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A new adaptive finite volume method is proposed for the simulation of the wave problems in the time domain. 
The transient wave equations are discretized in time and space. A vertex-centered finite volume method is 
constructed with both cell-centered and edge-midpoint of each control volume. We then propose a mesh 
adaptation procedure based on energy-norm error-estimates, which significantly increases the efficiency of the 
method. The proposed approach is accurate in capturing the details of the scattered and diffracted waves with 
highly refined elements following the evolution of the wave patterns. This is a critical feature of the approach 
as waves can propagate in vast domains and we successfully refine the mesh only where needed. Unlike many 
other methods for evolution problems in which the differential operator is solved after each error estimation, 
the proposed approach allows for multiple adaptations of meshes within a single error estimation. This nested 
adaptive finite volume method requires only treatment of conformity in meshes for multiple adaptations which 
is dealt with using a Newest-Vertex-Bisection algorithm. Comparisons with the finite element and with reference 
solutions are considered for progressive radial waves, waves reflection and a wave scattering and diffraction 
around barriers. The proposed approach results are more efficient and highly accurate, hence, the significant 
potential when applied to the time-domain simulation of wave problems.
1. Introduction

Dealing with subsurface imaging and seismic modelling as well as 
the related inverse problems often requires recovering the wave field 
predicted by the wave equation on large computational domains and 
may involve complicated geometries. A few examples can incorpo-
rate earth curvature in long-offset crustal seismic surveys [39], the 
full-waveform inversion from irregular surfaces [7,37] and modelling 
waveforms from deviated boreholes [45]. In the vast majority of such 
applications, the wavefield can only be recovered using numerical tech-
niques. Numerical solutions of the wave equation can be achieved using 
various numerical methods, such as the finite element method (FEM) 
[44,23,28], the finite volume method (FVM) [49] and the finite differ-
ence method [40,6]. Out of these methods, the FEM is well known for 
its flexibility in dealing with complex geometries and non-homogeneous 
material properties. In the present work, we argue that the FVM which 
to an extent is a less well-known technique for solving the wave equa-
tion, can be as flexible as the FEM for solving wave problems in the 
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time domain [13]. Furthermore, we show that the FVM can bring other 
advantages into the numerical solution of the wave equation. The FEM 
is known to suffer from dispersion error when solving wave problems 
[12]. Missing to capture the accurate wavelength does not only reflect 
on the fine scale details of the solution, but it also contaminates the 
global features of the numerical solution [12]. This behavior is inten-
sively studied in the literature and is known by the pollution error [27]. 
The pollution cannot be avoided in problems with multi-spatial dimen-
sions, however, it can be reduced by either increasing the discretization 
resolution or introducing special measures into the FEM [3,14]. Indeed, 
using isogeometric analysis within the finite element framework im-
proves the pollution behavior, see for example [30]. This has motivated 
different researchers to investigate multiple aspects of the method such 
as the iterative solution of the linear system [16,15] and the boundary 
condition implementation [31] and adaptivity [43]. The improvement 
in the pollution has also been reported in the context of the boundary 
element method [10]. However, all standard computational methods 
are to some extent affected by the pollution error [25]. In this paper 
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we show that the FVM is less affected by the pollution errors compared 
to the FEM. In addition, to improve the FVM further we propose an 
adaptive approach. The proposed approach is then studied for wave 
applications with special attention paid to wave scattering and diffrac-
tion.

The finite volume method can be efficiently used for solving time-
dependent problems [47,22]. The FVM is used to approximate the 
wave-field as a set of cell/element averaged values [33]. The local val-
ues within one cell are interpolated from these averaged values. High 
accuracy spatial interpolation can be achieved using high-order poly-
nomials [20,19] while, for the time discretization, the Runge-Kutta 
schemes are often used [33]. It is shown that high accuracy can be 
achieved using the FVM on unstructured meshes when solving the wave 
problems [33,20]. High-order polynomial reconstructions are success-
fully implemented to deal with heterogeneous problems in two- and 
three-dimensional problems [49,19] and used to model vibro-acoustic 
applications [48]. The two-dimensional FVM has also been success-
fully implemented with the Roe linearization to solve nonlinear wave 
diffraction problems [42]. To quantify the uncertainty of wave propaga-
tion in a heterogeneous media the FVM is coupled with the multi-level 
Monte Carlo method [35]. Instead of transforming the wave equation 
to a first-order hyperbolic system, an upwind scheme is proposed based 
on a Riemann-type problem and it can directly deal with the second 
order system [4]. Although this has been initially implemented using 
the finite difference method but it can be equally used for finite vol-
ume approximations. Notice that the wave problems investigated in the 
present study should not be confused with wave problems governed 
by hyperbolic systems of conservation laws for which well-established 
Riemann-based solvers. Here, the hyperbolic nature of the problem is 
coming from the second-order derivative in time but the spatial deriva-
tive is still governed by the elliptic part. Furthermore, Riemann-based 
solvers require in their formulation, the eigen-structures associated with 
the problem to construct the numerical fluxes which are not available 
in the considered problem. The wave problem in this study has been 
widely solved using finite element methods and our aim is to propose 
an adaptive finite volume method solving the wave problem which 
conserves all those physical properties required when it is solved in 
conjunction with hyperbolic systems of conservation laws for mass, mo-
mentum and energy.

The efficiency of time integration schemes can be improved as the 
Butcher barrier [46]. This can be achieved by exploiting the arbitrary 
high-order derivatives approach [41] combined with the FVM. The 
resulting method has been successfully applied to wave problems on un-
structured meshes [20,49,11]. This class of finite volume methods not 
only have good conservation characteristics but also can deal with com-
plex grids. However, these methods have been developed for solving 
first-order hyperbolic systems of conservation laws and mainly imple-
mented on structured meshes using cell-centered reconstructions [13]. 
The purpose of the current study is to propose a vertex-centered fi-
nite volume method for solving wave problems for which the governing 
equations involve second-order differential operators in space and time. 
Here, the wave equation is discretized in space using a vertex-centered 
method involving both cell-centered and edge-midpoint of each con-
trol volume in its reconstruction on unstructured meshes. For the time 
integration of the associated semi-discrete system we apply the im-
plicit Newmark scheme [36]. Furthermore, the novel contribution of 
this work is the implementation of a multilevel mesh adaption proce-
dure in the proposed vertex-centered finite volume method. Here, we 
consider the flux recovery technique and error estimates in the energy 
norm as those investigated in [34,8] among others. Clearly, changing 
the quantity of interest considered in the error estimate can result into 
meaningful changes in the resulting mesh refinement [21]. It has also 
been reported in the literature that mesh labeling can have an impact 
on the refinement but in the context of fracture mechanics [29]. In the 
view of the a posteriori error estimators, a multilevel adaptive algo-
rithm is presented for solving transient wave problems accurately and 
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efficiently. Unlike many methods for evolution problems in which the 
differential operator is solved after each error estimation, the proposed 
finite volume method allows for multiple adaptations of meshes within 
a single error estimation. This nested adaptive finite volume method 
uses techniques investigated in [5,32], requires only treatment of con-
formity in meshes for multiple adaptations which is dealt with using 
the Newest-Vertex-Bisection algorithm [9]. To the knowledge of the 
authors, numerical assessment of adaptive finite volume methods for 
time-dependent wave problems is reported for the first time.

Numerical results are presented for three problems of transient wave 
problems including a progressive radial wave problem with known an-
alytical solution, a damped wave reflection and a wave scattering and 
diffraction around embedded barriers. The considered mesh adaption 
criteria accurately and efficiently approximates the solutions of these 
problems. The obtained numerical results demonstrate good resolution 
of the proposed vertex-centered finite volume method with high accu-
racy in smooth regions and without nonphysical oscillations near the 
steep gradients or extensive numerical dissipation. Further, the com-
puted results are highly accurate, hence the significant method potential 
when applied to the directions for the time-domain simulation of wave 
propagation. The problems considered here are representative examples 
for many practical time-dependent wave applications related to scatter-
ing and diffraction. Further, the results are compared with calculations 
using the finite element method on fixed meshes. The remainder of this 
paper is organized as follows. Formulation of the vertex-centered fi-
nite volume for transient wave problems is presented in section 2 and 
the mesh adaptation procedure in section 3. The implementation of the 
Newmark scheme for the time integration is discussed in section 4. 
In section 5, we examine the numerical performance of the proposed 
method using several test examples of wave propagation problems. The 
proposed method provides both high accuracy and efficiency. Final con-
cluding remarks are summarized in section 6.

2. Vertex-centered finite volume method for space discretization

We present a linear wave equation in two space dimensions which 
would be the basis of all the analysis presented in this paper. We define 
an initial boundary-value problem in Ω ⊂ ℝ2 being an open bounded 
domain with Lipschitz continuous boundary Γ evolving in [0, 𝑇 ] which 
is the time interval for the wave propagation. The problem is defined as

1
𝑐2

𝜕2𝑢

𝜕𝑡2
− ∇2𝑢 = 𝑓 (𝑡,𝐱), (𝑡,𝐱) ∈ [0, 𝑇 [×Ω, (2.1a)

𝜕𝑢

𝜕v⃗
+ ℎ𝑢 = 𝑔(𝑡,𝐱), (𝑡,𝐱) ∈ [0, 𝑇 [×Γ, (2.1b)

𝑢(0,𝐱) = 𝑢0(𝐱), 𝐱 ∈Ω, (2.1c)
𝜕𝑢

𝜕𝑡
(0,𝐱) = 𝑣0(𝐱), 𝐱 ∈Ω, (2.1d)

where 𝐱 = (𝑥, 𝑦)⊤ are the Cartesian coordinates, 𝑡 is the time variable, 
v⃗ the outward unit normal on Γ and 𝑢 the magnitude of the transverse 
electric field in the direction perpendicular to the plane of numerical do-
main while 𝑐 and ℎ are given constants. The functions 𝑓 (𝑡, 𝐱) and 𝑔(𝑡, 𝐱)
in (2.1) are the prescribed source and the boundary functions, respec-
tively. The functions 𝑢0(𝐱) and 𝑣0(𝐱) denote the given initial conditions. 
This model can be used to represent various linear electromagnetic and 
acoustic wave propagation problems [38]. For instance, applied to the 
scalar field in a transverse mode of electromagnetic wave propagation, 
it can represent an accurate and efficient solution for a short pulse 
propagating over long distances, see for example [17,18] and further 
references are therein.

For the spatial discretization of (2.1), we consider the primal and 
dual meshes ℎ and ℎ shown in Fig. 2.1, elements of ℎ are de-
noted by 𝐷𝑖. For 𝐷𝑖 ∈ ℎ, 𝑑𝐷𝑖

denotes its diameter. For each primal 
element 𝑇𝑖 we denote its three vertices by 𝑖, 𝑗 and 𝑘, its barycenter by 
𝐺 and its edges [𝑗𝑘], [𝑖𝑘] and [𝑖𝑗], respectively, by Σ𝑖, Σ𝑗 and Σ𝑘. The 
centers of these edges are denoted by 𝑚[𝑗𝑘], 𝑚[𝑖𝑘] and 𝑚[𝑖𝑗] and the as-
sociated outward normals are n⃗𝑖, n⃗𝑗 and n⃗𝑘. We denote by 𝑉𝑖 the set 
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Fig. 2.1. Illustration of the primal mesh 𝑖 (solid line) and dual mesh ℎ (dashed line) along with the notation used in the finite volume discretization.
of triangles sharing the vertex 𝑖. We also denote by 𝜎𝑖𝑗 , 𝜎𝑖𝑘 and 𝜎𝑗𝑘 the 
edges 

[
𝐺𝑚[𝑖𝑗]

]
, 
[
𝐺𝑚[𝑖𝑘]

]
and 

[
𝐺𝑚[𝑗𝑘]

]
, respectively. The associated out-

ward normals to these edges are denoted by n⃗𝑖𝑗 , n⃗𝑖𝑘 and n⃗𝑗𝑘. We also use |𝑇𝑖| and |𝜎𝑖𝑗 | to denote the area of 𝑇𝑖 and the length of 𝜎𝑖𝑗 , respectively. 
Hence, integrating the first equation in (2.1) over the dual element 𝐷𝑖

we obtain

1
𝑐2 ∫

𝐷𝑖

𝜕2𝑢

𝜕𝑡2
𝑑𝐱 − ∫

𝐷𝑖

∇2𝑢 𝑑𝐱 = ∫
𝐷𝑖

𝑓 (𝐱, 𝑡) 𝑑𝐱. (2.2)

To approximate the diffusive fluxes in (2.2), we apply the divergence 
theorem as

∫
𝐷𝑖

∇2𝑢 𝑑𝐱 = −∮
𝜕𝐷𝑖

∇𝑢 ⋅ n⃗ 𝑑𝜎,

= −
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∮
𝜕𝐷𝑖∩𝑇𝑖

∇𝑢 ⋅ n⃗ 𝑑𝜎.

Thus, the gradient ∇𝑢 is calculated at the interface 𝜕𝐷𝑖 ∩ 𝑇𝑖 as

−
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∮
𝜕𝐷𝑖∩𝑇𝑖

∇𝑢 ⋅ n⃗ 𝑑𝜎 = −
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∇𝑢 ⋅
⎛⎜⎜⎜⎝ ∮
𝜕𝐷𝑖∩𝑇𝑖

n⃗ 𝑑𝜎

⎞⎟⎟⎟⎠ ,
= −

∑
𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∇𝑢 ⋅
(|𝜎𝑖𝑗 |n⃗𝑖𝑗 + |𝜎𝑖𝑘|n⃗𝑖𝑘

)
,

=
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

1
2
∇𝑢 ⋅

(|Σ𝑘|n⃗𝑘 + |Σ𝑗 |n⃗𝑗

)
,

= −1
2

∑
𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∇𝑢 ⋅
(|Σ𝑖|n⃗𝑖

)
. (2.3)

Using the fact that the solution 𝑢 is assumed to be piecewise linear (𝑃1
in each control volume 𝑇𝑖),

∇𝑢
||||𝜕𝐷𝑖∩𝑇𝑖

≈ 1|𝑇𝑖|
((

𝑢𝑖 + 𝑢𝑗

2

)|Σ𝑘|n⃗𝑘 +
(
𝑢𝑗 + 𝑢𝑘

2

)|Σ𝑖|n⃗𝑖

+
(
𝑢𝑖 + 𝑢𝑘

2

)|Σ𝑗 |n⃗𝑗

)
,

≈ 1
2|𝑇𝑖|

(|Σ𝑖|n⃗𝑖𝑢𝑖 + |Σ𝑗 |n⃗𝑗𝑢𝑗 + |Σ𝑘|n⃗𝑘𝑢𝑘

)
.

Hence,

−
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇 ∈𝑉

∮
𝜕𝐷𝑖∩𝑇𝑖

∇𝑢 ⋅ n⃗ 𝑑𝜎
𝑖 𝑖

56
≈
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

1
4|𝑇𝑖|

(|Σ𝑖|n⃗𝑖𝑢𝑖 + |Σ𝑗 |n⃗𝑗𝑢𝑗 + |Σ𝑘|n⃗𝑘𝑢𝑘

)
⋅ |Σ𝑖|n⃗𝑖.

In each element 𝑇𝑖 with vertices 𝑖, 𝑗 and 𝑘, we denote by (𝑥𝑖, 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗 )
and (𝑥𝑘, 𝑦𝑘) the coordinates of the vertices 𝑖, 𝑗 and 𝑘, respectively. In 
what follows we provide details on the calculation of the gradient in 
(2.3) by assuming that the solution 𝑢 is a polynomial function of first 
degree in the element 𝑇𝑖 which takes the values 𝑢𝑖, 𝑢𝑗 and 𝑢𝑘 at the 
vertices 𝑖, 𝑗 and 𝑘, respectively. Thus, the solution 𝑢 in the element 𝑇𝑖
can be formulated as

𝑢(𝑥, 𝑦) = 𝜆𝑥+ 𝜇𝑦+ 𝜉,

with

𝑢𝑖 = 𝜆𝑥𝑖 + 𝜇𝑦𝑖 + 𝜉, 𝑢𝑗 = 𝜆𝑥𝑗 + 𝜇𝑦𝑗 + 𝜉, 𝑢𝑘 = 𝜆𝑥𝑘 + 𝜇𝑦𝑘 + 𝜉.

Note that this is a system of three equations with three unknowns 𝜆, 𝜇
and 𝜉. This system can be solved analytically and the gradient of 𝑢 can 
also be calculated as

𝜕𝑢

𝜕𝑥
= 𝜆 = −

𝑢𝑖
𝜓
(𝑦𝑗 − 𝑦𝑘) +

𝑢𝑗

𝜓
(𝑦𝑖 − 𝑦𝑘) −

𝑢𝑘
𝜓
(𝑦𝑖 − 𝑦𝑗 ),

𝜕𝑢

𝜕𝑦
= 𝜇 = 𝑢𝑖

(
𝜓 + (𝑥𝑖 − 𝑥𝑗 )(𝑦𝑗 − 𝑦𝑘)

𝜓(𝑦𝑖 − 𝑦𝑗 )

)
− 𝑢𝑗

(
𝜓 + (𝑦𝑖 − 𝑦𝑘)(𝑥𝑖 − 𝑥𝑗 )

𝜓(𝑦𝑖 − 𝑦𝑗 )

)
+ 𝑢𝑘

( (𝑥𝑖 − 𝑥𝑗 )
𝜓

)
,

where

𝜓 = (𝑥𝑗 − 𝑥𝑘)(𝑦𝑖 − 𝑦𝑗 ) − (𝑥𝑖 − 𝑥𝑗 )(𝑦𝑗 − 𝑦𝑘).

Note that for the case with 𝑦𝑖 = 𝑦𝑗 we use

𝜇 = 𝑢𝑖
(𝑥𝑖 − 𝑥𝑗 )

𝜓
+ 𝑢𝑗

(
𝜓 − (𝑦𝑖 − 𝑦𝑘)(𝑥𝑗 − 𝑥𝑘)

𝜓(𝑦𝑗 − 𝑦𝑘)

)
+ 𝑢𝑘

(−𝜓 + (𝑦𝑖 − 𝑦𝑗 )(𝑥𝑗 − 𝑥𝑘)
𝜓(𝑦𝑗 − 𝑦𝑘)

)
.

Hence, the gradient ∇𝑢 is approximated as

∇𝑢
||||𝜕𝐷𝑖∩𝑇𝑖

≈
(

𝜙𝑖𝑢𝑖 +𝜙𝑗𝑢𝑗 +𝜙𝑘𝑢𝑘
𝜒𝑖𝑢𝑖 + 𝜒𝑗𝑢𝑗 + 𝜒𝑘𝑢𝑘

)
, (2.4)

with

𝜙𝑖 = −
𝑦𝑗 − 𝑦𝑘

𝜓
, 𝜙𝑗 =

𝑦𝑖 − 𝑦𝑘
𝜓

, 𝜙𝑘 = −
(𝑦𝑖 − 𝑦𝑗 )

𝜓
,

and
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𝜒𝑖 =

⎧⎪⎪⎨⎪⎪⎩

𝜓 + (𝑥𝑖 − 𝑥𝑗 )(𝑦𝑗 − 𝑦𝑘)
𝜓(𝑦𝑖 − 𝑦𝑗 )

, if 𝑦𝑖 ≠ 𝑦𝑗 ,

(𝑥𝑖 − 𝑥𝑗 )
𝜓

, if 𝑦𝑖 = 𝑦𝑗 ,

𝜒𝑗 =

⎧⎪⎪⎨⎪⎪⎩

𝜓 + (𝑥𝑖 − 𝑥𝑗 )(𝑦𝑖 − 𝑦𝑘)
𝜓(𝑦𝑖 − 𝑦𝑗 )

, if 𝑦𝑖 ≠ 𝑦𝑗 ,

𝜓 − (𝑥𝑗 − 𝑥𝑘)(𝑦𝑖 − 𝑦𝑘)
𝜓(𝑦𝑗 − 𝑦𝑘)

, if 𝑦𝑖 = 𝑦𝑗 ,

𝜒𝑘 =

⎧⎪⎪⎨⎪⎪⎩

(𝑥𝑖 − 𝑥𝑗 )
𝜓

, if 𝑦𝑖 ≠ 𝑦𝑗 ,

−𝜓 + (𝑥𝑗 − 𝑥𝑘)(𝑦𝑖 − 𝑦𝑗 )
𝜓(𝑦𝑗 − 𝑦𝑘)

, if 𝑦𝑖 = 𝑦𝑗 .

Note that since the solution 𝑢 is 𝑃1 in the element 𝑇𝑖, its gradient ∇𝑢
is therefore constant in 𝑇𝑖. Thus, in each element 𝑇𝑖 the equation (2.3)
can be reformulated as∑
𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∮
𝐺𝑚[𝑖𝑗]

∇𝑢 ⋅ n⃗𝑖𝑗 𝑑𝜎 +
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∮
𝐺𝑚[𝑖𝑘]

∇𝑢 ⋅ n⃗𝑖𝑘 𝑑𝜎

=
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

(
𝜆

𝜇

)
⋅
(|𝐺𝑚[𝑖𝑗]|n⃗𝑖𝑗 + |𝐺𝑚[𝑖𝑘]|n⃗𝑖𝑘

)
.

Using the gradient approximation (2.4), the above equation becomes

−
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∮
𝐺𝑚[𝑖𝑗]

∇𝑢 ⋅ n⃗𝑖𝑗 𝑑𝜎 −
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

∮
𝐺𝑚[𝑖𝑘]

∇𝑢 ⋅ n⃗𝑖𝑘 𝑑𝜎 =

−
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

(
𝜙𝑖𝑢𝑖 + 𝜙𝑗𝑢𝑗 +𝜙𝑘𝑢𝑘

)(
𝑛𝑥𝑖𝑗𝐿𝑖𝑗 + 𝑛𝑥

𝑖𝑘
𝐿𝑖𝑘

)

−
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

(
𝜒𝑖𝑢𝑖 + 𝜒𝑗𝑢𝑗 + 𝜒𝑘𝑢𝑘

)(
𝑛
𝑦
𝑖𝑗
𝐿𝑖𝑗 + 𝑛

𝑦

𝑖𝑘
𝐿𝑖𝑘

)
,

where 𝐿𝑝𝑞 = |𝐺𝑚[𝑝𝑞]| and n⃗𝑝𝑞 = (𝑛𝑥𝑝𝑞 , 𝑛
𝑦
𝑝𝑞)⊤ such that n⃗𝑝𝑞 ⟂ 𝐺𝑚[𝑝𝑞] and 

n⃗𝑝𝑞 ⋅ 𝑝𝑞 > 0. This leads to the following linear system∑
𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

(
𝜆

𝜇

)
⋅
(|𝐺𝑚[𝑖𝑗]|n⃗𝑖𝑗 + |𝐺𝑚[𝑖𝑘]|n⃗𝑖𝑘

)
=

−
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

𝑢𝑖

(
𝜙𝑖

(
𝑛𝑥𝑖𝑗𝐿𝑖𝑗 + 𝑛𝑥

𝑖𝑘
𝐿𝑖𝑘

)
+ 𝜒𝑖

(
𝑛
𝑦
𝑖𝑗
𝐿𝑖𝑗 + 𝑛

𝑦

𝑖𝑘
𝐿𝑖𝑘

))

−
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

𝑢𝑗

(
𝜙𝑗

(
𝑛𝑥𝑖𝑗𝐿𝑖𝑗 + 𝑛𝑥

𝑖𝑘
𝐿𝑖𝑘

)
+ 𝜒𝑗

(
𝑛
𝑦
𝑖𝑗
𝐿𝑖𝑗 + 𝑛

𝑦

𝑖𝑘
𝐿𝑖𝑘

))

−
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

𝑢𝑘

(
𝜙𝑘

(
𝑛𝑥𝑖𝑗𝐿𝑖𝑗 + 𝑛𝑥

𝑖𝑘
𝐿𝑖𝑘

)
+ 𝜒𝑘

(
𝑛
𝑦
𝑖𝑗
𝐿𝑖𝑗 + 𝑛

𝑦

𝑖𝑘
𝐿𝑖𝑘

))
. (2.5)

Next, we assemble (2.5) for each element 𝑇𝑖 results in the global stiff-
ness matrix [𝐒]. Note that each row of this matrix is associated with the 
vertex 𝑖 in the mesh and at the 𝑖th row of [𝐒] it contains contributions 
of all elements with common vertex 𝑖.

Next, we formulate the mass matrix in the finite volume discretiza-
tion (2.2). Hence,

∫
𝐷𝑖

𝑢 𝑑𝐱 =
∑

𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

⎛⎜⎜⎜⎝ ∫
𝐷𝑖∩𝑇𝑖

𝑢 𝑑𝐱
⎞⎟⎟⎟⎠ =

∑
𝑇𝑖∩𝐷𝑖≠∅,
𝑇𝑖∈𝑉𝑖

⎛⎜⎜⎜⎝ ∫
𝑖𝑚[𝑖𝑗]𝐺

𝑢 𝑑𝐱 + ∫
𝑖𝐺𝑚[𝑖𝑘]

𝑢 𝑑𝐱
⎞⎟⎟⎟⎠ . (2.6)

At the points 𝑚[𝑖𝑗] and 𝐺,

𝑢(𝑚[𝑖𝑗]) =
1 (

𝑢𝑖 + 𝑢𝑗
)
, 𝑢(𝐺) = 1 (

𝑢𝑖 + 𝑢𝑗 + 𝑢𝑘
)
.

2 3
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Thus, the first integral term in (2.6) is approximated as

∫
𝑖𝑚[𝑖𝑗]𝐺

𝑢 𝑑𝐱 = 1
3
|𝑖𝑚[𝑖𝑗]𝐺| (𝑢𝑖 + 1

2
(𝑢𝑖 + 𝑢𝑗 ) +

1
3
(
𝑢𝑖 + 𝑢𝑗 + 𝑢𝑘

))
,

= 1
3
|𝑖𝑚[𝑖𝑗]𝐺| (11

6
𝑢𝑖 +

5
6
𝑢𝑗 +

1
3
𝑢𝑘

)
. (2.7)

It is straightforward to verify that

⃗𝑖𝑚[𝑖𝑗] =
1
2
𝑖𝑗, ⃗𝑖𝐺 = 2

3
⃗𝑖𝑚[𝑗𝑘], ⃗𝑖𝑚[𝑗𝑘] = 𝑖𝑘+ 1

2
𝑘𝑗.

Hence,

|𝑖𝑚[𝑖𝑗]𝐺| = 1
2
‖‖‖‖12 𝑖𝑗 ∧ 2

3

(
𝑖𝑘+ 1

2
𝑗𝑘
)‖‖‖‖ = 1

12
‖‖‖𝑖𝑗 ∧ 𝑘𝑗

‖‖‖ = 1
6
|𝑇𝑖|,

and the approximation (2.7) becomes

∫
𝑖𝑚[𝑖𝑗]𝐺

𝑢 𝑑𝐱 =
|𝑇𝑖|
18

(11
6
𝑢𝑖 +

5
6
𝑢𝑗 +

1
3
𝑢𝑘

)
.

Similarly, the second integral term in (2.6) is approximated by

∫
𝑖𝐺𝑚[𝑖𝑘]

𝑢 𝑑𝐱 = 1
3
|𝑖𝐺𝑚[𝑖𝑘]| (𝑢𝑖 + 1

2
(𝑢𝑖 + 𝑢𝑘) +

1
3
(
𝑢𝑖 + 𝑢𝑗 + 𝑢𝑘

))
,

= 1
3
|𝑖𝐺𝑚[𝑖𝑘]| ( 116 𝑢𝑖 +

5
6
𝑢𝑗 +

1
3
𝑢𝑘

)
. (2.8)

Again, using the fact that

⃗𝑖𝑚[𝑖𝑘] =
1
2
𝑖𝑘,

|𝑖𝐺𝑚[𝑖𝑘]| = 1
2
‖‖‖‖12 𝑖𝑘 ∧ 2

3
(𝑖𝑗 + 1

2
𝑗𝑘)

‖‖‖‖ = 1
12

‖‖‖𝑖𝑘 ∧ 𝑘𝑗
‖‖‖ = 1

6
|𝑇𝑖|,

the approximation (2.8) becomes

∫
𝑖𝑚[𝑖𝑗]𝐺

𝑢 𝑑𝐱 =
|𝑇𝑖|
18

(11
6
𝑢𝑖 +

1
3
𝑢𝑗 +

5
6
𝑢𝑘

)
,

and the approximation of the integral in (2.6) is reduced to

∫
𝑖𝑚[𝑖𝑗]𝐺

𝑢 𝑑𝐱 + ∫
𝑖𝐺𝑚[𝑖𝑘]

𝑢 𝑑𝐱 = =
|𝑇𝑖|
18

( 11
3
𝑢𝑖 +

7
6
𝑢𝑗 +

7
6
𝑢𝑘

)
. (2.9)

The mass matrix [𝐌] can be assembled using the above element matri-
ces in the same manner as performed for the stiffness matrix. It should 
be noted that, unlike most of cell-centered finite volume methods where 
the assembled mass matrix is diagonal, the mass matrix in the pro-
posed vertex-centered finite volume is dense. In general, cell-centered 
methods lead to many more degrees of freedom than vertex-centered 
methods on unstructured meshes.

3. Mesh adaptation procedure

To increase the efficiency of the proposed vertex-centered finite 
volume method we consider a mesh adaptation technique based on a 
posteriori error estimates. This class of error estimators can be used 
to locally refine the mesh and subsequently minimize the discretiza-
tion errors with an optimal computational cost for wave problems with 
sharp gradients and propagating fronts. The error estimates preserve 
the main properties of an optimal estimator as upper bound of the com-
puted solution, robustness and local efficiency among others. Similar 
error estimates have been widely studied in the literature in both finite 
element and finite volume discretizations, see for instance, [2,26,1]. In 
the present study, error estimators adapted for the wave problems are 
based on a locally postprocessed approximate solution preserving the 
conservative flux. Let 𝑢ℎ denote the numerical solution of the system 
(2.1) obtained at 𝑡 = 𝑡𝑛, and ℎ be a (fine) simplicial mesh obtained from 
the associated dual mesh ℎ, see Fig. 3.1 for an illustration. The approx-
imate flux −∇𝑢ℎ is constant by element and satisfies the local conser-
vation but it does not belong to 𝐇(div, Ω) = {𝐰 ∈ 𝐋2(Ω); ∇ ⋅ 𝐰 ∈ 𝐋2(Ω)}
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Fig. 3.1. Construction of the flux 𝜃𝐡 by direct prescription.
defined as the space of functions with square-integrable weak diver-
gences. Then, we carry out a flux correction starting from the numerical 
solution by defining a flux 𝜃𝐡 ∈𝐇(div, Ω) which approximates the exact 
flux and verifies(
∇ ⋅ 𝜃𝐡,1

)
𝐷𝑖

= (𝑓,1)𝐷𝑖
, in each control volume 𝐷𝑖 ∈ℎ,

where (⋅, ⋅)𝐷𝑖
denotes the 𝐿2-scalar product on 𝐷𝑖. We choose the 

method of direct prescription to reconstruct 𝜃𝐡 in the lowest-order 
Raviart-Thomas-Nédélec space 𝐑𝐓𝐍(ℎ) which is included in the space 
𝐇(div, Ω), see [26,1] for more details on the reconstruction of 𝜃𝐡 . For 
instance, on the sub-triangle 𝑖𝐺1𝑚[𝑖𝑗], the following system

𝜃𝐡 ⋅ n⃗1 = −∇𝑢ℎ ⋅ n⃗1,

𝜃𝐡 ⋅ n⃗2 = −1
2

(
∇𝑢ℎ|𝑇1 ⋅ n⃗2

)
− 1

2

(
∇𝑢ℎ|𝑇2 ⋅ n⃗2

)
,

𝜃𝐡 ⋅ n⃗3 = −∇𝑢ℎ ⋅ n⃗3,

is solved. Once the flux solution 𝜃𝐡 is computed, the following a poste-
riori estimator is established

|||𝑢− 𝑢ℎ||| ≤( ∑
𝐷𝑖∈ℎ

(𝜂𝑅,𝐷𝑖
+ 𝜂𝐷𝐹 ,𝐷𝑖

)2
) 1

2

, (3.1)

where ||| ⋅ ||| is the energy norm defined as |||𝑢|||2 ∶= ||∇𝑢||2Ω, 𝜂𝐷𝐹 ,𝐷𝑖
the 

diffusive flux estimator and 𝜂𝑅,𝐷𝑖
the residual estimator given by

𝜂𝐷𝐹 ,𝐷𝑖
= ||∇𝑢ℎ + 𝜃𝐡||2𝐷𝑖

, 𝜂𝑅,𝐷𝑖
∶=𝑚𝐷𝑖

||𝑓 −∇ ⋅ 𝜃𝐡||2𝐷𝑖
,

where 𝑚𝐷𝑖
is a computable constant depending on the diameter of the 

dual element 𝐷𝑖 and the wave celerity. 𝑚𝐷𝑖
is defined as 𝑚2

𝐷𝑖
= 𝐶𝑃 𝑑

2
𝐷𝑖
∕𝑐, 

with 𝐶𝑃 = 1∕𝜋2. Here, the a posteriori error estimate (3.1) is used as an 
error indicator along with a given tolerance to adapt the mesh accord-
ingly. For the mesh adaptation, we combine the techniques investigated 
in [9,5] to develop an efficient adaptive finite volume method for tran-
sient wave problems. First, we proceed by refining the mesh using the 
adaptive algorithm from [5]. Then, the Newest-Vertex-Bisection algo-
rithm proposed in [9] is used for the mesh conformity. It should be 
noted that there is no more refinement propagation using this com-
bined algorithm compared to the other conventional mesh adaptation 
techniques as those studied in [5,32]. It should be stressed that the so-
lution is known in the vertex of the primal triangle 𝑇𝑖 and the estimator 
is computed by interpolation in the dual mesh 𝐷𝑖 which is obtained by 
dividing the primal triangle in six sub-triangles.

In the current study, the adaptation procedure is carried out using 
four steps namely (i) solve the wave problem, (ii) calculate the error es-
timates, (ii) mark the selected elements, and (iii) refine or/and coarsen 
the current mesh. Hence, given a tolerance 𝜖, and let 𝐸𝑠𝑡𝑖𝑚(𝑇𝑖) denote
the normalized error estimate on 𝑇𝑖, if 𝐸𝑠𝑡𝑖𝑚(𝑇𝑖) satisfies the following 
condition in 𝑇𝑖

𝐸𝑠𝑡𝑖𝑚(𝑇𝑖) ≤ 𝜖,
58
then the element 𝑇𝑖 is divided into 4 triangles. Multiple refinements 
can be added by introducing a series of tolerances 𝜖𝑚 with 0 = 𝜖0 <

𝜖1 < ⋯ < 𝜖𝑚 < 𝜖𝑚+1 = 1 and 𝑚 ≥ 3. If a macro-element 𝑇𝑖 satisfies the 
condition

𝜖𝑚 ≤𝐸𝑠𝑡𝑖𝑚(𝑇𝑖) ≤ 𝜖𝑚+1, 𝑚 = 0,1,… ,

then 𝑇𝑖 is divided into 4𝑚 triangles. Note that the values of {𝜖1, … , 𝜖𝑚}
can be interpreted as tolerances to be set by the user resulting into 
a multilevel adaptive procedure. The procedure used in our study for 
mesh adaptation is based on multilevel refinements and unrefinements 
allowing the reconstruction of adaptive meshes which dynamically fol-
low the solution of our problem under study. The algorithm begins 
by calculating the error estimates to make the refinement and unre-
finement decisions. Later, we reconstruct a list  of elements to be 
refined, their degree of refinement, and those to be unrefined in the 
computational domain. This step is achieved by filling an integer ar-
ray denoted for example by  for all triangles of the coarse mesh. At 
the current time 𝑡 = 𝑡𝑛, and for a macro-element 𝑇𝑖, we set (𝑇𝑖) = 𝑚

which means that the element 𝑇𝑖 has to be divided into 4𝑚 trian-
gles at the next time 𝑡 = 𝑡𝑛+1. Hence, starting from a mesh level 𝑟, 
made of 𝑁𝑟 elements, the next mesh level contains 𝑁𝑟+1 = 4 × 𝑁𝑟 el-
ements. It is clear that this procedure can be repeated as long as 𝑟 <𝑀

with 𝑀 is the total number of refinement levels. In order to obtain a 
mesh with minimum distortion, the procedure opts to divide into two 
equal parts certain number of edges in the elements to be refined. In 
Fig. 3.2 we illustrate the procedure for a two-level refinement of tri-
angular elements. The numbers in this figure refer to the number of 
refinements to be performed for each sub-triangle. Once the division of 
triangles is done, we proceed to the conformity of the mesh using the 
Newest-Vertex-Bisection method as follows: for each triangle marked 
from the primary mesh, a particular edge, called the refinement edge, 
is selected. The marked element is divided into two new elements by 
connecting the middle point of the refinement edge to the opposite 
vertex, which reduces its volume while keeping some regularity of the 
mesh.

In summary, the adaptive procedure presented in this study starts 
by computing the error estimates on a fixed coarse mesh. Then, mark-
ing the nodes concerned by the refinement process using the provided 
tolerances. Next, the interval is split into subintervals which give the 
decision on how many times each cell of the reference mesh should be 
divided. This procedure satisfies the condition that the current level of 
refinement for the neighboring cells cannot be higher than one. At this 
stage, the conformity is ensured by the Newest-Vertex-Bisection algo-
rithm as illustrated in Fig. 3.2. After a given number of iterations, the 
new criterion is computed on the reference mesh and a new refined 
mesh is created. An interpolation procedure is used to transfer the so-
lutions from the old mesh to the new refined mesh. These algorithmic 
steps are summarized in Algorithm 1.
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Fig. 3.2. Illustration of a two-level refining for triangular elements. The numbers in the figure refer to the number of refinements to be performed for each 
sub-triangle.
Algorithm 1 Adaptive procedure used in the present study.
Require: 𝑅𝑒𝑓 maximum level of refinements
Require: 𝐿𝑒𝑣 number of multilevel refinements
1: for 𝑘 = 1 ∶𝑅𝑒𝑓 do

2: Create the mesh data structures
3: Compute the numerical solution
4: Calculate the error estimator
5: Set the criteria of adaptivity
6: for 𝑙 = 1 ∶𝐿𝑒𝑣 do

7: Preform the mesh refinement using the adaptive procedure
8: Ensure the conformity using the Newest-Vertex-Bisection algorithm
9: Mark the new triangles created to be refined

10: end for

11: end for

4. Time integration

The semi-discretized equations of an initial-value problem of the 
form (2.2) can be rewritten in a common notation as

[𝐌]
{
�̈�
}
+ [𝐂]

{
�̇�
}
+ [𝐊] {𝐔} = {𝐅} , (4.1)

where [𝐌] represents the mass matrix, [𝐂] the damping matrix, [𝐊]
the stiffness matrix, {𝐔} the nodal solution vector and {𝐅} the exter-
nal force vector at time 𝑡. A superposed dot over a quantity denotes its 
derivative with respect to time. Numerical time integration of the sys-
tem (4.1) is often carried out using a Newmark time stepping scheme 
[36]. To discrete the time domain, the time interval is divided into small 
subintervals [𝑡𝑛, 𝑡𝑛+1] with stepsize Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 for 𝑛 = 0, 1, … . We use 
the notation 𝐖𝑛 to denote the value of the solution 𝐖(𝑡) at time 𝑡 = 𝑡𝑛. 
The Newmark scheme is based on the following approximations{
𝐔𝑛+1} = {𝐔𝑛} +Δ𝑡

{
�̇�𝑛

}
+ Δ𝑡2

2
(
(1 − 2𝛽)

{
�̈�𝑛

}
+ 2𝛽

{
�̈�𝑛+1}) ,{

�̇�𝑛+1} =
{
�̇�𝑛

}
+ (1 − 𝛾)Δ𝑡

{
�̈�𝑛

}
+ 𝛾Δ𝑡

{
�̈�𝑛+1} , (4.2)

where 𝛾 and 𝛽 are the Newmark parameters which determine the sta-
bility and accuracy characteristics of the integration scheme under con-
sideration. The Newmark method is unconditionally stable when 𝛾 is 
greater than 12 and 𝛽 is greater than ( 12 + 𝛾)2∕4. The most widely used 
choice is 𝛾 = 1

2 and 𝛽 = 1
4 , which is unconditionally stable and it does 

not introduce any artificial damping into the solution. This choice is also 
adopted in the present study. For the solution 𝐔𝑛+1 at time 𝑡 = 𝑡𝑛 + Δ𝑡, 
the equilibrium system is recurrently solved as[
𝐊∗]{𝐔𝑛+1} =

{
𝐅∗} , (4.3)

where the effective stiffness matrix [𝐊∗] and effective force vector {𝐅∗}
are defined by[
𝐊∗] = [

1
𝛽Δ𝑡2

[𝐌] + 𝛾

𝛽Δ𝑡
[𝐂] + [𝐊]

]
,

{
𝐅∗} = {𝐅𝑛} +

[
1

2 [𝐌] + 𝛾 [𝐂]
]
{𝐔𝑛}
𝛽Δ𝑡 𝛽Δ𝑡
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+
[

1
𝛽Δ𝑡

[𝐌] +
(
𝛾

𝛽
− 1

)
[𝐂]

]{
�̇�𝑛

}
+

[
1 − 2𝛽
2𝛽

[𝐌] − Δ𝑡
(
1 − 𝛾

2𝛽

)
[𝐂]

]{
�̈�𝑛

}
.

In summary, Algorithm 2 presents the steps used by the Newmark 
scheme for the time integration. Note that most of the computational 
effort is required by the solution of the linear system (4.3). Here, the 
system matrix may be decomposed at each adaptive step and retained 
to be reused with just updating the right-hand side of the linear sys-
tem of equations at all the following time steps within the fixed mesh. 
In our simulations on fixed meshes, the matrix is decomposed into an 
𝐋𝐔𝐋⊤ factorization, then the solution is reduced to backward/forward 
substitutions after updating the right-hand side vector at every time 
step.

Algorithm 2 Newmark scheme for the time integration.
1: Assemble the finite volume matrices [𝐌] and [𝐊].
2: Define the damping matrix [𝐂].
3: for 𝑛 = 0 do

4: The initial solutions {𝐔0} and {�̇�0} are given. Calculate the initial acceleration 
as

{
�̈�0} = [𝐌]−1

{
{𝐅} − [𝐂]

{
�̇�0}− [𝐊]

{
𝐔0}} .

5: Calculate the integration constants

𝑏1 =
1

𝛽Δ𝑡2
, 𝑏2 = − 1

𝛽Δ𝑡
, 𝑏3 =

2𝛽 − 1
2𝛽

,

𝑏4 = 𝛾Δ𝑡𝑏1 , 𝑏5 = 1 + 𝛾Δ𝑡𝑏2 , 𝑏6 = Δ𝑡
(
1 + 𝛾𝑏3 − 𝛾

)
.

6: Form the constant matrices

[
𝐊∗] = 𝑏1 [𝐌] + 𝑏4 [𝐂] + [𝐊] ,

[
𝐀1

]
= 𝑏1 [𝐌] + 𝑏4 [𝐂] ,[

𝐀2
]
= 𝑏2 [𝐌] + 𝑏5 [𝐂] ,

[
𝐀3

]
= 𝑏3 [𝐌] + 𝑏6 [𝐂] .

7: Calculate the inverse matrix [𝐊∗]−1 .
8: end for

9: for 𝑛 = 0, 1, 2, … do

10: Calculate the effective force

{𝐅∗} = {𝐅𝑛} +
[
𝐀1

]
{𝐔𝑛} −

[
𝐀2

]{
�̇�𝑛

}
−
[
𝐀3

]{
�̈�𝑛

}
.

11: Update the new solution

{
𝐔𝑛+1} =

[
𝐊∗]−1 {𝐅∗}.

12: Update the new velocity and acceleration solutions as

{
�̇�𝑛+1} = 𝑏4

({
𝐔𝑛+1}− {𝐔𝑛}

)
+ 𝑏5

{
�̇�𝑛

}
+ 𝑏6

{
�̈�𝑛

}
,{

�̈�𝑛+1} = 𝑏1

({
𝐔𝑛+1}− {𝐔𝑛}

)
+ 𝑏2 {𝐔𝑛} + 𝑏3

{
�̈�𝑛

}
.

13: end for
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Table 5.1

Results for 𝐿1-error and 𝐿2-error obtained for the propagation of a radial wave using FEM and FVM at the time 𝑡 = 0.5 on different meshes.

Mesh # ele # node FEM

𝑘 = 2𝜋 𝑘 = 4𝜋

𝐿1-error q 𝐿2-error q 𝐿1-error q 𝐿2-error q

ℎ1 787 431 1.28E-02 — 1.40E-02 — 6.22E-02 — 6.73E-02 —
ℎ 1

2
1541 830 6.59E-03 0.958 7.14E-03 0.971 3.52E-02 0.821 3.73E-02 0.851

ℎ 1
4

3134 1639 3.30E-03 0.997 3.57E-03 0.999 1.60E-02 1.137 1.73E-02 1.108

ℎ 1
8

6269 3259 1.71E-03 0.948 1.84E-03 0.956 7.94E-03 1.011 8.64E-03 1.002

Mesh # ele # node FVM

𝑘 = 2𝜋 𝑘 = 4𝜋

𝐿1-error q 𝐿2-error q 𝐿1-error q 𝐿2-error q

ℎ1 787 431 1.13E-02 — 1.36E-02 — 5.72E-02 — 6.49E-02 —
ℎ 1

2
1541 830 4.86E-03 1.217 5.74E-03 1.245 2.28E-02 1.324 2.60E-02 1.317

ℎ 1
4

3134 1639 1.85E-03 1.391 2.20E-03 1.380 8.21E-03 1.476 9.32E-03 1.482

ℎ 1
8

6269 3259 6.70E-04 1.467 8.05E-04 1.454 2.20E-03 1.896 2.54E-03 1.875
5. Results and examples

A number of numerical examples are selected to illustrate the ac-
curacy of the new adaptive vertex-centered unstructured finite volume 
method introduced in the above sections. In the first example, we focus 
on the advantages of the method compared to the standard finite ele-
ment method using fixed meshes. Then, we examine the performance 
of the proposed adaptive approach in a problem of wave propagation 
in a domain without and with embedded barriers where the waves scat-
ter, diffract and reflect. For the evaluation of adaptive results, reference 
solutions are generated using very fine fixed meshes. In all the simu-
lations presented in this section, we used 𝑐 = 1 and ℎ = 1 in the wave 
problem (2.1) and fixed time steps Δ𝑡. In principle, no limits are re-
quired for the time step Δ𝑡 as the Newmark scheme is implicit by 
reconstruction and unconditionally stable. Therefore, the selection of 
time steps in our simulations is mainly carried out based on the ac-
curacy purposes and not on stability restrictions. It should be noted 
that although the FVM and the FEM can have similar flexibilities in 
dealing with complex geometries and/or heterogeneous domains, the 
FVM remains to be a less popular choice for solving wave problems. 
Only limited comparisons are available in the literature between the 
two methods for the solution of the wave problem (2.1). The second ex-
ample is used for the numerical assessment of the mesh adaptation used 
in FVM for solving wave propagations. All the computations were per-
formed on an Intel® Core(TM) i7-7700HQ CPU @ 2.80 GHz with 8 GB 
of RAM.

5.1. Propagation of a radial wave

In the first test case we aim to recover a circular wave that is propa-
gating from the origin of the coordinate system towards the infinity as 
studied in [17]. The exact solution of this wave problem is defined by

𝑢exact (𝑡, 𝑥, 𝑦) = exp (𝑘𝑟−𝜔𝑡),

where 𝑟 is the radial coordinate defined by 𝑟 =
√
𝑥2 + 𝑦2. We aim to 

recover the wave inside a unit squared computational domain Ω =
[1, 2] × [1, 2]. To avoid any errors resulting from artificial boundary 
conditions we impose the analytical solution on the boundary Γ using 
the conditions (2.1b). The initial conditions (2.1c) and (2.1d) are also 
evaluated using the analytical solution. The angular frequency in this 
example is fixed at 𝜔 = 2𝜋 while two different wavenumbers, namely, 
𝑘 = 2𝜋 and 𝑘 = 4𝜋 are considered. The relative error norms 𝐿1-error and 
𝐿2-error for the numerical solution are evaluated at time 𝑡𝑛 as
60
𝐿1-error =
∫
Ω

|||𝑢𝑛ℎ − 𝑢𝑛exact
||| 𝑑𝐱

∫
Ω

|||𝑢𝑛exact ||| 𝑑𝐱 , 𝐿2-error =

⎛⎜⎜⎝∫Ω
|||𝑢𝑛ℎ − 𝑢𝑛exact

|||2 𝑑𝐱⎞⎟⎟⎠
1
2

⎛⎜⎜⎝∫Ω
|||𝑢𝑛exact |||2 𝑑𝐱⎞⎟⎟⎠

1
2

,

where 𝑢𝑛exact and 𝑢𝑛
ℎ

are, respectively, the exact and numerical solutions 
at a gridpoint 𝐱ℎ and the time 𝑡𝑛.

First the domain is discretised with an unstructured mesh into 787 
linear triangular elements and 431 nodes. Then three consecutive mesh 
refinements are applied. The resulting four meshes are referred to as ℎ1
for the first mesh and ℎ 1

2
, ℎ 1

4
ℎ 1

8
for the refinements. The total num-

ber of elements and nodes are listed in Table 5.1 for individual meshes. 
The four meshes are used to solve the problem for the two considered 
wavenumbers using the FEM. The same meshes are used to solve the 
problem again but using the FVM. The considered timestep size in all 
the computations is Δ𝑡 = 0.005. Table 5.1 summarizes the 𝐿2-error and 
𝐿1-error for both FEM and FVM at the instant 𝑡 = 0.5. Table 5.1 also 
includes the convergence rate 𝑞 for each method obtained for the con-
sidered mesh refinements. The results in this table show that the FVM 
consistently outperform the FEM in terms of errors and convergence 
rates. In all the presented results using the same mesh, the FVM always 
leads to smaller errors. Note that since linear elements are considered 
in these simulations the expected FEM convergence rate is 1. The re-
sults show that the actual FEM convergence rate is slightly smaller than 
1 in most cases which could be attributed to the nature of the manu-
factured solutions and the values of wavenumbers used. However, the 
FVM convergence rate is consistently larger than 1 and in the case of 
𝑘 = 4𝜋 and ℎ 1

8
the convergence rate is 𝑞 ≈ 1.9. The results in this section 

show the potential saving in the number of degrees of freedom that can 
be achieved when using the proposed FVM in solving wave problems. 
This is particularly important in this class of problems as in general 
wave problems require a large number of degrees of freedom especially 
at high wave numbers.

5.2. Wave reflections in a rectangular domain

To study the performance of the proposed adaptive approach we 
next consider a vertical Gaussian pulse in a rectangular domain. The 
pulse will result in two vertical Gaussian plane waves moving from the 
pulse center towards the domain ends without creating any further os-
cillations. The plane waves then hit the domain sides and reflect inward 
to meet again. Note that, for the adaptive approach to be successful it 
needs to refine the mesh only where sharp gradients at high-amplitude 
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Fig. 5.1. Reference solutions obtained for the wave reflections in a rectangular domain using the FVM on the reference mesh with 238555 elements and 120037 
nodes at three different times 𝑡 = 2, 5 and 7.

Fig. 5.2. Results obtained for the wave reflections in a rectangular domain using FEM (first row) and FVM (second row) on a fixed coarse mesh with 15761 nodes 
at three different times 𝑡 = 2, 5 and 7.
waves are detected in the computational domain at the current time, 
otherwise coarse elements are enough to resolve the constant parts of 
the solution. These wave features are very interesting to check the accu-
racy of the criteria (3.1) considered in this study for mesh adaptation in 
the finite volume solution of time-dependent wave reflections. Hence, 
the aim in this example is to validate the ability of the proposed adap-
tive approach to accurately capture and closely follow the correct wave 
locations in the domain. The problem is also solved using the linear fi-
nite elements to be compared to the proposed FVM on fixed meshes. 
The FVM is then used together with the proposed mesh adaptation 
procedure and comparisons to results obtained using fixed meshes are 
presented. Here, the considered computational domain is defined as a 
rectangle Ω = [0, 2] × [0, 1] and a damping term is added to the dynamic 
system (4.1) as

[𝐂] = 𝜎 [𝐌] .

In our simulations, the wave speed 𝑐 and the damping coefficient 𝜎 are 
assumed to be constants as 𝑐 = 1 and 𝜎 = 0.1. The pulse is centered at 
𝑥0 = 0.8, its width is 𝛿 = 0.05 and reflective conditions are imposed on 
the domain boundary Γ, so that a wave is fully reflected if it hits the 
boundary. The initial conditions producing the pulse are given as

𝑢0(𝑥, 𝑦) = exp

(
−
(
𝑥− 𝑥0

)2
𝛿2

)
, 𝑣0(𝑥, 𝑦) = 0. (5.1)

First, a coarse mesh of 31024 linear elements and a total of 15761 
nodes, is used in both the FEM and the FVM. The first mesh is referred 
to as Mesh 1. This is then repeated with Mesh 2 composed of 62073 el-
ements and 31419 nodes. Next, the adaptive FVM is used starting from 
a coarse initial mesh of 4438 elements and 2316 nodes. We consider 
single-level, two-level and three-level adaptive procedure using the tol-
erances 𝜖1 = 0.25, 𝜖2 = 0.5 and 𝜖3 = 0.75. To validate these solutions a 
reference solution is also computed using a highly refined fixed mesh of 
61
238555 elements and 120037 nodes. In all these cases, a small time step 
Δ𝑡 = 5 ×10−3 is considered and the simulations are carried out for the fi-
nal time 𝑡 = 7. It should be noted that the time step Δ𝑡 is chosen so small 
such that the time integration errors are minimized in the reference so-
lution level. For the consistency in the compared results, the same time 
step Δ𝑡 is also used in the other considered meshes. Fig. 5.1 exhibits the 
snapshots of the reference solutions obtained at three different instants 
𝑡 = 2, 𝑡 = 5 and 𝑡 = 7. As expected the pulse initiated at 𝑡 = 0 in 𝑥 = 0.8
splits into two wavefronts, one moving to the left and the other to the 
right end of the domain with the speed 𝑐 = 1. The wavefronts hit the do-
main vertical sides and reflect back to merge into a single wave at 𝑡 = 2
in 𝑥 = 1.2 which can be clearly seen in the results shown in Fig. 5.1. The 
wavefronts pass each other moving in opposite directions to hit the do-
main ends and reflected again to meet at the initial pulse location i.e.
in 𝑥 = 0.8 at 𝑡 = 4. This pattern is then repeated every 4 time units un-
til the pulse is damped away in the computational domain. It is clear 
that the dynamics of the solution is correctly recovered using the FVM 
on the reference mesh.

Fig. 5.2 compares solutions obtained using the FEM to those ob-
tained using the FVM both on the fixed Mesh 1. It is clear that both 
methods seem to recover the problem dynamics on the considered 
mesh. However, the FEM seems to also recover a shadow of non-
physical oscillations following each wavefront in the computational 
domain. The shadow becomes longer and more pronounced as the 
simulation continues which it can be seen when comparing the solu-
tion snapshots at 𝑡 = 5 and 𝑡 = 7 in Fig. 5.2. Furthermore, at 𝑡 = 7 the 
wavefront seems to be contaminated with numerical errors so that the 
wavefront does not remain straight as expected. When compared to 
the FEM solution, we can see that the FVM solution follows a similar 
pattern. However, the FVM seems to lead to a higher accuracy as the 
shadow region seems to be shorter than in the FEM solutions. In ad-
dition, the FVM solution at 𝑡 = 7 seems to be more stable where the 
wavefront remains visually straight in the computational domain. In 
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Fig. 5.3. Results obtained for the wave reflections in a rectangular domain using FEM (first row) and FVM (second row) on a fixed fine mesh with 31419 nodes at 
three different times 𝑡 = 2, 5 and 7.

Fig. 5.4. Adaptive meshes obtained for FVM solving the wave reflections in a rectangular domain using single-level adaptation (first row), two-level adaptation 
(second row) and three-level adaptation (third row) at three different times 𝑡 = 2, 5 and 7.
Fig. 5.3 we repeat the same comparisons between both methods but on 
the Mesh 2 formed with about double nodes and elements of Mesh 1. 
The same observations made on the previous figure are still correct in 
general for the computed solutions. However, and as expected, the er-
ror seems to be reduced using both FEM and FVM on the considered 
fixed meshes. Again one may observe that the errors computed using 
the FVM remain smaller compared to those computed using the FEM.

To evaluate the performance of the proposed adaptive FVM for this 
wave problem, we illustrate in Fig. 5.4 the adaptive meshes obtained 
with each adaptive level at the same instants as those displayed in 
Fig. 5.1. For a better insight, the refinement produced by each adap-
tive level is shown with a different color. Notice that all adaptive levels 
are initialized starting from the same mesh composed of 4438 elements 
and 2316 nodes. The mesh is then refined at every timestep based on 
62
the proposed adaptive algorithm according to single-level, two-level 
and three-level adaptations using the selected tolerances. The number 
of nodes and elements in each of the considered three levels and at the 
considered instants 𝑡 = 2, 5 and 7 are summarized in Table 5.2. It should 
be also noted that, due to the criterion used for the mesh adaptivity in 
this study, no regularization processes as those widely used in finite el-
ement methods are needed. Fig. 5.4 demonstrates that the mesh is only 
refined at the right location of the Gaussian waves and coarse elements 
are used elsewhere. As the waves propagate, the refined parts of the 
mesh travel as well and closely follow the location of the wavefronts. 
Moreover, when moving from the single-level to two-level adaptations, 
the mesh is refined further in the area close to the center of the wave. 
This is a reasonable behavior as the considered waves have steeper gra-
dients closer to the center. Indeed this behavior is also observed when 
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Table 5.2

Mesh statistics obtained for the adaptive FVM solving the wave reflections in a rectangular domain at three different times using single-level, two-level and three-level 
procedures. The CPU times are given in seconds.

𝑡 = 2 𝑡 = 5 𝑡 = 7

# nodes # elements CPU # nodes # elements CPU # nodes # elements CPU

Single-level 4159 8093 8.80 5705 11160 28.70 5677 11101 40.03
Two-level 7253 14258 15.71 14401 28471 77.75 12321 24341 107.72
Three-level 9911 19546 21.15 22212 42065 121.44 22663 44973 179.81

Fig. 5.5. Cross-sections of the numerical solutions for the wave reflections in a rectangular domain at 𝑦 = 0.5 obtained using FEM on fixed meshes (first row) and 
FVM on fixed and adaptive meshes (second row) at three different times 𝑡 = 2, 5 and 7.
switching from two-level to three-level adaptations where the mesh is 
only refined closer to the center line. Note that one could consider not 
to run the adaptation for each time step but in longer time windows 
to reduce the computational cost. This is possible in our implementa-
tion but we decided to run it for each time step for two reasons: (i) to 
demonstrate the potential of the proposed techniques, and (ii) to avoid 
missing wave patterns which may occur in those longer time windows 
in the adaptivity.

To have a better insight into the problem, we show in Fig. 5.5 cross-
sections of the computed solutions at 𝑦 = 0.5 and at the same instants 
considered before i.e. 𝑡 = 2, 5 and 7. Here, we also present the results 
obtained by the FEM along side with those obtained using the proposed 
FVM on fixed meshes and those obtained using FVM on adaptive meshes 
using single-level, two-level and three-level adaptive procedures. Note 
that both sets of results are plotted against the reference solution. The 
FEM results exhibit a clear deviation from the reference solution. It is 
also clear from these cross-section plots that the results on the fixed 
Mesh 1 are significantly less accurate than the reference solutions when 
compared to those results obtained on the finer fixed Mesh 2. Neverthe-
less, both meshes generate non-physical oscillations in the wave shadow 
regions and underestimate the wave amplitudes. This behavior becomes 
more pronounced when the solution progresses in time. Similarly the 
FVM on fixed meshes seems to lead to spurious oscillations and am-
plitude underestimation but the oscillations are of a smaller magnitude 
and the underestimation is also less significant than those in the FEM re-
63
sults. However, this behavior is largely reduced when considering FVM 
on adapted meshes using the single-level and two-level adaptive proce-
dures. It is also worth mentioning that no stabilization techniques have 
been used in the FEM. In addition, considering the three-level adaptive 
procedure, it can be seen that the computed results practically match 
those of the reference solutions. These results are possible despite the 
significant reduction in the total number of degrees of freedom from 
about 120000 in the reference solution to around 23000 in the results 
obtained using the three-level adaptive procedure. Indeed the number 
of degrees of freedom can be much less in the adaptive approach at 
𝑡 = 2 as the two wavefronts merge together into one wave and the num-
ber of degrees of freedom reduces to less than 10000 as can be seen in 
Table 5.2.

5.3. Wave scattering and diffraction

Our last example is the same as the previous example but two thin 
rectangular barriers forming a narrow gap are included in the com-
putational domain so that the wave is scattered by the plates and is 
diffracted around the gap. As for the external boundaries, homoge-
neous Neumann conditions are also imposed on the internal barriers. 
It should be noted that these obstacles represent a major challenge for 
numerical methods such as the FEM and FVM due to the singularities 
appeared at the barriers corners. Furthermore, capturing detailed struc-
tures of the wave scattering and diffraction at the narrow gap requires a 
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Fig. 5.6. Coarse fixed mesh (left), fine fixed mesh (middle) and initial adaptive mesh (right) used for the wave scattering and diffraction.

Fig. 5.7. Results obtained for the wave scattering and diffraction on the coarse mesh (first column), on the fine mesh (second column) and on the adaptive mesh 
(third column) at four different times. From top to bottom 𝑡 = 0.2, 0.4, 0.65 and 1.
highly refined mesh. Similar to the previous problem, the same compu-
tational domain is considered again Ω = [0, 2] × [0, 1]. The wave speed, 
the damping coefficient and the time step are also unchanged i.e. 𝑐 = 1, 
𝜎 = 0.1 and Δ𝑡 = 10−3. However, we now consider a shorter wave width 
𝛿 = 0.009. It should be noted that a similar problem has been solved in 
[24] using a Runge-Kutta time stepping scheme.

In our simulations for this test example we only consider the adap-
tive FVM using three-level adaptive procedure using the tolerances 
𝜖1 = 0.25, 𝜖2 = 0.5 and 𝜖3 = 0.75. The initial mesh to be used in the 
adaptation is selected to be coarse composed of 4546 nodes and 8732 
elements. For a comparison reasons, we also present numerical results 
obtained using the FVM on two fixed meshes. The first mesh is rela-
tively coarse but much finer than the previous one used as initial mesh 
for the adaptation and it is composed of 15604 nodes and 30552 ele-
ments while, the second fixed mesh is highly refined and composed of 
64
31017 nodes and 61027 elements, see Fig. 5.6 for an illustration of these 
meshes. The obtained solutions using the considered fixed and adaptive 
meshes are shown in Fig. 5.7 for four different instants 𝑡 = 0.2, 0.4, 0.65 
and 1. The obtained adaptive meshes at the corresponding instants are 
illustrated in Fig. 5.8. As it can be seen from the wave solutions in 
Fig. 5.7, the results obtained using the adaptive FVM with three-level 
adaptive procedure are significantly more accurate than those obtained 
using the FVM on fixed meshes. The spurious oscillations detected in 
the solution obtained on the coarse fixed mesh and to an extent on 
the fine fixed mesh completely disappear in those results obtained us-
ing adaptive meshes. As expected, the two generated waves propagate 
in the computational domain generating complex patterns once reach-
ing the two obstacles. These wave patterns are very well captured by 
the proposed adaptive finite volume method and the small wave fea-
tures at the gap between the two barriers are also well resolved using 
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Fig. 5.8. Adaptive meshes obtained for the wave scattering and diffraction at the four considered times. From top to bottom 𝑡 = 0.2, 0.4, 0.65 and 1.
Table 5.3

Mesh statistics and computational costs obtained for the adaptive FVM solv-
ing the wave scattering and diffraction at four different times the three-level 
procedure.

# nodes # elements CPU time (in minutes)

𝑡 = 0.2 29749 15143 1.732
𝑡 = 0.4 32345 16464 3.276
𝑡 = 0.65 43941 22294 4.712
𝑡 = 1 53938 27290 6.508

our method. Here, the initial mesh is intentionally selected to be suffi-
ciently coarse, being composed of 31024 elements only. At early times 
of the simulation, the wave dispersion zone is small so that elements 
with large aspect ratio are not generated in the adapted meshes. No-
tice that small elements are needed in the gap area in order to capture 
the diffraction of the wave and its scattering. These results also exhibit 
the scattered waves formed by the reflection against the obstacles move 
back in the wave direction. The scattering of the waves around the ob-
stacles and the gap zone can also be identified in the adapted meshes 
in Fig. 5.8. It is also evident that the considered adaptive mesh proce-
dure is capable to capture the complex features of the wave with a high 
level of accuracy. For instance, the comparison with results reported 
in [24] for a similar problem shows that the proposed adaptive finite 
volume method is able to predict complex wave interactions with high 
accuracy.

To quantify the results for this test problem we summarize in Ta-
ble 5.3 the mesh statistics and the CPU times for the considered adaptive 
meshes using the three-level adaptive procedure at the four considered 
times 𝑡 = 0.2, 0.4, 0.65 and 1. As would be expected, the denser the mesh 
the greater the accuracy of the numerical predictions and the computa-
tional effort required. Furthermore, the simulations carried out on the 
adaptive meshes are of the same order of accuracy as those on the fine 
mesh despite the fact that the adaptive mesh uses significantly fewer 
degrees of freedom. For the considered wave conditions, using the er-
ror estimate (3.1) in the adaptive criteria seems to guarantee a high 
accuracy and efficiency in the computed results. Computational results 
obtained for the considered wave problems reveal that simulations us-
ing the proposed adaptive finite volume method are more accurate than 
those using fine fixed meshes. In addition, the developed adaptation 
procedure gives encouraging results, with global errors always smaller 
than those obtained by uniformly refining the whole mesh.
65
6. Conclusions

We proposed a new vertex-centered unstructured finite volume 
method for solving two-dimensional time-domain wave problems on 
adaptive meshes. The new method incorporates the combination of a 
vertex-centered finite volume for the space discretization and an im-
plicit Newmark scheme for the time integration. As a criterion for the 
mesh adaptation, we used an error estimator in the energy norm and 
multilevel adaptive procedures have been implemented. The proposed 
vertex-centered finite volume method is suitable for complex geome-
tries, independent of the sizes and arrangement of the mesh elements, 
and it can be performed using time steps larger than those required for 
its explicit counterparts. In addition, the proposed method is simple, sta-
ble and eliminates the numerical difficulties related to the fine spatial 
discretization required to capture the solution structures in wave prob-
lems. Numerical results for examples of wave propagation, reflection, 
scattering and diffraction show that the method provides very accu-
rate results. A comparison to the conventional finite element method 
and other reference solutions shows the capabilities of the current 
vertex-centered finite volume method to solve the time-dependent wave 
problems. Moreover, the presented results demonstrate the capability 
of the adaptive vertex-centered finite volume method to provide in-
sight to complex wave features. It has been shown that the proposed 
adaptive vertex-centered unstructured finite volume method enjoys the 
computational advantages and achieves accurate solutions for wave 
propagations. For a future work we aim to extend the work presented 
here to solving the transient wave equations in three space dimensions 
using unstructured tetrahedral meshes. Moreover, to further improve 
the efficiency of the proposed method, it will also be of interest to 
develop space-time adaptivity and investigate enriching the approxi-
mation space with oscillatory basis functions.

Data availability

Data will be made available on request.
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