
HAL Id: hal-04546429
https://hal.science/hal-04546429v1

Submitted on 6 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithm 1029: Encapsulated Error, a Direct
Approach to Evaluate Floating-Point Accuracy

Nestor Demeure, Cédric Chevalier, Christophe Denis, Pierre
Dossantos-Uzarralde

To cite this version:
Nestor Demeure, Cédric Chevalier, Christophe Denis, Pierre Dossantos-Uzarralde. Algorithm 1029:
Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy. ACM Transactions on
Mathematical Software, 2022, 48 (4), pp.47. �10.1145/3549205�. �hal-04546429�

https://hal.science/hal-04546429v1
https://hal.archives-ouvertes.fr

47

Algorithm 1029: Encapsulated Error, a Direct Approach to

Evaluate Floating-Point Accuracy

NESTOR DEMEURE, Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli and CEA, DAM,

DIF

CÉDRIC CHEVALIER, CEA, DAM, DIF

CHRISTOPHE DENIS, Sorbonne Université, CNRS, LIP6

PIERRE DOSSANTOS-UZARRALDE, CEA, DAM, DIF

Floating-point numbers represent only a subset of real numbers. As such, floating-point arithmetic introduces

approximations that can compound and have a significant impact on numerical simulations. We introduce

encapsulated error, a new way to estimate the numerical error of an application and provide a reference

implementation, the Shaman library. Our method uses dedicated arithmetic over a type that encapsulates

both the result the user would have had with the original computation and an approximation of its numerical

error. We thus can measure the number of significant digits of any result or intermediate result in a simulation.

We show that this approach, although simple, gives results competitive with state-of-the-art methods. It

has a smaller overhead, and it is compatible with parallelism, making it suitable for the study of large-scale

applications.

CCS Concepts: • General and reference → Verification; • Mathematics of computing → Numerical

analysis; • Software and its engineering→ Dynamic analysis;

Additional Key Words and Phrases: Floating-point arithmetic, numerical verification, round-off errors

ACM Reference format:

Nestor Demeure, Cédric Chevalier, Christophe Denis, and Pierre Dossantos-Uzarralde. 2023. Algorithm 1029:

Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy. ACM Trans. Math. Softw. 48, 4,

Article 47 (March 2023), 16 pages.

https://doi.org/10.1145/3549205

1 INTRODUCTION

Various kinds of errors can make a simulation diverge from the observed reality. Those include

modeling errors, discretization errors, parameter uncertainties, as well as errors due to the use of

floating-point arithmetic. We can now run more than 1015 floating-point operations per second

on a supercomputer and 1012 floating-point operations per second on a standard GPU. However,

as computing power increases, so does the size of simulations, the number of their arithmetic

operations, and the magnitude of the values they process.

Authors’ addresses: N. Demeure, Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, 91190 Gif-sur-Yvette,

France and CEA, DAM, DIF, F-91297 Arpajon, France; email: nestor.demeure@ens-paris-saclay.fr; C. Chevalier and

P. Dossantos-Uzarralde, CEA, DAM, DIF, F-91297 Arpajon, France; emails: cedric.chevalier@cea.fr, pierre.dossantos-

uzarralde@cea.fr; C. Denis, Sorbonne Université, CNRS, LIP6, 75005 Paris, France; email: christophe.denis@lip6.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

0098-3500/2023/03-ART47 $15.00

https://doi.org/10.1145/3549205

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://orcid.org/0000-0002-0530-6530
https://orcid.org/0000-0002-7730-9239
https://orcid.org/0000-0002-6825-3819
https://orcid.org/0000-0003-0478-3666
https://doi.org/10.1145/3549205
https://doi.org/10.1145/3549205
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3549205&domain=pdf&date_stamp=2023-03-22

47:2 N. Demeure et al.

In this context, one can expect the rounding errors introduced by the use of floating-point arith-

metic, also called numerical errors or rounding errors, to have an increasing impact on simulations.

Their likelihood and their relative importance are increasing. This matters, as numerical errors can

significantly degrade numerical results and introduce artifacts in physical simulations, and cause

phenomena to be missed or misinterpreted [2].

In this article, we present a new way to estimate the numerical error of an application, which

we call encapsulated error. We provide a method that is both direct (and thus easy to interpret) and

accurate while keeping the overhead low, making it applicable to large computations.

We describe our method as direct because, by design, there is no proxy between the user and

the numerical error. We compute the error locally and propagate it, encapsulating both the result

of the original computation and an approximation of its numerical error in a dedicated type. Thus,

we have direct access to the number of significant digits at all times and for all intermediate results.

Moreover, having observed that some functions run on numbers with few actual significant digits,

we can lower their precision to improve performance.

A C++ reference implementation, the Shaman library, is provided. It supports all mathematical

functions in the current C++ standard library, as well as mixed-precision arithmetic, and is compat-

ible with common parallelism frameworks (both OpenMP [7] and MPI [21]). Furthermore, it can

be coupled with a traditional debugger such as GDB [45] to locate predefined types of numerical

errors such as unstable tests.

Instrumenting classical algorithms, we illustrate how our method can be used to evaluate the

quality of a result and show that it is accurate and fast. Its lower impact on computing times,

compared with state of the art, and its compatibility with parallelism make it suitable for the study

of large-scale applications.

The rest of the article is organized as follows. Section 2 is dedicated to a review of related work.

Section 3 introduces the concept of numerical error and our working hypotheses. Section 4 ex-

plains our method. Section 5 details the theoretical properties of the method. Section 6 presents

the reference implementation and associated tools. We illustrate the accuracy of the method and

measure the overhead of our reference implementation in Section 7. We present our conclusion

and perspectives in Section 8.

2 RELATED WORK

The quantification of the impact of floating-point arithmetic on a given computation, aiming not

to correct it but to evaluate the result’s numerical accuracy, is not new. A variety of methods have

been developed, most of them deriving from a comparison with higher-precision arithmetic, static

proof-based methods, interval arithmetic, or stochastic arithmetic.

The obvious solution is to compare, for each computation, their output with the result of an

equivalent computation performed with higher-precision arithmetic (as explored in FpDebug [3],

Precimonious [42], and Herbgrind [43]). Although simple to implement and interpret, this has

two main limitations: first, high precision tends to have significant overhead (two orders of mag-

nitude for MPFR [15] in our tests), and second, it relies on the hypothesis that the precision

used will be sufficient to detect problems. An illustration is provided in Section 5.3, showing

how a large cancelation (a subtraction between two numbers of similar magnitude) can make

high-precision arithmetic unreliable when it is used to estimate the numerical accuracy of a

result.

One can also use static methods, which are usually built on abstract interpretation (as in

FLUCTUAT [18] and PRECiSA [14]), symbolic reasoning (as in FPTaylor [44]), SMT solvers (as

in Rosa [10] and Daisy [8]), or proof assistants (as in Gappa [11] and Real2Float [34]) to prove

that a result will have sufficient precision for all possible inputs. However, this approach is often

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy 47:3

confined to programs written in domain-specific languages and tends to be limited to programs

that are both short (often a single function) and simple (loops and tests increase the difficulty of

the task considerably) [9].

Interval arithmetic [35, 36] (or one of its variants like affine arithmetic [6]) supplies a more

scalable way to get strong guarantees on a result by doing the analysis dynamically, propagating

not a number but an interval representing both a strict upper bound and a strict lower bound on the

result and thus giving us an upper bound on the numerical error of the computation. In practice,

when applied to large computations, those methods tend to return intervals too large to be useful,

unless one performs highly specialized modifications of the original computation to mitigate the

problem (Newton’s method famously requires a fix to avoid diverging intervals [41]).

Stochastic arithmetic [39, 46] offers another alternative, adding noise to every arithmetic op-

eration to study the distribution of a result (the original IEEE-754 result being drawn from this

distribution). Although this method gives good results at scale [28], it is slow and can be complex

to interpret. Indeed, one needs to run the computation several times, calling a random number

generator for each operation, until a good estimator of the distribution of the output is reached.

Overall results from the simulation are samples from a distribution, so the user still has to perform

statistical analysis to conclude on the numerical quality of the result (CADNA [26] is a notable

exception, encapsulating three synchronous runs to avoid re-runs and post-processing, but it uses

a majority vote to evaluate comparisons that can impact the control flow of the program and the

number of runs is fixed).

With our work, we offer a method with distinct properties: both fast enough to be used on

large simulations and providing easily understandable results, which can be directly used and in-

terpreted by end users. To do so, we observe that part of the work that has been done to increase

the precision of computation, most notably pair arithmetic [30] (which derives from double-double

arithmetic [1, 12]), can be repurposed and extended to model numerical error on the fly. Further-

more, it deals correctly with the cancelation problem that makes high-precision arithmetic an

unwise choice to measure numerical error. To the best of our knowledge, we are the first to adapt

those concepts to the measure of numerical error.

3 PROBLEM STATEMENT

Throughout the article, we assume that we are using IEEE-754 [25] floating-point arithmetic with

the round-to-nearest (default) rounding mode.

IEEE-754 floating-point arithmetic uses a finite set of numbers to represent reals. Hence, some

numbers have no exact representations, and the result of most arithmetic operations between

floating-point numbers cannot be represented exactly as a floating-point number.

IEEE-754 floating-point arithmetic rounds the results to a number that can be represented with

floating-point numbers (the nearest number that can be accurately represented when using the

default rounding mode). A direct consequence is that operations are not associative in floating-

point arithmetic. Those round-offs lead to visible differences between computations done with

real numbers and floating-point numbers, we call those differences numerical errors.

It is essential to discriminate between three different types of numerical error:

• The numerical error is the difference between the result computed in infinite precision and

the actual floating-point result. This quantity is entirely determined by a sequence of opera-

tions on given inputs (and not stochastic, unlike uncertainty) and, more importantly, signed.

It is the quantity that we measure and manipulate in the following.

• The absolute numerical error is the absolute value of the numerical error. It is unsigned, and

thus its manipulation over several operations can only lead to an upper bound.

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

47:4 N. Demeure et al.

• The relative numerical error is the absolute value of the numerical error divided by the result

computed in infinite precision. IEEE-754 floating-point arithmetic operators try to minimize

this quantity (by contrast, fixed-point arithmetic will try to minimize the absolute error).

Our goal is to give an estimation of the numerical error of the output of a given computation.

4 ENCAPSULATED ERROR: A NEW METHOD TO MEASURE NUMERICAL ERROR

We propose a new method, which we call encapsulated error, to evaluate floating-point accuracy,

representing each number using a couple (number , error) that contains both the result of the

original IEEE-754 floating-point computations (number) and a signed first-order approximation

of its current numerical error (error), with respect to the machine precision, such that their sum

(number + error) is a first-order approximation of the result as obtained in infinite precision.

4.1 Error-Free Transformations

The main building block of our method is the use of error-free transformations. When using

the rounding-to-nearest rounding mode, it is known [4] that the numerical error of the addition

and multiplication operators in IEEE-754 floating-point arithmetic can be expressed exactly as a

floating-point number without needing any additional precision. Error-free transformations, as

introduced by Knuth [29, Section 4.4.2], are operations that, despite being build on floating-point

operators, provably produce the exact numerical error for any floating-point operands (for a useful

reference, see the work of Muller et al. [37, Sections 4.3, 4.4, 5.1, and 5.2]).

We use two transformations: TwoSum [29, Section 4.4.2, theorem B], an error-free transforma-

tion able to return the error δ+ of the addition of two floating-point numbers x andy in the absence

of overflow, and a Fused Multiply-Add (fma) used to extract the error δ∗ of their multiplication (see

Algorithm 2) but also the exact residual of the division and square root [37, Section 5.2].

ALGORITHM 1: TwoSum(x , y)

z ← x + y
x ′ ← z − y
y ′ ← z − x ′
δ+ ← (x − x ′) + (y − y ′)
return δ+

ALGORITHM 2: TwoMultFma(x , y)

z ← x ∗ y
δ∗ ← fma(x ,y,−z)
return δ∗

It is to be noted that although we focus on the rounding-to-nearest rounding mode, there is a

variation of the TwoSum error-free transformation that is valid for any rounding mode [40, Section

2.3] and that some proofs [20] show that the Fused Multiply-Add operation can still be used as

an error-free transform for other rounding modes. Using those operations, one could generalize

Algorithms 3 through 6 to other rounding modes.

4.2 Operations and Functions

Our operations take (number , error) pairs, such as (x ,δx) and (y,δy), as inputs and output a (z,δz)
pair, where z is the result of the operation and δz its numerical error. δz is computed using both

the error introduced by the operation and the error transmitted from the inputs (δx and δy).

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy 47:5

During the evaluation of the arithmetic operations and the square root function, we compute

the error produced by the operation using an error-free transformation. Then we combine it with

the error transmitted from the inputs using basic arithmetic (Algorithms 3–6).

ALGORITHM 3: Addition((x ,δx), (y,δy))

z ← x + y
δz ← δx + δy + TwoSum(x ,y)
return (z,δz)

ALGORITHM 4: Multiplication((x ,δx), (y,δy))

z ← x ∗ y
δz ← (δx ∗ y) + (δy ∗ x) + fma(x ,y,−z)
return (z,δz)

ALGORITHM 5: Division((x ,δx), (y,δy))

z ← x/y
numerator← (δx − fma(y, z,−x)) − z ∗ δy

denominator← y + δy

δz ← numerator/denominator

return (z,δz)

ALGORITHM 6: Square Root((x ,δx))

z ←
√
x

numerator← δx + fma(−z, z,x)
denominator← z + z
δz ← numerator/denominator

return (z,δz)

Note that the second-order term, δx ∗δy , has been omitted from the computation of the error in

the multiplication operation (which should be (δx ∗ y) + (δy ∗ x) + (δx ∗ δy) + fma(x ,y,−z)) and

that we are linearizing the square root using its first-order Taylor approximation (see Section 5.2

for an analysis of the associated tradeoff).

The previous algorithms are equivalent to double-double arithmetic [1, 12] without the final

re-normalization step and have been introduced independently by Latkin [31] and Lange and

Rump [30]. Our work is different in that it gives a different semantic to this representation: our

pairs model numbers and their errors rather than higher-precision numbers. This means that the

error term should never impact the value of the numbers (hence the absence of the re-normalization

step) or comparisons and the control flow of a computation.

For arbitrary functions, without any easy way to estimate the error introduced by the function,

we deduce the final error by using higher-precision arithmetic (in practice, we use twice the work-

ing precision) to subtract the IEEE-754 arithmetic result from a higher-precision result computed

after having corrected our number with its error (Algorithm 7).

The error bounds from Lange and Rump [30] apply to our arithmetic. They can be used to prove

that, under their hypotheses and if we restrict ourselves to basic arithmetic operations (avoiding

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

47:6 N. Demeure et al.

ALGORITHM 7: Arbitrary Function(f , (x ,δx))

z ← f (x)
δz ← { f (x + δx) − z}high precision computation

return (z,δz)

arbitrary functions that are not covered by Lange and Rump [30]), our computation of the nu-

merical error is numerically stable. We test the accuracy of our evaluation on a practical case in

Section 7.1.

4.3 Comparisons

To preserve the control flow of the original IEEE-754 computation, comparisons and tests are per-

formed on the number part of the pair such that (x ,δx) ≤ (y,δy) ⇔ x ≤ y.

Whenever we call a comparison operator, we can raise a warning if the subtraction of its ar-

guments produces a number with no significant digits. Thus, it means that the comparison is

numerically unstable (the implementation of CADNA [26] inspires this approach).

4.4 Outputs

Given the (number , error) pair, our operations ensure that number is the result that would have

been obtained with classical IEEE-754 floating-point arithmetic and error is an estimation of

number ’s numerical error.

We compute the number of significant digits of number in a base b using the following for-

mula [39, Section 4.1]:

digits(number, error) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌊
− logb

��� error
number

���
⌋

if number � 0 and
��� error
number

��� ≤ 1

+∞ if number = 0 and error = 0

0 else

.

The formula has the interesting property of being quite resilient to imprecision in the measure

of the error: as we round the logarithm of a ratio, having the correct order of magnitude for the

error is enough to get the correct result.

5 ANALYSIS

5.1 Characteristics

Our method was built to have several key characteristics:

• It should give us an estimation of the numerical error of any number in a given computation

so that a user can easily analyze an application, step by step if needed.

• Our outputs have to be pertinent for the non-instrumented application, meaning that the

instrumented code should follow the same branches and code paths as the non-instrumented

code and that the user should be able to confirm that the input was left unchanged by the

instrumentation.

• We need to keep the runtime overhead low enough to ensure that our method is suitable for

very large simulations.

Starting from those criteria, we designed the method around a simple principle: computing the

numerical error produced locally and combining it with the numerical error propagated from the

inputs.

Having those design criteria in mind, it is interesting to review some characteristics of the result-

ing method. As comparisons are computed on thenumber part of the pair, our method ensures that

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy 47:7

we go through the same path and branches as the original computation. Therefore, it gives us both

the same result that we would have had with the original computation in IEEE-754 arithmetic and

a first-order approximation of its numerical error. Having both quantities for all numbers allows

us to compute an estimate of the number of significant digits at all times and for all intermediate

results.

The instrumentation might interfere with compiler optimizations, such as vectorization, caus-

ing the instrumented result to differ from the result of the original computation. However, this

difference is bounded by the difference one observes between two levels of compiler optimization

and can be quantified by checking whether the instrumented application’s output is similar to

the output of the non-instrumented application. In our experience, it does not interfere with the

estimation of the numerical error.

Due to the fine granularity of the method, implementations can test the quality of the numbers

produced after each operation and forward the information to a debugger to pinpoint the origin

of the numerical inaccuracies in the computation (a functionality inspired by CADNA [26]).

Contrary to asynchronous methods (e.g., stochastic arithmetic), the control flow of the compu-

tation is not altered. Although this ensures that our analysis is pertinent to the un-instrumented

application’s outputs, we only explore and return information about the branches followed by

the original computation. A more accurate result might have followed different branches (due to

unstable comparisons) with vastly different behaviors: we know nothing of those behaviors. In

practice, this has been observed to cause our method to underestimate the accuracy of some codes

designed to be resilient to numerical errors in intermediate steps. Hence, it is crucial to be sure

that meaningful tests are stable before starting to trust the estimation of the number of significant

digits. Here, our method’s ability to detect unstable branches is crucial.

Finally, our method is compatible with parallelism and, as we will present in the following sec-

tions, has a low overhead compared to state of the art. This makes it a suitable candidate to analyze

high-performance computations.

5.2 Second-Order Terms

We could easily have added a second-order term to the formula for the multiplication operator

(and deal with the square root as we do with arbitrary functions). However, we have observed that

adding this term leads to either no sensitive improvement or even an artificial explosion of the nu-

merical error. The most likely explanation is that the second-order term for the multiplication can

be of the same magnitude as the numerical error introduced by the addition needed to incorporate

it into our estimation.

If the computation of a number x is numerically stable, then, by definition, given the machine

epsilon u (u = 1
2b

1−m , the machine epsilon associated to an m digits floating-point system with

base b), its numerical error is of order o(|x | ∗u). Adding a second-order term to our estimate adds

a correction of order o(|x | ∗u2), but the error introduced by the addition of the correction itself is

of order o((|x | ∗u + |x | ∗u2) ∗u) = o(|x | ∗u2 ∗ (1+u)),which can dominate the correction, creating

spurious results.

Meanwhile, if the numerical error is higher than o(|x | ∗ u), then the first-order approximation

of the numerical error is already enough to reflect the fact that the computation is not numerically

stable without requiring second-order terms.

Note that it should be possible to introduce this second-order term in a numerically stable way

with an alternative formula based on a compensated dot product. Nevertheless, the impact on

the computing time would be significant for, according to our tests, no sensitive improvement in

accuracy.

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

47:8 N. Demeure et al.

5.3 Comparison with Higher-Precision Arithmetic

One might wonder how this scheme could be more precise than deducing the error from doing

the computation with our target precision and higher-precision arithmetic side to side, especially

since the usual rule of thumb for compensated summation and arithmetic relying on error-free

transformations is to assume that they are equivalent to doubled precision.

Indeed, most operations get the same error estimation as with roughly doubled precision (mi-

nus any overlapping bits between the value of the number and its error). However, the decisive

difference is in the resilience to cancelations. For instance, both 64-bit floating-point arithmetic

and 200-bit floating-point arithmetic would evaluate (2215 + 1) − 2215 as 0 (since even with 200 bits

of precision, 2215 + 1 rounds to the same binary representation as 2215). A comparison between

both results would conclude that 0 is the proper result and that there appears to be no numerical

error. However, by keeping the numerical error as a separate quantity, the error introduced during

the cancelation (1) is separated from the numbers that caused it, and thus the final error is still

properly evaluated.

However, by keeping the numerical error as a separate quantity, encapsulated error keeps the

error introduced during the cancelation (1) separated from the numbers that caused it, and thus

the final error is still properly evaluated:

({1065, 0} + {1, 0}) − {1065, 0} = {1065, 1} − {1065, 0} = {0, 1}.

This separation helps avoid the problems one encounters when selecting an insufficient preci-

sion to estimate the numerical error by comparison with an output computed in higher precision.

It is important to stress that our approach is optimized to keep track of the error and not increase

the computation’s precision. We could increase our implementation’s precision by minimizing the

number of overlapping bits between the two terms of the pair (the result would be similar to

double-double arithmetic [12]). However, they would not represent the number obtained without

instrumentation and its numerical error anymore. Thus, it would force us to run the computation

a second time to evaluate the numerical error. By keeping a strict separation between the number

and its numerical error, we make the computation of the numerical error efficient in terms of both

numbers of operations and memory.

6 IMPLEMENTATION

One of the strengths of the method is its relative simplicity (the operations are independent, can be

written in a few lines of codes, and build on basic arithmetic operators and a Fused Multiply-Add

in the working precision), making it easy to produce a correct implementation in a programming

language that supports operator overloading. We provide an optimized reference C++ implemen-

tation, the Shaman library [13], accompanied by tools to simplify the instrumentation and analysis

of an application.

6.1 C++ Type Overload

The Shaman library relies on a custom numeric type with overloaded operations to instrument

every arithmetic operation and function call. Our custom type uses the C++ template system

to build an instrumented type on top of any IEEE-754 compatible type. Hence, we can define

Sdouble = S<double, double, long double> to indicate that we want to use an instrumented

type that behaves like the double type that is commonly used in C and C++ (numerical errors

and implicit casts will be those of the double type), stores and manipulates numerical errors in a

double, and does its higher-precision computations using the long double type (which is only

used when computing an arbitrary operation function like a sinus).

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy 47:9

Our implementation can also work with any IEEE-754 compatible type, as long as it rounds to

nearest according to the IEEE-754 norm. This include the usual float and double types but also

user-defined numerical types such as emulated 16-bit precision types. Furthermore, the user can

use any type to manipulate the numerical error and do higher-precision computations.

Following our method to instrument arbitrary functions (Algorithm 7), our implementation in-

cludes all 73 mathematical functions in the current C++ standard library. We also provided an

implementation of the C++ streaming operator, which prints numbers in scientific notation, dis-

playing only significant digits. This is our preferred format to evaluate a result.

Our implementation is compatible with common parallelism framework such as OpenMP [7]

(for which we provide reduce operations) and MPI [21] (for which we provide type definitions), but

also with the Eigen [22] and Trilinos [23] linear algebra libraries (for which we provide appropriate

type traits). These library-specific operations, definitions, and traits could be user defined, as their

implementation within even a complex library such as Trilinos does not require access to a lower

abstraction level.

6.2 Numerical Debugging

To help with Shaman’s usage, we included a numerical debugger, inspired by CADNA [26] and

made possible by our fine-grained error representation. The user can use GDB or any classical

debugger to pinpoint specific types of unstable operations, such as cancelations and unstable

comparisons.

The user can set a variety of compilation flags to indicate the kind of numerical errors of interest

to him (e.g., unstable comparisons and cancelations). When one of those operations happens, the

program calls the instability function. The user can set a breakpoint on the function, and it will

pause the program giving access to all variables and their numerical error.

Although this lets the user quickly evaluate the localization of specific numerical errors, it might

become overwhelming on large programs with thousands of cancelations and unstable tests, often

due to only a small subset of operations. We resolved this problem by writing what we call a

numerical profiler. It is a script that hooks itself onto GDB; records all breakpoint triggers; and

produces a report with the line number, the operation name, and the number of occurrences. This

automation script gives the user an overall view of the numerical behaviors of their application.

6.3 Clang-Based Automatic Refactoring

A library-based implementation, such as ours, lets users examine the instrumented code and com-

pose our functions with their own to serve their specific purposes. However, this flexibility requires

access to the source code and the manual replacements of all floating-point types in an application.

The opposite approach, binary instrumentation tools, such as Valgrind [38] and Intel PIN [33],

can make the instrumentation of an application easier but obfuscate the instrumented code and

are hard to compose.

We propose an automatic refactoring tool based on the Clang compiler [32], which offers a good

compromise between both approaches. It takes a code, parses it with a state-of-the-art C++ com-

piler (Clang), includes Shaman’s headers, matches and replaces types and functions in the abstract

syntax tree, and outputs the instrumented code. The refactoring tool is careful to produce warnings

where a human operator should review the code, such as in the interfaces of extern C sections.

7 EXPERIMENTATION

7.1 Accuracy

7.1.1 LU Factorization in Double Precision. To demonstrate our algorithm’s accuracy, we ap-

plied it to the LU factorization of a double-precision 200 × 200 random matrix whose entries are

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

47:10 N. Demeure et al.

uniformly sampled from [−1; 1]. The LU factorization algorithm decomposes a matrix into a prod-

uct of a lower triangular and an upper triangular matrix. It is a well-known algorithm that uses

all arithmetic operators and is fundamental in linear algebra (used to solve linear systems, invert

matrices, and compute determinants).

As the algorithm’s numerical stability depends on the magnitude of its pivots, most implemen-

tations use the partial pivoting strategy. The test is performed twice, with and without partial

pivoting. The condition number of our test matrix, defined as the ratio of its largest and smallest

eigenvalues, is roughly 700. Thus, one would expect the numerical error to be sensibly smaller

when using partial pivoting.

To evaluate the accuracy of Shaman’s estimation of the error, we also run the LU factorization

using MPFR and 10,000 bits of precision. Although using 10,000 bits of precision is too slow and

memory intensive to be used on larger problems, it should be accurate enough to be used as a

reference. Note that we set aside any cell with an infinite number of significant digits according

to MPFR (meaning that MPFR and double precision reached the same number) when computing

the averages.

Without any pivoting strategy, we measured an average of 13.03 significant digits and a mean

absolute difference between our estimation and the 10,000-bit arithmetic estimation of 0.004 sig-

nificant digits. With a partial pivoting strategy, we measured an average of 14.80 significant digits,

suggesting that the algorithm is more numerically stable, and a mean absolute difference between

our estimation and the 10,000-bit arithmetic estimation of 0.028 significant digits. In both cases,

the difference between our estimation and the 10,000-bit arithmetic estimation of the numerical

error is close to the machine epsilon (roughly 10−16 for 64-bit double precision).

Looking at Figure 1, one can observe that Shaman’s estimation of the number of significant

digits is accurate. It tends to be noisier when the number of significant digits is large, which

makes sense, as it means that the numerical error is close to machine epsilon. However, its rel-

ative precision increases sensibly with the magnitude of the numerical error, when the number of

significant digits decreases, making it suitable for the diagnosis of the numerical behavior of an

application.

7.1.2 Integration by the Rectangle Rule in Float Precision. We also evaluated the accuracy of

Shaman on the integration of the cosine function between 0 and π
2 using the rectangle method

(this test case comes from the authors of VERROU [16] and, in particular, the work of Févotte and

Lathuilière [17]).

In infinite precision, the only source of error is the discretization error of the integration, which

reduces in O (1
n

) as the number of rectangle, n, increases (meaning that the step size gets finer)

until the result reaches 1, the known analytical value of the integral. In finite precision, here float
precision (32 bits), there are two sources of error: the discretization error and the numerical error.

Having an analytical solution is particularly interesting because it lets us evaluate our numerical

error estimate directly, using the analytical solution instead of a reference method.

When we plot the difference between the result of the integration and the analytical value of

the integral as a function of the number of rectangles (Figure 2), we observe that although it first

decreases (which is predicted by the decrease in discretization error), it then starts to become

noisier and increase.

This behavior is explained when we look at Shaman’s estimation of the numerical error (here we

display the absolute value of the raw numerical error and not the number of significant digits). It

can be seen that the numerical error increases with the number of rectangles and ends up becoming

the dominant source of error, the estimation of the numerical error perfectly overlapping with the

error computed analytically.

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy 47:11

Fig. 1. Estimation of the number of significant digits for the LU factorization algorithm. Each dot corresponds
to a cell in the non-zero half of either the L or U matrix produced by the decomposition. The dashed line
represents the equality between both estimations of the number of significant digits.

Fig. 2. Absolute value of the error as a function of the number of rectangles used for the integration of the
cosine function between 0 and π

2 using the rectangle method. Both axes are displayed on a logarithmic scale.

7.2 Overhead

In this section, we evaluate the overhead of the Shaman library compared to state-of-the-art

alternatives. We use highly optimized benchmark codes as well as a more realistic numerical

application.

We picked one implementation for each of the most common approaches used to measure the

numerical error. We choose these representatives because of their extensive usage in their category

and efficiency:

• MPFR [15], with the MPFR C++ [24] wrapper, which implements arbitrary precision arith-

metic (tested with 100 and 200 bits of precision).

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

47:12 N. Demeure et al.

• Boost Interval [5], which implements interval arithmetic.

• VERROU [16], which implements a form of stochastic arithmetic.

• CADNA [26], which implements a synchronous variant of stochastic arithmetic.

In the following, please note that for VERROU, we report computing time for only one run.

However, stochastic arithmetic requires several runs to draw any conclusion. One would need to

multiply VERROU’s computing time by a factor of 5 or more to take this fact into account. Along

the same line, we do not take into account the fact that to draw conclusions on the numerical error

when using MPFR or any higher-precision arithmetic implementation, one would need to compare

a higher-precision run with a double-precision run.

We instrumented four applications. The first three are the tasks that deal with floating-point

arithmetic in the computer benchmark game [19], a well-known benchmarking suite that is used to

compare the peak performance of programming languages on different tasks. The last application

of our selection is the Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics code

(Lulesh 1.0 [27]), a proxy application for the performance benchmark for exascale computing. To

sum up, our experiments consist of instrumenting and analyzing:

• n-body: N -body simulation.

• Spectral norm: Computing an eigenvalue using the power method.

• Mandelbrot set: Generating the Mandelbrot set at a given resolution, it is the only parallel

benchmark of the set.

• Lulesh 1.0: Solving explicit hydrodynamics equations on a collection of volumetric elements.

All four applications are in double precision (represented by Shaman’s Sdouble type). As the

computer benchmark game provides several implementations for each task, we instrumented the

fastest C++ implementations, at the time of writing, that do not rely on explicit vectorization

or calls to libraries (such as Eigen) to do their computations. As the code is highly optimized,

sometimes several orders of magnitude faster than a naive implementation, we expect to observe

extreme behaviors on those applications.

We also instrumented the serial version of Lulesh 1.0 with a domain (mesh) size of 103 to compare

different tools on an application that is representative of the kind of computations that are actually

done in high-performance computing. We expect to observe a very representative overhead on this

benchmark.

Each program was compiled with GCC 7.3.0 and the O3 optimization flag and ran on a four-core

Intel Xeon CPU E3-1220 v3 @ 3.10 GHz with 16 GB of RAM. Measures presented in the following

correspond to the minimum computing time over 30 runs (the average running time produces a

similar plot, but it is less appropriate to estimate the intrinsic running time independent of the

perturbations, as perturbations can only increase the running time). Since the variation coefficient

was always below 2%, we do not include error bars for the sake of readability.

As shown in Figure 3, Shaman displays the lowest overhead on every application. Moreover, it

is interesting to observe that although it takes eight operations to compute an addition with our

formula (Algorithm 3), Shaman’s slowdown stays well below a factor of 8 for most applications.

One explanation is that the computations spend a non-negligible time on non-numerical opera-

tions, but it seems unlikely given that those are numerically intensive applications. An alternative

and more likely explanation is that since the compiler has full access to the instrumented code

(which would not be the case if we were instrumenting at the binary level), and since there are

no tests inside our arithmetic operators, the compiler can, and indeed does, still vectorize and

use instruction-level parallelism. Furthermore, since our representation takes only twice as much

memory as the original floating-point representation, it increases the arithmetic intensity, which

is beneficial on modern processors [47].

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy 47:13

Fig. 3. Overhead of the Shaman library compared to the state of the art.

We note that the slowdown on the Mandelbrot set computation is significant for all tools, espe-

cially for MPFR C++ (we believe that MPFR C++’s overhead is dominated by the memory allocation

and deallocation time, which explains why it varies very little from 100 bits to 200 bits). It might

be due to the fact that it is the only parallel application of our benchmark or that its operations

are highly optimized, making its performance more sensitive to source code modifications.

Finally, it is interesting to remark that the overhead observed on Lulesh 1.0 in this benchmark

is consistent with the overhead we observed in most of the large numerical applications we

have instrumented so far. Namely, Shaman’s runs lead to a slowdown of 6 or 7 when profiling

applications.

8 CONCLUSION AND PERSPECTIVES

In this article, we introduced the concept of encapsulated error, a new method to estimate an

application’s numerical accuracy and a reference implementation, the Shaman library.

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

47:14 N. Demeure et al.

Although it is a first-order estimation, we showed that our method is accurate and gives inter-

pretable results. It can measure the number of significant digits of any result or intermediate result

in a simulation and has a low overhead compared to state-of-the-art techniques. This combination

of interpretability and low overhead is a conscious design decision to try to make floating-point

analysis more accessible to authors of mathematical software. We are particularly interested in

simulation and, more generally, high-performance floating-point computations, as they are sensi-

tive to numerical errors but often produce applications unsuitable for analysis with pre-existing

methods (as detailed in Section 2).

In the future, we would like to focus our attention on the localization of the sources of numerical

error. Most publications focus on the localization of massive cancelations, but we believe that

the progressive erosion in precision due to a large number of arithmetic operations can have an

equally significant impact in the field of high-performance computing. FLUCTUAT [18] tries to

approximate this quantity statically, whereas VERROU [16] proposes the use of delta-debugging

to tackle this problem. However, inspired by affine arithmetic [6] and building on encapsulated

error’s fine granularity and direct access to the numerical error, we believe we could split the error

term into one quantity per sub-section of the source code to collect precise information on the

sources of numerical error in a single run of the application that is studied. This is something that

cannot be done with existing approaches.

REFERENCES

[1] David H. Bailey. 1995. A Fortran 90-based multiprecision system. ACM Transactions on Mathematical Software 21,

4 (1995), 379–387.

[2] David H. Bailey and Jonathan M. Borwein. 2015. High-precision arithmetic in mathematical physics. Mathematics 3,

2 (2015), 337–367.

[3] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A dynamic program analysis to find floating-point

accuracy problems. ACM SIGPLAN Notices 47, 6 (June 2012), 453–462.

[4] Gerd Bohlender, Wolfgang Walter, Peter Kornerup, and David W. Matula. 1991. Semantics for exact floating point

operations. In Proceedings of the 10th IEEE Symposium on Computer Arithmetic. IEEE, Los Alamitos, CA, 22–26.

[5] Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion. 2006. The design of the Boost interval arithmetic library.

Theoretical Computer Science 351, 1 (2006), 111–118.

[6] João Luiz Dihl Comba and Jorge Stolfi. 1993. Affine arithmetic and its applications to computer graphics. In Proceedings

of the 7th Brazilian Symposium on Computer Graphics and Image Processing (Sibgrapi’93). 9–18.

[7] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry standard API for shared-memory programming.

IEEE Computational Science and Engineering 5, 1 (1998), 46–55.

[8] Eva Darulova, Anastasiia Izycheva, Fariha Nasir, Fabian Ritter, Heiko Becker, and Robert Bastian. 2018. Daisy-

framework for analysis and optimization of numerical programs (tool paper). In Proceedings of the International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems. 270–287.

[9] Eva Darulova and Viktor Kuncak. 2014. On Numerical Error Propagation with Sensitivity. Technical Report. Ecole

Polytechnique Federale de Lausanne. http://infoscience.epfl.ch/record/200132.

[10] Eva Darulova and Viktor Kuncak. 2014. Sound compilation of reals. ACM SIGPLAN Notices 49, 1 (2014), 235–248.

[11] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. 2011. Certifying the floating-point implementation

of an elementary function using Gappa. IEEE Transactions on Computers 60, 2 (2011), 242–253.

[12] Theodorus Jozef Dekker. 1971. A floating-point technique for extending the available precision. Numerische Mathe-

matik 18, 3 (1971), 224–242.

[13] Nestor Demeure, Cédric Chevalier, Christophe Denis, and Pierre Dossantos-Uzarralde. 2022. Shaman GitLab Reposi-

tory. Retrieved February 24, 2023 from https://gitlab.com/numerical_shaman/shaman/-/tree/paper.

[14] Marco A. Feliú, Mariano Moscato, and César A. Muñoz. 2018. An abstract interpretation framework for the round-off

error analysis of floating-point programs. In Verification, Model Checking, and Abstract Interpretation. Lecture Notes

in Computer Science, Vol. 10747. Springer, 516–537.

[15] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann. 2007. MPFR: A multiple-

precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software 33, 2 (2007),

13–es.

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

http://infoscience.epfl.ch/record/200132
https://gitlab.com/numerical_shaman/shaman/-/tree/paper

Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy 47:15

[16] François Févotte and Bruno Lathuilière. 2016. VERROU: A CESTAC evaluation without recompilation. In Proceedings

of the International Symposium on Scientific Computing, Computer Arithmetics, and Verified Numerics (SCAN’16).

[17] François Févotte and Bruno Lathuilière. 2017. Verrou Tutorial for the PRECIS Summer School [in French]. Retrieved

February 24, 2023 from https://github.com/edf-hpc/verrou/tree/ecole-precis.

[18] Eric Goubault. 2013. Static analysis by abstract interpretation of numerical programs and systems, and FLUCTUAT.

In Static Analysis. Lecture Notes in Computer Science, Vol. 7935. Springer, 1–3.

[19] Isaac Gouy. 2020. The Computer Language Benchmarks Game. Retrieved January 10, 2020 from https://

benchmarksgame-team.pages.debian.net/benchmarksgame/.

[20] Stef Graillat, Jean-Luc Lamotte, and Diep Nguyen Hong. 2009. Error-free transformation in rounding mode toward

zero. In Numerical Validation in Current Hardware Architectures. Springer, 217–229.

[21] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A high-performance, portable implementa-

tion of the MPI message passing interface standard. Parallel Computing 22, 6 (1996), 789–828.

[22] Gaël Guennebaud and Benoît Jacob. 2010. Eigen v3. Retrieved February 24, 2023 from http://eigen.tuxfamily.org.

[23] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G. Kolda, Richard B.

Lehoucq, et al. 2005. An overview of the Trilinos project. ACM Transactions on Mathematical Software 31, 3 (2005),

397–423.

[24] Pavel Holoborodko. 2010. MPFR C++. Retrieved February 24, 2023 from http://www.holoborodko.com/pavel/mpfr/.

http://www.holoborodko.com/pavel/mpfr/.

[25] IEEE Microprocessor Standards Committee. 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Re-

vision of IEEE 754-2008). IEEE, Los Alamitos, CA.

[26] F. Jézéquel and J.-M. Chesneaux. 2008. CADNA: A library for estimating round-off error propagation. Computer Physics

Communications 178, 12 (2008), 933–955.

[27] Ian Karlin. 2012. Lulesh Programming Model and Performance Ports Overview. Technical Report. Lawrence Livermore

National Laboratory (LLNL), Livermore, CA.

[28] Gerald Knizia, Wenbin Li, Sven Simon, and Hans-Joachim Werner. 2011. Determining the numerical stability of quan-

tum chemistry algorithms. Journal of Chemical Theory and Computation 7, 8 (2011), 2387–2398.

[29] Donald Knuth. 1998. The Art of Computer Programming: Seminumerical Algorithms. Vol. 2. Addison Wesley, Reading,

MA.

[30] Marko Lange and Siegfried M. Rump. 2020. Faithfully rounded floating-point computations. ACM Transactions on

Mathematical Software 46, 3 (2020), 1–20.

[31] Evgeny Latkin. 2014. Twofold fast arithmetic. arXiv preprint arXiv:1401.6235 (2014).

[32] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In Proceedings of the BSD Conference

(BSDCan’08), Vol. 5.

[33] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa

Reddi, and Kim Hazelwood. 2005. Pin: Building customized program analysis tools with dynamic instrumentation.

ACM SIGPLAN Notices 40, 6 (2005), 190–200.

[34] Victor Magron, George Constantinides, and Alastair Donaldson. 2017. Certified roundoff error bounds using semi-

definite programming. ACM Transactions on Mathematical Software 43, 4 (Jan. 2017), Article 34, 31 pages. https:

//doi.org/10.1145/3015465

[35] Ramon E. Moore. 1963. Interval Arithmetic and Automatic Error Analysis in Digital Computing. Stanford University,

Stanford, CA.

[36] Ramon E. Moore. 1966. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ.

[37] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre Jeannerod, Vincent Lefevre, Guillaume

Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres. 2010. Handbook of Floating-Point Arithmetic. Birkhäuser

Boston, Boston, MA.

[38] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A framework for heavyweight dynamic binary instrumenta-

tion. ACM SIGPLAN Notices 42, 6 (2007), 89–100.

[39] Douglass Stott Parker. 1997. Monte Carlo Arithmetic: Exploiting Randomness in Floating-Point Arithmetic. Technical

Report. Computer Science Department, University of California, Los Angeles.

[40] Douglas M. Priest. 1992. On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Com-

putations. Ph.D. Dissertation. University of California, Berkeley.

[41] Nathalie Revol. 2003. Interval Newton iteration in multiple precision for the univariate case. Numerical Algorithms

34, 2-4 (2003), 417–426.

[42] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan, Koushik Sen, David H.

Bailey, Costin Iancu, and David Hough. 2013. Precimonious: Tuning assistant for floating-point precision. In Pro-

ceedings of the International Conference on High Performance Computing, Networking, Storage, and Analysis (SC’13).

1–12.

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

https://github.com/edf-hpc/verrou/tree/ecole-precis
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
http://eigen.tuxfamily.org
http://www.holoborodko.com/pavel/mpfr/
http://www.holoborodko.com/pavel/mpfr/
https://doi.org/10.1145/3015465

47:16 N. Demeure et al.

[43] Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock. 2018. Finding root causes of floating point

error. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation.

256–269.

[44] Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh Gopalakrishnan. 2015. Rigorous estimation

of floating-point round-off errors with symbolic Taylor expansions. In FM 2015: Formal Methods. Lecture Notes in

Computer Science, Vol. 9109. Springer, 532–550.

[45] Richard Stallman, Roland Pesch, and Stan Shebs. 2002. Debugging with GDB. Free Software Foundation Inc.

[46] Jean Vignes and M. La Porte. 1974. Error analysis in computing. Information Processing 30 (1974), 377–390.

[47] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen, et al. 2018. An empirical roofline method-

ology for quantitatively assessing performance portability. In Proceedings of the 2018 IEEE/ACM International Workshop

on Performance, Portability, and Productivity in HPC (P3HPC’18). 14–23.

Received 30 October 2019; revised 27 May 2022; accepted 13 July 2022

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 47. Publication date: March 2023.

