis. The physical solution
decays with time, as is noted from 𝐺 and is in accordance with the
physical nature of diffusion.



Fig. 27. Propagation of a shielded vortex in the reduced size domain at the indicated instants has been shown. Figure also displays spurious 𝑞-waves propagating towards left
boundary of the domain. Simulation experiences numerical instability at 𝑡 = 0.93 as the vortex reach outflow boundary.
The above analysis is exact for the CDE. However, as noted be-
fore, the solution of the CDE using numerical methods leads to the
case where phase speed and 𝛼 are non-constants. In order to study
the performance of numerical schemes, we first obtain the numerical
dispersion relation governing the evolution of solution. This relation is
obtained by analogy from Eq. (123) as,

𝜔𝑁 =
(

√

𝑘𝑥2 + 𝑘𝑦2
)

𝑐𝑁 − 𝑖𝛼𝑁 (𝑘𝑥2 + 𝑘𝑦2) (128)
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where 𝑐𝑁 and 𝛼𝑁 are not constants for any simulation. The numerical
dispersion relation is generic and applies to any discretization. From
the numerical dispersion relation, one obtains numerical amplification
factor 𝐺𝑁 as

𝐺𝑁 = 𝑒−𝑖𝜔𝑁𝛥𝑡 = 𝑒−𝛼𝑁 (𝑘𝑥2+𝑘𝑦2)𝛥𝑡 𝑒−𝑖
(√

𝑘𝑥2+𝑘𝑦2
)

𝑐𝑁𝛥𝑡 (129)

It is clear that for accurate simulations, 𝐺𝑁 should follow 𝐺 as
closely as possible, i.e. we require 𝐺 ∕𝐺 ≈ 1, with |𝐺 | < 1. From
𝑁 𝑁



Fig. 28. Time variation of vorticity at the indicated locations close to outflow boundary. One observes the focusing phenomenon as the vorticity values shoot up in a few time
steps close to 𝑡 = 0.93.
𝐺𝑁 the numerical phase shift 𝜙𝑁 per unit time step 𝛥𝑡 is obtained as

tan(𝜙𝑁 ) = −
( (𝐺𝑁 )𝐼𝑚𝑔
(𝐺𝑁 )𝑅𝑒𝑎𝑙

)

where 𝜙𝑁 =
(

√

𝑘𝑥2 + 𝑘𝑦2
)

𝑐𝑁𝛥𝑡 (130)

The non-dimensional numerical phase speed is obtained as
𝑐𝑁
𝑐

= −
[

1
𝑁𝑐𝑥(𝑘𝑥ℎ𝑥) +𝑁𝑐𝑦(𝑘𝑦ℎ𝑦)

]

tan−1
( (𝐺𝑁 )𝐼𝑚𝑔
(𝐺𝑁 )𝑅𝑒𝑎𝑙

)

(131)

where 𝑐 is the physical phase speed in Eq. (124), i.e. 𝑐 = 𝑐𝑥𝑘𝑥+𝑐𝑦𝑘𝑦
√

𝑘2𝑥+𝑘2𝑦
.

The numerical group velocity components are obtained from their
definitions and are given by
(𝑉𝑔𝑥)𝑁
𝑐𝑥

= 1
𝑁𝑐𝑥

𝜕𝜙𝑁
𝜕(𝑘𝑥ℎ𝑥)

(132)

(𝑉𝑔𝑦)𝑁
𝑐𝑦

= 1
𝑁𝑐𝑦

𝜕𝜙𝑁
𝜕(𝑘𝑦ℎ𝑦)

(133)

where 𝑐𝑥 and 𝑐𝑦 are the physical group velocity components in the 𝑥-
and 𝑦-directions, respectively.

The numerical diffusion coefficient 𝛼𝑁 is evaluated from 𝐺𝑁 in
non-dimensional form as
𝛼𝑁
𝛼

= −
ln |𝐺𝑁 |

[𝑃𝑒𝑥(𝑘𝑥ℎ𝑥)2 + 𝑃𝑒𝑦(𝑘𝑦ℎ𝑦)2]
(134)

The significance of numerical diffusion coefficient is explained here.
If 𝛼𝑁

𝛼 = 1, then the numerical scheme models the physical diffusion
exactly. If the ratio is greater than unity, then the numerical diffusion
is higher than the physical diffusion, else we have lower numerical
diffusion as compared to physical diffusion. Negative values of the ratio
indicate anti-diffusion and hence, leads to numerical instability. Thus,
numerical diffusion can also contribute to numerical instability. We
also note that for accuracy of solution, all the quantities 𝛼𝑁

𝛼 , 𝑐𝑁
𝑐 , (𝑉𝑔𝑥)𝑁

𝑐𝑥
and (𝑉𝑔𝑦)𝑁

𝑐𝑦
should be equal to unity.

We analyze the 𝑅𝐾4-NCCD scheme and provide the performance
metrics, 𝛼𝑁

𝛼 , 𝑐𝑁
𝑐 , (𝑉𝑔𝑥)𝑁

𝑐𝑥
and (𝑉𝑔𝑦)𝑁

𝑐𝑦
. In [49], the authors have found

this method to be the most accurate in solving 1D CDE among all the
schemes analyzed. As noted earlier, NCCD scheme being a combined
compact difference scheme, enables simultaneous evaluation of first
and second derivatives. Expressing the simultaneous equations in a
compact form, one obtains the equations for the scheme as [65]

[𝐴]{𝑑𝑢} = {𝑏}

with the details of the matrix [𝐴] and the vectors {𝑑𝑢}, {𝑏} as given
in [64,65]. The simultaneous equations are solved for the derivatives
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using

{𝑢′} = 1
ℎ
[𝐷1]{𝑢}

{𝑢′′} = 1
ℎ2

[𝐷2]{𝑢}
(135)

The analytical expressions for [𝐷1] and [𝐷2] are given in [64],
with block tridiagonal matrix algorithm (TDMA) used to obtain these
derivatives.

For the 2D CDE, the 𝐺𝑁 for the 𝑅𝐾4-NCCD scheme is given by

(𝐺𝑁 )𝑚𝑛 = 1 − 𝐴𝑚𝑛 +
𝐴𝑚𝑛2

2
−
𝐴𝑚𝑛3

6
+
𝐴𝑚𝑛4

24
(136)

with 𝐴𝑚𝑛 = −
𝐿(�̂� )
�̂�

(137)

where, 𝑚, 𝑛 are the nodal indices in 𝑥-and 𝑦-directions, respectively.
The variable 𝐴𝑚𝑛 in Eq. (136) is determined as

𝐴𝑚𝑛 = 𝑁𝑐𝑥

𝑁𝑥
∑

𝑙=1
𝐷1𝑚𝑙 𝑒

𝑖𝑘(𝑥𝑙−𝑥𝑚) − 𝑃𝑒𝑥
𝑁𝑥
∑

𝑙=1
𝐷2𝑚𝑙 𝑒

𝑖𝑘(𝑥𝑙−𝑥𝑚)

+𝑁𝑐𝑦

𝑁𝑦
∑

𝑙=1
𝐷1𝑛𝑙 𝑒

𝑖𝑘(𝑦𝑙−𝑦𝑛) − 𝑃𝑒𝑦

𝑁𝑦
∑

𝑙=1
𝐷2𝑛𝑙 𝑒

𝑖𝑘(𝑦𝑙−𝑦𝑛) (138)

where 𝑁𝑥, 𝑁𝑦 are the number of nodes in 𝑥- and 𝑦-directions, respec-
tively. By substituting 𝐴𝑚𝑛 in Eq. (136), 𝐺𝑁 is determined for the
node (𝑚, 𝑛). The other properties viz. 𝑐𝑁

𝑐 , (𝑉𝑔𝑥)𝑁
𝑐𝑥

, (𝑉𝑔𝑦)𝑁
𝑐𝑦

and 𝛼𝑁
𝛼 are

determined from Eqs. (131), (132), (133) and (134), respectively.
For the 2D analysis, two more parameters: 𝐴𝑅 = ℎ𝑦

ℎ𝑥
and 𝜃 =

tan−1(𝑐𝑦∕𝑐𝑥) are introduced following the analysis of anisotropy for the
2D convection problem [110]. Analysis is performed only for the case
of 𝐴𝑅 = 1, due to the choice of the grid employed for the simulations
of NSE.

Fig. 29 shows the stable regions plotted for the middle stencil of the
𝑅𝐾4-NCCD scheme for different 𝑁𝑐𝑥, 𝑁𝑐𝑦, 𝑃𝑒 combinations and wave
propagation angle is considered as 45◦. The iso-surface corresponding
to |𝐺𝑁 | = 1 is shown in the figure, which demarcates the region of
stability from instability. It is noted that the numerical scheme is stable
when |𝐺𝑁 | < 1, while |𝐺𝑁 | > 1 leads to numerical instability. The
horizontal plane 𝑃𝑒 = 𝑃𝑒𝑐𝑟 in the figure shows the onset of instability
with respect to 𝑃𝑒. Below this plane the solution is noted to be stable.

Three distinct routes of numerical instability can be observed from
the figure. One route corresponds to the case when instability occurs for
any nonzero values of CFL numbers when 𝑃𝑒 is above a critical value
i.e. 𝑃𝑒 = 0.1451, as indicated in the panels (a), (b) and (c) of Fig. 29.
𝑐𝑟



Fig. 29. Iso-contour of numerical amplification factor |𝐺𝑁 | = 1 for 𝑅𝐾4-NCCD scheme for grid aspect ratio 𝐴𝑅 = 1, wave propagation angle 𝜃 = 45◦ and CFL number
𝑁𝑐𝑥 = 0.05, 0.2, 0.4, 0.55, 0.62, 0.8 plotted in the (𝑘𝑥ℎ𝑥 , 𝑘𝑦ℎ𝑦 , 𝑃 𝑒)-plane. The plane 𝑃𝑒 = 𝑃𝑒𝑐𝑟 denotes the critical Peclet number above which numerical instability exists.
For 𝑃𝑒 less than the critical value, instability arises at higher values of
𝑁𝑐𝑥 (and hence 𝑁𝑐𝑦) as seen in panels (d) and (e), e.g., 𝑃𝑒𝑐𝑟 = 0.09913
and 0.07369 for 𝑁𝑐 = 0.55 and 0.62, respectively. This is the second
route of instability. The third route is noted when 𝑁𝑐𝑥 and/or 𝑁𝑐𝑦
values are increased further, say to 𝑁𝑐 = 0.8, leading to instability for
all 𝑃𝑒 (i.e. 𝑃𝑒𝑐𝑟 = 0.0), as noted in the bottom right panel (f). These
three cases of instability is understood by relating numerical errors
arising from convective and diffusive terms. The first mode arises due
to dominance of errors by diffusion term. The second mode exists due
to combination of errors from convection and diffusion terms, while the
last mode is due to dominance of convective errors only.

The scale selection for instability for the three modes are noted here.
For the first mode, instability first appears when 𝑘𝑥ℎ𝑥 = 𝑘𝑦ℎ𝑦 = 𝜋
and percolates into lower wavenumber regions as 𝑃𝑒 increases. For the
other modes, errors are amplified first at moderately high wavenumbers
and the spread increases in extent with increasing 𝑁 and 𝑁 values.
45

𝑐𝑥 𝑐𝑦
The previous discussion is for the case of 𝜃 = 45◦. In order to analyze
the effects of 𝜃 on the numerical instability for 𝐴𝑅 = 1, in Fig. 30,
the stable and unstable regions are marked for different 𝜃 values in
the 𝑁𝑐(=

√

𝑁2
𝑐𝑥 +𝑁2

𝑐𝑦) and 𝑃𝑒 plane. The plot shows that numerical

instability does not depend on 𝜃 for the considered 𝐴𝑅 = 1, due to
invariance of Eq. (138) on 𝜃. As noted earlier, for lower 𝑁𝑐, 𝑃𝑒𝑐𝑟 =
0.1451 and this value decreases as 𝑁𝑐 increases beyond a certain limit.
From the plot, one attributes the instability in Route-1 to errors from
diffusion discretization as instability occurs even for 𝑁𝑐𝑥 = 𝑁𝑐𝑦 = 0,
when 𝑃𝑒 ≥ 0.1451.

The analysis indicates that iff 𝑃𝑒 ≥ 0.1451 numerical instability
will arise causing solution blow-up in finite time. This is due to the
appearance of anti-diffusion. It is noteworthy that the instability mimics
absolute instability, as postulated in [111]. When 𝑃𝑒 is close to and
above the critical limit i.e. 𝑃𝑒 → (0.1451+ 𝜖), as 𝜖 becomes small, error



Fig. 30. Influence of wave propagation angle 𝜃 on the critical Peclet number 𝑃𝑒𝑐𝑟 for 𝑅𝐾4-NCCD scheme for the grid aspect ratio 𝐴𝑅 = 1 shown in the (𝑁𝑐, 𝑃 𝑒)-plane. 𝑁𝑐 here
is defined as

√

𝑁2
𝑐𝑥 +𝑁2

𝑐𝑦.
too grows slowly as |𝐺𝑁 | → (1 + 𝜖1) with 𝜖1 also being a small positive
quantity. This implies that blow-up occurs after a long time if epsilon is
very small. The slow growth of error characterized by a selective scale
of instability is known as focusing and the identified routes can explain
its mechanism. For steady state simulations, one would obtain perfect
steady solutions initially, matching in every respect with the non-
focused solution, but the solution will blow-up after a long time due
to focusing. The background omnipresent disturbances corresponding
to specific length scales for focusing are amplified with the solution
exploding eventually. For the computations involving unsteady dynam-
ics, focusing can occur early. This is because of the reduced time step
size (𝛥𝑡) needed for unsteady computations (as compared to steady flow
cases); which means more number of computations 𝑛 (= 𝑡

𝛥𝑡 ) is required
for the unsteady case to reach the same value of time, 𝑡.

In the previous paragraphs, GSA was performed for RK4-NCCD
scheme whose middle stencil is a central scheme. Next, GSA for the
upwind discretization of the convective terms in the governing CDE
is performed and the effect of its inherent numerical dissipation on
stability is assessed. For the present study, we adopt a third order
upwind (𝑈𝐷3) scheme pioneered by Kuwahara [112]. Diffusion terms
are discretized by a second order central differencing (CD2) scheme and
time integration is performed by RK4 method.

For this numerical scheme, the discretized right hand side term for
the 2D CDE is given by

𝐿(𝑢𝑛𝑙𝑚) = − 𝑐𝑥
𝑢𝑛𝑙+2𝑚 − 2𝑢𝑛𝑙+1𝑚 + 9𝑢𝑛𝑙𝑚 − 10𝑢𝑛𝑙−1𝑚 + 2𝑢𝑛𝑙−2𝑚

6ℎ𝑥

− 𝑐𝑦
𝑢𝑛𝑙𝑚+2 − 2𝑢𝑛𝑙𝑚+1 + 9𝑢𝑛𝑙𝑚 − 10𝑢𝑛𝑙𝑚−1 + 2𝑢𝑛𝑙𝑚−2 (139)
46

6ℎ𝑦
+ 𝛼

[

𝑢𝑛𝑙+1𝑚 − 2𝑢𝑛𝑙𝑚 + 𝑢𝑛𝑙−1𝑚
ℎ2𝑥

+
𝑢𝑛𝑙𝑚+1 − 2𝑢𝑛𝑙𝑚 + 𝑢𝑛𝑙𝑚−1

ℎ2𝑦

]

where 𝑛 indicates the time index, 𝑙, 𝑚 are the indices in 𝑥- and 𝑦-
directions, respectively. 𝐴𝑙𝑚, given below, is used to determine 𝐺𝑁 and
the properties 𝑐𝑁

𝑐 , (𝑉𝑔𝑥)𝑁
𝑐𝑥

, (𝑉𝑔𝑦)𝑁
𝑐𝑦

and 𝛼𝑁
𝛼 .

𝐴𝑙𝑚 =𝑁𝑐𝑥

[

𝑒2𝑖𝑘𝑥ℎ𝑥 − 2𝑒𝑖𝑘𝑥ℎ𝑥 + 9 − 10𝑒−𝑖𝑘𝑥ℎ𝑥 + 2𝑒−2𝑖𝑘𝑥ℎ𝑥
6

]

+ 𝑁𝑐𝑦

[

𝑒2𝑖𝑘𝑦ℎ𝑦 − 2𝑒𝑖𝑘𝑦ℎ𝑦 + 9 − 10𝑒−𝑖𝑘𝑦ℎ𝑦 + 2𝑒−2𝑖𝑘𝑦ℎ𝑦
6

]

+ 2𝑃𝑒𝑥
[

1 − cos (𝑘𝑥ℎ𝑥)
]

+ 2𝑃𝑒𝑦
[

1 − cos (𝑘𝑦ℎ𝑦)
]

(140)

Fig. 31, shows the stability region for 𝜃 = 35◦, 45◦, 65◦ and 80◦

for aspect ratio 𝐴𝑅 = 1 in the (𝑁𝑐 − 𝑃𝑒)-plane. Numerical instability
is indicated by the colored region. Comparing with Fig. 30 for central
scheme, one immediately notes the absence of critical Peclet number
value (𝑃𝑒𝑐𝑟) independent of CFL number. Therefore, numerical instabil-
ity for the upwind scheme is caused due to combinations of errors from
both diffusion and convective discretizations. Further, one observes
that as 𝑁𝑐 increases, 𝑃𝑒𝑐𝑟 decreases, linearly. Numerical stability is
therefore constrained to a triangular region enclosing the origin. The
maximum 𝑃𝑒𝑐𝑟 value for the upwind scheme is noted to be higher than
its corresponding central counterpart of the same order (not shown
here) due to the inherent diffusion contained in the former which
increases the strength of the overall numerical diffusion. However, this
may not be beneficial for computing as a slight increase in 𝑁𝑐 reduces
𝑃𝑒 value.
𝑐𝑟



Fig. 31. Stability region for 𝑅𝐾4-UD3-CD2 scheme for grid aspect ratio 𝐴𝑅 = 1 plotted for wave propagation angles 𝜃 = 35◦, 45◦, 65◦ and 80◦ in the (𝑁𝑐, 𝑃 𝑒)-plane. 𝑁𝑐 here is
defined as

√

𝑁2
𝑐𝑥 +𝑁2

𝑐𝑦.
8.2. Focusing of 2D incompressible NSE

Focusing is demonstrated by solving 2D incompressible NSE for the
canonical flow inside a square lid driven cavity (LDC). The governing
equations are solved in streamfunction (𝜓) - vorticity (𝜔) formulation
which ensures direct satisfaction of mass conservation in the computa-
tional domain. In this approach, one solves a Poisson equation for 𝜓
and a transport equation for 𝜔 which resembles the 2D CDE, given by

∇2𝜓 = −𝜔 (141)

𝜕𝜔
𝜕𝑡

+ (𝑉 ⋅ ∇⃗)𝜔 = 1
𝑅𝑒

∇2𝜔 (142)

where 𝑅𝑒 is the Reynolds number resulting from the non-
dimensionalization of the equations using the side of the LDC and the
speed of the upper lid. The velocity vector 𝑉 is given by 𝑉 = 𝑢𝑖 + 𝑣𝑗
and its components are related to the stream-function by 𝑉 = ∇⃗ × �⃗� ,
where �⃗� = ⟨0 0 𝜓⟩𝑇 .

The stream function equation, Eq. (141) is discretized using CD2
scheme and then solved using the BiCGSTAB iterative method [113]. In
solving the vorticity transport equation, Eq. (142), the NCCD scheme
is used for spatial derivatives of 𝜔. For the numerical solution using
upwind scheme, convective terms are discretized by UD3 and CD2
scheme is used for the viscous terms. Time integration is performed
using the 𝑅𝐾4 method.

Focusing in the solution of incompressible NSE is demonstrated
using three cases. In all the cases considered here the flow is unsteady
as a super-critical Reynolds number 𝑅𝑒 = 10,000 is chosen. The first
case shows focusing due to errors from diffusion term discretization
while the other two cases highlight the role of errors due to both
convection and diffusion terms discretizations. It should be noted that
47
for the first two cases RK4-NCCD scheme is employed and the last case
considers the upwind scheme RK4-UD3.

For the first case, two computations are performed using identical,
uniform grids of size (4001 × 4001) in the (𝑥, 𝑦)-plane but with
different time step sizes. The first computation employs a time step of
𝛥𝑡1 = 9.06625 × 10−5 and for the other computation a slightly higher
value of 𝛥𝑡2 = 9.06875 × 10−5 is used. The chosen time steps and
the grid size result in Peclet numbers of 𝑃𝑒1 = 0.14506 and 𝑃𝑒2 =
0.1451, respectively, considering 𝛼 = 1

𝑅𝑒 . Maximum 𝑁𝑐 in the domain is
evaluated as 𝑁𝑐𝑥 = 𝑁𝑐𝑦 = 0.375 by considering the velocity to be equal
to the velocity scale i.e. 𝑢 = 𝑣 = 1.

Property charts of 𝛼𝑁
𝛼 based on 2D linear CDE and employing the

simulation parameters for the two computations are shown in Fig. 32.
The Peclet number corresponding to 𝑃𝑒2 shows numerical instability
due to anti-diffusion (𝛼𝑁 < 0) occurring in a small region close to
((𝑘𝑥ℎ𝑥, 𝑘𝑦ℎ𝑦) = (𝜋, 𝜋)). This is indicated by a red arrow in the top right
panel of the figure. This indicates that the focusing is due to errors from
diffusion discretization. The scale selection and focusing of errors will
happen at these wavenumbers showing up as grid-scale oscillations in
the computed solutions. The other simulation does not display focusing
as anti-diffusion is absent.

Results are presented for the two unsteady NSE computations in
Fig. 33. In the figure, the left panels represent the simulation with
𝑃𝑒 = 0.14506, and the right panel represents the second simulation
with 𝑃𝑒 = 0.1451, respectively. The results for 𝑃𝑒 = 0.1451 show grid-
scale oscillations at an early time 𝑡 = 2, and the solution blows-up
at 𝑡 ≃ 2.8 (not shown in the figure). This is due to a combination of
the reasons: (i) the small time-step size leading to an increase in the
number of iterations 𝑛 (= 𝑡

𝛥𝑡 ) and hence, early blow-up as amplification
factor becomes |𝐺 |

𝑛; (ii) non-negligible FFT amplitudes of initial 𝜔
𝑁



Fig. 32. Numerical diffusion ( 𝛼𝑁
𝛼

) contours for the 𝑅𝐾4-NCCD scheme for the 2D CDE. The left panel corresponds to the space time properties 𝑃𝑒𝑥 = 0.14506, 𝑁𝑐𝑥 = 0.375, 𝐴𝑅 = 1,
𝜃 = 45◦ and the right panel is for the parameters 𝑃𝑒𝑥 = 0.1451, 𝑁𝑐𝑥 = 0.375, 𝐴𝑅 = 1, 𝜃 = 45◦, respectively.
field ((10−5)) at Nyquist limits arising due to the higher boundary
vorticities (𝜔𝑏) for the finer grid (𝜔𝑏 ∝ 1

ℎ𝑥 or ℎ𝑦
) and (iii) smaller

convection time scale compared to diffusion due to high Re. Exactly
opposite effects are noted for the steady flow case at low 𝑅𝑒. The results
in the left panel do not suffer from any instability for the computed
times. This corroborates very well with the analysis of linear 2D CDE in
Fig. 32, where anti-diffusion is seen for higher Peclet number whereas
for the lower value case it is absent.

The scale selection for error growth is determined by the FFT plots
of the numerical solution shown in Fig. 34. For the computation with
𝑃𝑒 = 0.1451, the omnipresent background errors (due to round-off,
truncation errors) are amplified in a region close to ((𝑘𝑥ℎ𝑥, 𝑘𝑦ℎ𝑦) =
(𝜋, 𝜋)) and corresponds exactly with the observations of the prop-
erty chart. The presence of high wavenumbers with non-negligible
amplitudes is the reason for the grid-scale oscillations noted in Fig. 33.

In the next case discussed here, focusing due to errors from both
convection and diffusion term discretizations is demonstrated. This
is done using a single simulation employing a uniform grid of size
(525 × 525) in the (𝑥, 𝑦)-plane. A time step of 𝛥𝑡 = 2.8626 × 10−3 is
chosen and it corresponds to a fixed Peclet number of 𝑃𝑒 = 0.0786. The
CFL number based on reference freestream speed is 𝑁𝑐 = 1.5.

Results are presented in Fig. 35 with the vorticity contours in
the left panel and its corresponding FFT contours in the right panel,
respectively. The times 𝑡 = 249.7615 and 317.2901 correspond to an
intermediate state and just before solution blow-up, respectively. Wave
packet like oscillations in vorticity contours develop and remain just
below the top lid (location indicated by the red arrow) until the solution
blows up. An instantaneous snapshot of these oscillations is displayed
in the bottom panel. These oscillations are unphysical (absent in non-
focused solution) and their amplitudes grow with time eventually
leading to blow-up. This is attributed to the focusing of error due to
anti-diffusion for the stencils at the observed locations and is shown
next.

It is noted that the location of the non-physical wave packet cor-
responds to the grid line just below the top wall. Hence, property
charts of numerical diffusion 𝛼𝑁

𝛼 are plotted in Fig. 36 for the stencil
at a representative nodal location (263, 524), which is the mid point
of line. Property charts show anti-diffusion appearing for 𝑁𝑐 ≃ 1.3.
The instability appears near the top right and it progresses vertically
towards the bottom increasing in strength, as 𝑁𝑐 increases. For the
NSE results, the location(s) with 𝑁𝑐 > 1.3 in the computational domain
is shown to be near the top boundary as indicated by a red arrow
in Fig. 37. This is expected as the CFL numbers are higher near the
moving lid. It is noted that the location with 𝑁𝑐 > 1.3 coincides with
the observed unphysical wave packet thus establishing anti-diffusion to
the genesis of the unphysical wave packet and solution break down.
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The property charts indicate the scale selection for error to originate
from the region 𝑘𝑥ℎ𝑥 ∈ (2.2, 2.5). This is confirmed from the FFT plots
in Fig. 35 where the instability is in the same region as shown by the
property charts. The scales are to be contrasted with the previous case
where focusing is seen to occur at wavenumbers close to the Nyquist
limit. It should be noted that focusing occurs for this case as there is a
sustained value of 𝑁𝑐 > 1.3. However, it is not clear if this situation is
guaranteed for all unsteady systems. Nevertheless, the present results
indicate that for finite difference solution of any unsteady system, the
use of appropriate property charts will always determine focusing.

In the previous two cases, focusing was shown for the NCCD scheme
whose middle stencil is a central scheme. In the final case, focusing is
also demonstrated for upwind discretization of the convection terms.
A uniform grid of size (2001 × 2001) is chosen and a time step of
𝛥𝑡 = 2.65×10−4 is employed. These parameters fix the Pe and Nc values
to be 0.106 and 0.5, respectively.

From the analysis results in Fig. 31, the chosen parameters can
cause focusing. This is confirmed from the vorticity contour plots
(not shown). To illustrate the scale selection for error amplification,
property charts of 𝛼𝑁

𝛼 are plotted for two values of 𝑁𝑐. For 𝑁𝑐 = 0.55,
we note anti-diffusion occurring near the top left corner. The scale
selection of error for NSE results can be confirmed from the contour
plots of FFT of computed vorticity shown in Fig. 39. The simulation
eventually blows up at 𝑡 = 1.69653 due to focusing.

These results conclusively demonstrate a one-to-one correspondence
of the solution of the NSE with the predictions from the GSA of the 2D
linear CDE. This unequivocally proves that the focusing phenomenon
for NSE, is due to a linear instability and not due to nonlinear instability
mechanism as conjectured in [102,114]. Such an analysis based on a
linear CDE to explain the error dynamics of numerical methods for
the nonlinear NSE has not been reported before. This demonstrates the
accuracy and utility of the GSA.

8.3. Focusing due to time integration with three-time level methods

In this section, we will demonstrate focusing phenomenon using a
three-time level time integration method for the solution of the NSE.
We will use the well-established 𝑁𝐶𝐶𝐷 scheme for spatial discretiza-
tion to solve the flow inside a square lid-driven cavity for sub-critical
and super-critical Reynolds numbers. Contrary to the previously re-
ported solutions with polygonal vortices [70,115], here the solution
breaks down after a finite time due to focusing of the physical and
numerical modes of the 𝐴𝐵2 method. Preliminary investigation of this
focusing for three time-level methods based on the 1D CE is reported
in [45]. Here, we will extend the exercise to the 2D NSE based on GSA
of the 2D CDE.



Fig. 33. Comparison of vorticity contours for the two simulations of LDC problem for 𝑅𝑒 = 10,000 at the indicated times. (a) Left panels show contours for the case with
𝑃𝑒 = 0.14506 and (b) Right panels display contours for the simulation with 𝑃𝑒 = 0.1451, respectively.
In Fig. 40, the unstable regions in the (𝑁𝑐, 𝑃 𝑒)-plane are marked by
the dark patches for the 𝐴𝐵2 −𝑁𝐶𝐶𝐷 scheme by solving the 2D CDE
with different wave propagation angles 𝜃. In the left frames, these are
shown for the physical mode of 𝐴𝐵2. Contrary to the 𝑅𝐾4 − 𝑁𝐶𝐶𝐷
scheme in Fig. 30, there is no clear demarcation on the basis of a
critical 𝑃𝑒 for the physical mode. In the right frames, the stability
map is shown for the numerical mode of 𝐴𝐵2. Here, a critical 𝑃𝑒𝑐𝑟 =
0.05 can be clearly seen for the different values of 𝜃 considered. We
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will use this figure to identify two sets of numerical parameters: (i)
when the physical mode is unstable and the numerical mode is stable
(𝑁𝑐 = 0.4, 𝑃 𝑒 = 0.01, 𝐺𝑝ℎ𝑦𝑠 = 1.74, 𝐺𝑛𝑢𝑚 = 0.42) (ii) when the physical
mode is stable and the numerical mode is unstable (𝑁𝑐 = 0.2, 𝑃 𝑒 =
0.055, 𝐺𝑝ℎ𝑦𝑠 = 1, 𝐺𝑛𝑢𝑚 = 1.075). Next, we will solve the 2D NSE for the
lid-driven cavity using these (Nc, Pe) combinations to demonstrate: (i)
the direct utility of the GSA of 2D CDE for the 2D NSE, (ii) focusing
phenomena in three time-level methods either due to an unstable



Fig. 34. Comparison of 2D FFT amplitude contours of vorticity for the two simulations of LDC problem for 𝑅𝑒 = 10,000 at the indicated times. Top panels display contours for
the simulation with 𝑃𝑒 = 0.14506 and bottom panels display contours for the simulation with 𝑃𝑒 = 0.1451.
physical or numerical mode (iii) earlier solution breakdown due to
unstable numerical mode than physical one.

In Fig. 41, solution of flow inside lid-driven cavity for super-critical
𝑅𝑒 = 12,000 using 𝐴𝐵2−𝑁𝐶𝐶𝐷 shows the focusing mechanism due to
the unstable physical mode of 𝐴𝐵2. In frames (a) to (d), (𝑁𝑐 = 0.4, 𝑃 𝑒 =
0.01) are chosen such that the physical mode of 𝐴𝐵2 is unstable while
the numerical mode is stable. From the vorticity contours in frames
(a) to (d) and the time-series, it is clear that the solution undergoes
focusing of error leading to catastrophic breakdown beyond 𝑡 = 6. For
the vorticity contours in frames (e) to (h) and the corresponding time-
series, (𝑁𝑐 = 0.025, 𝑃 𝑒 = 0.01) are chosen such that both modes of 𝐴𝐵2
are numerically stable. Using this configuration, the solution continues
to be indefinitely stable. At 𝑡 = 1000, coherent vortical structures,
representative of such super-critical 𝑅𝑒, are visualized. It should be
noted that for computing the diffusion term of the NSE here, 𝑁𝐶𝐶𝐷 is
used twice instead of the traditional route of using 𝐶𝐷2 [70]. This has
been done to ensure an efficient comparison with the stability criterion
shown in Fig. 40.

In Fig. 42, solution of flow inside lid-driven cavity for sub-critical
𝑅𝑒 = 5000 using 𝐴𝐵2−𝑁𝐶𝐶𝐷 shows the focusing mechanism due to the
unstable numerical mode of 𝐴𝐵2. In frames (a) to (d), (𝑁𝑐 = 0.2, 𝑃 𝑒 =
0.055) are chosen such that the numerical mode of 𝐴𝐵2 is unstable
while the physical mode is stable. From the vorticity contours in frames
(a) to (d) and the time-series, it is clear that the solution undergoes
focusing of error leading to catastrophic breakdown at early time of
𝑡 = 0.05. Although the numerical amplification factor corresponding
to the unstable numerical mode (𝐺𝑛𝑢𝑚 = 1.075) is lesser than that for
the physical mode in Fig. 41 (𝐺𝑝ℎ𝑦𝑠 = 1.74), the solution undergoes
earlier breakdown here. This suggests that for the 𝐴𝐵2 method, the
unstable numerical mode has a more dire consequence on the stability
of solution than the physical mode. Vorticity contours in frames (e) to
(h) and corresponding time series are evaluated using (𝑁𝑐 = 0.2, 𝑃 𝑒 =
0.05) for which both physical and numerical modes of 𝐴𝐵 are stable.
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Here, the solution can be computed indefinitely and flow features
captured match well with prior computations at this sub-critical 𝑅𝑒.
Thus, the localized error growth in both Figs. 41 and 42 eventually
contaminates the entire flow field and leads to solution breakdown, as
predicted by the numerical property chart in Fig. 40.

8.4. Remedy for focusing

The numerical instability arising due to anti-diffusion for the in-
compressible NSE from the solution of flow inside a LDC has been
demonstrated using NCCD and Kuwahara’s schemes. A one-to-one cor-
respondence is noted between the analysis and the results of NSE for
the scale selection of errors for numerical instability. If all the scales
displaying instability are attenuated/removed then focusing can be
eliminated. Hence, filtering is an ideal solution to cure focusing.

In computing, filtering has been used to perform multiple functions
ranging from numerical stabilization at high wavenumbers arising due
to highly stretched meshes and boundary conditions [116–118] to alle-
viating nonlinear instabilities due to aliasing error [1] and performing
LES without the need for a sub-grid scale (SGS) model [119,120].
Filtering is investigated here as a cure for the focusing phenomenon
arising due to anti-diffusion. The presented simulations of NSE establish
focusing phenomenon as a linear instability. Therefore, by studying the
effects of filtering on the model linear 2D CDE will help address the
question concerning its utility in removal of focusing. The methodology
is firmly established by performing simulations of NSE with filtering.

8.4.1. GSA of 2D CDE with filtering
Here, we perform GSA using the concepts and methodology intro-

duced in [120] for analysis and development of new filters for LES and
detached eddy simulation (DES). As 2D filtering is implemented as a

post-processing operation, it alters the original numerical amplification



Fig. 35. Plot showing the vorticity contours (left) and FFT of vorticity contours (right) at the indicated time instants for the simulation of LDC problem for 𝑅𝑒 = 10,000. The red
arrow indicates the location of the unphysical wave packet. Bottom panel shows the vorticity distribution plotted for the grid line immediately below the top lid for the cases of
with and without focusing. Note the unphysical wave packet like appearance of the distribution.
𝑢

factor as

�̂�𝑁 (𝑘ℎ) = 𝐺𝑁 (𝑘ℎ) × 𝑇𝐹 (𝑘ℎ) (143)

where �̂� is the numerical amplification factor incorporating the effects
of filtering, 𝑇𝐹 is filter’s transfer function and right hand side is a
simple multiplication. Knowing the 𝑇𝐹 of the filter, the numerical am-
plification factor, and all other numerical properties, viz. �̂�𝑁𝛼 , 𝑐𝑁𝑐 , (𝑉𝑔𝑥)𝑁

𝑐𝑥

and (𝑉𝑔𝑦)𝑁 can be obtained. The hat superscript denotes quantities with
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𝑐𝑦
the inclusion of filtering. Brief details regarding the determination of
𝑇𝐹 and its interpretation readers are present in [1,120].

For the current demonstration, a second order, 2D filter stencil
developed in [100] is adopted and is given by,

̂𝑚,𝑛 + 𝛾(�̂�𝑚−1,𝑛 + �̂�𝑚+1,𝑛 + �̂�𝑚,𝑛−1 + �̂�𝑚,𝑛+1) =
1
∑

𝑖=0

𝑎𝑖
2
(𝑢𝑚±𝑖,𝑛 + 𝑢𝑚,𝑛±𝑖) (144)

where 𝑚, 𝑛 are the nodal indices, quantities with the hat ( ̂ ) superscript
denote the filtered quantities, 𝛾 denotes the strength of filtering in the
range 𝛾 ∈ [−0.25, 0.25), and 𝑎 = 1 + 2𝛾, 𝑎 = 1 + 𝛾.
0 2 1 4



Fig. 36. Numerical diffusion ( 𝛼𝑁
𝛼

) contours for the 𝑅𝐾4-NCCD scheme for the 2D CDE. The contours are plotted for the location which corresponds to a mid node in the 𝑥-direction
and the nearest boundary node in the 𝑦-direction. The space time properties are indicated by the CFL (𝑁𝑐) and 𝑃𝑒 values with 𝐴𝑅 = 1, 𝜃 = 0◦, respectively.
Fig. 37. Local CFL values in the computational domain at the indicated times for the simulation of LDC problem for 𝑅𝑒 = 10,000. The non-dimensional Pe and Nc values for this
simulation are 0.0786 and 1.5, respectively. Red arrow shows the location of the maximum CFL in the computational domain.
The filtering operation for the full domain can be expressed in the
form [𝐴𝑓 ]{�̂�} = [𝐵𝑓 ]{𝑢} where [𝐴𝑓 ], [𝐵𝑓 ] are matrices as determined by
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the filter stencil. It should be noted that the variables at boundaries are
not filtered. From this relation, the filtered quantity can be determined



Fig. 38. Numerical diffusion- 𝛼𝑁
𝛼

contours for the 𝑅𝐾4-UD3-CD2 scheme for the 2D CDE. The space time properties are indicated by the CFL (𝑁𝑐) and 𝑃𝑒 values with 𝐴𝑅 = 1,
𝜃 = 0◦, respectively.
Fig. 39. Plot showing the FFT of vorticity contours at the indicated time instants for the simulation of LDC problem for 𝑅𝑒 = 10,000 using RK4-UD3-CD2 scheme.
as {�̂�} = [𝐶𝑓 ]{𝑢} with [𝐶𝑓 ] = [𝐴𝑓 ]−1[𝐵𝑓 ] and therefore, the transfer
function at a node (𝑚, 𝑛) can be determined as

𝑇𝐹𝑚,𝑛(𝑘𝑥ℎ𝑥, 𝑘𝑦ℎ𝑦) = 𝐶𝑓𝑁𝑦(𝑛−1)+𝑚,𝑗 𝑒
𝑖((𝑚𝑥−𝑚)𝑘𝑥ℎ𝑥+(𝑛𝑦−𝑛)𝑘𝑦ℎ𝑦) (145)

where 𝑁𝑥 and 𝑁𝑦 are the number of grid points in 𝑥- and 𝑦-directions,
respectively. The integer variables 𝑚𝑥 and 𝑛𝑦 are the grid indices of
the point whose corresponding variable is 𝑢𝑗 i.e., 𝑛𝑦 = 𝑗

𝑁𝑦
+ 1 and

𝑚𝑥 = 𝑗 − ((𝑛𝑦 −1)×𝑁𝑦). These are determined by noting that the vector
𝑢 is stored as 𝑢 = [𝑢1,1𝑢2,1𝑢3,1 … 𝑢𝑁𝑥 ,𝑁𝑦 ]

𝑇 .
With the transfer function determined, the numerical properties for

the filtered 2D CDE are evaluated using the equations given below.

tan(�̂�𝑁 ) = −

(

(�̂�𝑁 )𝐼𝑚𝑔
(�̂�𝑁 )𝑅𝑒𝑎𝑙

)

where �̂�𝑁 =
(

√

𝑘𝑥2 + 𝑘𝑦2
)

𝑐𝑁𝛥𝑡

𝑐𝑁
𝑐

= −

[

�̂�𝑁
𝑁𝑐𝑥(𝑘𝑥ℎ𝑥) +𝑁𝑐𝑦(𝑘𝑦ℎ𝑦)

]

(𝑉𝑔𝑥)𝑁
𝑐𝑥

= 1
𝑁𝑐𝑥

𝜕�̂�𝑁
𝜕(𝑘𝑥ℎ𝑥)

(𝑉𝑔𝑦)𝑁 = 1 𝜕�̂�𝑁
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𝑐𝑦 𝑁𝑐𝑦 𝜕(𝑘𝑦ℎ𝑦)
�̂�𝑁
𝛼

= −
ln |�̂�𝑁 |

[𝑃𝑒𝑥(𝑘𝑥ℎ𝑥)2 + 𝑃𝑒𝑦(𝑘𝑦ℎ𝑦)2]
(146)

Due to the central nature of the filter stencil (the transfer function
is real), the group velocities are unaffected. Therefore, the present
filtering operation affects only 𝛼𝑁 , while preserving the numerical
dispersion relation of the unfiltered case.

The property charts are shown in Fig. 43, comparing the unfiltered
and filtered cases for the critical value of 𝑃𝑒𝑐𝑟 = 0.1451 for the RK4-
NCCD scheme. The unfiltered case is shown in the left panel and
the 2D second order filter with 𝛾 = 0.248 with filtering performed
at every 25𝛥𝑡 is shown in the right panel. The figure clearly shows
the advantage of filtering by noting that it removes the numerical
instability associated with anti-diffusion, as seen in the contour plots of
�̂�𝑁
𝛼 . This is due to the fundamental nature of filtering operation, which

is the attenuation/removal of high wavenumber components from the
numerical solution.

To establish whether filtering eliminates focusing or not, the sim-
ulation case of flow inside LDC for 𝑅𝑒 = 10,000 with 𝑃𝑒 = 0.1451 is
computed with the filtering implemented. This case displayed absolute
numerical instability as noted in the earlier subsection. The second
order 2D filter stencil with 𝛾 = 0.248 is employed and 𝜔 field is filtered



Fig. 40. Influence of wave propagation angle 𝜃 of the 2D CDE on the critical Peclet number for 𝐴𝐵2−𝑁𝐶𝐶𝐷 scheme with grid aspect ratio AR = 1. Unstable regions are indicated
by the dark patches in the (𝑁𝑐, 𝑃 𝑒)-plane. Left frames correspond to the physical mode while right frames correspond to the numerical mode of 𝐴𝐵2.
after every 25𝛥𝑡. Filtering is implemented here as a post-processing
operation i.e. the governing equations are not filtered. This methodol-
ogy has minimal impact on the speed of computations as one does not
require solution of Eq. (144) using expensive iterative schemes. For the
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current demonstration, a point Jacobi method is employed although
one can use the same Bi-CGSTAB method employed for solution of
stream function equation, Eq. (141). It is noted that for the point Jacobi
method, converged solutions are obtained within 5 iterations.



Fig. 41. Vorticity contours for the lid-driven cavity problem solved using 𝐴𝐵2 −𝑁𝐶𝐶𝐷 for 𝑅𝑒 = 12,000 with 𝑁𝑐 = 0.4 and 𝑃𝑒 = 0.01 in frames (a) to (d) and with 𝑁𝑐 = 0.25 and
𝑃𝑒 = 0.015 in frames (e) to (h). The first set of (𝑁𝑐, 𝑃 𝑒) corresponds to the unstable physical mode of 𝐴𝐵2 in Fig. 40 while the second set are for a numerically stable set up.
Focusing phenomenon is displayed via the time-series of vorticity for the unstable (𝑁𝑐, 𝑃 𝑒) beyond 𝑡 = 6.
In Fig. 44, the vorticity contours are shown for the filtered case with
𝑃𝑒 = 0.1451 in the right side panels. The benefit of filtering can be
confirmed by noting the suppression of filtering thereby validating the
GSA approach. Without filtering the solution blows up as 𝑃𝑒 ≥ 𝑃𝑒𝑐𝑟. To
evaluate the quality of solution with filtering, its results are compared
with the unfocused case (𝑃𝑒 = 0.14506) with the latter serving as a
reference. Apart from a phase shift between the vortical structures one
notes the filtered solution to display similar structures.

The effect of increasing filtering frequency on the accuracy of
numerical solution is noted from the results in Fig. 45. Comparison
with the reference unfocused case at 𝑡 = 6 shows very good match. This
is due to reduced numerical diffusion/damping of the filtering on the
solution. For all the computed cases with filtering, the frequencies are
chosen using GSA such that focusing is just eliminated. The presented
results are for cases with weak instabilities (|𝐺𝑁 | ≃ 1 + 𝜖) i.e. near
the critical values for focusing. However, filtering should also function
effectively for stronger instabilities as we have noted the removal of
instability at Peclet numbers higher than the critical value (not shown
here). In such cases, filtering has to be performed at frequent intervals
(lower frequencies) as a consequence of the stronger instability.

In this discussion, a simple filtering strategy for eliminating focusing
is presented. One can explore other strategies of filtering, particularly
the adaptive filtering [121], which will yield a significant reduction in
computational efforts in addition to eliminating the focusing problem.

9. Linearized rotating shallow water equations

The linearized rotating shallow water equations (LRSWE) based
on single-layer approximation [122–124] are extensively used for the
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numerical modeling of atmosphere and ocean dynamics. The LRSWE
representing a dispersive system of hyperbolic conservation laws are
given as
𝜕𝑢
𝜕𝑡

− 𝑓 𝑣 + 𝑔
𝜕𝜂
𝜕𝑥

= 0 (147)

𝜕𝑣
𝜕𝑡

+ 𝑓 𝑢 + 𝑔
𝜕𝜂
𝜕𝑦

= 0 (148)

𝜕𝜂
𝜕𝑡

+ 𝐻
(

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

)

= 0 (149)

where, 𝑢 and 𝑣 are the velocity components in 𝑥- and 𝑦-directions,
respectively; 𝜂 is the time dependent surface-elevation from the mean
level at 𝑧 = 0; 𝑓 is the Coriolis frequency; 𝑔 is the acceleration of gravity
and𝐻 is the mean depth. The system of first-order Eqs. (147)–(149) can
also be reduced to a single equation by eliminating 𝑢 and 𝑣, as

𝜕
𝜕𝑡

[

𝜕
𝜕𝑡2

+ 𝑓 2 − 𝑔𝐻∇2
]

𝜂 = 0 (150)

where, ∇2 = 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
, is the two-dimensional Laplacian operator.

The dispersion relation based on bilateral Fourier–Laplace transform
for Eqs. (147)–(149) or Eq. (150) is given as [125],

𝜔 (𝜔2 − 𝑐2 |�⃗�|

2
− 𝑓 2) = 0 (151)

where, �⃗� = 𝑖𝑘𝑥 + 𝑗𝑘𝑦 and 𝑐 =
√

𝑔𝐻 , with 𝑘𝑥 and 𝑘𝑦 denoting
wavenumber components in 𝑥- and 𝑦- directions, respectively. Roots
of the Eq. (151) are given as

𝜔 = 0 , 𝜔 = ±
√

𝑓 2 + 𝑐2|�⃗�|

2
(152)
1 2,3



Fig. 42. Vorticity contours for the lid-driven cavity problem solved using 𝐴𝐵2 −𝑁𝐶𝐶𝐷 for 𝑅𝑒 = 5000 with 𝑁𝑐 = 0.2 and 𝑃𝑒 = 0.055 in frames (a) to (d) and with 𝑁𝑐 = 0.2 and
𝑃𝑒 = 0.05 in frames (e) to (h). The first set of (𝑁𝑐, 𝑃 𝑒) corresponds to the unstable numerical mode of 𝐴𝐵2 in Fig. 40 while the second set are for a numerically stable set up.
Focusing phenomenon is displayed via the time-series of vorticity for the unstable (𝑁𝑐, 𝑃 𝑒) beyond 𝑡 = 0.05.
where, 𝜔1 corresponds to the geostrophic mode, while 𝜔2,3 correspond
to the inertia-gravity modes [125]. Expressions for the group velocity
components in 𝑥- and 𝑦-directions and phase speeds in 𝑥- and 𝑦-
directions for the inertia-gravity modes are obtained from Eq. (152)
as [36,110,125],

(𝑉𝑔𝑥)2,3 =
𝜕𝜔2,3

𝜕𝑘𝑥
= ±

𝑘𝑥𝑐2
√

𝑓 2 + 𝑐2|�⃗�|

2
, (𝑉𝑔𝑦)2,3 =

𝜕𝜔2,3

𝜕𝑘𝑦
= ±

𝑘𝑦𝑐2
√

𝑓 2 + 𝑐2|�⃗�|

2

(153)

(𝑐𝑒𝑥)2,3 =
𝜔2,3

𝑘𝑥
= ±

√

𝑓 2 + 𝑐2|�⃗�|

2

𝑘𝑥
, (𝑐𝑒𝑦)2,3 =

𝜔2,3

𝑘𝑦
= ±

√

𝑓 2 + 𝑐2|�⃗�|

2

𝑘𝑦

(154)

Moreover, resultant group velocity for the inertia-gravity modes are

obtained from Eq. (154), as 𝑉𝑔 =
√

𝑉 2
𝑔𝑥 + 𝑉 2

𝑔𝑦 = (𝑐2|�⃗�|)∕
√

𝑓 2 + 𝑐2|�⃗�|

2
,

which makes an angle, 𝜃𝑒𝑥 = tan−1(𝑉𝑔𝑦∕𝑉𝑔𝑥) with the positive 𝑥-axis.

9.1. Dispersion analysis of the linearized rotating shallow water equations

Here, the dispersion analysis of LRSWE on Arakawa grids is per-
formed by considering space–time discretizations together, as in [30,
31,110,126]. The analysis presented in this section is valid for an
explicit two-level time integration method. Using vector notations 𝑍 =
[𝑢, 𝑣, 𝜂]𝑇 , Eqs. (147)–(149) can be rewritten as
𝜕𝑍 + [𝐴]𝑍 + [𝐵] 𝜕𝑍 + [𝐶] 𝜕𝑍 = 0 (155)
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𝜕𝑡 𝜕𝑥 𝜕𝑦
with 𝐴 =
⎡

⎢

⎢

⎣

0 −𝑓 0
𝑓 0 0
0 0 0

⎤

⎥

⎥

⎦

, 𝐵 =
⎡

⎢

⎢

⎣

0 0 𝑔
0 0 0
𝐻 0 0

⎤

⎥

⎥

⎦

and 𝐶 =
⎡

⎢

⎢

⎣

0 0 0
0 0 𝑔
0 𝐻 0

⎤

⎥

⎥

⎦

Similar to non-dispersive case, here also using Fourier–Laplace
transform vector of unknowns 𝑍 can be represented as

𝑍 = ∫ ∫ �̂� 𝑒𝑖 (𝑘𝑥 𝑥+𝑘𝑦 𝑦) 𝑑𝑘𝑥 𝑑𝑘𝑦

where, �̂� = [�̂� , 𝑉 , �̂�]𝑇 , where �̂� , 𝑉 and �̂� denote the bilateral
Fourier–Laplace transforms [26,127] of 𝑢, 𝑣 and 𝜂, respectively. Fur-
thermore, spatial discretization schemes for the first-order derivatives
can also be represented as

𝜕𝑍
𝜕𝑥

= ∫ ∫ 𝑖 (𝑘𝑥)𝑒𝑞 �̂�𝑒
𝑖 (𝑘𝑥 𝑥+𝑘𝑦 𝑦) 𝑑𝑘𝑥 𝑑𝑘𝑦

𝜕𝑍
𝜕𝑦

= ∫ ∫ 𝑖 (𝑘𝑦)𝑒𝑞 �̂�𝑒
𝑖 (𝑘𝑥 𝑥+𝑘𝑦 𝑦) 𝑑𝑘𝑥 𝑑𝑘𝑦 (156)

where (𝑘𝑥)𝑒𝑞 and (𝑘𝑦)𝑒𝑞 are equivalent wavenumbers in obtaining the
first-order derivatives in x- and 𝑦-directions, respectively. Except one,
all grids proposed in Mesinger & Arakawa [128] are of staggered type.
Thus, to evaluate relevant Coriolis component one has to interpolate
the grid variables to the location where it is required. Interpolation
of unknowns effectively changes the value of the Coriolis parameter
from 𝑓 to 𝑓𝑒𝑞 . Thus, upon using spatial discretization and interpolation
schemes in Eq. (155), we have the following

𝜕�̂� + [𝐷] �̂� = 0 (157)

𝜕𝑡



Fig. 43. Normalized numerical amplification factor ( |𝐺𝑁 |

|𝐺|
) and numerical diffusion coefficient ( 𝛼𝑁

𝛼
) shown for the 𝑅𝐾4-NCCD scheme for the 2D CDE. Left panels are for unfiltered

case with 𝑃𝑒𝑥 = 0.1451, 𝑁𝑐𝑥 = 0.375, 𝐴𝑅 = 1, 𝜃 = 45◦ and right panels are for the unfiltered case with 2D filter with 𝛾 = 0.248 applied every 25𝛥𝑡, respectively.
with [𝐷] =
⎡

⎢

⎢

⎣

0 −𝑓𝑒𝑞 𝑖(𝑘𝑥)𝑒𝑞 𝑔
𝑓𝑒𝑞 0 𝑖(𝑘𝑦)𝑒𝑞 𝑔

𝑖(𝑘𝑥)𝑒𝑞 𝐻 𝑖(𝑘𝑦)𝑒𝑞 𝐻 0

⎤

⎥

⎥

⎦

In particular, using 𝑅𝐾4 time integration method in Eq. (157) we
can relate the value of �̂� at (𝑛 + 1)th time-level with 𝑛th time-level
value as

�̂�𝑛+1 = [𝑃𝑅𝐾4
] �̂�𝑛 (158)

where evolution matrix is obtained as, 𝑃RK4
= 𝐼 − 𝛥𝑡 𝐷 + 𝛥𝑡2

2! 𝐷2 −
𝛥𝑡3

3! 𝐷
3 + 𝛥𝑡4

4! 𝐷
4. The modal-amplification factors, 𝐺 = [𝐺1, 𝐺2, 𝐺3]𝑇 are

the eigenvalues of [𝑃𝑅𝐾4
]. Also, equivalent wavenumbers for the spatial

discretization of the first-order spatial derivatives can be represented as

(𝑘𝑥)𝑒𝑞 =
1
𝛥𝑥
𝜁 (𝑘𝑥𝛥𝑥) , (𝑘𝑦)𝑒𝑞 =

1
𝛥𝑦
𝜓(𝑘𝑦𝛥𝑦)

where, 𝜁 and 𝜓 are functions of 𝑘𝑥𝛥𝑥 and 𝑘𝑦𝛥𝑦, with 𝛥𝑥 and 𝛥𝑦
denoting the mesh-widths in 𝑥- and 𝑦-directions, respectively. Denoting
𝑎 ≡ 𝑁𝑐𝑥 𝜁 (𝑘𝑥𝛥𝑥) and 𝑏 ≡ 𝑁𝑐𝑦 𝜓(𝑘𝑦𝛥𝑦), where 𝑁𝑐𝑥 = 𝑐 𝛥𝑡

𝛥𝑥 and 𝑁𝑐𝑦 =
𝑐 𝛥𝑡
𝛥𝑦

denote the CFL numbers based on mesh-widths in 𝑥- and 𝑦-directions,
respectively. Using symbolic toolbox, eigenvalues of 𝑃RK4

are obtained
as [125],

𝐺 = 1, 𝐺 = 𝛿 ∓ 𝑖 𝜖 (159)
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1 2, 3
where, 𝛿 = 1 − 1
2 𝛾

2 + 1
24 𝛾

4; 𝜖 = 𝛾 − 1
6 𝛾

3, with 𝛾 =
√

(𝑎2 + 𝑏2 + 𝑝2) and
𝑝 = 𝑓𝑒𝑞𝛥𝑡. Here, 𝐺1 represents the geostrophic mode and 𝐺2, 3 corre-
spond to the inertia-gravity modes. In general, 𝑓𝑒𝑞 = 𝑓𝑇𝐹𝑥(𝑘𝑥𝛥𝑥)𝑇𝐹𝑦
(𝑘𝑦𝛥𝑦), where, 𝑇𝐹𝑥 and 𝑇𝐹𝑦 are the Fourier transfer functions asso-
ciated with the chosen interpolation scheme in x- and 𝑦-directions,
respectively.

Numerical circular frequency 𝜔𝑁 , for a mode is calculated from,

𝜔𝑁 = − 1
𝛥𝑡

tan−1
(

𝐺imag∕𝐺real

)

where, 𝐺imag and 𝐺real denote the imaginary and real parts of the modal-
amplification factor, respectively. Using Eq. (159), numerical circular
frequencies for geostrophic and inertia-gravity modes are obtained as

(𝜔𝑁 )1 = 0 , (𝜔𝑁 )2,3 = ± 1
𝛥𝑡

tan−1
(

𝜖
𝛿

)

(160)

using numerical circular frequency 𝜔𝑁 , numerical group-velocity com-
ponents in 𝑥- and 𝑦-directions, 𝑉𝑔𝑁𝑥 and 𝑉𝑔𝑁𝑦, for the inertia-gravity
modes [125] are given as

𝑉𝑔𝑁𝑥 =
𝜕𝜔𝑁
𝜕𝑘𝑥

, 𝑉𝑔𝑁𝑦 =
𝜕𝜔𝑁
𝜕𝑘𝑦

(161)

and expressions for the numerical phase speeds in 𝑥- and 𝑦-directions,
𝑐𝑁𝑥 and 𝑐𝑁𝑦, are also obtained as

𝑐𝑁𝑥 =
𝜔𝑁 , 𝑐𝑁𝑦 =

𝜔𝑁 (162)

𝑘𝑥 𝑘𝑦



Fig. 44. Comparison of vorticity contours for 𝑅𝑒 = 10,000. The left panels are for the unfiltered sub-critical case (𝑃𝑒 = 0.14506), and, the right panels are for the case with 2D,
second order filter with 𝛾 = 0.248 applied every 25𝛥𝑡 for the critical case 𝑃𝑒 = 0.1451.
Using Eqs. (160) and (161), expressions for the numerical group
velocity components in 𝑥- and 𝑦-directions for the inertia-gravity modes
are obtained as

(

𝑉𝑔𝑁𝑥
)

= ± 𝑐 1 𝑑𝜉
[

𝑎
𝑑𝜁

+ 𝑝𝛥𝑥𝑇𝐹𝑦
𝑑(𝑇𝐹𝑥)

]
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2,3 𝛾 𝑑𝛾 𝑑(𝑘𝑥𝛥𝑥) 𝐿𝑟 𝑑(𝑘𝑥𝛥𝑥)
(

𝑉𝑔𝑁𝑦
)

2,3 = ± 𝑐 1
𝛾
𝑑𝜉
𝑑𝛾

[

𝑏
𝑑𝜓

𝑑(𝑘𝑦𝛥𝑦)
+ 𝑝

𝛥𝑦
𝐿𝑟
𝑇𝐹𝑥

𝑑(𝑇𝐹𝑦)
𝑑(𝑘𝑦𝛥𝑦)

]

(163)

where, 𝜉 = tan−1
(

𝐺imag∕𝐺real
)

and 𝐿𝑟 =
√

(𝑔𝐻)∕𝑓 is the Rossby radius.
Moreover, using Eq. (163), absolute numerical group velocity 𝑉 for
𝑔𝑁



Fig. 45. Comparison of vorticity contours of the LDC problem for 𝑅𝑒 = 10,000 at 𝑡 = 6. The left panel shows the contours for the unfiltered case with 𝑃𝑒 = 0.14506. The right
panel represents the solution with 2D, second order filter with 𝛾 = 0 and filtering after every 10, 000𝛥𝑡 for 𝑃𝑒 = 0.1451.
inertia-gravity modes and its angle of propagation 𝜃𝑁 are obtained as

𝑉𝑔𝑁 =
√

(

𝑉𝑔𝑁𝑥
)2 +

(

𝑉𝑔𝑁𝑦
)2 , 𝜃𝑁 = tan−1

(

𝑉𝑔𝑁𝑦
𝑉𝑔𝑁𝑥

)

(164)

Similarly, from Eqs. (160)–(162) expressions for the numerical
phase speed components are obtained as
(

𝑐𝑁𝑥
)

2,3 = ± 𝑐
𝜁

𝑁𝑐𝑥𝑘𝑥𝛥𝑥
,

(

𝑐𝑁𝑦
)

2,3 = ± 𝑐
𝜁

𝑁𝑐𝑦𝑘𝑦𝛥𝑦
(165)

It can be noticed that the geostrophic mode has zero phase speed
and group velocity. Also, for the inertia-gravity modes, modulus of
amplification factors is the same, as second inertia-gravity mode is
the complex conjugate of the first inertia-gravity mode. Therefore,
numerical group velocity components and phase speeds in 𝑥- and 𝑦-
directions for the second inertia-gravity mode are same in magnitude,
as for the first inertia-gravity mode, with change in sign.

9.2. Compact schemes for the first-order derivatives and interpolation on
Arakawa meshes

For collocated 𝐴-grid, the OUCS3 scheme given in Eqs. (48) to
(50) is employed. On staggered meshes, optimized staggered compact
scheme (OSCS) with optimized staggered interpolation scheme for
spatial discretization [125] are used. Staggered compact scheme for
evaluating the first-order spatial derivative at 𝑗th node is given as [129]

𝛼1𝑢
′
𝑖−1 + 𝑢

′
𝑖 + 𝛼1𝑢

′
𝑖+1 = 𝑏1

𝑢𝑖+3∕2 − 𝑢𝑖−3∕2
3𝛥𝑥

+ 𝑎1
𝑢𝑖+1∕2 − 𝑢𝑖−1∕2

𝛥𝑥
(166)

Eq. (166) represents a single parameter (𝛼1) family of fourth-order
schemes with 𝑎1 = 3

8 (3 − 2𝛼1) and 𝑏1 = 1
8 (−1 + 22𝛼1). For the present

case we have chosen 𝛼1 = 0.18, as given in [125]. Moreover, use of
staggered schemes also requires mid-point interpolation of unknowns.
Optimized compact scheme for mid-point interpolation [125] is given
as

𝛼2�̂�
′
𝑖−1 + �̂�

′
𝑖 + 𝛼2�̂�

′
𝑖+1 = 𝑏2

𝑢𝑖+3∕2 + 𝑢𝑖−3∕2
2

+ 𝑎2
𝑢𝑖+1∕2 + 𝑢𝑖−1∕2

2
(167)

where �̂�𝑗 denotes the interpolated values of the unknown 𝑢 at the 𝑗th
node. This approximation is of fourth-order accuracy if 𝑎2 =

1
8 (9+10𝛼2)

and 𝑏2 = 1
8 (−1 + 6𝛼2). In the present case, the optimized value 𝛼2 =

0.35 [125] is used in the computations. Boundary closures for the use
of Eqs. (166)–(167) for non-periodic problems are discussed next.
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9.3. Boundary closures for the optimized staggered compact scheme

Boundary stencils for non-periodic problems using staggered com-
pact scheme are derived by following the similar approach as discussed
in [29] for the OUCS3 scheme. Boundary closures at full (integer)
locations are obtained by using function values at half (non-integer)
locations.

9.3.1. Boundary closures or full locations
For 𝑗 = 1 node, boundary stencil is obtained as

𝑢′1 =
1
ℎ

[

−71
24
𝑢3∕2 +

47
8
𝑢5∕2 −

31
8
𝑢7∕2 +

23
24
𝑢9∕2

]

(168)

Furthermore, for 𝑗 = 2 node we have considered the combination of
dispersive and dissipative boundary stencils, obtained as

𝑢′2 =
1
ℎ

[

−71
24
𝑢5∕2 +

47
8
𝑢7∕2 −

31
8
𝑢9∕2 +

23
24
𝑢11∕2

]

(169)

𝑢′2 =
𝑢5∕2 − 𝑢3∕2

ℎ
+ ℎ3𝛽𝑓

𝜕𝑢42
𝜕𝑥4

|

|

|

|CD2

(170)

As discussed in [29], here also by taking (1 ∶ 2) blending of Eqs. (169)–
(170) we have obtained the boundary stencil at 𝑗 = 2, as

𝑢′2 = 1
3ℎ

[

(2𝛽𝑓 − 2)𝑢3∕2 −
(

23
24

+ 8𝛽𝑓

)

𝑢5∕2 +
(

47
8

+ 12𝛽𝑓

)

𝑢7∕2

−
(

31
8

+ 8𝛽𝑓

)

𝑢9∕2 +
(

23
24

+ 2𝛽𝑓

)

𝑢11∕2

]

(171)

Similarly, boundary closures at 𝑗 = 𝑁 and 𝑁 − 1 are obtained as

𝑢′𝑁 = − 1
ℎ

[

−71
24
𝑢𝑁−1∕2 +

47
8
𝑢𝑁−3∕2 −

31
8
𝑢𝑁−5∕2 +

23
24
𝑢𝑁−7∕2

]

(172)

𝑢′𝑁−1 = − 1
3ℎ

[

(2𝛽𝑓𝑁 − 2)𝑢𝑁−1∕2 −
(

23
24

+ 8𝛽𝑓𝑁

)

𝑢𝑁−3∕2

+
(

47
8

+ 12𝛽𝑓𝑁

)

𝑢𝑁−5∕2

−
(

31
8

+ 8𝛽𝑓𝑁

)

𝑢𝑁−7∕2 +
(

23
24

+ 2𝛽𝑓𝑁

)

𝑢𝑁−9∕2

]

(173)

As in [29], here also for the global accuracy and numerical stability
we have chosen 𝛽𝑓 = −0.025 for 𝑗 = 2 node and 𝛽𝑓𝑁 = 0.09 for 𝑗 = 𝑁−1
node. Boundary stencils at half (non-integer) locations are obtained
using function-values at full (integer) locations, and are discussed next.



9.3.2. Boundary closures for half locations
Similar to full locations, boundary closure at 𝑗 = 3∕2 node is

obtained as

𝑢′3∕2 =
1
ℎ

[

−23
24
𝑢1 +

7
8
𝑢2 +

1
8
𝑢3 −

1
24
𝑢4

]

(174)

Again for 𝑗 = 5∕2 node, we have considered the combination of
dispersive and dissipative boundary stencils obtained as

𝑢′5∕2 =
1
ℎ

[

−23
24
𝑢2 +

7
8
𝑢3 +

1
8
𝑢4 −

1
24
𝑢5

]

(175)

𝑢′5∕2 =
𝑢3 − 𝑢2
ℎ

+ ℎ3𝛽ℎ
𝜕𝑢45∕2
𝜕𝑥4

|

|

|

|CD2

(176)

here also by considering (1 ∶ 2) blending of Eqs. (175)–(176), near-
boundary stencil at 𝑗 = 5∕2 node is obtained as

𝑢′5∕2 = 1
3ℎ

[

2𝛽ℎ𝑢1 +
(

−71
24

− 8𝛽ℎ

)

𝑢2 +
(

23
8

+ 12𝛽ℎ

)

𝑢3 +
(

1
8
− 8𝛽ℎ

)

𝑢4

+
(

− 1
24

+ 2𝛽ℎ

)

𝑢5

]

(177)

Also, boundary closures at the right boundary (downstream) are
obtained as

𝑢′𝑁−1∕2 = − 1
ℎ

[

−23
24
𝑢𝑁 + 7

8
𝑢𝑁−1 +

1
8
𝑢𝑁−2 −

1
24
𝑢𝑁−3

]

(178)

𝑢′𝑁−3∕2 = − 1
3ℎ

[

2𝛽ℎ𝑁𝑢𝑁 +
(

−71
24

− 8𝛽ℎ𝑁

)

𝑢𝑁−1 +
(

23
8

+ 12𝛽ℎ𝑁

)

𝑢𝑁−2

+
(

1
8
− 8𝛽ℎ𝑁

)

𝑢𝑁−3 +
(

− 1
24

+ 2𝛽ℎ𝑁

)

𝑢𝑁−4

]

(179)

here also for the global accuracy and numerical stability we have
chosen 𝛽ℎ = −0.025 for 𝑗 = 5∕2 node and 𝛽ℎ𝑁 = 0.09 for 𝑗 = 𝑁 −
3∕2 node. Boundary stencils for the optimized compact interpolation
scheme are discussed next.

9.4. Boundary closures for the optimized compact interpolation scheme

Next, boundary closures for the compact interpolation scheme are
derived at full and half locations, respectively.

9.4.1. Boundary closures for full locations
Boundary schemes for full locations (𝑗 = 1, 2) using three-points

(third-order) are obtained as

𝑢1 =
15
8
𝑢3∕2 −

5
4
𝑢5∕2 +

3
8
𝑢7∕2

𝑢2 =
15
8
𝑢5∕2 −

5
4
𝑢7∕2 +

3
8
𝑢9∕2 (180)

and using four-points (fourth-order), boundary schemes are obtained as

𝑢1 =
35
16
𝑢3∕2 −

35
16
𝑢5∕2 +

21
16
𝑢7∕2 −

5
16
𝑢9∕2

𝑢2 =
35
16
𝑢5∕2 −

35
16
𝑢7∕2 +

21
16
𝑢9∕2 −

5
16
𝑢11∕2 (181)

similarly, for the right boundary (𝑗 = 𝑁,𝑁 −1), third- and fourth-order
accurate stencils are obtained as

𝑢𝑁 = 15
8
𝑢𝑁−1∕2 −

5
4
𝑢𝑁−3∕2 +

3
8
𝑢𝑁−5∕2

𝑢𝑁−1 =
15
8
𝑢𝑁−3∕2 −

5
4
𝑢𝑁−5∕2 +

3
8
𝑢𝑁−7∕2 (182)

𝑢𝑁 = 35
16
𝑢𝑁−1∕2 −

35
16
𝑢𝑁−3∕2 +

21
16
𝑢𝑁−5∕2 −

5
16
𝑢𝑁−7∕2

𝑢 = 35 𝑢 − 35 𝑢 + 21 𝑢 − 5 𝑢 (183)
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𝑁−1 16 𝑁−3∕2 16 𝑁−5∕2 16 𝑁−7∕2 16 𝑁−9∕2
9.4.2. Boundary closures for half locations
Boundary stencils for half locations (𝑗 = 3∕2, 5∕2) nodes using

three-points are obtained as

𝑢3∕2 =
3
8
𝑢1 +

3
4
𝑢2 −

1
8
𝑢3

𝑢5∕2 =
3
8
𝑢2 +

3
4
𝑢3 −

1
8
𝑢4 (184)

and boundary stencils based on four-points are obtained as

𝑢3∕2 =
5
16
𝑢1 +

15
16
𝑢2 −

5
16
𝑢3 +

1
16
𝑢4

𝑢5∕2 =
5
16
𝑢2 +

15
16
𝑢3 −

5
16
𝑢4 +

1
16
𝑢5 (185)

Similarly, boundary stencils at (𝑗 = 𝑁−1∕2, 𝑁−3∕2) nodes using three-
and four-points are obtained as

𝑢𝑁−1∕2 =
3
8
𝑢𝑁 + 3

4
𝑢𝑁−1 −

1
8
𝑢𝑁−2

𝑢𝑁−3∕2 =
3
8
𝑢𝑁−1 +

3
4
𝑢𝑁−2 −

1
8
𝑢𝑁−3 (186)

𝑢𝑁−1∕2 =
5
16
𝑢𝑁 + 15

16
𝑢𝑁−1 −

5
16
𝑢𝑁−2 +

1
16
𝑢𝑁−3

𝑢𝑁−3∕2 =
5
16
𝑢𝑁−1 +

15
16
𝑢𝑁−2 −

5
16
𝑢𝑁−3 +

1
16
𝑢𝑁−4 (187)

For the present computations, three-point boundary interpolation sten-
cils are used, as the higher-order interpolation generates oscillations in
discrete computing.

9.5. Focusing for two-dimensional dispersive LRSWE

Focusing phenomena for dispersive LRSWE on Arakawa grids is
discussed next. For collocated 𝐴-grid, focusing phenomena as given
in [57] is briefly discussed next. To exhibit the focusing mechanism,
propagation of 2D wave-packet following LRSWE is considered, as

𝑢(𝑥, 𝑦, 𝑡 = 0) = 0, 𝑣(𝑥, 𝑦, 𝑡 = 0) = 0

𝜂(𝑥, 𝑦, 𝑡 = 0) = 5𝑒−𝛼
[

(𝑥−𝑥0)2+(𝑦−𝑦0)2
]

sin(𝑘𝑥𝑥 + 𝑘𝑦𝑦) (188)

For 𝐴-grid, RK4 − SOUCS3 scheme [67] is used for the space–time
discretization of the LRSWE. Numerical properties of the LRSWE using
global spectral analysis (GSA) [1] are shown in Figs. 46(a)–46(b).
Moreover, comparison of numerical properties of LRSWE using RK4 −
SOUCS3 and RK4 − OUCS3 schemes are also shown in Fig. 46(a).
It is evident from Fig. 46(a) that the directional bias in the OUCS3
introduced by the corresponding boundary closures is rectified using
SOUCS3 schemes. Next, numerical solutions to the propagation prob-
lem following LRSWE is considered. Here, computational domain of
size (120 × 120) is considered with uniform mesh-width, where prop-
agation angle, 𝜃 = 45◦ and grid-aspect ratio of 𝜆 = 𝛥𝑦∕𝛥𝑥 = 1. Other
parameters are chosen as, 𝑔 = 10 m∕s2, 𝐻 = 2.5 m, 𝛥𝑥 = 𝛥𝑦 = 0.3 m,
𝑓𝛥𝑡 = 2 × 10−7 and 𝑁𝑐𝑥 = 𝑁𝑐𝑦 = 0.2. The wave-packet given by
Eq. (188) is centered at (𝑘0𝛥𝑥, 𝑘0𝛥𝑦) = (1.40, 1.40). The schematic of
the grids A-E used in the computations are shown in Fig. 47.

As in [57], numerical results for collocated 𝐴-grid using RK4 −
SOUCS3 are discussed next. Numerical solution to LRSWE for collo-
cated 𝐴-grid are shown in Figs. 48–49 at indicated time instants with
𝛼 = 0.05 and 𝛼 = 1.0, respectively. Numerical solutions shown in Fig. 49
are also plotted against 𝑧-axis in Fig. 50 to demonstrate the spectacular
view of focusing phenomena at the corner nodes of the domain for 𝛼 =
1.0. Moreover, variation of nodal numerical amplification factor for the
LRSWE on 𝐴-grid with nodes along the diagonal of the computational
domain is shown in Fig. 51. The focusing phenomena as shown in
Figs. 49–50 for 𝛼 = 1.0 can be explained from the property contours
shown in Figs. 46(a)–46(b). The focusing phenomena is observed for
the relatively higher value of 𝛼 = 1.0 for which the wave-packet ad-
mits upstream propagating higher wavenumber components (𝑞-waves).
These 𝑞-waves get amplified by the boundary nodes as shown in Fig. 50,



Fig. 46(a). Nodal amplification factor for the LRSWE on 𝐴-grid using RK4 − OUCS3 and RK4 − SOUCS3 schemes.
which is evident from variation of nodal-amplification factors as shown
in Fig. 51.

Next, numerical solutions to LRSWE on Arakawa’s staggered grids
are discussed. For the full-domain analysis on staggered grids, boundary
closures discussed in Sections 9.3 and 9.4 are used. For the staggered
grids also, we have chosen the same set of parameters as in Figs. 48
and 49. For staggered B-grid, numerical results are shown in Figs. 52
and 53 for values of 𝛼 = 0.05 and 𝛼 = 1.0, respectively. As in [125]
(Figs. 2 and 4), it can be noticed that 𝑞-wave regions are not present for
staggered 𝐵-grid. Due to absence of 𝑞-waves, no focusing phenomena
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is observed even for 𝛼 = 1.0, as shown in Fig. 53, however, dispersion
error can be seen in the steep packet case (𝛼 = 1.0). Similar trend
was noticed for 𝐶-grid, as shown in Figs. 54 and 55 for 𝛼 = 0.05 and
𝛼 = 1.0, respectively. Here also, due to absence of 𝑞-waves no focusing
phenomena is observed, however, dispersion errors are noticed for the
steep packet (𝛼 = 1.0) case. As evident from the numerical properties
discussed in [125], dispersion errors for 𝐶-grid are lesser than 𝐵-grid.

Numerical solutions corresponding to 𝐷-grid are shown plotted in
Figs. 56 and 57 for 𝛼 = 0.05 and 𝛼 = 1.0, respectively. 𝐷-grid has
poorer numerical properties as compared to other Arakawa grids [125],



Fig. 46(b). Nodal normalized group velocity contour for the LRSWE on 𝐴-grid using RK4 − SOUCS3 scheme.
however 𝑞-waves limit for 𝐷-grid is about 𝑘𝛥 = 2.8 which is higher
than 𝐴-grid (2.39). Thus, huge dispersion error can be noticed for both
the cases (with 𝛼 = 0.05 and 𝛼 = 1.0). Numerical solutions on 𝐸-grid
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(which is 45𝑜 rotated 𝐵-grid) are shown in Figs. 58 and 59 for 𝛼 = 0.05
and 𝛼 = 1.0, respectively. For the case of 𝐸-grid, similar trend, as for
𝐵- and 𝐶-grids, is observed. Here also due to absence of 𝑞-waves no



Fig. 47. Schematic of grid types for solving LRSWE with Arakawa’s A- to E-grids. C-grid with dash-dotted lines indicates the marker and cell (MAC) method.
focusing phenomena is observed, however, dispersion errors are there.
Furthermore, as 𝐶-grid displays better numerical properties [125],
therefore the dispersion errors for 𝛼 = 1.0 case are lower for 𝐶-grid,
as compared to other grids.

Finally, from numerical solutions for the LRSWE on 𝐵- to 𝐸-grids
as shown in Figs. 52–59 for 𝛼 = 0.05 and 1.0 it is evident that
presence of 𝑞-waves is necessary for triggering the focusing phenomena.
As staggering of unknowns alters the dispersion relation, it in turn
removes/lowers the 𝑞-waves barrier [125]. Moreover, staggering of un-
knowns also introduces numerical dissipation, which is another reason
for the absence of focusing phenomena for the LRSWE on staggered 𝐵-
to 𝐸-grids. For the present computations, it is checked that focusing
phenomena was absent even after 𝑡 = 40 for 𝛼 = 1.0.

10. Recent developments related to GSA in HPC

In this section, we demonstrate applications of GSA to explain how
GSA can explain past activities termed as DNS, as well as, present better
methods for ongoing high performance computing using high accuracy
compact schemes.
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10.1. Evaluation of DNS of homogeneous isotropic turbulence

Ever since the appearance of GSA as an analysis tool, it has been
used to study many numerical methods which were not understood well
before. Not surprisingly, this also includes the pseudo-spectral method
used for DNS of homogeneous isotropic turbulence (HIT) reported for
the first time by Orszag and Patterson [130], who used two-stage,
second order Runge–Kutta (RK2) method for time integration. A more
detailed account of the same was reported by Rogallo [131], and this
particular version of the code has been used in many dissertations
and part of the results reported in [132–134]. The same methodology
continues to be used in many other researches, as reported in [135].
For HIT problem being periodic, application of Fourier spectral method
is supposed to give the best spatial resolution. The results are reported
with respect to a Reynolds number based on the Taylor’s microscale (𝜆),
which was given by 𝑅𝜆 = 35 in [130] who used a 323 computational
periodic box, and in [135], the authors have used 122883 points for
𝑅𝜆 = 1300. In all these cited references in this section, RK2 time
integration has been used.



Fig. 48. Numerical solutions to LRSWE on 𝐴-grid at indicated time instants using RK4 − SOUCS3 scheme with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 0.05.
In solving the HIT problem, one may like to solve the incompressible
NSE (INSE) with a generic form given by,

𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅
𝜕𝐮
𝜕𝑥

= −∇𝑃∕𝜌 + 𝜈∇2𝐮 + 𝐟 , (189)

where 𝐮 is the solenoidal velocity field, 𝑃 is the pressure, 𝜌 is the
density of the fluid, 𝜈 is the kinematic viscosity, and 𝐟 is a forcing term
imposed at a large length scale added to the INSE to weakly justify to
ensure statistical stationarity of the computed turbulent signal [132]
by solving HIT by the RK2-Fourier spectral method, as in [135]. This
method was originally used by Rogallo [131] with the added forcing
in INSE.

It is noted that such DNS often show solution ‘‘blow-up’’ in finite
time (specifically in the limit, 𝜈 → 0), which some researchers [135]
have interestingly conjectured to correspond to turbulent solutions of
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the INSE. Lamorgese et al. [136] have noted that ‘‘experimental mea-
surements in homogeneous turbulence at high Reynolds numbers show
the unequivocal presence of a ‘‘bottleneck’’ effect’’, and the authors
introduced hyperviscosity in the INSE as,

𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅
𝜕𝐮
𝜕𝑥

= −∇𝑃∕𝜌 + (−1)ℎ+1𝜈ℎ∇2ℎ𝐮 + 𝐟 , (190)

where 𝜈ℎ is the specified constant hyperviscosity coefficient, and 𝐟 is
the forcing function. The formulation for the DNS is recovered with
ℎ = 1 and 𝐟 = 0. The authors [136] have noted that the ‘‘(u)se
of 𝐟 is unnatural (as are most other ways of forcing turbulence).
However, we are primarily concerned with bottleneck effects on energy
spectra, i.e., we investigate one particular characteristic of small-scale
turbulence. In this case, use of a large-scale forcing (in order to analyze
statistically stationary rather than decaying turbulence) is justifiable



Fig. 49. Numerical solutions to LRSWE on 𝐴-grid at indicated time instants using RK4 − SOUCS3 scheme with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 1.0.
on the grounds that the details of the forcing have little effect on the
small-scale statistics’’.

To avoid making conjectures, one can instead analyze the CE and
CDE where multi-stage RK methods of time integration is used in con-
junction with spatial discretization of convection and diffusion terms
given by, 𝜕𝑢

𝜕𝑥 = ∫ 𝑖𝑘�̂�𝑒𝑖𝑘𝑥𝑑𝑘 and 𝜕2𝑢
𝜕𝑥2

= ∫ −𝑘2�̂�𝑒𝑖𝑘𝑥𝑑𝑘. These derivatives
are evaluated using fast Fourier transform (FFT) and the difference
equation provides the complex 𝐺 as function of 𝑘𝛥𝑥 and 𝑁𝑐 for the
CE and 𝑘𝛥𝑥, 𝑁𝑐 , 𝑃𝑒 for the CDE. With |𝐺| and 𝜙 obtained, one can
readily obtain 𝑐𝑁∕𝑐 and 𝑉𝑔,𝑁∕𝑐 for the CE, and for CDE one finds 𝜈𝑁∕𝜈
additionally, as the non-dimensional dispersive coefficient of diffusion.
Here we discuss typical results involving the normalized numerical
amplification factor to highlight the aspect of the claim made for DNS
by Fourier spectral and RK2 method in the past.
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In Fig. 60, the magnitude of non-dimensional numerical amplifica-
tion factor (|𝐺|) of RK2-Fourier spectral method is considered for the
CE and CDE. For the 1D CE, |𝐺|-contours are shown plotted in the
(𝑁𝑐 , 𝑘𝛥𝑥)-plane on the left hand side of Fig. 60. It is noted that except
a very small region close to the origin, the method is unconditionally
unstable, as reported earlier in [22]. Even when one chooses a very
small CFL number in this near-origin region, there will always be some
resolved wavenumbers within the Nyquist region, for which the method
will be unstable, with the higher wavenumbers more unstable. It is to
be noted that the round-off error provides the seed for instability and
the unstable high wavenumbers interact to create many wave-packets
for the periodic problem. For non-periodic problems, outflow boundary
conditions would allow the possibility of error-packets leaving the
computational domain. To highlight the growth of error inherent to
numerical methods, a periodic problem is more suited, as the signal is



Fig. 50. Numerical solution to LRSWE on 𝐴-grid corresponding to case shown in Fig. 49. Solutions plotted against 𝑍-axis shows the focusing phenomena at the corner nodes of
the domain.
trapped in the domain, in addition to evanescent error continuously.
The property chart for the CE clearly explains why the solution of Eu-
ler’s equation always indicates a finite time solution ‘‘blow up’’ [137].
Because the property chart of CE is similar to that one would expect
the solution of linearized Euler’s equation to display solution behavior.
For the CDE, the error dynamics is also affected via the term involving
𝜈𝑁∕𝜈 and is given by [138,139],

𝑒𝑡 + 𝑐𝑒𝑥 − 𝜈𝑒𝑥𝑥 =∫

𝑘𝑚𝑎𝑥

−𝑘𝑚𝑎𝑥
(𝜈𝑁 − 𝜈) 𝑘2 𝑒−𝜈𝑁𝑘

2𝑛𝛥𝑡 𝑈0(𝑘) 𝑒𝑖𝑘(𝑥−𝑐𝑁 𝑡
𝑛) 𝑑𝑘

+ 𝑖𝑘𝑐𝑁 𝑒−𝜈𝑁𝑘
2𝑛𝛥𝑡 𝑈0(𝑘) 𝑒𝑖𝑘(𝑥−𝑐𝑁 𝑡

𝑛)|
|

|

|

𝑘𝑚𝑎𝑥

−𝑘𝑚𝑎𝑥

− ∫

𝑘𝑚𝑎𝑥

−𝑘𝑚𝑎𝑥

(𝑉𝑔𝑁 − 𝑐𝑁
𝑘

)

×

{

∫

𝑘

−𝑘𝑚𝑎𝑥
𝑖𝑘′ 𝑒−𝜈𝑁𝑘

′2𝑛𝛥𝑡 𝑈0(𝑘′) 𝑒𝑖𝑘
′(𝑥−𝑐𝑁 𝑡𝑛) 𝑑𝑘′

}

𝑑𝑘

− ∫

𝑘𝑚𝑎𝑥

−𝑘𝑚𝑎𝑥
𝑖𝑘𝑐 𝑒−𝜈𝑁𝑘

2𝑛𝛥𝑡 𝑈0(𝑘) 𝑒𝑖𝑘(𝑥−𝑐𝑁 𝑡
𝑛) 𝑑𝑘 (191)
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Once again, the error does not follow the same dynamics as the
signal, as was demonstrated for the CE [31]. This is a universal feature
of all scientific computing, even for linear systems. For the error
dynamics of CDE, the sources of error for CE are also noted. To focus
on the error due to numerical amplification/attenuation in analyzing
numerical errors by GSA, the contours of |𝐺𝑁𝑢𝑚|∕|𝐺𝑃ℎ𝑦𝑠| are shown in
this figure. On the right hand side frames of Fig. 60, the contours of
|𝐺𝑁𝑢𝑚|∕|𝐺𝑃ℎ𝑦𝑠| are shown in (𝑁𝑐 , 𝑘𝛥𝑥)-plane for 𝑃𝑒 = 0.05 and 0.2.
One notes a finite range of 𝑁𝑐 for which there is no instability over the
complete resolved scales, for which |𝐺𝑁𝑢𝑚| is not greater than one, for
the case of 𝑃𝑒 = 0.05.

However in [138,139], the ratio of |𝐺𝑁𝑢𝑚|∕|𝐺𝑃ℎ𝑦𝑠| have been in-
vestigated for the values of 𝑃𝑒 = 0.01 and 0.1, and it is seen that for
both the 𝑃𝑒, there are contour values in the Nyquist limit which are
stable. Results for 𝑃𝑒 = 0.01 indicated |𝐺𝑁𝑢𝑚|∕|𝐺𝑃ℎ𝑦𝑠| almost equal to
1 for 𝑁𝑐 = 0.2, for the entire Nyquist limit [138,139]. It was also noted
that for 𝑃𝑒 = 0.1, one cannot choose any value of 𝑁𝑐 for which all the
resolved scales in the range, 0 ≤ 𝑘ℎ ≤ 𝜋, show the ideal attribute of
|𝐺𝑁𝑢𝑚|∕|𝐺𝑃ℎ𝑦𝑠| to be very close to one [138,139]. The property charts
for these two values of 𝑃𝑒 in [139] seem to indicate that increased 𝑃𝑒



Fig. 51. Variation of nodal numerical amplification factor for LRSWE on 𝐴-grid with nodes along the diagonal of the computational domain.
shrinks the region of unconditionally unstable region (|𝐺𝑁𝑢𝑚| > 1). In
Fig. 60, the property shown for the case of 𝑃𝑒 = 0.2, shows that the
range of unconditionally unstable region again increases, and there are
no 𝑁𝑐 values for which the ratio |𝐺𝑁𝑢𝑚|∕|𝐺𝑃ℎ𝑦𝑠| remains very close
to 1 for the entire Nyquist limit. Present results and those in [139]
clearly indicates that there is no possibility of performing DNS by
considering only this single consideration of the ratio |𝐺𝑁𝑢𝑚|∕|𝐺𝑃ℎ𝑦𝑠|.
This is due to the fact that in solving INSE, one cannot simply consider
only single value of 𝑁𝑐 , and instead of CE/CDE, one may like to
study instead the one-dimensional viscous Burgers’ equation, as the
canonical equation. Presented results and the discussion of the property
chart clearly explains why the Fourier spectral and RK2 methods can
never provide DNS results, by this simple application of GSA. All such
previous claims [130–133,135] are to be correctly evaluated in the light
of the presented results here and in [139]. In the name of DNS, all
these cited references altered the governing INSE for DNS to the altered
equation given in Eq. (190) via the forcing and hyperviscosity terms.

10.2. Application of GSA for high performance computing using compact
schemes

In describing the compact schemes in Section 3, it has been noted
that due to its implicit nature, one needs extra care in closing the system
of equations for evaluating the derivatives at the interior of the domain.
Even when the stencil size is same, as in an explicit scheme, this con-
stitutes the typical boundary closure problem for compact scheme. For
this reason, the compact schemes in [33] have been very sparingly used
by researchers, as in [66,117] with limited success even for sequential
computing. The issues have been identified in proposing the GSA by
the authors in [1,29,34] due to numerically adding anti-diffusion for
the near boundary points. The authors in proposing a series of upwind
compact schemes solved the boundary closure problems for sequential
computing with limited flow distortions localized near the inflow and
outflow. These attributes of localized nature of boundary closure prob-
lem was used in proposing a parallel algorithm for compact scheme
employing Schwarz domain decomposition in [140], which also re-
quires additional filtering. This necessitated having overlapping points
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in the subdomain boundaries, making the use of additional resources
overall, and still some flow distortions across the domain near the
subdomain boundaries remain. This caused problems of accuracy for
flow instability problems. To remove such distributed flow distortion
near subdomain boundaries, a fresh approach of parallelization has
been used in [70,141] to study problems of bifurcation and instabilities.
The details of the developed method for compact scheme, without
any overlap of points at subdomain boundaries and without any error
caused by parallelization have been described in [142,143] and is
described in the following. The method is found to be very robust and
easy to implement, so that the same has been used for many other fluid
dynamic problems in [144–148].

The design of this new parallel algorithm is based on GSA, with a
simple observation that every implicit method for evaluating deriva-
tives have their equivalent explicit algorithm. A first derivative is
indicated by a prime in GSA by writing it as, [𝐴]{𝑓 ′} = 1

ℎ [𝐵]{𝑓},
with entries near the top and bottom rows of [𝐴] and [𝐵] contain
boundary closure schemes, and ℎ is the uniform spacing of the grid
points. In this notation, [𝐴] is the identity matrix for an explicit method.
For compact schemes to evaluate {𝑓 ′}, one can alternately write the
above linear algebraic equation as, {𝑓 ′} = 1

ℎ [𝐶]{𝑓}, with [𝐶] matrix
given by, [𝐶] = [𝐴]−1[𝐵]. The noticeable feature of compact scheme
is that [𝐴] and [𝐵] matrices are strictly band-limited by design, while
[𝐶] matrix is a wide-band matrix. It has been noted [29,142] that the
entries of the [𝐶] depends upon the row in which they occur for a
non-periodic problem, but are independent of the rows for a periodic
problem. This observation helps in using this resolution property for
subdomain boundary closure by treating the boundary points to be at
the interior, by using the entries of the middle row of the [𝐶] matrix of
a sequential computing exercise with sufficient number of points. Once
the entries of the subdomain boundary points are used to calculate the
derivatives there, the derivatives in the interior of each subdomain are
obtained by using Thomas algorithm [1]. The entries of the middle
row of the [𝐶] matrix are listed in the appendix in [143] for the
OUCS3 scheme, which require 48 points on either side of the boundary
from the neighboring subdomain to maintain 16 digit accuracy for



Fig. 52. Numerical solutions to LRSWE on 𝐵-grid at indicated time instants using RK4 − OSCS and optimized interpolation schemes with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 0.05.
real numbers in the computations. This non-overlapping high accuracy
parallel (NOHAP) scheme has the unique feature of removing any error
up to machine precision due to parallelization and widely reported, as
noted above.

10.2.1. Implementation of NOHAP scheme
A schematic of uniformly spaced grid points in the direction along

which derivative is to obtained is shown in Fig. 61. The computa-
tional domain is decomposed without overlapping points and equally
distributed to available processors, as shown in the bottom frame of
the figure. While 𝑖 represents an arbitrary grid point in both sequential
and parallel computing, the 𝑖 and 𝑗 represent the first and last point of
the sub-domain distributed to the (𝑝+1)th processor. The derivative at
𝑖 and 𝑗 is computed by the equivalent explicit scheme of the compact
scheme developed for the interior nodes, as explained next.
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The NOHAP scheme can be implemented in two stages [142]. While
the first stage pre-processes the compact scheme to get the equivalent
explicit scheme, the derivatives at the sub-domain boundaries are
evaluated in the second stage using the equivalent explicit scheme. The
stage-1 is performed only once to get an equivalent explicit scheme
of the chosen compact scheme. In contrast, Stage-2 is executed to
evaluate the derivatives in the time-accurate simulations at the sub-
domain boundaries to eliminate the parallelization error up to 16th
decimal place.

Stage-1:

1. A sufficiently large circulant [𝐴] and [𝐵] matrices are formed
for the chosen compact scheme. In the present exercise, the
dimensions of the matrices are 251 × 251.



Fig. 53. Numerical solutions to LRSWE on 𝐵-grid at indicated time instants using RK4 − OSCS and optimized interpolation schemes with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 1.0.
2. [𝐶] = [𝐴]−1[𝐵] matrix is obtained by using Thomas’ algorithm.
The magnitude of the coefficients of the [𝐶] matrix exponentially
decay with respect to the diagonal [142,143].

3. The coefficients with magnitude less than 10−16 are replaced to
zero, resulting in a banded [𝐶] matrix.

4. The non-zero coefficients of the mid-row of the [𝐶] matrix forms
the equivalent explicit scheme of the chosen compact scheme,
which is stored in an array (𝑔𝑎𝑚𝑚𝑎) whose index varies from
−𝑛𝑏 to +𝑛𝑏.

5. The derivative by the compact scheme at any grid point can be
obtained by equivalent explicit stencil given by Eq. (192), which
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has the spectral resolution equivalent to the chosen compact
scheme.

𝑓 ′
𝑖 =

1
ℎ

𝑛𝑏
∑

𝑗=−𝑛𝑏

𝛾𝑗𝑓𝑖+𝑗 (192)

Stage-2:

1. Decompose the computational domain in each direction without
overlapping points, as shown in Fig. 61(b).

2. Derivative at the first grid point of the (𝑝 + 1)th-processor
(marked as 𝑖 + 1 in the figure) is obtained by Eq. (192). The



Fig. 54. Numerical solutions to LRSWE on 𝐶-grid at indicated time instants using RK4 − OSCS and optimized interpolation schemes with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 0.05.
Eq. (192) has been split as,

𝑓 ′
𝑖+1 =

1
ℎ

−1
∑

𝑗=−𝑛𝑏

𝛾𝑗𝑓𝑖+1+𝑗 +
1
ℎ

𝑛𝑏
∑

𝑗=0
𝛾𝑗𝑓𝑖+1+𝑗 (193)

3. The 𝑝th-processor evaluates the first term of the above equation,
and the (𝑝 + 1)th-processor computes the second term.

4. The (𝑝)th-processor transfers the partial sum obtained in the
previous step to (𝑝 + 1)th-processor to evaluate 𝑓 ′

𝑖+1 following
Eq. (193). A similar procedure is followed for computing the
derivative at the last grid point (𝑓 ′

𝑗
) of the (𝑝 + 1)th-processor.

5. The formation of [𝐴] and [𝐵] matrix for the interior points in
the (𝑝+ 1)th-processor with Lele’s scheme is demonstrated here.
Eq. (45) for the second grid point (𝑖+2) in the (𝑝+1)th-processor
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is written as,

𝛼6𝑓
′
𝑖+1 + 𝑓

′
𝑖+2 + 𝛼6𝑓

′
𝑖+3 =

𝑎6
2ℎ

(𝑓𝑖+3 − 𝑓𝑖+1) +
𝑏6
4ℎ

(𝑓𝑖+4 − 𝑓𝑖)

Since 𝑓 ′
𝑖+1 is known from the previous step, the equation can be

modified as,

𝑓 ′
𝑖+2 + 𝛼6𝑓

′
𝑖+3 =

𝑎6
2ℎ

(𝑓𝑖+3 − 𝑓𝑖+1) +
𝑏6
4ℎ

(𝑓𝑖+4 − 𝑓𝑖) − 𝛼6𝑓 ′
𝑖+1

The function value, 𝑓𝑖 is the last grid point of the (𝑝)th-processor,
and hence, one more communication is needed to form the [𝐵]
matrix.

6. The same procedure is followed at the second last point (𝑗 − 1)



Fig. 55. Numerical solutions to LRSWE on 𝐶-grid at indicated time instants using RK4 − OSCS and optimized interpolation schemes with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 1.0.
of the (𝑝 + 1)th-processor. The system of equations solved by
(𝑝 + 1)th-processor is in the form of Eq. (194).

7. This stage is parallelly executed by all the processors to decouple
the system of equations and solve them independently.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 𝛼6 0 … … 0 0
𝛼6 1 𝛼6 0 ⋱ ⋱ 0
0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝛼6 1 𝛼6 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ 0 𝛼6 1 𝛼6
0 0 … … 0 𝛼 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑓 ′
𝑖+2
𝑓 ′
𝑖+3
⋮
𝑓 ′
𝑖
⋮

𝑓 ′
𝑗−2
𝑓 ′

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪
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6
⎩ 𝑗−1⎭
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑎6
2ℎ (𝑓𝑖+3 − 𝑓𝑖+1) +

𝑏6
4ℎ (𝑓𝑖+4 − 𝑓𝑖+1) − 𝛼6𝑓

′
𝑖+1

𝑎6
2ℎ (𝑓𝑖+4 − 𝑓𝑖+2) +

𝑏6
4ℎ (𝑓𝑖+5 − 𝑓𝑖+1)

⋮
𝑎6
2ℎ (𝑓𝑖+1 − 𝑓𝑖−1) +

𝑏6
4ℎ (𝑓𝑖+2 − 𝑓𝑖−2)

⋮
𝑎6
2ℎ (𝑓𝑗−1 − 𝑓𝑗−3) +

𝑏6
4ℎ (𝑓𝑗 − 𝑓𝑗−4)

𝑎6
2ℎ (𝑓𝑗 − 𝑓 ̄𝑗−2) +

𝑏6
4ℎ (𝑓𝑗+1 − 𝑓𝑗−3)

−𝛼6𝑓 ′
𝑗

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(194)

It is to be noted that Eq. (192) requires 2𝑛𝑏+1 operations per point
to compute the derivative. Whereas computation of derivative from the
solution of Eq. (194) by Thomas’ algorithm requires only 5 operations
per point [1]. Thus, although Eq. (192) is valid for any interior points



Fig. 56. Numerical solutions to LRSWE on 𝐷-grid at indicated time instants using RK4 − OSCS and optimized interpolation schemes with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 0.05.
with 𝑖 > 𝑛𝑏, it is only used at the sub-domain boundaries due to an
immense requirement of arithmetic operations. Also, Eq. (193) assumes
that each processor contains a minimum of 𝑛𝑏 points in the direction in
which the derivative is evaluated. When processors contain less than
𝑛𝑏 points, partial summations are performed and sent by the second
neighbor and beyond, which increases the communication overhead
and may result in performance degradation.

Other efforts have been made to develop parallel computing with
compact schemes which do not require large overlap points. The
authors in [60,61] computed the NSE by the sixth order compact
scheme [33] for the interior points with eighth order central difference
(CD8) scheme for boundary closure. The strategy required one ghost
point on either ends of the subdomains, and the author claimed
superior performance with the unbiased subdomain boundary closure.
However, the resultant discontinuity at the subdomain boundaries has
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been shown as the source of spurious disturbances in [142]. Fang
et al. [149] reported parallel computing using compact scheme for the
interior, without any overlap point, and explicit subdomain boundary
closure of the same order.

10.2.2. Comparison of NOHAP with CD8 subdomain closures for parallel
computing

Here, the canonical 2D CE is solved using four stage Runge–Kutta
scheme for time advancement, with OUCS3 scheme in the interior [1].
The subdomain boundary closures are performed by the GSA based
NOHAP scheme [142,143] with the CD8 closure, as used in [60,61].
The governing equation for the 2D CE is given by,

𝜕𝑢 + 𝑐 cos 𝜃 𝜕𝑢 + 𝑐 sin 𝜃 𝜕𝑢 = 0; with; 𝑐 > 0 (195)

𝜕𝑡 𝜕𝑥 𝜕𝑦



Fig. 57. Numerical solutions to LRSWE on 𝐷-grid at indicated time instants using RK4 − OSCS and optimized interpolation schemes with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 1.0.
where 𝑐 is the phase speed of the signal traveling at an angle 𝜃, with
respect to the 𝑥-axis. As usual in GSA, the unknown is represented by,

𝑢(𝑥, 𝑦, 𝑡) = ∫ ∫ ∫ �̂� (𝜔0, 𝑘𝑥, 𝑘𝑦)𝑒
𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)−𝑖𝜔0𝑡𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝜔0

with the physical dispersion relation given by, 𝜔0 = 𝑘𝑥𝑐 cos 𝜃+𝑘𝑦𝑐 sin 𝜃,
and the physical group velocity given by, 𝑉𝑝ℎ𝑦𝑠 = 𝑖𝑑𝜔0∕𝑑𝑘𝑥+𝑗𝑑𝜔0∕𝑑𝑘𝑦.

For the sake of comparison, a double-periodic 2D domain is consid-
ered: −1 ≤ 𝑥 ≤ 19 and −1 ≤ 𝑦 ≤ +1; with 2001 × 201 equidistant points.
To keep the analysis of the results easily tractable, we consider the case
of 𝑐 = 0.1 and 𝜃 = 0, so that the physical phase speed and group velocity
will only have the 𝑥-component. A time step of 𝛥𝑡 = 10−04 is chosen to
compute the wave system with 𝑁𝑐 = 0.001 to be small enough for the
accuracy of computing by both the subdomain closure schemes. It is
noted in [1,36] that CD8 scheme creates upstream propagating 𝑞-waves
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for wavenumbers in excess of 𝑘ℎ = 0.6507𝜋, while the OUCS3 schemes
exhibits the same for 𝑘ℎ ≥ 0.7664𝜋. To study the wave propagation,
consider a Gaussian wave-packet as the initial condition given by,

𝑢(𝑥, 𝑦, 𝑡 = 0) = 𝑒−25(𝑥
2+𝑦2)

This initial wave-packet is symmetrically placed about zero
wavenumber. The computed circular wave-packet is shown in Fig. 62.

In the top frames of Fig. 62, the propagation of the Gaussian packet
is traced, when the subdomain closure is performed using CD8 scheme.
The displayed results show the contours in the (𝑥, 𝑦)-plane spanning
the range from 10−8 to 100. In the top most frame, one notes the initial
wave-packet, that travels to the right with minor distortion of the main
packet, along with some 𝑞-waves originating when the signal traverses
through the subdomain boundaries, caused by solution discontinuity
due to mismatch between the interior (obtained by OUCS3 method of



Fig. 58. Numerical solutions to LRSWE on 𝐸-grid at indicated time instants using RK4 − OSCS and optimized interpolation schemes with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 0.05.
discretization) and the subdomain boundaries (obtained by the CD8
method). Such spurious waves created at very high wavenumbers are of
very small magnitudes (of the order of 10−8), and these remain trapped
within the computational domain for this periodic problem. There are
numerous such streaks noted over the full domain due to creation of the
𝑞-waves and their reflections and refractions at subdomain boundaries
for the displayed solution at 𝑡 = 250 and 300.

For the bottom two frames Eq. (195) is solved in the domains with
subdomain boundary conditions obtained by using the GSA for the
OUCS3 schemes as, {𝑓 ′} = 1

ℎ [𝐶]{𝑓}, with the [𝐶]-matrix entries given
in [143]. However, the results shown in the bottom two frames of
Fig. 62 for 𝑡 = 250 and 300, one does not notice any 𝑞-waves for
this subdomain closure strategy, which does not cause any solution
discontinuity at the subdomain boundaries. Such discontinuities create
Gibbs’ phenomenon [150], which in turn creates the 𝑞-waves.
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10.3. Analysis of 1D linear convection–diffusion–reaction equation with a
realistic reaction term

Previous application focused on the linear convection–diffusion–
reaction equation (LCDRE) with a constant source term has been per-
formed for few commonly used numerical schemes which provided
useful understanding of the problem [47]. It is however not representa-
tive of a flame problem. To be fully applicable and useful a necessary
step is to recast a flame problem in a LCDRE type that is amenable
to such a numerical analysis. The first objective of the following is
to identify such a model. While using this model, here the popularly
used Lax–Wendroff scheme using CD2 spatial discretization scheme is
analyzed. This scheme has been used to study the linear CDE in detail
for both 1D and 2D [151].



Fig. 59. Numerical solutions to LRSWE on 𝐸-grid at indicated time instants using RK4 − OSCS and optimized interpolation schemes with 𝑁𝑐 = 0.2, 𝑘𝑜ℎ = 1.40 and 𝛼 = 1.0.
𝜔

First, let us consider a 1D fully premixed flame front as the target
for theoretical studies [71,152]; with adiabatic conditions; unity Lewis
number for all species and a constant diffusivity, 𝐷. The transport
equation describing such a problem can be reduced to the progress
variable equation which reads [71]:

𝜕𝜃
𝜕𝑡

+ 𝑣 𝜕𝜃
𝜕𝑥

= 𝐷𝜕
2𝜃
𝜕𝑥2

+ �̇�𝜃 , (196)

where 𝑥, 𝑣 are the spatial coordinate, the flame velocity, respectively,
and �̇�𝜃 is the progress variable source term.

The progress variable source term is commonly modeled using an
Arrhenius formulation, depending on the temperature field 𝑇 and an
activation temperature 𝑇𝑎: �̇�𝜃 ∝ (1 − 𝜃) exp(−𝑇𝑎∕𝑇 ) [71]. Another way
to model such a reaction is to find analytical functions for 𝜃 and �̇�𝜃
which are solution of Eq. (196). In this spirit, Pfitzner et al. [153,154]
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proposed the progress variable source term as given by,

̇ 𝜃 =
(𝜌𝑢𝑠𝐿)2

𝜌𝐷
(𝑚 + 1)(1 − 𝜃𝑚)𝜃𝑚+1 , (197)

where 𝑠𝐿 stands for the premixed laminar flame speed and 𝑚 is a
model coefficient that can be tuned to match a reference Arrhenius-like
chemistry model, and which will affect the laminar flame thickness. For
any 𝑚 value however, the laminar flame will always propagate at the
laminar flame speed 𝑠𝐿 specified in Eq. (197). Unlike the linear reaction
source term of CDR equation used before in [47], this formulation
vanishes for 𝜃 = 0 as well as for 𝜃 = 1 and peaks inside a thin reaction
zone, thus behaving like a realistic combustion source term. However,
such a model still renders impossible the linearization and therefore
precludes from performing a straightforward GSA analysis for such a
LCDRE.



Fig. 60. Numerical amplification factor and ratio of numerical amplification factor to the physical amplification factor for the RK2-Fourier spectral scheme plotted in the
(𝑁𝑐 , 𝑘𝛥𝑥)-plane for linear convection and CDEs, respectively. For the latter, contours are plotted for two representative Peclet numbers- 𝑃𝑒 = 0.02 and 0.2.
To circumvent this difficulty, while allowing a GSA analysis, expres-
sions for the Fourier transform of ̂̇𝜔𝜃 as a function of 𝜃 is needed. To do
so, an approximate reaction term 𝑅 is proposed. In doing so, it further
is presumed that R is also the result of the convolution of a high-pass
filter 𝐵 with the progress variable front 𝜃. That is:

𝑅(𝑥) = 𝐵(𝑥) ⋆ 𝜃(𝑥) , (198)

so that, 𝑅 is simply the product of 𝐵 with 𝜃 (their Fourier transport
counterparts),

𝑅(𝑘) = 𝐵(𝑘)𝜃(𝑘) . (199)

Note that high-pass filtering of 𝜃, results in a 𝑅 profile, which goes
to 0 in the fully burnt, as well as, in unburnt states and that peaks inside
the flame front. Note also that if 𝐵 is chosen so that 𝑅 closely matches
̂̇𝜔𝜃 , their spectral behavior are expected to be the same and GSA can
be performed by replacing ̂̇𝜔𝜃 with the expression of �̂� in Eq. (199).

In the following, for simplicity 𝐵 is chosen to be a first-order
Butterworth filter whose frequency response reads,

𝐵(𝑘) =
𝐵0

√

1 +
(

𝑘𝑐
)2

, (200)
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𝑘

where 𝑘𝑐 is the cutoff wavenumber and 𝐵0 its gain for 𝑘 → +∞.
Note that, 𝑘𝑐 and 𝐵0 control the width and the amplitude of the
approximated reaction peak and they can be tuned to match a given
Pfitzner source term, as illustrated in Fig. 63(a) or more complex
expressions if needed. For the specific case considered in Fig. 63,
the Pfitzner source term for m = 0.2, peaks inside the flame front
and decays to 0 in the fresh (left of the figure) and burnt (right)
states, as expected. Furthermore, having 𝑘𝑐 = 265 m−1 and 𝐵0 =
3136 s−1, R clearly approaches �̇�𝜃 quite accurately. The computation
non-dimensional Damkohler number, Da, for this problem is given by
𝐷𝑎 = 𝐵0∗ℎ

𝑐 . The Damkohler number is directly proportional to the
amplitude of the approximated reaction peak, 𝐵0. The largest errors
arise near the cold boundary of the flame front and overall amount to
less than 5% of the maximum source term value shown in frame (b) of
Fig. 63.

Using this reaction term, the expressions resulting from the use of
the Lax–Wendroff scheme using CD2 spatial discretization yield,

|𝐺𝑛𝑢𝑚| = 1 − 𝑖𝑁𝑐𝑠𝑖𝑛(𝑘ℎ) + 2[𝜉𝑐𝑜𝑠(𝑘ℎ) − 1] +𝐷𝑎 ∗ 𝑁𝑐 ∗ 𝜏 (201)

where, 𝜏 = 𝑘ℎ
√

(𝑘ℎ)2+(𝑘𝑐ℎ)2
. Here, and in comparison to the previous case

with a linear reaction source term, an additional parameter 𝜏 expresses
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Fig. 61. A general representation of grid points distribution in the direction along which derivative is obtained by (a) sequential computing and (b) parallel computing with
NOHAP scheme.

Fig. 62. Solution of Eq. (195) using RK4-OUCS3 scheme.



Fig. 63. Profiles of (a) progress variable 𝜃 (black, long dash), Pfitzner source term �̇�𝜃 (blue,solid), filtered approximation 𝑅 (red, dash dot), and (b) error of the approximation
(green, solid) from the simulation of a 1D propagating premixed flame. For visualization purposes, the last three quantities are normalized by the maximum value of �̇�𝜃 in the
flame.
the wavenumber, k, grid spacing, h, and dependency on the cutoff
wavenumber, 𝑘𝑐 .

A direct consequence is that the non-dimensional phase speed reads,

𝑐𝑛𝑢𝑚
𝑐

= − 1
𝑘ℎ𝑁𝑐

𝑡𝑎𝑛−1
𝑠𝑖𝑛(𝑘ℎ)𝑁𝑐

1 + 2𝜉(𝑐𝑜𝑠(𝑘ℎ) − 1) +𝐷𝑎𝑁𝑐𝜏
, (202)

while the non-dimensional group velocity can be expressed as functions
of the real and imaginary parts of numerical amplification factor (𝐺𝑟
and 𝐺𝑖), as well as the derivatives with respect to (kh) noted (𝐺′

𝑟 and
𝐺′
𝑖 respectively), yields:

𝑉𝑔,𝑛𝑢𝑚
𝑉𝑔

= − 1
𝑁𝑐

𝐺𝑟𝐺′
𝑖 − 𝐺𝑖𝐺

′
𝑟

(𝐺2
𝑟 + 𝐺

2
𝑖 )

. (203)

Introducing the non-dimensional parameters (𝑃𝑒,𝑁𝑐 &𝐷𝑎) in Eq.
(201), and further simplifying, obtains

𝑙𝑛|𝐺𝑛𝑢𝑚| = −
𝛼𝑛𝑢𝑚
𝛼

(𝑘ℎ)2𝑃𝑒 −
𝐵0𝑛𝑢𝑚
𝐵0

𝜏 ∗ 𝑁𝑐 ∗ 𝐷𝑎. (204)

The non-dimensional numerical reaction coefficient can then be
estimated by evaluating the above expression for 𝑃𝑒 = 0,
𝐵0𝑛𝑢𝑚
𝐵0

= −
( 𝑙𝑛|𝐺𝑛𝑢𝑚|𝑃𝑒=0

𝑁𝑐𝜏𝐷𝑎

)

. (205)

The numerical amplification factor is noted to be the function of
all the four non-dimensional parameters, 𝑘ℎ, 𝑁𝑐 , 𝑃𝑒 and 𝐷𝑎 while the
non-dimensional numerical reaction coefficient is determined by 𝑁𝑐
and 𝐷𝑎. By substituting the numerical reaction coefficient in Eq. (204),
one obtains the expression for the non-dimensional numerical diffusion
coefficient as,
𝛼𝑛𝑢𝑚
𝛼

=
𝑙𝑛|𝐺𝑛𝑢𝑚|𝑃𝑒=0 − 𝑙𝑛|𝐺𝑛𝑢𝑚|

(𝑘ℎ)2𝑃𝑒
. (206)

Looking at the expression for the numerical amplification factor for
this model with the Lax–Wendroff scheme using CD2 spatial discretiza-
tion, the effect of the reaction source term can be directly observed by
looking at Eq. (204). The reaction source term plays an additional role
that is similar to a diffusion term observed before. The addition is here
due to the dependency of 𝜏, which is a function of 𝑘 and 𝑘𝑐 . Compared
to the corresponding expressions for linear reaction source term, this
addition is expected to affect the stability limits differently. Now,
using these expressions the property charts can be made to analyze
the numerical scheme and eventually be used to solve a reacting NSE
problem.
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The variable parameters in this model can be tweaked and changed
to match other theoretical or practical combustion models and thus
provide a gateway into analyzing realistic reacting problems using GSA.

10.4. Analysis and determination of simulation parameters for prescribed
accuracy for the Lax–Wendroff method

GSA has been used recently to analyze the well known
Lax–Wendroff scheme which can be considered as a DRP scheme.
Soumyo et al. [151] have analyzed the Lax–Wendroff central difference
scheme employed in the ABVP code, which is developed at CERFACS,
with respect to the model convection–diffusion equation with an aim
to understand the scheme’s stability in solving the Navier–Stokes equa-
tions. Using GSA, the authors obtained property charts from which
acceptable range(s) of simulation parameters are determined that sat-
isfy numerical stability as well as having good dispersive properties.
Further, the property charts are calibrated by solving the 2D Navier–
Stokes equations for Taylor–Green vortex problem and the numerical
behaviors are explained.

One of the recent developments involving GSA is its application in
determining simulation parameters for performing numerical simula-
tions of fluid flows with a prescribed accuracy for the explicit CD2 based
Lax–Wendroff (LW-CD2) method [155]. The researchers developed a
framework using GSA, for analyzing numerical schemes for their suit-
ability for high fidelity simulations such as LES/DNS. This was achieved
by first analyzing the LW-CD2 method for 2D CDE using GSA. The
optimal parameters for prescribed accuracy were then determined by
minimizing the contribution to the diffusion error. In addition to this,
the researchers derived and assessed two variants of the LW method for
the CDE- (i) full scheme and (ii) applied to convection only terms and
established the efficacy of the latter for the simulations.

The full LW scheme for the 1D CDE is given by [155]

𝑢𝑛+1𝑗 = 𝑢𝑛𝑗 −
𝑁𝑐
2

(𝑢𝑛𝑗+1 − 𝑢
𝑛
𝑗−1) + (𝑃𝑒 +

𝑁2
𝑐
2

)(𝑢𝑛𝑗+1 − 2𝑢𝑛𝑗 + 𝑢
𝑛
𝑗−1)

− 𝑃𝑒𝑁𝑐𝐷
3𝑢𝑛𝑗 +

𝑃𝑒2

2
𝐷4𝑢𝑛𝑗
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where 𝑁𝑐 , 𝑃𝑒 are the CFL and Peclet numbers, 𝐷3 and 𝐷4 are the third
and fourth order derivative terms. From the full LW scheme, one notes
added diffusive terms arising from the pure convection and diffusion
terms. It is interesting to note a third order dispersive term due to the
interaction between convection and diffusion terms and a fourth order



𝑢

diffusion term which reduces the excessive numerical dissipation at
high wavenumbers [155]. The second variant of the method is obtained
by setting 𝐷3 and 𝐷4 terms to 0 in Eq. (207). Using 1D GSA, the authors
noted minimal differences between the two variants and established the
efficacy of the second variant for computing.

In order to determine the optimal parameters the LW method ap-
plied to convection terms was analyzed using GSA. The scheme for the
2D CDE is given by

𝑢(𝑡 + 𝛥𝑡) =𝑢(𝑡) − 𝛥𝑡
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2
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𝜕2𝑢
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where CD2 schemes are used for the derivatives appearing above.
Comparing this scheme with its 1D equivalent given in Eq. (207), the
authors noted the additional presence of a mixed derivative term which
leads to asymmetrical numerical properties.

Optimal parameters were determined by finding out the combina-
tion resulting in a prescribed diffusion error i.e. by finding region(s)
where |1 − |𝐺𝑛𝑢𝑚∕𝐺𝑝ℎ𝑦𝑠 ∥< 𝜖. 𝜖 is a chosen tolerance parameter with
a lower value denoting higher accuracy and vice versa. The authors
identified two values of 𝜖 namely 10−4 and 10−6 with the latter being
a representative of finer simulations such as LES or unresolved DNS.

Finally, the optimal parameters thus determined are established by
the authors by solving the 2D flow inside a square LDC at a Reynolds
number 𝑅𝑒 = 10,000. These simulation demonstrates an excellent
agreement with the benchmark results by capturing the evolution of
a transient triangular core vortex.

Due to the generic nature of the framework, this process can be
employed for any other numerical schemes resulting in their efficient
application for fluid flow simulations.

11. Beyond GSA: nonlinear instabilities and N-mode analysis

Previous sections are devoted to the analysis of the discrete lin-
earized solution via GSA. Thanks to its completeness (it accounts for
space discretization, time integration and boundary conditions) and
versatility, it has been shown that GSA is a very powerful tool that
is able to recover the results of the classical single-monochromatic-
plane-wave disturbance analysis, but also to account for polychromatic
collective effects, such as local focusing due to dispersive effects and
side-band instabilities due to grid resonance between large and small
disturbances. A common feature of these collective polychromatic ef-
fects is that they can lead to a very large local growth of the energy
of the solution. In such a case, the cornerstone hypothesis (78) is no
longer valid, and nonlinear mechanisms may become dominant when
nonlinear problem are addressed. Therefore, numerical schemes that
are stable according to the linearized analysis may be observed to be
unstable.

In order to investigate the nonlinear stability properties of numeri-
cal schemes, several approaches have been proposed, the most popular
being the 𝑁-mode analysis, that will be discussed below.

The method, that originates in the discrete dynamical system the-
ory, consists of finding finite discrete sets of waves that span a closed
exact solution of the non-linear discrete problem. The associated am-
plitude evolution equations generate a nonlinear dynamical system,
whose stability is investigated numerically in practice. Since it accounts
for resonant wave interactions among a closed set of modes, this
method can also be interpreted as a kind of discrete wave turbulence-
weak turbulence theory (see e.g. [156]) for numerical scheme analysis.
This approach was pioneered in the late 1970s and 1980s, with ap-
plication to a broad range of problems and numerical methods, as
illustrated in Table 2. It is now illustrated considering the model non-
linear advection–diffusion equation, that is an extension of the classical
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Table 2
Survey of investigations related to numerical nonlinear instabilities. Kdv: Korteweg de
Vries equation; VdP: Van der Pol equation.

Ref. Model Type Envelope/side-band
analysis

Briggs et al. [72] 1D advection 1-2-3-mode ✓

Sloan [90] 1D KdV 1-mode ✓

Aoyagi [93] 1D advection 3-mode ✓

Cai et al. [157] VdP 2-mode
Fornberg [83] 1D advection 1-mode
Herbst [158] 1D Schrödinger 1-2-mode
Hsia et al. [89] 1D Burgers 2-mode ✓

Newell [84] 1D heat, 1D KdV 2-mode ✓

Sloan et al. [74] 1D advection 1-2-mode ✓

Vadillo et al. [159] 1D advection 2-mode ✓

Burgers equation:

𝜕𝑢
𝜕𝑡

+ 𝜃
2
𝜕𝑢2

𝜕𝑡
+ {(1 − 𝜃)𝑢 + 𝑐} 𝜕𝑢

𝜕𝑥
= 𝜈 𝜕
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where 𝑐 is related to the base flow and the coefficient 𝜃 is a weighting
parameter between the conservative and the quasilinear expressions of
the nonlinear convection term. The general form of the corresponding
semi-discrete equation found considering finite difference schemes with
a centered stencil with (2𝑀 + 1) grid points for convection along
with the 3-point second order accurate scheme for second-order space
derivative is
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where 𝑢𝑙(𝑡) denotes the semi-discrete solution at the 𝑙th grid point. The
coefficients 𝑎𝑗 and 𝑏𝑗 are related to the discretization of the first-order
and second-order spatial derivatives, respectively. Eqs. (209) and (210)
exhibit a quadratic nonlinearity, therefore closed set of modes found
considering the adequate complex roots of unity. As an illustration, the
1-Mode, 2-Mode and 3-Mode solutions are defined as:

𝑢𝑙(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴(𝑡) exp(2𝜋𝑖𝑙∕3) + 𝐴∗(𝑡) exp(−2𝜋𝑖𝑙∕3) 1-mode
𝐴(𝑡) exp(𝜋𝑖𝑙∕2) + 𝐴∗(𝑡) exp(−𝜋𝑖𝑙∕2) + 𝐵(𝑡) exp(𝜋𝑖𝑙) 2-mode
𝐴(𝑡) exp(𝜋𝑖𝑙∕3) + 𝐵(𝑡) exp(2𝜋𝑖𝑙∕3) + 𝐶(𝑡) exp(𝜋𝑖𝑙)

+𝐴∗(𝑡) exp(−𝜋𝑖𝑙∕3) + 𝐵∗(𝑡) exp(−2𝜋𝑖𝑙∕3) + 𝐶∗(𝑡) exp(−𝜋𝑖𝑙) 3-mode

(211)

where 𝐴(𝑡), 𝐵(𝑡) and 𝐶(𝑡) are the complex amplitudes of the modes
under consideration, and the 𝑎𝑠𝑡𝑒𝑟𝑖𝑠𝑘 denotes the complex conjugate.
The time-continuous evolution equations are recovered by inserting one
of the solutions given in (211) into (210). For the sake of illustration,
taking 𝑀 = 3, the equations for the 1-mode solution are
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while the 2-mode solution yields
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Fig. 64. Stability regions using the RK3 time integration scheme in the (𝐸, 𝛼) for the 1-mode analysis, for different values of the weighting parameters 𝜃. Left: 𝜃 = 0, Right: 𝜃 = 1.
Gray area corresponds to stable solutions. Courtesy of Dr. S. Pandit.
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The last step consists of applying the selected time integration schemes
to these evolution equations to obtain a fully discretized problem. It
is worth noting that this approach does not incorporate the boundary
conditions.

Due to the genuinely nonlinear character of the resulting dynamical
systems, the possibility to perform a purely analytical analysis of the
stability is restricted to a few particular cases. In practice, the stability
is investigated by prescribing an initial condition, i.e. giving a initial
value for each mode, and then integrating numerically the system over
a arbitrary number of time steps to check if the energy of the solution
has grown over an arbitrary threshold or not. If the energy is larger than
this arbitrary value, the system is said to be unstable. In the opposite
case, it is considered as stable. Using the Vaschy–Buckingham theorem,
one can see that the stability depends on several parameters, i.e. the
initial energy 𝐸, the Courant number 𝛼 = 𝑐𝛥𝑡∕𝛥𝑥 and the cell Reynolds
number 𝑅𝑐 = 𝑐𝛥𝑥∕𝜈. It is important noting that 𝐸 is an important
parameter, since the non-linear analysis is based on finite amplitude
disturbances, while the usual linearized one considers asymptotically
small perturbations.

Some typical results are illustrated in Figs. 64–66, which display the
stability region in the (𝐸, 𝛼) plane obtained using Tam’s DRP scheme
to discretize the convection term coupled to several time integration
schemes and different numbers of modes. A first observation is that
the topology stability regions is much more complicated than those
observed in the linearized cases, and that non-simply convex stable
regions are present. The second point is that the stability is directly tied
to the initial energy of the disturbances. This is the reason why linear
polychromatic mechanisms discussed above that may lead to a local rise
of the energy are very important: they can trigger nonlinear instability
due to finite-amplitude wave resonance. One can see that there is an
initial energy threshold 𝐸𝑚𝑎𝑥 above which the solution is linearly stable
but nonlinearly unstable. The global picture of the stability analysis is
schematized in Fig. 67.

12. Summary and conclusions

A review of the GSA of numerical methods has been presented
using linear and non-linear equations, and is compared with analysis
by von Neumann and semi-discrete analyzes. Von Neumann analysis is
restrictive as it provides stability characteristics without the accuracy
of the methods, as demonstrated with the CE which is neutrally stable.
Furthermore, this does not provide the phase/propagation speed of
the numerical solution – a vital parameter of propagation problems
encountered in fluid dynamics and many disciplines of science. GSA,
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on the other hand, is an analysis tool revealing the behavior of nu-
merical methods by correctly identifying numerical dispersion relation,
handling non-periodic problems due to its generalized approach.

Wave propagation problems involve spatial and temporal terms
governed by the fundamental properties of the physical dispersion
relation and the physical amplification factor. These depend on the gov-
erning equation and the boundary conditions, dictating the evolution
of the solution. For accurate solutions, the adopted methods having
numerical dispersion relation and amplification factor, must follow
the corresponding physical properties. This is the basis of dispersion
relation preserving (DRP) schemes. The correct DRP properties are
obtained when both temporal and spatial discretizations are analyzed
together as opposed to the semi-discrete analysis where only spatial
discretization is considered. The former is termed as the 𝛤 -form and
the latter as the 𝛱-form analysis.

The GSA performs 𝛤 -form analysis using Fourier–Laplace transform
valid also for non-periodic problems. The critical distinction between 𝛤
and 𝛱-forms is demonstrated using leap-frog and 𝐶𝐷2 scheme for the
1D CE. The numerical phase speeds (𝑐𝑁 ) computed from the 𝛤 -form
analysis incorporates correctly the spatial and temporal discretizations
enabling comparison between the numerical and physical modes. In
contrast, the 𝛱-form analysis based on spatial discretization obtains an
incorrect 𝑐𝑁 .

The global spectral resolution of classical explicit and high ac-
curacy compact schemes are represented for first and second order
spatial derivatives in Section 3. For first derivative, the effectiveness
is obtained as 𝑘𝑒𝑞∕𝑘 with 𝑘 as the wavenumber and the numerical
derivative is determined by 𝑘𝑒𝑞 , and 𝑘𝑒𝑞∕𝑘 is in general, a complex
quantity. The real part of 𝑘𝑒𝑞∕𝑘 represents the accuracy of the numerical
method in obtaining the spatial derivative. The imaginary part signifies
added numerical dissipation or anti-diffusion when its sign is either
negative or positive, respectively. Schemes showing anti-diffusion are
undesirable for computing as this leads to solution blowup.

From Fig. 2, one infers that increased order increases resolution
of the scheme. However, near-spectral accuracy can be achieved by
lower order, optimized implicit schemes, as in case of the OUCS3
scheme. The effects of anti-diffusion/dissipation are noted for implicit
schemes in Fig. 3 for non-periodic problem which necessitates one
sided boundary closures. Considering solution propagation from left
to right, analysis show anti-diffusion to be present near the inflow
boundary, whereas dissipation is noted near the outflow boundary. It
is noted that anti-diffusion cannot be eliminated for one-sided schemes
used at the inflow. However, a careful design of near-boundary closure
schemes can drastically reduce it, as shown in Fig. 3 for the OUCS3 and
NCCD schemes. The effectiveness of second derivative discretization for
various schemes are summarized in Fig. 4. Unlike the first derivative,

the effectiveness for second derivative does not become zero at the



Fig. 65. Stability regions using the RK3 time integration scheme in the (𝐸, 𝛼) for the 3-mode analysis, for different values of the weighting parameters 𝜃. Left: 𝜃 = 0, Right: 𝜃 = 1.
Gray area corresponds to stable solutions. Courtesy of Dr. S. Pandit.
Fig. 66. Stability regions using the RK4 time integration scheme in the (𝐸, 𝛼) for the 1-mode analysis (left) and the 3-mode analysis (right), for 𝜃 = 1. Gray area corresponds to
stable solutions. Courtesy of Dr. S. Pandit.
Fig. 67. Schematic view of the full stability analysis for numerical scheme.
Nyquist limit, implying diffusion to be present for higher wavenumbers
at a reduced value.

The importance of the 𝛤 -form analysis is shown using the 1D CE
in Section 4. This model equation enables assessment of the accuracy
of numerical schemes, as the exact solution is non-dispersive and non-
dissipative. For any numerical scheme, one associates a numerical
amplification factor (𝐺) and a numerical dispersion relation. The for-
mer describes whether the solution is dissipative/growing, while the
latter indicates dispersion effects. Using GSA, a governing equation for
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error is developed in Eq. (60), which provides the metrics driving the
error dynamics. Unlike the von Neumann analysis indicating only the
stability/instability for periodic problems, it is worth noting that GSA
provides dispersion and dissipation errors for all resolved scales.

To illustrate the space–time analysis, the two time-level, four stage
Runge–Kutta method (𝑅𝐾4) is chosen for time integration along with
different explicit central and compact difference schemes for the spatial
derivative discretizations. In Figs. 6 to 8, 𝐺, 𝑐𝑁 and 𝑉𝑔𝑁 are plotted
for different schemes using GSA and an analysis employing incorrect



dispersion relation. To ascertain the correctness of the dispersion re-
lation obtained by GSA, numerical tests have been performed which
validates it in Fig. 9. Furthermore, the property charts signify the
typical aspect of computing that 𝑐𝑁 is a function of 𝑘. One notes
that among the compared schemes, the OUCS3 scheme provides higher
accuracy, which can be achieved with lower order scheme designed
optimally.

In Section 5, the roles of multi time-level methods, in terms of
three time-level schemes, are discussed using GSA. A typical attribute of
these methods is the presence of at least one spurious numerical mode.
Property charts are presented for explicit central and compact differ-
ence schemes for the Adams–Bashforth 𝐴𝐵2 scheme in Figs. 12 to 14.
From these charts it is noted that the spurious mode is always present
in such computations and one never obtains higher accuracy for any
computational parameters. In Fig. 17, the evidence of numerical mode
is established via an experiment using solution of the CE, validating the
findings of GSA.

In Section 6, the aspect of nonlinear numerical instability (not
accounted by the linear analysis) is discussed in the context of a non-
linear advection equation as the governing equation. It is hypothesized
that the origins of non-linear instability are due to either focusing of
energy due to dispersion errors or collective interactions and side band
instabilities due to non-uniform base flow. The former is explained
using caustics theory for geometric optics where a local concentration
of huge amount of energy may occur. This can be also explained using
focusing from GSA by noting that 𝑐𝑁 is dispersive for the linear CE
prompting one to replace classical monochromatic plane wave analysis
with GSA. Furthermore, numerical experiments conducted for the lin-
ear CE [87] correctly identified the local blow-up of error from GSA due
to focusing of dispersive errors. Also, a criterion for identifying likely
cause of spurious caustics based on the extrema of 𝑉𝑔𝑁 is proposed.
Another linear error growth mechanism for polychromatic solutions
exists when the base flow is sinusoidal and it is attributed to the side-
band instabilities due to resonance between base flow and fluctuations.
Such mechanisms have been observed in the Benjamin–Feir instability
in free surface wave dynamics [94] and wave-train instabilities [95].

While the study of nonlinear instabilities is vital for understand-
ing the overall error dynamics, the role of linear analysis cannot be
underestimated during the early stages of disturbance evolution. This
is true in the context of physical instabilities, as recent high accuracy
simulations [160–164] of transition induced by deterministic wall and
free stream excitation for zero-pressure gradient boundary layer shows
the spatio-temporal wave front (STWF) to cause transition. It is to
be noted that although STWF originates due to a linear process, the
action of nonlinearity causes the flow to transition and eventually
become turbulent. It has also been noted in the other canonical problem
of Rayleigh–Taylor instability the STWF is caused due to pressure
pulses [108,165,166]. Maddipati et al. [167] have also shown from a
linear analysis that STWF plays a major role in 2D flows, as compared
to 3D flows — analogous to Squires’ theorem stated for normal mode
analysis.

In Sections 7 and 8, focusing mechanisms for the nonlinear 2D NSE
are explained using GSA following the analysis of linear CE and CDE.
Focusing is the violent concentration of energy for selective wavenum-
bers which leads to abrupt breakdown of the numerical solution. This
phenomenon has been reported by Phillips and other researchers in
weather forecasting, who observed the smoothly progressing simula-
tion to blow up suddenly without any indication. Prevailing theories
attempted to explain focusing due to nonlinear instabilities. How-
ever, numerical results show focusing due to also a linear mechanism
explained by GSA [49,57].

Three different mechanisms have been identified for focusing of
the 1D linear CE: due to instability at near boundary nodes; solution
discontinuity and chosen numerical discretization. The first cause is
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demonstrated in Figs. 22(a) and 22(b), where one notes instability
in the entire domain with Fig. 22(a) showing the error at the inflow
boundary. The corresponding property charts are displayed in Figs. 19
and 20. The scale selection of error is confirmed from Fig. 22(c), which
corroborates well with the spectral bandwidth of the initial solution
and GSA. The focusing due to solution discontinuity is demonstrated in
Fig. 23(a), which corresponds to the property charts in Fig. 23(c).

A mechanism of focusing is shown for the nonlinear NSE due to
reflection of 𝑞-waves, explained by GSA. These spurious upstream prop-
agating waves occur at higher 𝑘, revealed by GSA. Results in Figs. 24
and 27, show the 𝑞-waves traveling in the upstream direction during
the simulation of convection of a shielded vortex. It is noted that the
computations in Fig. 24 does not display focusing, whereas the results
in Fig. 27 does. It is attributed to the generation of large amount of
𝑞-waves which leads to numerical instability.

Another focusing mechanism for the NSE has been identified by GSA
of CDE as the model equation [49]. Here, focusing is due to the creation
of anti-diffusion 𝛼𝑁 < 0, which indicates spurious concentration of
energy. It is noted that the analysis shows focusing as either due to
the error due to diffusion discretization or errors due to combined
convective–diffusive discretizations. Numerical results based on the
solution of the NSE for a high Reynolds number flow inside a square
lid driven cavity and associated GSA analysis presented in Figs. 32–
34 and Figs. 35–37 demonstrate two mechanisms of focusing. These
results corroborate very well with the GSA, and shows the focusing in
this case to be governed by a linear mechanism. The general nature of
focusing is further established by demonstrating it for cases involving
upwind convective term discretization and three time-level methods in
Figs. 38, 39 and Figs. 40–42, respectively. In addition to demonstrating
focusing, a remedy to cure focusing is also proposed by filtering, and
results shown in Figs. 43–45, with the magnitude of filtering decided
by GSA. The one-to-one correspondence noted between the solution of
2D NSE and GSA of linear 2D CDE further establishes the utility of GSA.

Another problem of focusing is studied using GSA for the linearized
rotating shallow water equations in Section 9 for different grid strate-
gies. Results establish the necessity of 𝑞-waves for triggering focusing.
The results shown in Figs. 48, 49 for the collocated Arakawa grid
shows focusing, whereas staggered grid cases (Arakawa, B-E) do not
display focusing, as confirmed from GSA. It is noted that staggering
alters numerical dispersion relation which lowers/removes the 𝑞-waves.
Staggering also introduces numerical dissipation which helps remove
the focusing.

Recent developments arising out of GSA are described in Section 10,
on the aspects of analysis of numerical methods and design of peta-
and exa-scale HPC by using compact schemes. In the former, the much
touted DNS of homogeneous isotropic turbulence by Fourier spectral
— RK2 method is analyzed. There are a continuous stream of papers
in the literature, with the common feature that all of these modify the
NSE by adding explicit forcing term, in addition to hyperviscosity (some
even add hypoviscosity) terms. Presented analysis clearly demonstrate
that such claims of performing DNS is not only exaggerated, but are
completely misplaced. This has been made possible by the GSA reported
earlier for the CE [22] and a detailed analysis here for CDE. The utility
of GSA is demonstrated via the design of subdomain boundary closure
for the high accuracy compact schemes for HPC. The parallelization
error caused in other methods like that is used in Schwarz domain
decomposition method [140] has been completely eliminated, up to
machine precision, by the design of the closure scheme by the GSA.
Another extension of GSA has been demonstrated for the problem of
combustion and flame propagation via the nonlinear model for the
source as a convolution term for the CDR equation.

While GSA is a powerful analysis tool which accounts for polychro-
matic effects such as local focusing due to dispersion and side-band
instabilities, a large growth of local error is a common feature of such
cases thereby invalidating the linearity hypothesis. This necessitates the

investigation of nonlinear stability properties of schemes and this is



emphasized in Section 11. A popular analysis method, namely the N-
mode analysis, whose origins are based on dynamical systems theory is
discussed, and its application is illustrated with the example of nonlin-
ear viscous Burgers’ equation. The fundamental operating principle of
this approach is the prescription of an initial condition for each mode
with the numerical system then being integrated over an arbitrary
number of steps to check if the energy of the solution grows above
an arbitrary threshold value. This determines whether the system is
nonlinearly stable or unstable. Typical results are shown in Figs. 63–
65, which show the complex topology of the stability regions with that
non-simple convex stable regions present. Also, it is noted that the
stability is directly tied to the initial energy of the disturbances which
can trigger nonlinear instability by finite-amplitude wave resonance.
The global picture of the stability analysis is schematically summarized
in Fig. 67. Dynamical system approach to receptivity is very recently
presented comprehensively in the book by Sengupta [163] for fluid
flows, which has a direct analog to numerical simulation.

13. Perspectives of GSA

The discussion in the present work concerns about uniform grids,
GSA has also been extended to non-uniform grids where high accuracy
compact schemes have been designed and analyzed [168,169]. The
GSA can be further extended to non-uniform grids by studying problems
such as focusing in near future.

The different topics and tools discussed in the present review can
be supplemented by another ways to scrutinize the features of nu-
merical methods in fluid mechanics and to characterize numerical
errors, Which are still rare in the literature. A first example consists
of performing a symmetry analysis of the discrete system, the key
point being that symmetries of the original continuous equations should
be preserved by the numerical methods. An important point is that
these preservation properties must be satisfied at the discrete level
at finite 𝛥𝑥 and 𝛥𝑡. Therefore this approach is not tied to the order
of accuracy of the scheme. The issue of deriving numerical schemes
that preserve the Lie group of one-parameter symmetries of the con-
tinuous equations was pioneered in the 1990’s by Dorodnitsyn and
other Russian researchers [170,171]. Some results have been obtained
since the publication of first seminal works for several physical models,
including the heat equation, shallow-water equations, wave equations
and the NSE, e.g. see [172–179]. This topic was renewed in the field
of CFD by Verstappen and Veldman [180,181] followed by many
researchers, e.g. see [182–188], whose researches aim at deriving stable
and accurate schemes that will preserve inviscid invariants of the INSE,
namely the kinetic energy supplemented by the vorticity in 2D and
helicity in 3D.

It is observed that the preservation of these quantities is associated
to the skew-symmetry of the convective and pressure-dependent terms
in the continuous equations, so that skew-symmetric schemes must be
designed. It is observed that the preservation of some key symmetries
leads to dramatic improvement of the efficiency of the schemes, by
preventing the occurrence of spurious source terms in the discrete
evolution equations of the physical invariant quantities. As a matter
of fact, preserving the energy and the vorticity or the helicity amounts
to controlling the 𝐿2 norm of the solution and the rotational part of its
gradient, leading to improved stability properties, without relying on
artificial viscosity or other dissipative techniques.

This can be understood by invoking extensions of Noether theorem
to discretized equations [189–191], which bridges between symme-
tries and the existence of conserved quantities. Some extensions have
been proposed for compressible flows, e.g. [188,192–198], with the
additional problem of searching for schemes that preserve linear and
quadratic inviscid invariants and the second law of thermodynamics at
the same time. It is worth noting that most of the results dealing with
energy-preserving schemes are only related to semi-discrete analyses
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with continuous time-integration. The definition of energy-preserving
time integration methods is more difficult, since the NSE do not have a
friendly Hamiltonian formulation for practical CFD applications, and
therefore efficient strictly symplectic time-integration methods have
not been designed for them. Several energy-preserving schemes and
pseudo-symplectic schemes have been proposed for incompressible
flows, e.g. [199–201], but preservation of other inviscid invariants
is not guaranteed. Kinetic energy-preservation being a property of
continuous incompressible Euler equations, it is also possible to recast
the discrete energy-preservation requirement as a time-reversibility
property of the numerical method [199,202]. A striking result is that,
at present time, no existing numerical scheme has been observed to be
able to preserve all symmetries and all linear and non-linear (inviscid)
invariants of the NSE (looking at the Lie-group of continuous one-
parameter symmetries, which includes different scaling and generalized
Galilean invariance).

The second example is related to the possible unphysical appearance
of some specific events in the discrete solutions [203,204], which is
sometimes referred to as structural stability of the numerical method,
since the discrete solution admits solutions that are not supported
by the continuous equations, but which mimic physical phenomena
observed in fluid mechanics or other fields of physics. Within the
discrete dynamical system framework, these spurious states can be
described as spurious numerical attractors, that can be either steady or
unsteady, stable or unstable. The case of the rise of spurious caustics
due to numerical dispersive errors is an example, but more phenomena
have been studied in the past, among which:

• The existence of spurious steady states, e.g. [205–209]. In the
general framework of GSA, a steady state is derived from Eq. (26)
as

(𝐼𝑑 −𝑀𝐺𝑆𝐴)𝐮𝑠𝑡𝑒𝑎𝑑𝑦 = (𝐼𝑑 −𝑀𝐺𝑆𝐴)�̃� = (𝐼𝑑 −𝑀𝐺𝑆𝐴)𝐴−1𝐬 (217)

and one can see that spurious discrete steady states can appear
due the structure of the matrix 𝐴−1 which is tied to spatial dis-
cretization, or to an inaccurate inversion of the matrix (𝐼𝑑−𝑀𝐺𝑆𝐴)
by the iterative method or the time marching method used.

• the existence of energy-bounded periodic [210] or chaotic solu-
tions, e.g. [203,211–213]

• the existence of spurious waves [214], including very slowly
decaying or self-sustained spurious solitons, e.g. [215,216] or
unphysical shock wave propagation [217]

The last example deals with a change in the nature of physical
instabilities due to numerical errors. This issue was raised in [111],
where it is shown that numerical errors may lead to a change in
the absolute/convective nature of hydrodynamic instabilities [218] in
numerical simulations. A key change in the analysis compared to GSA
is here that the solution is physically unstable and that its energy is
algebraically or exponentially growing in both continuous and discrete
systems, but the instability mechanisms may exhibit different features.
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