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Abstract 
Understanding the structural parameters of crystals during crystal growth is essential for the pharmaceutical and chemical industries. This study 
proposes a new method for 3D images of crystals obtained with micro X-ray computed tomography. This method aims to improve the crystal 
segmentation compared to the watershed methods. It is based on plane recognition at the surface of the crystals. The obtained segmentation 
is evaluated on a synthetic image and by considering the recognized particle number and convexity. The algorithm applied to three samples 
(potassium alum, chromium alum, and copper sulfate) reduced oversegmentation by 87% compared to watershed based on ultimate erosion 
while keeping the convexity of the recognized particle. 
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Introduction 
Understanding the structural parameters of crystals during 
growth is essential for the pharmaceutical and chemical indus-
tries. The crystal growth process determines properties of the 
final compound, such as its stability, facies, size distribution, 
and the polymorphism of crystals. In the pharmaceutical in-
dustry, crystals’ shape can also affect the solubility, compati-
bility, and flow ability of bulk powders (Wang et al., 2008). 
All of these facts can impact product uniformity, dissolution, 
or bioavailability and therefore impact the safety and efficacy 
of the drugs (Turner et al., 2020). X-ray computed tomog-
raphy (XCT) is a nondestructive imaging technique that al-
lows the reconstruction of a sample in three dimensions, 
rotating through 360°, from radiographic projections 
(Thiery, 2015). The X-rays passing through the sample are at-
tenuated (Kramers, 1923) and impregnate the detector to form 
an X-ray projection. These projections are recorded for a com-
plete rotation. The greyscale X-ray image obtained at the de-
tector is then recorded. Based on all these projections, a 
back-projection algorithm is used to provide volume density 
information (3D reconstruction) (Flannery et al., 1987), 
where the grey levels of the reconstructed image reflect a local 
density. We can then access the differences in composition and 
the presence of heterogeneities (pores, inclusions, etc.) within 
the sample. XCT has been used to study packing structures 
and determine topological quantities (size, distribution, con-
tact numbers, contact angle distributions, and even contact 
surfaces) (Reimann et al., 2017). In the pharmaceutical indus-
try, XCT has been used for the study of crystal powder, for ex-
ample, to characterize the crystal powder microstructure 
(Gajjar et al., 2020) or to measure the particle packing of 
pharmaceutical design (Turner et al., 2020). In these studies 

(Gajjar et al., 2020; Turner et al., 2020), XCT images are an-
alyzed using a conventional watershed particle segmentation 
algorithm (Meyer & Beucher, 1990; Vincent & Soille, 
1991). These analyses allow the volume, shape, and size distri-
bution of particles in the crystal powder to be described. 
Nevertheless, specific image analysis methods must be (i) de-
veloped to study crystals to increase the accuracy of particle 
detection and (ii) be specifically relevant to the analysis of crys-
tals. In particular, an accurate segmentation technique must be 
applied for particle recognition (Munch et al., 2006) and en-
hanced by considering specific morphological information of 
the crystals. Classic watershed segmentation methods 
(Meyer & Beucher, 1990; Vincent & Soille, 1991) that use dis-
tance map local minima as markers generally lead to overseg-
mentation (supernumerary detection of particles). A marker 
selection step reduces the number of segmented objects but re-
quires the use of parameters based on the admissible objects’ 
minimum sizes. These techniques may fail to identify oblong 
objects with several local minima (or even continuous lines 
of local minima for cylindrical objects or a plane of local min-
ima for flat objects). Moreover, crystals can present structures 
for which the distance map local minima, obtained by calcu-
lating the ultimate erosion, can be multiple for the same object, 
leading to oversegmentation. Moreover, even if crystals are 
theoretically convex, in reality, 3D XCT crystal objects con-
tain slight concavity due to surface irregularities or to inclu-
sions. The concavities can create, locally, small objects 
within the same crystal. Finally, applying a conventional 
watershed algorithm to crystal images would result in exces-
sive particle segmentation. Several approaches have been de-
veloped to avoid the oversegmentation due to the use of the 
watershed: (i) Beucher (1994) suggests computing a watershed 
transform on an image derived from the original image. The 
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method relies on the fact that the gradient values are lower in-
side a region than between two regions. This method allows 
the reduction of oversegmentation from classical watershed 
with no free parameters. (ii) Another approach is proposed 
by Faessel & Jeulin (2010). This is based on the calculation 
of the probability density function (pdf) of the points of be-
longing to the contours of the watershed. The segmentation 
is obtained by applying a flat zone labelling on the pdf. Here 
too, the method reduces oversegmentation without having to 
supply markers. The segmentation is obtained with no param-
eter. (iii) Munch et al. (2006) present a computational proced-
ure to segment particles from 3D volumes (in their case, 
acquired with focused ion beam–nanotomography). The 
method is an enhanced watershed approach for 3D particle 
segmentation. In this method, the oversegmentation is con-
trolled through a free parameter (k-value) for accurate object 
recognition. The method is developed to be specifically valu-
able for analyzing granular textures. It is based on a suitable 
segmentation technique associated with correct particle recog-
nition. This modified watershed technique tolerates some con-
cavities on the particle surfaces. As we are looking to analyze 
crystals, the segmentation methodology can be enhanced by 
considering crystal properties. Crystals are solid in which the 
constituents are regularly combined, and their surfaces are 
mostly planar. Watershed segmentation can be improved us-
ing these properties. 

The aim of this work was to develop a methodology to im-
prove crystal analysis by XCT. Crystal automatic segmenta-
tion enables the quantification of the different crystal 
typologies and fine characterization of their size distribution. 
The method is based on watershed segmentation and plane 
recognition. We propose a novel algorithm: to individualize 
crystals from 3D tomographic images and to efficiently separ-
ate aggregated crystals. This image analysis method adapted 
to crystal specificity should be sufficiently robust to study crys-
tal processing and formation. The methodology is based on 
crystal face identification and classic 3D volume segmentation 
of aggregates. The final crystal segmentation is then evaluated 
by analyzing the distribution of crystal shapes. We will study 
the crystals formed by three different chemical species formed 
under different crystallization conditions. Potassium alum 
[potassium aluminum sulfate dodecahydrate—K(SO2)2 

12(H2O), Al(SO2)2 12(H2O)], chromium alum [potassium 
chromium sulfate dodecahydrate—Cr(SO2)2 12(H2O), 
Al(SO2)2 12(H2O)], and copper sulfate (CuSO4 5H2O) are 
chosen for these experiments as they are readily available 
and present different crystal shapes. 

Materials and Methods 
Chemicals and Preparation 
Three chemical species were chosen for the experiment, and 
saturated solutions were made with them: (i) potassium 
alum (double sulfate of potassium and aluminum dodecahy-
drate, 99.5% purity, Fisher Scientific) at 60°C, (ii) chromium 
alum (double sulfate of potassium and chromium dodecahy-
drate, 99% purity, Fisher Scientific) at 55°C, and (iii) copper 
sulfate pentahydrate (CuSO4 5H2O) at 60°C (99% purity, 
Fisher Scientific). Distilled water was used for solution prepar-
ation. The solutions were placed in a test tube (Fig. 1a) in 
which three cotton yarns were installed for crystals to grow 
on them and to prevent crystals from falling to the bottom 
of the tube. Figure 1a presents a schema of the test tubes 

that were used for the experiment. The solution was cooled 
down to room temperature to let the alum recrystallize. An ex-
ample of crystals is presented in Figure 1b. 

X-Ray Computed Tomography 
Micro-CT scans were performed with an EasyTomXL150 
“Mechanic Ultra” microtomograph (RX Solutions, France) 
to determine the crystal structure in the test tube. An X-ray at-
tenuation higher than the liquid region characterizes the crys-
tals due to its structure. Scans were performed at 103 and 
172 mA. The number of radiographic projections was 1120, 
which corresponds to an angle step between projections of 
0.32°. To increase the signal to noise ratio, each tomographic 
projection was obtained by means of 3 successive images for 
the same angular position. The total scan time was approxi-
mately 30 min. The voxel size achieved under these conditions 
was 32 µm (x = y = z), and the region of interest (ROI) was 
1437 × 1392 × 1437 mm (x × y × z). The obtained 3D volume 
consists of voxels characterized by their greyscale value (GSV) 
ranging from 0 to 65,535 for a 16-bit image, depending on the 
X-ray attenuation of the sample. An increase in the GSV cor-
responds to higher X-ray attenuation. The 16-bit images are 
converted to 8-bit images characterized by a GSV ranging 
from 0 to 256. Figure 2a shows an example of a greyscale im-
age obtained with XCT of a potassium alum sample. The fig-
ure is a cut orthogonal to the tube axes. Afterward, the 
greyscale images were converted to binary images (Fig. 2b) 
representing the crystals. The conversion was performed by 
applying a noise filtering process, followed by a threshold op-
eration. Noise filtering was carried out by applying a nonlocal 
mean denoising filter with a sigma value of 15 and a smooth-
ing factor of 1. The solid phase (crystals) was separated from 
the liquid phase by thresholding the greyscale image. 
The threshold value used for the binarization was obtained us-
ing the Shanbhag method (Shanbhag, 1994). The black part of 
the image is the solid phase (crystals), and the white part is the 
liquid phase. The method provides a binary 3D image made of 
voxel. The solid surface is meshed using the marching cubes al-
gorithm (Lorensen & Cline, 1987) with the same threshold 

Fig. 1. Test tube used for XCT: (a) diagram of the test tube with the three 
cotton yarn; (b) photo of a crystalized potassium alum sample.   



value that was used to separate the solid and liquid phases. 
The marching cubes algorithm scans the 3D image; for each 
group of 8 voxels defining a cube, the polygons of the mesh 
to be created (if there is a polygon to create) are determined. 

The novelty of this study is to propose a new method to ana-
lyze the obtained 3D binary images. The general principle of 
the method we developed is to apply the Münch segmentation 
method and merge the obtained particles that share a face (or 
several faces). Indeed, if two particles share the same face, they 
belong to the same crystal. It is then necessary to identify the 
crystal faces (i.e., flat surface) in the 3D images. Therefore, 
we will present the following: (i) the particle identification 
with the Münch segmentation method, (ii) the face recognition 
algorithm, (iii) crystal segmentation that consists of merging 
particles that share a face, and (iv) evaluation criteria of the 
obtained results which describe particle convexity. 

Particle Identification 
On one hand, the initial segmentation (before merging par-
ticles that share a face) must give at least one particle per crys-
tal (i.e., no undersegmentation) to ensure that each crystal can 
be recognized separately after the merge. On the other hand, 
the method should not produce too much oversegmentation 
or the merging step will not be able to correctly reconstruct 
the crystals. The Munch et al. (2006) method was preferred 
to the Beucher (1994) method as it is more suitable for granu-
lar texture analysis, especially as the crystals have a similar 
greyscale value. Therefore, touching crystals will be merged 
with the Beucher method and this will result in undersegmen-
tation. The Münch method was also preferred to the Faessel & 
Jeulin (2010) method as it allows shorter computational time. 
In addition, the Münch method has a free parameter, the 
k-value, which allows the control of the initial segmentation. 
The interest of such a control here is to ensure that there is 
no undersegmentation and also to prevent too much overseg-
mentation. In addition, the Münch et al. method allows for 
concavities on the crystals’ surfaces. The method consists of 
four steps to identify the individual particles: (i) a distance 
map D(x, y, z) is obtained using a Euclidean distance trans-
form, (ii) the image mask is eroded iteratively by increasing 
the eroding distance dj (j denotes the iteration number), and 
(ii) at each iteration, a particle pi (i denotes the particle index) 

is divided in two or more particles pi1 and pi2 if some fragmen-
tation constraints are met [Eq. (1)], 

dj < k · rpi1 and dj < k · r pi2 , (1) 

where r pi is the maximum distance from the interior of the par-
ticle pi to the surface boundaries. k is a control parameter be-
tween 0 and 1 that can be set for proper fragmentation 
regulation, thereby allowing an appropriate segmentation to 
be achieved. (iv) Eroded particles are reconstructed by dilating 
them back to the original boundaries. The number of segmen-
tations increases with the k value, and the limit value of k = 1 
corresponds to the watershed segmentation using ultimate 
erosion calculation (this limit will be named watershed ultim-
ate in this paper). An example of the obtained segmented im-
age is presented in Figure 3 for different values of the k 
parameter. 

Face and Crystal Identification 
Planar surface recognition in 3D images has been widely stud-
ied to identify planes in point clouds (Hulik et al., 2014). 
Three main methods have been studied for 3D point clouds: 
region growing (Poppinga et al., 2008), Hough transform 
(Hough, 1962), and random sample consensus (RANSAC) 
(Fischler & Bolles, 1987). Hulik et al. (2014) present an ana-
lysis of the main methods used in the literature for plane rec-
ognition: (i) The Hough transform algorithm (Hough, 1962) 
allows arbitrary parameterized shapes (lines, circle, plane, 
etc.) to be recognized in point cloud but is more time consum-
ing than the other method. (ii) RANSAC (Fischler & Bolles, 
1987) is a nondeterministic algorithm and thus allows model 
fitting without trying all possibilities. The main concept is to 
randomly select a minimal subset to define the model and to 
check which elements of the entire dataset are consistent 
with the model. For plane detection (Schnabel et al., 2007), 
random planes (passing through three randomly selected 
points) are evaluated. A score function is used to determine 
how good the model fits the remaining points. The score takes 
into account the number of points close enough to the plane. 
A plane with the best score is taken as a winner. (iii) Region 
growing algorithms start with a seed region and grow it to 
its neighborhood when the neighbors satisfy some conditions. 

Fig. 2. Example of a cut in the 3D images obtained with XCT: (a) Original gray image and (b) binary image.   



Region growing algorithms are rapid when there are many 
planes to extract but need an organized 3D point cloud in 
which neighbors of every point are known. Here, the solid sur-
face is meshed [with the marching cubes algorithm (Lorensen 
& Cline, 1987)]; therefore, plane detection can be performed 
on mesh cells rather than on point cloud. In this way, a modi-
fied region growing algorithm can be applied as neighbors of 
each cell are known. Plane identification is applied to the sur-
face mesh of the solid phase. The mesh consists of a set of tri-
angles. The nodes, normal of triangles, and each triangle’s 
neighbors are known (for each triangle, we compute the list 
of triangles that share almost one node with the considered tri-
angle). A first step of the algorithm consists of computing the 
triangle’s normals. The values of the normals are smoothed by 
taking into account the normals of adjacent triangles. The ob-
jective is to denoise the surfaces obtained by the marching 
cubes methodology. Indeed, the mesh can present irregular-
ities on the flat surfaces. For that, node normals are computed 
as the average of the adjacent triangle normals. The face nor-
mals are recomputed as the average of the normal of the nodes 
that make up the face. Then, planes are identified and labeled 
using region growing techniques. Starting from a first triangle 
of the mesh, the face is constructed by iteratively adding neigh-
boring triangles, checking a coplanarity criterion, to the face. 
Each time a triangle is added to the face being labeled, the 
average normal of this face is updated. The normal of the 

face is used in the coplanarity test, which allows a new triangle 
to be added if the angular deviation between this triangle and 
the face is below a given threshold. Once the propagation is 
stopped, a new unlabeled triangle is used to constitute a new 
face. Once all the triangles are labeled, a face fusion step is 
used to group the adjacent faces through a new coplanarity 
criterion. The faces are previously sorted according to their 
surface area. The fusion of the faces begins with the faces of 
the larger surface area, supposed to represent the facets of 
the crystals. The new coplanarity criterion is based on two 
conditions: the slight angular deviation between the two adja-
cent faces and the small distance of the center of gravity of the 
face to be merged with the plane of the face. Once the faces 
have been identified, each labeled node is associated with the 
nearest crystal voxel. Thus, labeling the faces allows a map 
of voxels whose labels correspond to the faces to be obtained. 
In the last phase, too small faces are eliminated. The face 
detection algorithm is dependent on the starting point. 
Indeed, the first point determines the first normal. For this 
reason, this normal is recalculated during propagation. That 
reduces the dependence on the starting point. The dependence 
on the starting point is also smoothed when in a second step; 
the surfaces are merged based on the coplanarity criterion. For 
this merging step, the planes are classified by size, which also 
minimizes the impact of the starting point. Finally, only the 
largest surfaces are kept (using a minimal size criterion). The 

Fig. 3. Segmentation of the object made of a combined sphere according to the value of parameter k from Munch et al. (Munch et al., 2006) method 
[inspired from (Munch et al., 2006)]: (a) k = 0.4, (b) k = 0.5, (c) k = 0.7, and (d) k = 0.8.   



largest surfaces resulting from merging different surfaces are 
not too dependent on the starting point, unlike small surfaces, 
potentially resulting from a first aberrant normal. Figure 4 
shows an example of the result of the face recognition algo-
rithm: the algorithm has been applied to a 3D computer syn-
thetic image. The 3D image is presented in Figure 4a; it is 
made of 11 unarranged octahedra, and the number of planes 
to detect is 88 (eight per octahedra). The algorithm gives a 
good identification of the crystals’ faces: exactly 88 faces are 
recognized (Fig. 4). As shown in Figure 4b, the algorithm en-
ables the crystal surface to be constructed. However, the meth-
ods are not sufficient to construct the crystals’ 3D models. 
Indeed, faces do not entirely close the crystals: contact faces 
between two crystals are not recognizable. 

Crystal Segmentation 
The 3D crystal models are constructed by merging particles 
from the Münch et al. method in contact with the same plane. 
The method consists first in identifying for each face the par-
ticles in contact. The volumes in contact with the same face 
are merged, and the interconnection graph that allows for 
the identification of the other faces in contact with these ob-
jects is then updated. The voxels of faces are necessarily voxels 
of crystal particles, which facilitate the search for particles in 
contact with the faces. First, the method is tested on a synthetic 
image. The same image as for the plane recognition validation 
is used. Then, the method is applied to a real sample and eval-
uated with two criteria: the number of recognized particles 
and the convexity of the particles. The number of recognized 
particles is used to evaluate the oversegmentation (the object-
ive is to not recognize too many particles). The convexity is 
used to evaluate the undersegmentation (too few particles). 
Unlike a particle describing a single crystal, a unique particle 
that describes a cluster of crystals will not be convex. 
Therefore, a good segmentation should give the minimum 
number of particles while keeping the recognized particle 
convex. 

Convexity of the Recognized Particle 
The convexity of recognized particles is used as a criterion to 
evaluate the method. We defined the convexity rate of the par-
ticle as the ratio of the particle’s convex hull volume to the par-
ticle’s volume. The particle’s convex hull is the smallest convex 
envelope that contains the particle. Then, the convexity rate 
describes the difference between the recognized particle and 
an ideal particle. The convexity rate is between 0 and 1, and 
the closer the value is to one, the more convex is the particle. 
The convex hull of each particle is determined to compute the 
convexity rate. The convex hull is computed using the quick 
hull algorithm (Barber et al., 1996). The implementation of 
this algorithm is done using CGAL (The Computational 
Geometry Algorithms Library) (Alliez & Fabri, 2016). The 
quick hull algorithm gives a mesh of the convex hull. The vol-
ume of the convex hull is computed by determining if the 3D 
image voxels are inside or outside of the hull. 

Shape of the Recognized Particles 
The equivalent diameter (De) is used to describe the particle 
size. It is defined as the diameter of the sphere having the 

same volume as the particle [Eq. (2)], 

De = 2 ·
3
4
·
Vp

π

􏼒 􏼓1
3

, (2) 

with Vp being the particle volume. 
The equivalent diameter gives information about particle 

sizes but does not describe the particles’ shape. Therefore, 
the lengths of the covariance ellipsoid axes are computed to 
evaluate the particles’ shape. These lengths correspond to 
the square root of the covariance matrix eigenvalue. The ratio 
of the two minor axes on the major axe length named (Ra and 
Rb) is used to describe the shapes. Gajjar et al. (2020) suggest 
using another metric to describe the shape: the particles’ spher-
icity. Sphericity (S) describes the proximity between an ob-
ject’s shape and a sphere. It is defined as the ratio between 
the surface of a sphere of the same volume as the object and 
the surface of the object (Ap) [Eq. (3)], 

S =
π1

3(6Vp)
2
3

Ap
. (3)  

Results and Discussion 
Evaluation of the Crystal Segmentation 
First, the algorithm is tested on a synthetic image; the image of  
Figure 4 is used again. It consists of a stack of 11 octahedrons. 
The problem related to the use of a computer-generated image 
is that the image is completely filled (with no inclusions), and 
surfaces are perfect (perfectly flat with no concavities), though 
we note that it is possible for computer-generated images to 
exhibit grains with rough or concave boundaries (Figliuzzi, 
2019). The Münch et al. algorithm applied to this image leads 
directly to the correct segmentation. Therefore, a small num-
ber of concavities are added inside the volume. Twenty-two 
of the 2,240,380 solid voxels are changed to liquid voxels to 
form individual cavities. These cavities in the solid phase can 
be observed in the real images. They correspond to liquid in-
clusions, to the cotton yarn, or due to weak contrast voxels. 
The cavities additions lead to oversegmentation with the 
method of Münch et al. Indeed, their algorithm recognized 
59 particles, while 11 crystals are on the image. The result 
of the Münch segmentation is presented in Figure 5a (3D im-
age) and Figure 5b (cross-section view). The algorithm devel-
oped for this study (named crystal recognition algorithm) has 
been applied on the same image. The result is presented in  
Figure 5c (3D image) and Figure 5d (cross-section view). 
The crystal recognition algorithm recognized 11 particles. 
This number corresponds to the number of crystals to identify. 
Validation of segmentation is a difficult task for which the hu-
man eye is an effective tool. Figure 5 images clearly show the 
improvement obtained with the crystal recognition algorithm. 
The oversegmentation from Münch et al. can be seen in  
Figures 5a and 5b. In contrast, the particles identified by the 
crystal segmentation algorithm, shown in Figures 5c and 5d, 
fit well with the crystals. Therefore, the recognition ability of 
the crystal recognition algorithm is validated on the computer- 
generated image. 

XCT was performed on three samples of crystallized 
solution. The first sample was potassium alum, the second, 
chromium alum, and the third, copper sulfate. Particle identi-
fication was performed with three algorithms: watershed  



ultimate algorithm, the Münch et al. algorithm, and the crystal 
recognition algorithm. Figure 6 presents the number of recog-
nized particles and the mean particle convexity obtained with 
the three algorithms applied to the potassium alum sample ac-
cording to the value of the k parameter. The right axis, de-
scribing the number of particles, has a logarithmic scale. 
Increasing the value of k leads to an increase in the number 
of recognized particles while reducing the convexity ratio. 
When the k value approaches 1, the number of particles 

increases very quickly, corresponding to oversegmentation. 
A proper segmentation algorithm should give the minimum 
number of particles with the highest convexity ratio. The value 
of k equal to 0.98 was selected because it allows for an import-
ant reduction of the number of particles compared to the max-
imum value of 1, and it corresponds to the convexity ratio 
maximum. Results are similar for the two other samples; 
therefore, the k value of 0.98 has also been used on these sam-
ples. For a small k value (under 0.9), the crystal segmentation 

Fig. 4. 3D image of a pile of 11 unarranged octahedra. (a) 3D mesh of the image: it contains 88 faces. (b) Plane identified with the plane recognition 
algorithm. Eighty-eight planes are recognized in the 3D image.  

Fig. 5. Particle recognition on a 3D synthetic image (pile of 11 unarranged octahedra). Each color represents a recognized particle. Münch et al. algorithm 
result: (a) 3D visualization and (b) view of a cut plane. Crystal recognition algorithm result: (c) 3D visualization and (d) view of a cut plane.   



does not merge any particle as the recognized particles from 
Münch et al. are too big and already correspond to at least 
one crystal. Therefore, for these k values, the results of the 
Münch et al. method and crystal segmentation algorithm are 
the same. For the optimal k value of 0.98, the number of par-
ticles recognized with the crystal recognition algorithm is ap-
proximately 25% lower than the number recognized with 
the Münch et al. method. However, the convexity rate ob-
tained with the crystal recognition algorithm remains really 
close to the value obtained with the Münch et al. method inde-
pendently of the k value. Finally, the crystal recognition algo-
rithm allows the number of recognized particles to be 
significantly reduced, and the conservation of the convexity 
ratio allows us to conclude that the algorithm does not merge 
different crystals, i.e., the particles are merged in the same 
crystals, reducing oversegmentation. 

Figure 7 shows the segmentation obtained with the crystal 
segmentation algorithm applied to the three samples.  
Figure 7 shows the front view of 3D images of potassium 
and chromium alum. For copper sulfate, the top view is pre-
sented, as the large number of crystals mask the segmented 
crystals. The crystal structure can be identified in the 3D im-
age: potassium and chromium alum crystalize in the shape 
of truncated octahedrons, which is the typical form in 
which these species crystalize in, and copper sulfate forms 
elongated crystals. Potassium and chromium form a small 
number of big crystals while copper sulfate forms a large num-
ber of smaller crystals which explains the choice of these com-
pounds chosen to test the developed algorithm. 

The segmentation presented in Figure 8 appears to describe 
crystals correctly. The convexity ratio distribution is used to 
quantify the performance of the method. It has been computed 
on the particles obtained with the Münch et al. method and the 
crystal recognition algorithm applied to the three samples. The 
distribution of convexity is presented in Figure 8. Particles ob-
tained on the same sample with the Münch et al. algorithm 
and the crystal recognition algorithm have a very similar con-
vexity distribution. The maximum absolute difference be-
tween the concavity obtained with the two algorithms on a 
same sample is 2.5% although it is mostly below 1% except 

for two values. At least 50% of the particles have a convexity 
rate higher than 0.9, and 90% of them have a convexity rate 
higher than 0.7. Conservation of convexity between the two 
algorithms means that the new algorithm does not produce 
more undersegmentation (too few particles). Therefore, the re-
duction of particle number while keeping the convexity re-
flects a better description of the crystals. Finally, the high 
convexity of recognized particles and the similarity between 
the convexity of particles from the Münch et al. method and 
the method presented in this paper allow us to validate the 
merging method that has been developed. 

Crystal Size and Structures 
The purpose of the crystal segmentation algorithm is to separ-
ate individual crystals to compute metrics on them. In particu-
lar, the size and shape of crystals are important regarding their 
physical properties. Based on the crystal segmentation, the 
particle diameter distributions were calculated and expressed 
in terms of cumulative volume (Q3). For practical applica-
tions, it can be easier to use the characteristic equivalent diam-
eter Dn than the complete distributions: such a metric 
corresponds to the cell diameter for which n% of the volume 
distribution has smaller cell sizes and (100−n)% has larger 
cell sizes (Petlitckaia et al., 2021). The cumulative value Q3 
for the potassium alum sample is presented in Figure 9. 
Watershed ultimate led to the smallest particle size, due to 
oversegmentation: D10, D50, and D90 values are half of those 
obtained with the crystal segmentation algorithm. The Münch 
et al. method reduces oversegmentation; therefore, crystal size 
is increased compared to the watershed method. The crystal 
segmentation algorithm gives a bigger particle size than other 
algorithms, especially as the number of small particles is re-
duced compared to the Münch method. 

Table 1 summarizes the shape, the size, and the structure 
metrics that have been computed on the recognized crystals. 
The number of crystals recognized by the crystal recognition 
algorithm is significantly lower than the number obtained 
with the Münch et al. method: the number of recognized par-
ticles is reduced by 29, 39, and 12% for potassium alum, 

Fig. 6. Result of recognition particle algorithms applied to the potassium alum sample. Mean value of the convexity ratio according to the k parameter (left 
axis) and number of recognized particle according to the k parameter (right axis).   



chromium alum, and copper sulfate, respectively. Therefore, 
crystals recognized with the crystal recognition algorithm 
are bigger than the ones recognized by the Münch et al. meth-
od. In the same way, as seen for the potassium alum sample in  
Figure 9, the D10 value increases significantly (around 20%) 
while D50 and D90 values remain almost unchanged. This in-
dicates that the algorithm mainly merges the small particles to 
big particles. 

Potassium alum and chromium alum have similar size distri-
butions (D50 ≈ 4.4 mm). They also have a similar shape which 
is indicated by a similar sphericity value (S ≈ 0.5) and similar 
equivalent ellipse shape (Ra ≈  0.6 and Rb ≈  0.5). Indeed, there 

are two similar components that have been prepared similarly. 
Copper sulfate crystals are smaller than potassium and chro-
mium alum crystals (D50 ≈ 1.6 mm). Copper sulfate crystals 
form elongated crystals which are seen in Figure 7c. This shape 
corresponds to a small sphericity value (S ≈ 0.36) and elon-
gated equivalent ellipse (Ra ≪ 1 and Rb ≫ 1). Crystal recogni-
tion algorithm allows the shape description to be improved, 
especially for long crystals such as copper sulfate crystals. 
Indeed, the sphericity value is reduced for the copper sulfate, 
especially that the ratio Ra and Rb is reduced by a factor of 
4. This is explained by the fact that the Münch et al. algorithm 
tends to fragment long crystals. 

Fig. 7. 3D images presenting the crystal segmentation applied on XCT images: (a) potassium alum—front view, (b) chromium alum—front view, and (c) 
copper sulfate—top view.   



Conclusion 
In this study, we developed a new method specific to crystal 
recognition in 3D images obtained with XCT. The method 
is based on a particle segmentation algorithm coupled with 
a plane recognition algorithm. Particles that share the same 
face are part of the same crystal. This new method has been 

validated on a synthetic image (crystals + defects) and com-
pared to other recognition methods. It shows a good seg-
mentation of crystals: all crystals on the image are 
recognized and there are no additional particles. The crys-
tal recognition algorithm shows a better result with fewer 
recognized particles than existing methods. The number 

Fig. 8. Distribution of particle convexity ratio obtained with crystal recognition algorithm (bars) and Münch et al. method (circles) applied on the three 
samples.  

Fig. 9. Distribution of the recognized particle-representative diameter express in terms of cumulative volume Q3 for the potassium alum sample.   



of recognized particles is 8 times lower than that with a 
watershed on ultimate erosion and 30% lower than that 
with the Münch et al. method. The lower number of par-
ticles means that the method leads to less oversegmenta-
tion. The segmentation was validated with convexity 
criteria on recognized particles: the convexity is similar to 
the one obtained with the existing algorithms. The identifi-
cation of individual crystals enables the shape and structure 
of the crystals to be determined. The metrics on crystal 
shape were improved using the crystal segmentation algo-
rithm compared to the Münch et al. method, especially in 
the identification long crystals. Here, two types of alum 
and copper sulfate were analyzed: potassium alum and 
chromium alum have a similar size and shape (truncated 
octahedron), whereas copper sulfate crystals are bigger 
and have an elongated shape. 
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