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A Zonotopic Dempster-Shafer Approach to the
Quantitative Verification of Neural Networks

Eric Goubault and Sylvie Putot

LIX, CNRS and Institut Polytechnique de Paris, 91128 Palaiseau, France

Abstract. The reliability and usefulness of verification depend on the
ability to represent appropriately the uncertainty. Most existing work on
neural network verification relies on the hypothesis of either set-based
or probabilistic information on the inputs. In this work, we rely on the
framework of imprecise probabilities, specifically p-boxes, to propose a
quantitative verification of ReLU neural networks, which can account for
both probabilistic information and epistemic uncertainty on inputs. On
classical benchmarks, including the ACAS Xu examples, we demonstrate
that our approach improves the tradeoff between tightness and efficiency
compared to related work on probabilistic network verification, while
handling much more general classes of uncertainties on the inputs and
providing fully guaranteed results.

1 Introduction

Verifying that neural networks satisfy desirable properties has become crucial
for ensuring the safety of learning-enabled autonomous systems. However, most
existing approaches that provide guarantees on the satisfaction of a specification
are designed for adversarial input uncertainties, and offer only qualitative assess-
ments. Complete methods return whether or not the property is satisfied, while
sound methods return either that a property is satisfied or that the answer is un-
known, due to over-approximation errors. For instance, the analyzes DeepZ [25],
DeepPoly [26] and Verinet [11] propagate respectively zonotopes, polyhedra, and
symbolic intervals through the layers of a neural network, to ensure that certain
specifications are met. In addition to these specifications, many analyzers have
considered producing also robustness bounds of networks, as specifically done
by CROWN [33], FCROWN [14] and CNN-Cert [3].

In contrast, quantitative verification has been little explored for neural net-
works, despite providing a better understanding of the system by refining in-
formation about property satisfaction. This is especially true for probabilistic
verification. Some authors have considered estimating the statistics of the out-
put of neural networks, given a multivariate probabilistic law for its inputs.
This approach has been used in particular for assessing the robustness of neu-
ral networks [29, 34] and for probabilistically certifying their correctness under
adversarial attacks [6, 32, 18, 12]. But these estimates, using improved sampling
methods, do not give any guaranteed bounds. Even fewer articles have consid-
ered guaranteed probabilistic bounds. In [30], the authors describe the analyzer
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PROVEN, which provides probability certificates of neural network robustness
when the input perturbation is given by a probabilistic distribution, based on
the abstractions computed by Fast-Lin, CROWN and CNN-Cert. For networks
with ReLU activation function, methods have been developed in [20] and [19]
to find the probability of the output or of the input-output relationships. In [7],
the authors consider an ellipsoid input space with Gaussian random variables
and compute confidence ellipsoids for the outputs by propagating these ellip-
soids in ReLU networks, using semidefinite programming. In [27], the authors
consider truncated multivariate Gaussian distribution inputs and abstract them
by probabilistic stars (ProbStars), a variation of the star set abstraction [1] re-
cently introduced in the context of reachability analysis. They propagate them
in a guaranteed manner in a network, and estimate the probability of violating a
safety property on the output by computing each probstar’s probability. In a way,
ProbStar is a hybrid method, relying on guaranteed set-based computations, but
estimating the probabilities in a non guaranteed manner.

The works mentioned above rely on the hypothesis of either set-based or
probabilistic information on the inputs. However, in real-world systems, precise
models representative of the data are not always available. For instance, several
probabilistic models may be plausible for describing of a problem, or a proba-
bilistic model may be known but with uncertain parameters. Therefore, we need
to consider both aleatory information and epistemic uncertainty. Imprecise prob-
abilities [28, 2] offer a framework that unifies probabilistic and set-based infor-
mation. This framework includes a wide variety of mathematical models, among
which probability boxes (p-boxes in short) [8], which characterize an uncertain
random variable by all probability distributions consistent with lower and upper
bounds on its cumulative distribution function (CDF in short). A p-box can be
seen as interval bounds on a probability distribution. An Interval-based discrete
over-approximation of p-boxes, Interval Demspter-Shafer structure [23] (DSI in
short) has been proposed. Algorithms for arithmetic operations on DSI can be
derived [8, 31], which can be seen as a unification of standard interval analysis
with traditional probability theory, allowing probability bound analysis on arith-
metic expressions. It gives the same answer as interval analysis does when only
range information is available. And it gives sound bounds on the distribution
function, as a sound counterpart of a Monte Carlo simulation, when informa-
tion is precise enough to fully specify input distributions and their dependencies.
However, DSI arithmetic is expensive and suffers from the conservativeness of
interval arithmetic, on which it relies. Probabilistic affine forms have been pro-
posed as an alternative [4, 5]. These forms combine affine forms or zonotopes and
DSI structures, improving both precision and efficiency.

In this work, we first extend for the analysis of ReLU neural networks, the
Interval Dempster Shafer arithmetic in Section 3 and probabilistic affine arith-
metic in Section 4 and demonstrate their use on the quantitative verification of a
small toy network. We then introduce in Section 5 a new abstraction, Zonotopic
Dempster Shafer structures, which exhibits much better computational proper-
ties (complexity and tightness of the approximations). This new abstraction is
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directly related to the general notion of random sets [22] which generalize one-
dimensional Dempster-Shafer structures such as the DSI. Finally, in Section 6
we evaluate our approach and demonstrate that it improves in terms of tradeoff
between tightness and efficiency compared to the most closely related work [27]
on the ACAS Xu networks and on a neural network controller for a rocket lander
benchmark for SpaceX Falcon 9, while being able to handle much more general
classes of uncertainties on the inputs and providing fully guaranteed results.

2 Problem statement

We consider an L-layer feedforward ReLU network with input x0 ∈ Rh0 and
output y = f(x0) = xL ∈ RhL , with f being the composition of L layers, f =
fL−1◦. . .◦f0. The k-th layer of the ReLU network is defined by fk : Rhk → Rhk+1

of the form xk+1 = fk(xk) = σ(Akxk + bk), where Ak ∈ Rhk+1×hk is the weight
matrix, bk ∈ Rhk+1 is the bias, and σ(xkj ) := max(0, xkj ) is the component-wise

ReLU function, where xkj is the jth component of xk ∈ Rhk .
We are interested in the following two problems, extending, in particular to

a larger class of inputs, the quantitative verification properties of [27]:

Problem 1 (Probability bounds analysis). Given a ReLU network f and a con-
strained probabilistic input set X = {X ∈ Rh0 | CX ≤ d ∧ F (x) ≤ P(X ≤ x) ≤
F (x),∀x} where F and F are two cumulative distribution functions, compute a
constrained probabilistic output set Y guaranteed to contain {f(X), X ∈ X}.
Problem 2 (Quantitative property verification). Given a ReLU network f , a con-
strained probabilistic input set X and a linear safety property Hy ≤ w, bound
the probability of the network output vector y satisfying this property.

We will consider through the paper the toy example below to illustrate the
different analyzes we propose.

Example 1. We consider the ReLU network defined by the matrices of weights

and biases: A1 =

[
1 −1
1 1.

]
, b1 =

[
0.0
0.0

]
, A2 =

[
1 −1
1 1

]
, b2 =

[
0.0
0.0

]
. We take only

one ReLU layer and an affine output layer. After the ReLU layer, we note x1 =
σ(A1x

0 + b1) = σ(x01 − x02, x01 + x02), and after the output layer x2 = A2x
1 + b2.

The problem is to verify the network against the unsafe output set x21 ≤
−2 ∧ x22 ≥ 2 for an input x0 = (x01, x

0
2) ∈ [−2, 2]× [−1, 1]. This writes Hx2 ≤ w

with H =

[
1 0
0 −1

]
, w =

[
−2 −2

]
. All details on the analyzes of this example,

which results are stated in further sections, are provided in Appendix A.

3 Analysis with Interval Dempster-Shafer structures

Probability-boxes and Interval Dempster-Shafer arithmetic We charac-
terize a real-valued random variable X by its cumulative probability distribution
function (CDF in short) F : R→ [0, 1] defined by F (x) = P(X ≤ x). A p-box [8]
is defined by a pair of CDF:
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Definition 1 (P-box). Given two CDF F , F , the p-box [F , F ] represents the
set of distribution functions F such that F (x) ≤ F (x) ≤ F (x) for all x ∈ R.

P-boxes can be combined in mathematical calculations, but analytical solu-
tions are usually not available. Interval Dempster-Shafer structures [23] provide
a simple way to soundly over-approximate the set of cdfs using a discrete repre-
sentation, for which the arithmetic operations can be converted into a series of
elementary interval calculations.

Definition 2 (Interval Dempster-Shafer structure). An interval Dempster-
Shafer structure (DSI in short) is a finite set of intervals, named focal elements,
associated with a probability, written d =

{
〈x1, w1〉 , 〈x2, w2〉 , . . . , 〈xn, wn〉

}
,

where xi is an interval and wi ∈ (0, 1] is its probability, with
∑n
k=1 wk = 1.

Proposition 1 (CDF of an Interval Dempster-Shafer structure). A DSI
d =

{
〈x1, w1〉 , 〈x2, w2〉 , . . . , 〈xn, wn〉

}
defines the discrete pbox

[
Fd, Fd

]
repre-

senting the sets of distributions such that Fd(u) ≤ P(X ≤ u) ≤ Fd(u) with

Fd(u) =
∑

xi<u
wi and Fd(u) =

∑
xi≤u wi.

Conversely, discrete upper and lower approximations of distribution func-
tions can be constructed, for instance using the inverse CDF as in [31]. Given a
discretization size N , they define a DSI with N focal elements where all weights
are equal to 1/N . The focal elements xi are defined evaluating the quantiles or
inverse cdfs for uniformly spaced probability levels pi = i−1

N for i = 1, . . . , N +1,

by xi = [F
−1

(pi), F
−1(pi+1)] where F−1(p) = inf{x | F (x) ≥ p}.

The arithmetic operators on DSI structures [8, 31] compute guaranteed en-
closures of all possible distributions of an output variable if the input p-boxes
enclose the input distributions. Let two random variables X and Y represented
by DSI structures dX = {〈xi, wi〉 , i ∈ [1, n]} and dY = {

〈
yj , w

′
j

〉
, j ∈ [1,m]},

and Z be the random variable such that Z = X + Y (the algorithms for other
arithmetic operations are similar). In particular, they define algorithms for the
extreme cases of unknown dependence and independence between X and Y .

Definition 3 (Probabilistic dependence and dependence graph). Two
random variables X1 and X2 are independent if and only if their CDF can be
decomposed as F (x1, x2) = F1(x1)F2(x2). Otherwise, the random variables are
called correlated. The probabilistic dependence graph G over a set of n variables
X1, . . . , Xn is an undirected graph where the Xi are the vertices and there exists
an edge (Xi, Xj) in the graph iff variables Xi and Xj are correlated.

The addition of DSI independent variables is obtained as a discrete convolution
of the two input distributions:

Definition 4 (Addition of independent DSIs). If X and Y are independent
random variables, then the DSI for Z = X⊕Y is dZ = {〈zi,j , ri,j〉 , i ∈ [1, n], j ∈
[1,m]} such that: ∀i ∈ [1, n], j ∈ [1,m], zi,j = xi + yj and ri,j = wi × w′j .
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The number of focal elements grows exponentially with the number of such
operations. In order to keep the computation tractable, the number of focal
elements is usually bounded, at the cost of some over-approximations.

Different algorithms have been proposed for the addition of DSIs with un-
known dependence, relying on the Fréchet–Hoeffding copula bounds or on linear
programming, most of them produce the same result [8, 31, 21].

DSI analysis of neural networks We now define a sound probability bounds
analysis of ReLU neural networks.

Modelling the network inputs Consider an h0-dimensional uncertain input vector
x0 = (x01, . . . , x

0
h0

), which can be represented as a vector d0 = (d01, . . . , d
0
h0

) of
h0 DSI, each with the same number n of focal elements for simplicity of pre-

sentation: d0i =
{〈

x0
i,1, w

0
i,1

〉
,
〈
x0
i,2, w

0
i,2

〉
, . . . ,

〈
x0
i,n, w

0
i,n

〉}
for i ∈ 1, . . . , h0,

where x0
i,j ∈ IR is an interval and w0

i,j ∈]0, 1] is the associated probability, with∑n
j=1 w

0
i,j = 1, for all i ∈ 1, . . . , h0. A dependence graph is assumed to be known

between the components of the input vector.

Affine transform of a vector of DSI structures Given a vector of random variables
X = (X1, . . . , Xk) represented as a vector d = (d1, . . . , dk) of DSI structures,

and a dependence graph G, we define a DSI dy =
∑k
j=1 ajdj + b which includes

the result of Y =
∑k
j=1 ajXj + b on the DSI d by:

– we note ajdj where aj ∈ R and dj is a DSI {〈xj,i, wj,i〉 | i = 1, . . . , n}, the re-
sult of the multiplication of a constant by a DSI: {〈ajxj,i, wj,i〉 | i = 1, . . . , n},

– we arbitrary choose to compute the sum
∑k
j=1 ajdj as ((a1d1 + a2d2) +

a3d3) + . . . akdk), applying for the j-th sum the right operators depending of
the dependence between Xj+1 and X1 to Xj ,

– we note d+ b where d is a DSI {〈xi, wi〉 | i = 1, . . . , n} and b ∈ R the result
of the addition of a constant to a DSI: {〈b+ xi, wi〉 | i = 1, . . . , n},

– the dependence graph is updated by adding an edge between Y and all Xj

such that aj is non zero

Interpreting the action of the ReLU function Y = max(0, X) means enforcing
the constraints Y ≥ X and Y ≥ 0. This means that Y is obtained by intersecting
the focal elements of the representation of X with [0,∞):

Definition 5 (ReLU of a DSI). Given a random variable X represented by
the DSI d = {〈xi, wi〉 , i ∈ [1, n]}, then the CDF of Y = σ(X) = max(0, X) is
included in the DSI {〈yi, wi〉 , i ∈ [1, n]} with yi = [max(0, xi),max(0, xi)].

This leads to Algorithm 1 for the analysis of an L-layer ReLU network with
the notations of Section 2.
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Algorithm 1 ReLU feedforward neural network analysis by DSI arithmetic

Input: d0 a h0-dimensional vector of DSI
1: for k = 0 to L− 1 do
2: for l = 1 to hk+1 do
3: dk+1

l ← σ(
∑hk

j=1 a
k
ljd

k
j + bkl ) . Affine transform and Definition 5

4: end for
5: end for
6: return (dL,cdf(HdL, w))

Output The output after propagation in the network consists in:

– the vector of DSI dL characterizing the network output (solving Problem 1)
– interval bounds noted cdf(HdL, w) on the probability P(HxL) ≤ w (solving

Problem 2). Let [Pm, Pm], with m ranging over the lines of H and w, be the

interval for the probability P(
∑hL

i=1 hmix
L
i ≤ wm). It is obtained applying

Proposition 1 to compute the CDF at w on each component of the vector
HdL. We define cdf(HdL, w) = [minm Pm,minm Pm].

The DSI computation encodes the marginal distribution of each component of
a vector xi as a DSI. The probability of a conjunction HxL is thus computed
considering each inequality independently and expressing that the probability of
the conjunction is lower or equal than the probability of each term.

Analysis of the toy example Consider Example 1. A classical interval analysis
of the network from the input set x0 = (x01, x

0
2) ∈ [−2, 2] × [−1, 1] yields the

output ranges x21 ∈ [−3, 3] and x22 ∈ [0, 6]. As these have non empty intersection
with the property x21 ≤ −2 ∧ x22 ≥ 2, this analysis does not allow to conclude.

Uniform distribution on inputs abstracted by DSI with 2 focal elements Let
us now suppose that we additionally know that the 2 components of the in-
put follow a uniform distribution. We first choose a discretization of the in-
puts by DSI with 2 focal elements, d01 = {〈[−2, 0], 0.5〉, 〈[0, 2], 0.5〉} and d02 =
{〈[−1, 0], 0.5〉, 〈[0, 1], 0.5〉}. Let us suppose the inputs independent, the first out-
put after the first affine layer, dy1 = d01− d02, computed following Definition 4, is
{〈[−2, 1], 0.25〉, 〈[−3, 0], 0.25〉, 〈[0, 3], 0.25〉, 〈[−1, 2], 0.25〉}. In order to limit the
complexity of computation, the result of each operation on DSI can be re-
duced by a sound overapproximation with a fixed number of focal elements.
This can be done by joining some focal elements and adding the corresponding
weights. For instance here, when reducing to 2 focal elements by joining the first
2 and the last 2 focal elements, this results in dy1 = {〈[−3, 1], 0.5〉; 〈[−1, 3], 0.5〉}.
Then, applying to dy1 the ReLU function using Definition 5 produces d11 =
{〈[0, 1], 0.5〉, 〈[0, 3], 0.5〉}. The other output x12 of the first layer has the same
DSI representation. After the output layer, the first output is d21 = d11 − d12 =
{〈[−3, 1], 0.5〉, 〈[−1, 3], 0.5〉}. Here x11 and x12 can no longer be considered as in-
dependent as they both are correlated to x01 and x02, the subtraction of their DSI
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representation is computed accordingly. The second output is d22 = d11 + d12 =
{〈[0, 4], 0.5〉, 〈[0, 6], 0.5〉}.

Take now the property x21 ≤ −2 ∧ x22 ≥ 2. Using Proposition 1, we deduce
from d21 and d22 that P(x21 ≤ −2) ∈ [0, 0.5] and P(x22 ≥ 2) ∈ [0.0, 1.0], from
which P(x21 ≤ −2 ∧ x22 ≥ 2) ∈ [0, 0.5]. Consider for instance P(x21 ≤ −2) evalu-
ated using d21 = {〈[−3, 1], 0.5〉, 〈[−1, 3], 0.5〉}. Its lower bound is obtained using
Proposition 1 by P (−2) =

∑
xi<−2 wi = 0, as the upper bounds of the 2 fo-

cal elements [−3, 1] and [−1, 3] are both greater than -2. The upper bound is
P (−2) =

∑
xi≤u wi = 0.5, as the lower bound of [−3, 1] is lower than -2, which

is not the case for [−1, 3].

Increasing the number of focal elements refines the over-approximation of the
input distributions and the sets of CDF obtained for the outputs. For instance
for 100 focal elements, in the case inputs can be considered as independent,
we obtain P(x21 ≤ −2) ∈ [0, 0.07] and P(x22 ≥ 2) ∈ [0.05, 0.52]. In the case of
inputs with unknown correlation, P(x21 ≤ −2) ∈ [0, 0.26] and P(x22 ≥ 2) ∈ [0, 1].
However, the supports of the sets of distribution remain unchanged and are
equal to the ranges obtained through interval analysis. Indeed, the affine layers
introduce some conservatism due to the wrapping effect of the intervals used as
focal elements. Additionally, joint distribution are not naturally represented in
the DSI framework, making it difficult to accuractely verify general properties.

4 Analysis with probabilistic zonotopes

Probabilistic affine forms [4, 5] are affine forms where the symbolic variables or
noise symbols are constrained by DSI structures instead of being simply bounded
in [-1,1]. This can be seen as a simple way to encode affine correlations between
uncertain variables abstracted by p-boxes, or a quantitative version of affine
forms. We first briefly introduce the probabilistic affine forms, presented un-
der the form of probabilistic zonotopes, which represent vectors of probabilistic
affine forms. Then we propose an analysis of neural networks relying on these
probabilistic zonotopes.

Affine forms, zonotopes and probabilistic zonotopes An affine form is a
linear expression α0 +

∑p
j=1 αjεj with real coefficients αj and symbolic variables

εj called noise symbols which values range in [-1,1]. A zonotope is the geometric
concretization of a vector of affine forms:

Definition 6 (Zonotope). An n-dimensional zonotope Z with center c ∈ Rn
and a vector Γ =

[
g1 . . . gp

]
∈ Rn,p of p generators gj ∈ Rn for j = 1, . . . , p is

defined as Z = 〈c, Γ 〉 = {c+ Γε | ‖ε‖∞ ≤ 1}.
We note γi(Z) = ci +

∑p
j=1 gij [−1, 1] the range of its i-th component.

Zonotopes are closed under affine transformations:

Proposition 2 (Affine transforms of a zonotope). For A ∈ Rm,n and b ∈
Rm we define AZ + b = 〈Ac+ b, AΓ 〉 as the m-dimensional resulting zonotope.
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Definition 7 (Probabilistic Zonotope). For ε a vector of random variables
of Rp, a zonotope Z = 〈c, Γ 〉 with c ∈ Rn and Γ ∈ Rn,p can be interpreted as
a probabilistic zonotope noted pZ(ε) = 〈c, Γ, ε〉 representing the n−dimensional
random variable Z = c+Γε. Let dε be a p−dimensional vector of DSI structures
with support in [−1, 1]p and G a dependence graph on the components ε1, . . . , .εp.
The marginal of each component of pZ(dε) is the affine transform on DSI struc-
tures: ci +

∑p
j=1 gijdεj , i = 1, . . . , n computed as in Section 3.

Zonotopes represent affine relations that hold between uncertain quantities.
In the case of probabilistic zonotopes, imprecise affine relations hold:

Example 2. Let x1 = 1+ε1−ε2, x2 = − 1
2ε1+ 1

4ε2, dε1 = {〈[−1, 0], 12 〉, 〈[0, 1], 12 〉},
dε2 = {〈[− 1

10 , 0], 12 〉, 〈[0,
1
10 ], 12 〉}, Then x1 + 2x2 = 1 − 1

2ε2, with d = dx1+2x2
=

{〈[ 1920 , 1], 12 〉, 〈[1,
21
20 ], 12 〉}. Thus the lower probability that x1 + 2x2 ≤ 21

20 is 1; and
the upper probability that x1 +2x2 <

19
20 is 0. But for instance, x2 +2x2 ≤ 1 has

upper probability 1
2 and lower probability 0 and is thus an imprecise relation.

Probabilistic zonotopes for the analysis of neural networks Algorithm 2
defines a neural network analysis using probabilistic zonotopes, which we detail
in this section.

Algorithm 2 Neural network analysis by Probabilistic Zonotopes

Input: d0 a h0-dimensional vector of DSI
1: pZ0(ε) = 〈c0, Γ 0, dε〉 ← dsi-to-pzono(d0)
2: for k = 0 to L− 1 do
3: Zk+1 ← σ(

∑hk
j=1A

kZk + bk) . Proposition 2 and Proposition 3
4: end for
5: dL ← pzono-to-dsi(ZL, dε) . Definition 7
6: return (dL,cdf(pzono-to-dsi(HZL, dε), w))

Input and initialization The input of the algorithm is the same as in Section 3,
the uncertain input is modelled as a vector d0 = (d01, . . . , d

0
h0

) of h0 DSI. We can

then define x0 ∈ IRh0 the h0-dimensional box obtained as the support of d0,
computed for each DSI as the union of its focal elements with non-zero weight.
Finally, we define pZ0(ε) = 〈c0, Γ 0, dε〉 in Line 1 of Algorithm 2 by:
– Z0 = 〈c0, Γ 0〉, is built from the box x0,
– dε is the vector of DSI obtained by rescaling d0 between -1 and 1.

Propagation in the layers The propagation in the affine layers can be expressed
directly as affine transform on the zonotope by Proposition 2, and later inter-
preted as a probabilistic zonotope. Proposition 3 introduces the ReLU trans-
former proposed in [24], encoded in zonotope matrix form. The ReLU transform
is applied componentwise (on each line) and a new noise symbol (and thus a
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new column in the generator matrix) is added whenever an over-approximation
is needed, that is when the input is not either always positive or negative.

Proposition 3 (ReLU transform of a zonotope). Let Z = 〈c, Γ 〉 with
Γ = (gij)i,j ∈ Rn,p be a zonotope, we note [li, ui] = γi(Z) the range of its i-th
component. The result of applying componentwise the ReLU activation function
is a zonotope Z ′ = 〈c′, Γ ′〉 where c′ ∈ Rn and Γ ′ ∈ Rn,p+n, with c′i = λici + µi
and

Γ ′ =


λ1g11 . . . λ1g1p µ1 0 . . . 0
λ2g21 . . . λ2g2p 0 µ2 . . . 0
. . .

λngn1 . . . λngnp 0 0 . . . µn

 , (λi, µi) =


(1, 0) if li ≥ 0,
(0, 0) if ui ≤ 0,

( ui

ui−li ,−
uili

2(ui−li) ) otherwise.

Output The output zonotope after the L layers is ZL = 〈cL, ΓL〉 with cL ∈ RhL

and ΓL ∈ RhL,
∑L

k=0 hk . At line 5 of Algorithm 2, the probabilistic zonotope
pZL(dε) is converted into a vector of DSI, following Definition 7. In this interpre-
tation as a probabilistic zonotope, we must define the DSI structures correspond-
ing to the

∑L
k=1 hk new noise symbols introduced by the ReLU transformers. A

sound although conservative interpretation is to take the interval [−1, 1] as DSI
for them. This corresponds to considering that there is no available information
about the distribution of the variable represented by these new noise symbols.

At line 6, the transform HZL, interpreted as a probabilistic zonotope, is
converted in a vector of DSI and used to bound the probability P(Hy ≤ w).

Analysis of the toy example We consider again Example 1.

Deterministic zonotopes analysis From the input sets x0 ∈ [−2, 2]× [−1, 1], the
zonotopic interpretation is initialized with the affine forms x01 = 2ε1, x02 = ε2

with ε1, ε2 ∈ [−1, 1], encoded: Z0 = 〈c0, Γ 0〉 with c0 =

[
0
0

]
, Γ 0 =

[
2 0
0 1

]
. Using

the affine transforms on zonotopes and Proposition 3 for the ReLU layer with
(λ, µ) = (0.5, 0.75) for both neurons, we obtain after the second affine layer:

Z2 = A2Z1 + b2 = 〈
[

0
1.5

]
,

[
0 −1 0.75 −0.75
2 0 0.75 0.75

]
〉 ⊆

[
[−2.5, 2.5]

[−2, 5]

]
The first output x21 is bounded in a tighter interval than with interval propagation
([-3,3]), the second ouput x22 is incomparable to the interval computation ([0,6]).

Probabilistic zonotopes analysis Let us now suppose that the inputs x01 and
x02 follow a uniform law, which can be abstracted as in Section 3 with DSI
structures d01 and d02. Algorithm 2 produces the same input zonotope and prop-
agation through the network as above. Let us discretize the inputs with 2
focal elements. The rescaling of the DSI d01 and d02 between -1 and 1 yields
dε1 = {〈[−1, 0], 0.5〉, 〈[0, 1], 0.5〉} and dε2 = {〈[−1, 0], 0.5〉, 〈[0, 1], 0.5〉}.
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The concretization of the final probabilistic zonotope pZ2(dε) to a vector of
DSI writes: d21 = −dε2 +0.75dε3−0.75dε4 and d22 = 1.5+2dε1 +0.75dε3 +0.75dε4 ,
where dε3 and dε4 are the DSI corresponding to the noise symbols introduced in
the analysis by the ReLU function, with unknown distribution in [−1, 1]. We get
d21 = {〈[−2.5, 1.5], 0.5〉, 〈[−1.5, 2.5], 0.5〉} and d22 = {〈[−2., 3.], 0.5〉, 〈[0., 5.], 0.5〉}
and deduce P(x21 ≤ −2) ∈ [0, 0.5] and P(x22 ≥ 2) ∈ [0, 1].

The supports of the DSI are equal to the range obtained by the classical
zonotopic analysis, thus incomparable to the support of the DSI obtained by
Algorithm 1. The results are more generally not strictly comparable to those of
DSI computation. For instance here with 100 focal elements, we have P(x21 ≤
−2) ∈ [0, 0.26] and P(x22 ≥ 2) ∈ [0, 0.76] both in the case of independent inputs
x01 and x02 and unknown correlation, which is better than DSI in the case of
unknown correlation, while DSI are better for independent inputs. The reason
why the results do not depend here on the correlation between inputs is that dε1
does not appear in the expression of d21 and dε2 in the expression of d22, so that
the information of correlation between inputs is not used.

5 Analysis with Zonotopic Dempster-Shafer structures

In Section 4, a unique initial zonotope is built and propagated in the network.
This propagation is exact through affine layers, but can be highly conservative
for nonlinear operations such as the activation functions. In Algorithm 3, we
suppose that the inputs are independent and perform the zonotopic propagation
at a finer grain, on each tuple of focal elements of the inputs. This can be seen as
using zonotopic focal elements to represent the input vector of a layer, instead
of interval focal elements to represent each component of the input vector.

Algorithm 3 Neural network analysis by Dempster-Shafer zonotopic layers

Input: d0 a h0-dimensional vector of DSI
1: d0Z =

{
〈Z0

i1...ih0
, w0

1,i1 . . . w
0
h0,ih0

〉, (i1, . . . , ih0) ∈ [1, n]h0
}
← dsi-to-dsz(d0)

2: for k = 0 to L− 1 do
3: for (i1, i2, . . . , ih0) ∈ [1, n]h0 do
4: Zk+1

i1...ih0
← σ(

∑hk
j=1A

kZk
i1...ih0

+ bk) . Proposition 2 and Proposition 3

5: end for
6: end for
7: dLZ =

{
〈ZL

i1...ih0
, w0

1,i1 . . . w
0
h0,ih0

〉, (i1, . . . , ih0) ∈ [1, n]h0
}

8: dL ← dsz-to-dsi(dLZ)
9: return (dL,cdf((HdLZ , w))

Input and initialization The input is the same as in Sections 3 and 4: the un-
certain input is modelled as a vector d0 = (d01, . . . , d

0
h0

) of h0 DSI. Assuming the
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input components as independent, we perform the convolution of the distribu-
tions of the input components to build a DSZ abstraction of the input vector: we
construct one zonotope per possible h0-tuple of focal elements representing the
input vector of DSI d0, with weight the product of the weights of each interval fo-
cal elements: we define for each (i1, i2, . . . , ih0

) ∈ [1, n]h0 the zonotope Z0
i1...ih0

=

〈c0i1...ih0
, Γ 0

i1...ih0
〉, built from the box x0

1i1
× x0

2i2
× . . . × x0

h0ih0
and define the

input d0Z as a Dempster Shafer structure with zonotopic focal elements (DSZ in
short): d0Z =

{
〈Z0

i1...ih0
, w0

1,i1
w0

2,i2
. . . w0

h0,ih0
〉, (i1, i2, . . . , ih0) ∈ [1, n]h0

}
.

The number of focal elements does not have to be identical for each compo-
nent of the input vector d0, this choice was made here for simplicity of notation.
It is also natural to proceed to reductions by heuristically joining some of the
focal elements as in the interval case, although we did not implement this yet.

The propagation in the layers then consists in propagating each zonotope fo-
cal elements. Note that the number of focal elements remains constant through
the propagation in the layers because all convolutions were computed at initial-
ization, only the zonotopes size evolves with the layer dimensions.

Output The DSZ dLZ is projected on the output vector, defined for each i ∈ [1, hL]
by the DSI dLi =

{
〈γi(Z0

i1...ih0
), w0

1,i1
w0

2,i2
. . . w0

h0,ih0
, (i1, i2, . . . , ih0

) ∈ [1, n]h0〉
}
.

The property can be assessed by evaluating the set of joint cumulative dis-
tributions represented by the DSZ HdLZ , by generalizing the definition of Propo-
sition 1 from interval to zonotopic focal elements:

Proposition 4 (CDF of a Zonotopic Dempster-Shafer structure). Let
X be a random variable in Rn and dZ =

{
〈Z1, w1〉, 〈Z2, w2〉, . . . , 〈Zu, wu〉

}
be

a DSZ with Zk = 〈ck, Γk〉 with ck ∈ Rn and Γk ∈ Rpn and wk ∈]0, 1] and∑u
k=1 wu = 1. The DSZ dZ defines a discrete pbox representing the sets of joint

cumulative distribution functions such that for v ∈ Rn,∑
k∈[1,u],Zk<v

wk = P v ≤ P(X ≤ v) ≤ P v =
∑

k∈[1,u],Zk≤v

wk

Practically, we can use the ranges or projections of each component of Zk to get
a conservative over-approximation of the pbox:

P v ≤
∑

k∈[1,u],
∧

i∈[1,n] γi(Zk)≤vi

wk ∧ P v ≥
∑

k∈[1,u],
∧

i∈[1,n] γi(Zk)vi

wk

This proposition can be derived from the notion of cdf of a random set of
[22]. The bounds obtained by Proposition 4 are always at least as good than by
first converting the DSZ as a vector and then applying Proposition 1.

DSZ analysis of the toy example We consider again Example 1. with 2
focal elements for each input, we have d01 = {〈[−2, 0], 0.5〉, 〈[0, 2], 0.5〉} and d02 =
{〈[−1, 0], 0.5〉, 〈[0, 1], 0.5〉}. At Line 1 of Algorithm 3, d0Z is a DSZ structure with 4



12 Eric Goubault and Sylvie Putot

zonotopic focal elements, each with weight 0.25: Z0
11 = 〈

[
−1
−0.5

]
,

[
1 0
0 0.5

]
〉, Z0

12 =

〈
[
−1
0.5

]
,

[
1 0
0 0.5

]
〉, Z0

21 = 〈
[

1
−0.5

]
,

[
1 0
0 0.5

]
〉, Z0

22 = 〈
[

1
0.5

]
,

[
1 0
0 0.5

]
〉. After the

output layer, the 4 zonotopic elements, each with weight 0.25, are: Z2
11 =

〈
[
1
6
1
6

]
,

[
1
3 −

1
6

1
3

1
3 −

1
6

1
3

]
〉, Z2

12 = 〈
[
− 1

6
1
6

]
,

[
− 1

3 −
1
6 −

1
3

1
3

1
6

1
3

]
〉, Z2

21 = 〈
[

5
6
13
6

]
,

[
1
3 −

5
6 −

1
3

10
6 −

1
6

1
3

]
〉,

Z2
22 = 〈

[
− 5

6
13
6

]
,

[
− 1

3 −
5
6

1
3

10
6

1
6

1
3

]
〉. From these and their projected ranges for x21 and x22,

we deduce (see AppendixA for details) using Proposition 4 that P(x21 ≤ −2) ∈
[0, 0.25] and P(x22 ≥ 2) ∈ [0, 0.5] and the conjunction P(Hy ≤ w) ∈ [0.0, 0.25].

6 Evaluation

Implementation We implemented our approach1 using the Julia library Prob-
abilityBoundsAnalysis.jl2 [9], for Interval Dempster Shafer abstraction and arith-
metic. In this library, the focal elements of a DSI structure all have same weight.
The result is reduced after each arithmetic operation to keep a constant number
of focal elements. We rely on this DSI implementation, but our DSZ implementa-
tion does not present the same restrictions. The focal elements are bounded, but
a flag allows the user to specify that a distribution may have unbounded support,
and this knowledge is used to produce a sound CDF estimation for unbounded
distributions. In our current implementation, we do not use this possibility, but
we believe that the work presented here can be extended to unbounded support.

All timings for the results of our analysis are on a MacBook Pro 2,3 GHz Intel
Core i9 with 8 cores (the implementation is not parallelized for now, although
the technique is obviously easily parallelizable).

Comparing DSI, probabilistic zonotopes and DSZ on the toy example
We compare in Table 1 our 3 abstractions in the case of independent inputs,
varying the number of focal elements and the input distributions: U(n) denotes
a uniform distribution represented with n focal elements, and N(n) a truncated
normal law in the same range with n focal elements. On this example, the DSZ
analysis is by far more precise, followed by the DSI and finally the probabilistic
zonotopes. Refining the input discretization with more focal elements tightens
the output of all analyzes, but only the DSZ converges to actually tight bounds.
In particular, for DSI and probabilistic zonotopes, the support of the output
distribution is unchanged when the input is refined. The computation times are,
on this example, of the same order of magnitude for all three analyzes, slightly
higher for DSZ, and lower for probabilistic zonotopes. The reason for the prob-
abilistic zonotopes to have lower cost is that affine transforms are computed on
the zonotopes, and the costly operations between DSI are delayed until the final

1 prototype version available at https://github.com/sputot/DSZAnalysis
2 https://github.com/AnderGray/ProbabilityBoundsAnalysis.jl
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Table 1: Probability bounds for the toy example, independent inputs.

Law DSI Prob. Zono. DSZ
(#FE) P(x2

1 ≤ −2) P(x2
2 ≥ 2) time P(x2

1 ≤ −2) P(x2
2 ≥ 2) time P(x2

1 ≤ −2) P(x2
2 ≥ 2) time

U(2) [0, 0.5] [0, 1] < e−3 [0, 0.5] [0, 1] < e−3 [0, 0.25] [0, 0.5] < e−3

U(10) [0, 0.2] [0, 0.7] e−3 [0, 0.3] [0, 0.8] e−3 [0, 0.03] [0.2, 0.3] < e−3

U(100) [0, 0.07] [0.05, 0.52] 0.022 [0, 0.26] [0, 0.76] 0.013 [0, 0.0014] [0.25, 0.26] 0.026

U(1000) [0, 0.063] [0.062, 0.502] 2.4 [0, 0.251] [0, 0.751] 1.2 [0, 3.e−6] [0.25, 0.251] 3

N(10) [0, 0.1] [0, 0.4] e−3 [0, 0.1] [0, 1] e−3 [0, 0.01] [0, 0.1] < e−3

N(100) [0, 0.01] [0, 0.2] 0.022 [0, 0.07] [0, 0.94] 0.013 [0, 4.e−4] [0.06, 0.07] 0.026

N(1000) [0, 0.004] [3e−3, 0.182] 2.4 [0, 0.067] [0, 0.934] 1.2 [6e−5, 1.1e−4] [0.066, 0.067] 3

representation as a DSI. It is not surprising that the DSZ have slightly higher
cost, because of the exponential number of zonotopic focal elements. However,
we demonstrate in the remaining of this section that it is still able to solve chal-
lenging problems and compares favorably to the state of the art. Moreover, the
computation is obviously parallelizable.

We can also note the strong impact of the input hypotheses on the results,
advocating the need of such an approach which can account in a same framework
and computation for large classes of inputs. For instance, changing the input dis-
tribution from a uniform to a Gaussian truncated to same support produces very
different probability bounds. In Table 1, we supposed the inputs independent. For
instance, the DSI analysis for 100 focal elements and a uniform law, produces for
independent inputs P(x21 ≤ −2) ∈ [0, 0.07] and P(x22 ≥ 2) ∈ [0.05, 0.52], while for
inputs with unknown dependence, P(x21 ≤ −2) ∈ [0, 0.26] and P(x22 ≥ 2) ∈ [0, 1].

For independent inputs, the DSZ is the best choice among our approaches. In
the case of correlated inputs, it is hard to conclude from such a simple example
between DSI and probabilistic zonotopes. In the context of discrete dynamical
systems where probabilistic zonotopes were proposed [4, 5], they were much bet-
ter than DSI both in terms of efficiency and accuracy. The context of neural
networks is less favorable, but it is probable that probabilistic zonotopes can be
more interesting than DSI for larger networks. However, our focus is to explore
in the future the encoding of multivariate probabilistic distributions as input
distributions, and lift this current restriction on the DSZ analysis.

Comparing DSZ to Probstar [27] We now compare our approach to the
results of the closely related approach [27] on their two benchmark examples.
On these examples, the inputs are considered independent in [27], we consider
the same hypotheses and use the DSZ analysis.

ACAS Xu We consider the ACAS Xu networks benchmark, where the networks
have 5 inputs and 5 outputs, with the same input configurations and properties
(P2 : y1 > y2 ∧ y1 > y3 ∧ y1 > y4 ∧ y1 > y5, P3/P4 : y1 < y2 ∧ y1 < y3 ∧ y1 <
y4 ∧ y1 < y5) as in [27]. The lower and upper bounds on the inputs, lb and ub,
depend on the property, and are used in [27] to define probabilistic input sets
by Gaussian distributions with mean m = (ub + lb)/2 and standard deviation
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(ub − m)/a, where a = 3, truncated between lb and ub. In our work, after
creation of the input DSI from the above Gaussian distribution, we truncate all
focal elements so that the support of the DSI is restricted to the input range
[lb, ub]. In [27], an argument is used to deduce bounds for the probability for
non truncated distributions. We could use a similar argument here but we focus
on the results for the truncated distributions, and compare our results to the
interval [US − Prob− LB,US − Prob− UB] with the notations of [27].

We choose for the DSZ approach an initial over-approximation of the input
distributions using a different number of focal elements for each component of
the vector input, roughly based on the relative widths of the input intervals. We
represent these as vectors of number of focal elements, taking [5, 80, 50, 6, 5] for
Property 2, [5, 20, 1, 6, 5] for Properties 3 and 4. In Table 2, we compare these
with the Probstar approach with two parametrizations: pf = 0 corresponds to
an exact set-based propagation, while pf = e−5 corresponds to the level of over-
approximation in propagation most widely used in [27]. Let us first comment

Table 2: Probability bounds for the ACAS Xu example.

Prop Net DSZ Probstar pf = e−5 Probstar pf = 0
P time P time P time

2 1-6 [0, 0.01999] 46.4 [2.8e-06,0.05283] 206.7 1.87224e-05 1424
2 2-2 [0.00423 0.0809] 47.9 [0.0195,0.094] 299.0 0.0353886 2102.5
2 2-9 [0, 0.0774684] 51.0 [0.000255,0.107] 504.5 0.000997678 4561.2
2 3-1 [0.0165, 0.08787] 43.8 [0.0305, 0.07263] 202.7 0.044535 1086.4
2 3-6 [0.0167, 0.1111] 52.4 [0.02078,0.1069] 452.0 0.0335763 5224.4
2 3-7 [6e-05, 0.1361] 43.7 [0.002319,0.075] 331.1 0.00404731 2598
2 4-1 [1e-05, 0.05353] 40.9 [0.00104,0.07162] 305.3 0.00231247 1870.7
2 4-7 [0.0129, 0.1056] 44.4 [0.02078,0.1081] 418.9 0.04095 3407.8
2 5-3 [0, 0.03939] 40.0 [1.59e-09,0.0326] 139.7 1.81747e-09 418.8
3 1-7 [1, 1] 0.25 [0.9801,0.9804] 4.7 0.976871 3.6
4 1-9 [1, 1] 0.2 [0.9796,0.98] 3.6 0.989244 3.6

on the running times: the timings for Probstars in Table 2 are those of [27],
hence not computed on the same computer as our’s. We reproduced Property 2
on Net 1-6 with Probstars on our MacBook: for p = 0, it takes 3614s on 8 cores,
5045s on 4 cores, 12542 on 1 core, to be compared to the 1424s in Table 2; for
p = e−5, it takes 425s on 8 cores, 489 on 4 cores, 1489 on 1 core, to be compared
to the 206s in Table 2) and to the 46s with DSZ.

The tightness of the enclosures of the DSZ is comparable to Probstars with
p = e−5, for an analysis being generally an order of magnitude faster. The
results look consistent between the 2 analyzes for Property 2. Properties 3 and 4
(originally from [13]) are true on the whole input range, which can be proven by
classical set-based analysis, and our approach accordingly produces a probability
equal to 1. The approach of [27] produces more precise, ”exact” results, when
p = 0, than our approach. However, only the set-based propagation is exact,
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there is also a part of probabilistic estimation. For instance, when reproducing
Property 2 on Net 1-6 with Probstars, we obtained for p = 0, the probabilities
1.56119e-05 with 8 cores, 6.76052e-06 with 4 cores, 7.22045e-06 with 1 core, to
be compared to the ”exact” 1.87224e-05 in the table. In contrast, our approach
produces fully guaranteed bounds while allowing a much richer classes of inputs.

In Table 2, we manually chose the number of focal element per input com-
ponent. Although we refrained from optimizing too much, choosing for instance
the same discretization for different networks, this impairs the practicality of
the approach. As a first answer, we implemented a simple heuristic loop to auto-
matically refine the discretization starting from a very rough one, by some basic
sensitivity analysis. For instance, for Property 2 and net-1-6, the total refine-
ment process takes approximately 600 seconds and leads to the number of focal
elements [5, 111, 93, 5, 7] and a probability for Property 2 in [0, 0.00907378]. The
analysis time with the above fixed number of focal elements is 138 seconds.

Rocket lander Let us now consider the rocket lander example of [27], with the
same inputs and properties. The networks have here 9 inputs. Taking the vector
of focal elements [7, 12, 10, 17, 9, 7, 1, 1, 2, 1, 1] produces the results of Table 3
Again, the timings for Probstars are those of [27]; we executed for instance on

Table 3: Comparing probability bounds for the rocket lander example.

Prop Net DSZ Probstar pf = 1e− 5 Probstar pf = 0
P time P time P time

1 0 [0, 0.03387] 77.8 [4.15e-09, 0.06748] 1158.6 7.978e-08 5903.7
2 0 [0, 0.01352] 83.7 [0,0.1053] 2216 0 13132.7
1 1 [0, 0.01985] 80.5 [0,0.0536] 1229.7 8.68e-08 5163.9
2 1 [0, 0.00055] 69.1 [0, 0.0161751] 448.5 0 1495.6

our MacBook the analysis of Property 1 on network 0 with 4 cores, the running
times were 1351.2s for pf = 1e−5 and 12127s for pf = 0.

7 Conclusion

A central notion for dealing with multivariate probabilistic distributions is that of
a copula [16], and in particular Sklar’s theorem which links multivariate cdf with
the cdf of its marginals. Multiple authors have considered generalizing Sklar’s
theorem to imprecise probabilities, [17, 15], with e.g. applications in [10] to the
analysis of non-linear dynamical systems. In this work, we developed the case of
multidimensional imprecise probabilites described by the independence copula.
Future work includes the tractable treatment of other copulas in our framework,
and more generally a better representation of inputs by DSZ structures. Finally,
we focused here on ReLU-based networks, but the approach is by no means
restricted to this activation function.
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A Analyzes of Example 1 (toy example)

Deterministic (interval) inputs and analysis An interval propagation in
the network from the input set x0 = (x01, x

0
2) ∈ [−2, 2] × [−1, 1] yields for the

first affine layer followed by the ReLU activation: x11 = σ([−2, 2] − [−1, 1]) =
σ([−3, 3]) = [0, 3] and x12 = σ([−2, 2] + [−1, 1]) = [0, 3]. After the 2nd layer,
x21 = [0, 3]− [0, 3] = [−3, 3] and x22 = [0, 3] + [0, 3] = [0, 6]. As the output ranges
for x21 and x22 have non empty intersection with the property x21 ≤ −2 ∧ x22 ≥ 2,
this analysis does not allow to conclude.

Uniform distribution on inputs Let us now suppose that we additionally
know that the 2 components of the input follow a uniform distribution over the
previous range.

DSI with 2 focal elements Let us first choose for demonstration purpose a dis-
cretization by a DSI with 2 focal elements. The DSI for x01 is d01 = {〈[−2, 0], 0.5〉;
〈[0, 2], 0.5〉}, represented Figure 1a. This produces a rough staircase over-approxi-
mation of the CDF of the uniform distribution, which would be a diagonal line
here. Similarly, a DSI discretizing x02 following a uniform distribution betwwen -1
and 1 with 2 focal elements is d02 = {〈[−1, 0], 0.5〉; 〈[0, 1], 0.5〉}. Let us suppose the
inputs are known to be independent, the first output after the first affine layer,
dy1 = d01 − d02, computed following Definition 4, is {〈[−2, 1], 0.25〉; 〈[−3, 0], 0.25〉;
〈[0, 3], 0.25〉; 〈[−1, 2], 0.25〉}. In order to limit the complexity of computation,
the result of each operation on DSI can be reduced by a sound overapprox-
imation with a fixed number of focal elements. This can be done by joining
some focal elements and adding the corresponding weights. For instance here,
when reducing to 2 focal elements by joining the first 2 and the last 2 focal
elements, this results in dy1 = {〈[−3, 1], 0.5〉, 〈[−1, 3], 0.5〉}, represented Fig-
ure 1b. Then, applying to dy1 the ReLU function using Definition 5 produces
d11 = {〈[0, 1], 0.5〉; 〈[0, 3], 0.5〉} represented Figure 1b. The other output x12 of
the first layer has the same DSI representation. After the output layer, the first
output is d21 = d11 − d12 = {〈[−3, 1], 0.5〉; 〈[−1, 3], 0.5〉}, represented Figure 1d.
Here x11 and x12 can no longer be considered as independent as they both are
correlated to x01 and x02 and the subtraction of their DSI representation is com-
puted accordingly. The second output d22 = d11 + d12 = {〈[0, 4], 0.5〉; 〈[0, 6], 0.5〉}
is represented Figure 1e.

Let us now consider the property x21 ≤ −2 ∧ x22 ≥ 2. Using Proposition 1,
we can deduce from the DSI d21 and d22 that P(x21 ≤ −2) ∈ [0, 0.5] and P(x22 ≥
2) ∈ [0.0, 1.0], from which P(x21 ≤ −2 ∧ x22 ≥ 2) ∈ [0, 0.5]. Consider for instance
P(x21 ≤ −2) evaluated using d21 = {〈[−3, 1], 0.5〉; 〈[−1, 3], 0.5〉}. We get the lower
bound using Proposition 1 by P (−2) =

∑
xi<−2 wi = 0, as the upper bounds

of the 2 focal elements [−3, 1] and [−1, 3] are both greater than -2. We get the
upper bound by P (−2) =

∑
xi≤u wi = 0.5, as the lower bound of [−3, 1] is lower

than -2, which is not the case for [−1, 3].
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(a) d01 (b) dy1 (c) d11 = σ(dy1) (d) d21 (e) d22

Fig. 1: Toy example, Uniform law on inputs (DSI with 2 focal elements)

DSI with 100 focal elements The DSI computation with 100 focal elements pro-
duces the results of Figure 2. Figure 2a represents the staircase over-approxima-
tion of the CDF of the uniform law. Without surprise, with this more accurate
representation of the inputs, the DSI outputs d21 and d22 of the network, repre-
sented Figure 2b and Figure 2c, correspond to a smaller set of CDF than the
same outputs computed with 2 focal elements of Figure 1d and Figure 1e and
thus refine these results. We also represent in Figure 2d and Figure 2e, the out-
puts of the same network when the inputs are no longer supposed independent,
but with unknown correlation. As can be expected, the sets of CDF for the
outputs are larger than when making the assumption of independence.

(a) d01 (b) d21 (c) d22 (d) d21 unknown
correlation

(e) d22 unknown
correlation

Fig. 2: Toy example, Uniform law on inputs (DSI with 100 focal elements)

Increasing the number of focal elements refines the sets of CDF obtained
for the outputs. However, it should be noted that the supports of the sets of
distribution are unchanged, and equal to the ranges obtained by classical interval
analysis ([-3,3] for x21 and [0,6] for x22). Indeed, some conservatism is introduced
in the interpretation of affine layers due to the wrapping effect when computing
on the interval focal elements.

Let us consider the property x21 ≤ −2 ∧ x22 ≥ 2. In the case inputs can be
considered as independent, the DSI for x21 and x22 allow us to conclude that
P(x21 ≤ −2) ∈ [0, 0.07] and P(x22 ≥ 2) ∈ [0.05, 0.52]. In the case of inputs with
unknown correlation, P(x21 ≤ −2) ∈ [0, 0.26] and P(x22 ≥ 2) ∈ [0, 1]. These
bounds directly result from Proposition 1.
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Truncated Gaussian distribution on inputs We now consider that the in-
puts follow a Gaussian law with uncertain mean, truncated to the same support
as before, and discretized with 100 focal elements. The input DSI d01 and the out-
puts DSIs are represented Figure 3. The support of the output distributions are
the same as obtained for inputs with uniform law, but the output distributions
are quite different. In this case, for independent inputs, P(x21 ≤ −2) ∈ [0, 0.02]

(a) d01 (b) d21 (c) d22 (d) d21 unknown
correlation

(e) d22 unknown
correlation

Fig. 3: Toy example, uncertain Gaussian law (DSI with 100 focal elements)

and P(x22 ≥ 2) ∈ [0, 0.37]. In the case of inputs with unknown dependence,
P(x21 ≤ −2) ∈ [0, 0.06] and P(x22 ≥ 2) ∈ [0, 0.89].

Deterministic (zonotopic) analysis From the input sets x0 ∈ [−2, 2] ×
[−1, 1], the zonotopic interpretation is initialized with the affine forms x01 = 2ε1,
x02 = ε2 with ε1, ε2 ∈ [−1, 1], encoded:

Z0 = 〈c0, Γ 0〉 with c0 =

[
0
0

]
, Γ 0 =

[
2 0
0 1

]
The first affine layer yields

A1Z0 + b1 = 〈
[
0
0

]
,

[
2 −1
2 1

]
〉 ⊆

[
[−3, 3]
[−3, 3]

]
Using Proposition 3 for the ReLU layer with (λ, µ) = (0.5, 0.75) for both neurons
produces:

Z1 = σ(A1Z0 + b1) = 〈
[
0.75
0.75

]
,

[
1 −0.5 0.75 0
1 0.5 0 0.75

]
〉

Finally, after the second affine layer:

Z2 = A2Z1 + b2 = 〈
[

0
1.5

]
,

[
0 −1 0.75 −0.75
2 0 0.75 0.75

]
〉 ⊆

[
[−2.5, 2.5]

[−2, 5]

]
The interval ranges for the outputs of the first layer are larger than the ones
obtained with direct interval computation in Section 3. Indeed, the interpreta-
tion of the ReLU activation by a zonotope is conservative. However, the affine
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forms express correlations, so that after the second layer the first component x21
ranges in a tighter interval than obtained with the direct interval propagation
([-3,3]), while the second component x22 is incomparable to the direct interval
computation ([0,6]).

Analysis with probabilistic zonotopes Let us now suppose that the inputs
x01 and x02 follow a uniform law over their range, which can be abstracted as in
Section 3 with DSI structures d01 and d02. Algorithm 2 produces the same input
zonotope and propagation through the network as above. Let us discretize the
inputs with 2 focal elements. The rescaling of the DSI d01 and d02 between -1 and
1 yields dε1 = {〈[−1, 0], 0.5〉; 〈[0, 1], 0.5〉} and dε2 = {〈[−1, 0], 0.5〉; 〈[0, 1], 0.5〉}.

The concretization of the final probabilistic zonotope pZ2(dε) to a vector of
DSI writes: d21 = −dε2 +0.75dε3−0.75dε4 and d22 = 1.5+2dε1 +0.75dε3 +0.75dε4 ,
where dε3 and dε4 are the DSI corresponding to the noise symbols introduced in
the analysis by the ReLU function, with unknown distribution in [−1, 1].

The supports of the DSI are equal to the range obtained by the classical
zonotopic analysis, thus incomparable to the support of the DSI obtained by
Algorithm 1. With 2 focal elements, from the concretization of pZ2(dε) we obtain
d21 = {〈[−2.5, 1.5], 0.5〉; 〈[−1.5, 2.5], 0.5〉} and d22 = {〈[−2., 3.], 0.5〉; 〈[0., 5.], 0.5〉}.
We deduce P(x21 ≤ −2) ∈ [0, 0.5] and P(x22 ≥ 2) ∈ [0, 1].

The results are not strictly comparable to the case of direct DSI computa-
tion. For instance here with 100 focal elements, the probabilities of property
violation are P(x21 ≤ −2) ∈ [0, 0.26] and P(x22 ≥ 2) ∈ [0, 0.76] both in the case of
independent inputs x01 and x02 and unknown correlation. These results are better
than for direct DSI computation with 100 focal elements in the case of unknown
correlation, but the direct DSI are better in the case of independent inputs. The
reason why the results do not depend on the correlation between inputs in the
case of probabilistic zonotopes is that this is a very particular case where one
of the 2 inputs (dε1 or dε2) cancels out in both expressions of the output DSI
d21 = −dε2 + 0.75dε3 − 0.75dε4 and d22 = 1.5 + 2dε1 + 0.75dε3 + 0.75dε4 , so that
the information of correlation between inputs is not used.

Note finally that refining the input discretization by using more focal ele-
ments tightens the output DSI and probability bounds, but not considerably
so. For instance, with 10 focal elements, we obtain P(x21 ≤ −2) ∈ [0, 0.3] and
P(x22 ≥ 2) ∈ [0, 0.8], while for 500 elements, we obtain P(x21 ≤ −2) ∈ [0, 0.252]
and P(x22 ≥ 2) ∈ [0, 0.752].

DSZ analysis for 2 focal elements Let us take 2 focal elements for each
of the 2 inputs, we initially have d01 = {〈[−2, 0], 0.5〉; 〈[0, 2], 0.5〉} and d02 =
{〈[−1, 0], 0.5〉; 〈[0, 1], 0.5〉}. At Line 1 of Algorithm 3, d0Z is a DSZ structure
with 4 zonotopic focal elements, each with weight 0.25:

Z0
11 = 〈

[
−1
−0.5

]
,

[
1 0
0 0.5

]
〉, Z0

12 = 〈
[
−1
0.5

]
,

[
1 0
0 0.5

]
〉,
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Z0
21 = 〈

[
1
−0.5

]
,

[
1 0
0 0.5

]
〉, Z0

22 = 〈
[

1
0.5

]
,

[
1 0
0 0.5

]
〉

The first affine layer transforms each of these 4 zonotopes relying on Propo-
sition 2 and produces:

Z ′011 = 〈
[
−0.5
−1.5

]
,

[
1 0
0 0.5

]
〉, Z ′012 = 〈

[
−1.5
−0.5

]
,

[
1 0
0 0.5

]
〉,

Z ′021 = 〈
[
1.5
0.5

]
,

[
1 0
0 0.5

]
〉, Z ′022 = 〈

[
0.5
1.5

]
,

[
1 0
0 0.5

]
〉

Applying the ReLU activation on each zonotope using Proposition 3 produces:

Z1
11 = 〈

[
1
6
0

]
,

[
1
3 −

1
6

1
3

0 0 0

]
〉, Z1

12 = 〈
[

0
1
6

]
,

[
0 0 0
1
3

1
6

1
3

]
〉,

Z1
21 = 〈

[
1.5
2
3

]
,

[
1 −0.5 0
2
3

1
3

1
3

]
〉, Z1

22 = 〈
[

2
3

1.5

]
,

[
2
3 −

1
3

1
3

1 0.5 0

]
〉

Finally, after the output affine layer (without ReLU):

Z2
11 = 〈

[
1
6
1
6

]
,

[
1
3 −

1
6

1
3

1
3 −

1
6

1
3

]
〉, Z2

12 = 〈
[
− 1

6
1
6

]
,

[
− 1

3 −
1
6 −

1
3

1
3

1
6

1
3

]
〉,

Z2
21 = 〈

[
5
6
13
6

]
,

[
1
3 −

5
6 −

1
3

10
6 −

1
6

1
3

]
〉, Z2

22 = 〈
[
− 5

6
13
6

]
,

[
− 1

3 −
5
6

1
3

10
6

1
6

1
3

]
〉

We can now analyze the probability of the network output y satisfying the
linear safety property Hy ≤ w. In order to evaluate on the output d2Z =
{〈Z2

i1i2
, (i1, i2) ∈ [1, 2]2, 0.25〉}, we first compute the affine transform Hd2Z and

then use the resulting DSZ to bound the probability P(y = Hx2 ≤ w). The affine
transform Hd2Z produces the DSZ with the four following zonotopes with equal
weight of 0.25:

HZ2
11 = 〈

[
1
6
− 1

6

]
,

[
1
3 −

1
6

1
3

− 1
3

1
6 −

1
3

]
〉, HZ2

12 = 〈
[
− 1

6
− 1

6

]
,

[
− 1

3 −
1
6 −

1
3

− 1
3 −

1
6 −

1
3

]
〉,

HZ2
21 = 〈

[
5
6
− 13

6

]
,

[
1
3 − 5

6 −
1
3

− 10
6

1
6 −

1
3

]
〉, HZ2

22 = 〈
[
− 5

6
− 13

6

]
,

[
− 1

3 −
5
6

1
3

− 10
6 −

1
6 −

1
3

]
〉

The projected ranges of the 4 zonotopes, which have probability 0.25, are:

γ(y1) ∈ [−0.67, 1.0] ∧ γ(y2) ∈ [−1.0, 0.67];

γ(y1) ∈ [−1.0, 0.67] ∧ γ(y2) ∈ [−1.0, 0.67];

γ(y1) ∈ [−0.67, 2.34] ∧ γ(y2) ∈ [−4.34, 0.0];

γ(y1) ∈ [−2.34, 0.67] ∧ γ(y2) ∈ [−4.34, 0.0]]

From these, we deduce using Proposition 4 that P(x21 ≤ −2) = P(y1 ≤ −2) ∈
[0, 0.25] and P(x22 ≥ 2) = P(y2 ≤ −2) ∈ [0, 0.5]. When considering the conjunc-
tion, P(x21 ≤ −2 ∧ x22 ≥ 2) ∈ [0.0, 0.25].


