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Abstract

Forecasting tasks using large datasets gathering thousands of heterogeneous time series is a crucial
statistical problem in numerous sectors. The main challenge is to model a rich variety of time series, lever-
age any available external signals and provide sharp predictions with statistical guarantees. In this work,
we propose a new forecasting model that combines discrete state space hidden Markov models with re-
cent neural network architectures and training procedures inspired by vector quantized variational autoen-
coders. We introduce a variational discrete posterior distribution of the latent states given the observations
and a two-stage training procedure to alternatively train the parameters of the latent states and of the emis-
sion distributions. By learning a collection of emission laws and temporarily activating them depending on
the hidden process dynamics, the proposed method allows to explore large datasets and leverage available
external signals. We assess the performance of the proposed method using several datasets and show that
it outperforms other state-of-the-art solutions.

1 Introduction

An increasingly common time series forecasting problem concerns the forecast of large datasets gathering
thousands of heterogeneous sequences, see Makridakis et al.| (2018} [2022)); [Lai et al.| (2018); [Zhou et al.
(2021a); |David et al.|(2022a) and the references therein. One of the main difficulties is to design mathemat-
ical models for a large variety seasonal patterns, noise levels, trends and non-stationary changes. Addition-
ally, some time-series datasets provide external signals that can be exploited to detect behaviors in the main
time series that would otherwise be missed (David et al., 2022alb)). Regarding this new type of forecasting
use case, state-of-the-art solutions do not provide satisfactory results yet.

Parametric statistical models have been largely studied during the past decades, see for instance Box et al.
(2015); Hyndman and Athanasopoulos| (2018)). Based on a sharp modeling of the time series distribution,
these models can compute accurate predictions along with confidence intervals that make them largely used
in numerous applications. Depending on the nature of the use case, many approaches have been proposed.
The exponential smoothing model (Brown and Meyer, 1961), the Trigonometric Box-Cox transform, ARMA
errors, Trend, and Seasonal components model (TBATS) (Livera et al., 2011)), or the ARIMA model with
the Box-Jenkins approach (Box et al., |2015) are for instance very popular parametric generative models.
However, they cannot be used for large datasets gathering thousands of time series. As a new model need to
be trained for each new time series, the training process can take considerable time depending on the number
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of sequences. Furthermore, much of the parametric models proposed cannot include external signals in their
framework as the exact dependencies between the additional signals and the main ones remain unknown.

Hidden Markov models are other widespread models that have been largely studied in the literature
(Sarkka, 2013;|Douc et al., 2014;|Chopin et al., [2020). Introduced in the late 1960s, these generative models
rely on hidden processes to describe the distribution of the target time series. Numerous variations have been
proposed to fit different use cases (Juang and Rabiner;, 1985 Douc et al., 2004} Touron, 2019). In addition to
providing accurate predictions, these models are supported by solid theoretical results on their identifiability
and their consistency, see for instance|Douc et al.|(2011)); \Gassiat and Rousseau! (2016));|Gassiat et al.|(2020)
and references therein. However, when large datasets are considered, as a hidden state model has to be
trained on each new time series, they are not well suited to forecast large samples gathering thousands of
time series. Nevertheless, several contributions introducing hidden Markov models able to leverage external
signals have been proposed, see Bengio and Frasconi (1994); Radenen and Artieres|(2012); |Gonzalez et al.
(2005); David et al. (2022b).

Finally, with recent improvements in speech processing and image recognition, neural-network-based
models have emerged as the new state-of-the-art in time series forecasting. Among them, recurrent neural
networks or sequence to sequence deep learning architectures (Hochreiter and Schmidhuber, |1997; [Vaswani
et al.,|2017) offer very appealing alternatives to exploit large time series dataset and leverage any kind of
external signals. The DeepAR methods (Salinas et al., 2020), N-HiTS and N-BEATS frameworks (Oreshkin
et al., [2019; (Challu et al., 2023) and the following Transformer-based approaches |Lim et al.[ (2021); [Zhou
et al.|(20214al,2022);Woo et al.|(2022); Wu et al.|(2022)); Liu et al.[(2022)); Woo et al.| (2023);|Wu et al.|(2023));
Nie et al.|(2023)) are examples of neural-network-based models that have obtained unprecedented accuracy
levels in various applications. However, predictions computed by these methods are not interpretable and
only a handful of theoretical results have been provided with these architectures.

In this paper, we introduce a new forecasting method combining hidden Markov models with recent
neural-networks-based models. In this framework, it is assumed that time series are ruled by hidden Markov
processes modeling the internal state of the time series. Depending on the hidden states dynamics, several
emission laws are learned and specialized at forecasting specific types of behaviours. Maximum likelihood
approaches cannot be used directly to train such a model and Expectation-Maximization (EM) algorithm is
commonly used in this case. However, this algorithm is computationally costly, requires a fair amount of
tuning and is very sensitive to the initialization. Thus, inspired by ideas brought with the Vector quantized
VAE model (van den Oord et al., 2018), a training process based on the Evidence Lower BOund (ELBO)
learning alternatively the parameters of the latent states and of the emission distributions is introduced. On
a collection of reference datasets, our approach outperforms current state-of-the-art solutions. We show that
the model can forecast non-stationary time series, in particular when relevant external signals are included
in the hidden states and the emission laws.

The paper is organized as follows. The proposed model is presented in Section [2]along with the training
procedure. Then, a complete experimental study is provided in Section [3] where the proposed framework
is applied on several datasets, its accuracy assessed and evaluated in comparison with a collection of other
state-of-the-art methods. Finally, some research perspectives are given in Section 4}

2 Model and training procedure

2.1 Model formulation

Consider a dataset gathering N € N* time series. For i € {1,---, N}, let (y})tcz be the observation of
the sequence ¢ and (w}):cz a sequence of additional signals. These auxiliary variables may account for the
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history of some additional time series, or any other available information. The aim of the proposed model
is to forecast, for all i € {1,---, N}, the next h > 1 values of yi based on the past w > 1 values of yi
and w', i.e. to estimate pg (Y, 1.4 p|Yi—wi1:o Wi_wy1.) the probability density function of the time series
when the parameter value is 6. We assume the existence of an additional discrete hidden process denoted
by (})r41<t<7+n taking value in X = {1,---, K} and that rules the density of 37, ,. This discrete
hidden signal can be interpreted as a state or a regime in which is a sequence ¢ is at a time t. Depending on
the values taken, K different predictions can be computed for a same time series, all representing behaviours
linked to the hidden regime of the time series. Thus, the previous density can be written as follows:

p9(3/§+1:t+h ‘yi—w-&-l:ta wi_w“;t)

_ i i i i
= E p9(yt+1:t+iuxt+1:t+h|yt—w+1:t’wt—w+1:t)
Ii+1:t+h€xp
h
E Hp% (Ytgs| Thitits0 Ymwt1tts—10 Wi—wt1:t)
exp s=1

Titiegn

X D0, (Tt g s [Tt s—10 Yimwt1itts—10 Wimwt1:t) -

: : i i i _ i i -
Wlth the convention p@('|xt+1:t+s—1’ yt—w—i—l:t—i—s—l’ wt—w+1:t) - p9('|yt—w+1:t7 wt—w+1:t) fOI' s = 1. Note
that we decomposed the unknown parameter 6 = (6,,6,) with i) the parameters corresponding to the

law of the hidden states denoted by 6, and ii) the parameters corresponding to the law of the main signal
conditionally to the hidden states denoted by ¢,,. We consider the following assumptions.

 Foralli € {1,--- ,H}and all s € {1,-- , h}, we assume that the conditional law of y;, , depends
on the current value of the external signal 7} and the window (y;_ 1 1. Wi_ i 1:0)-

* Foralli € {1,---,H}andall s € {1,--- ,h}, we assume that the conditional law of z}_ , dependss
on the previous xj, ,_; and the window (y;_ 4 1.1» Wi_ 1 1.1)-

Thus, the predictive distribution can be written as follows.

Pe(yi+1:t+h ‘y§7w+1:t’ wi*ﬂ)‘i’l:t)
h

= Z Hpéy (Yigs|Thtss Ui —wt1:6> Wh—wp1:0)P0. (Thp s T s 15 Vi — g 1ts Wo—ipgre) - (D)

Ty n €XP s=1

The proposed framework is therefore a generative model composed of two parts: the law of the hidden
process and the conditional emission laws of the main signal. An illustration of the proposed model is
presented in Figure 1]

2.2 Training

As (%) is never observed, the log likelihood is no longer computable for the proposed model and specific
losses and algorithms have to be used. A relevant approach is to substitute the log likelihood by the Evidence
Lower BOund (ELBO). Below, we recall the ELBO formulation adapted to the forecasting task studied in
this work. For greater clarity, we omit the dependencies on y;_, 1., wi_, 414 Foralli € {1,--- N},

i i
pG(yt+1:t+hv Tyy1.44n)

10890 (Y14 1.641) = Eang, |log

)

q¢(=’”i+1:t+h ‘yi+1;t+h)
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Figure 1: Tllustration of the proposed framework with 3 hidden states. Given the past of a time series
Yi_w + 1Lt and possible additional external signals w!_,, 11.¢ (called z in the figure), a trajectory of the hidden
state ;.. is drawn using the law of the hidden states. Then, conditioned on the values taken by the
hidden process, one of the emission law is activated and used to compute the final prediction §; 1., ;-

where the right hand side term defines the ELBO and 46 (T 4 1|Vl 100 the posterior variational prob-
ability of the hidden sequence z;_ ., , conditioned on the observed sequence ¥ , ., ,.Therefore, the pro-
posed loss function £(¢, 8, 6,) used to train the model is given by

£(9,0:,0y) NZLZ 6,0r,0,)

1 E lo p9<yt+1:t+h’xt+1:t+h|yt7w+1:t7wt7w+1:t)
-N § : gy i i i
46 (@10 n Vit 1ot Wit 1:0)

N
= L 6.0,) + £1(6.0) — £16)
i=1
with

[ h
(QS 9 ): T~q g Zlogpey(y;rs'x;rsvyzw+1:t7wzw+1:t)]
Ls=1

[ h
(¢7 ) JCNq(p Zlogpaz (xz+s|xi+s—1’yz—ul+1:t7w2—w+1:t)]
Ls=1

[ h
L(¢) = Eang, Zlog 46 (T s Yt —ws1it4ho wilfw+1:t)‘| .
Ls=1

Inspired by ideas brought with Vector quantized VAE model (van den Oord et al.,2018)), the ELBO loss
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presented above is optimized in two steps. Whilst training the emission laws and the posterior variational
law, the prior is not learnt and kept constant and uniform. After the convergence of the emission laws, they
are frozen and the prior model is trained, guided by the learned posterior variational law.

2.3 Implementation
Foralli € {1,--- ,N}and s € {1,--- , h} consider the following assumptions.

* Inspired by the DeepAR method introduced in Salinas et al.| (2020), we assume that the K emission
laws (po, (Y4 s|@iss = Ky Yi—wpy10o Wi_wi1:t))1<k<k are Gaussian laws parameterized by K differ-
ent neural networks components. In fact, for each hidden state & € {1,--- , K}, a neural-network-
based model denoted féfy is trained to predict h couples of parameters for the Gaussian emission laws

linked to the hidden regime k: (( /,ijris, ij:s))lgsg p, with y the mean and o the standard deviation.

. , . . ki
0, (yz-i-s'xi-i-s = k’ yz—w-&-l it w; w—+1: t) = N(yt—i-s’ /’(’tJrs’ Ut+s)
~ki o oAk
(ks Orts) = fey (yt—w+1:f,a wt—w+1:t)8
Note that the output of fg'y is a vector of Gaussian parameters. Thus, for all s,s" € {1,--- ,h}, the

Gaussian parameters used to sample po, (Y; |2y s = K. Ui 1000 Wi—pp1) a0d po, (Y4 o |2y =
E, Yt 1.0 Wi_y1.¢) are calculated by the same neural-network-based model.

* The prior law of the hidden states is provided by a neural network component called fo,. Based on
YW Ltas—1> W i 1.4 fo, returns the initial law and transition matrices of the hidden process:

Jk
Po, (‘rt-l-s —k|xt+s 1=1J Z/t w+t7w t— w+1t) = aj

.k
] = fo, (yt—w—‘rl:tv wt—w+1:t)s,j,k :

* Finally, the posterior variational law of the hidden states g (% +s lyi ., 1R wi_y, 41.¢) is learnt by
a neural-network-based model named fy;. Basedon y; 4., jandw', .4, fs returns a matrix
with K x h hidden state probabilities :

46 (T s = KlYt—wpotgn> Wt wy1e) = B,
K
67 f¢(yt w1 £ W w1st s -
Architectures used for ( fé“y )i<k<k, fo, and fy can be adjusted depending on the nature of the time series,
the forecast horizon, if external signals are available, etc. Architectures used in the experiments section are

detailed in Appendix [A.2]and Appendix [B.2] For completeness, a complete code base gathering the model
implementation as well as the training process is publicly provided with this workﬂ

3 Experiments

In this section, we assess the performance of the proposed model on several datasets. The first experiment
uses the dataset gathering 10000 fashion time series firstly introduced in|David et al.|(2022a). In this first ex-
periment, the performance of our algorithm is evaluated and compared with several state-of-the-art methods.

https://github.com/etidav/next
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Moreover, as external signals are available, we show that the model can correctly leverage them to improve
predictions. The proposed method is also evaluated with a collection of 8 reference datasets. This second
application shows that the model can be easily applied to a wide variety of forecasting tasks and provide
accurate predictions, rivaling complex state-of-the-art Transformer-based approaches.

3.1 Fashion dataset
3.1.1 Fashion time series forecasting

A first application of the proposed approach is done on the fashion dataseﬂ introduced in |David et al.
(2022a). This dataset gathers a collection of 10000 weekly time series representing the evolution of the visi-
bility of garments on social media. In addition, each sequence is linked with an external signal representing
the visibility of the same garment on a sub sample of influencer users. The intuition is that influencers can
adopt fashion items in advance and thus help forecasting methods to better predict the evolution of clothing
on mainstream users. This dataset turned out to be well suited to our framework as it shows several specific
features.

* The fashion dataset contains numerous time series, showing thousands of different patterns of season-
ality, trends, and noise levels. Some of the fashion time series are non-stationary.

* On some examples, early signals announcing the emergence of a new fashion item (which can also
be considered as a change of regime) can be perceived in the external signals. Properly exploiting
these additional signals could prove decisive in order to accurately detect and predict sudden changes
present in the main time series.

3.1.2 Baseline models and our model variants

The following methods are tested on the fashion dataset as baseline approaches: Snaive, Thetam (Hynd-
man et al., [2020), Ets (Brown and Meyer, |1961; Holt, 2004), Thats (Livera et al., [2011), HERMES (David
et al.| 2022a)), Prophet (Taylor and Letham, [2017), N-BEATS (Oreshkin et al., 2019), N-HiTS (Challu et al.|
2023), DeepAR (Salinas et al., [2020) and PathTST (Nie et al.l 2023). All these methods are reviewed in
Appendix Against these methods, 2 variations of our approach with 2 hidden states are presented: 1)
a variation (mentioned as Ours) that does not have access to the influencers external signals. ii) a variation
having access to the external signals (mentioned as Ours-es with ’-es’ for external signals). For the second
method, external signals are included as input in the hidden state law and in only one of the two emis-
sion laws. Further information concerning parameters selection and the training process of the proposed
approaches and some of the benchmark methods are reviewed in Appendix

3.1.3 Accuracy metrics

The fashion forecasting task is to predict the last year (52 values) of the 10000 time series. Evaluation of the
tested methods accuracy is done using the Mean Absolute Scaled Error (MASE) as the fashion time series
have different volumes:

. R
T —m i1 [Yrij — Yoyl
h ZzT:_lm Dfl - 1/i—m| 7

MASE =

Zhttps://github.com/etidav/HERMES/
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Figure 2: Predictions on the fashion dataset. (Top Left) Prediction of the two emission laws when the hid-
den state is 0 or 1. (Top Right) Empirical distributions of the hidden states. (Bottom) Simulated predictions
with our model using external signals.

where T stand for the time series length, h the forecast horizon and m the seasonality (for the fashion dataset,
T = 209, h = 52 and m = 52). In addition of assessing the MASE on the whole dataset, the MASE is
also evaluated on 2 sub samples of time series representing stationary and non-stationary time series. The
following methodology is used to create these 2 samples.

* non-stationary time series. As a main challenge of the fashion forecasting use case is to correctly
anticipate sudden evolution, a sub sample of time series showing strong non-stationary behaviours is
studied. To create this sub sample of time series, the snaive model is used to predict the last year of
the fashion time series and the associated MASE are calculated. The non-stationary time series are
defined as the 1000 time series where the snaive prediction got the highest MASE.

* stationary time series. By contrast, a group of stationary time series is presented. To define them,
the same methodology as the previous group is used. We define them as the 1000 time series where
the snaive prediction reached the lowest MASE.

3.1.4 Results

An example of model prediction on a fashion time series is displayed in Figure[2] Hidden states trajectories,
emission laws predictions and the final simulations are presented. In this example, the second emission
law (emission law that has access to the external signal) catches the regime shift in the time series. This
information is also correctly learnt as the empirical probability to be in this regime is close to one. Additional
examples are provided in Appendix [A.5]

The final accuracy results are provided in Table |I} For each method, a prediction and the associated
MASE are computed for the 10000 time series and the average is computed on the whole dataset, the non-
stationary sample and the stationary sample. Among methods that have not access to the external signal,
the proposed method (Ours) has the highest accuracy on the whole dataset as well as on the 2 sub sam-
ples and outperforms other state-of-the-art models. The best results are provided by Ours-es, the proposed
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Table 1: Fashion dataset accuracy results. The Average MASE of each tested method is assessed on the
whole dataset and 2 sub samples. For approaches using neural networks, 10 models are trained with different
seeds. The mean and standard deviation of the 10 results computed with the 10 replicates are displayed.

Non-stationary Stationary
Fashion dataset time series time series
MASE seed std MASE seed std MASE seed std
Snaive 0.881 - 1.455 - 0.536 -
Thetam 0.844 - 1.314 - 0.615 -
Arima 0.826 - 1.256 - 0.565 -
Ets 0.807 - 1.27 - 0.611 -
Prophet 0.786 - 1.193 - 0.629 -
Stim 0.77 - 1.198 - 0.513 -
Thats 0.745 - 1.229 - 0.501 -
DeepAR 0.731 0.006 1.158 0.031 0.508 0.017
Hermes-ws 0.713 0.005 1.092 0.007 0.477 0.008
PatchTST 0.706 0.004 1.149 0.01 0.448 0.003
N-HITS 0.701 0.003 1.151 0.014 0.449 0.005
N-BEATS 0.7 0.003 1.146 0.014 0.451 0.003
Ours 0.692 0.001 1.116 0.006 0.44 0.001
Ours-es 0.684 0.001 1.03 0.006 0.449 0.002

method with the external signals. It outperforms all the other methods and shows a significant improvement,
especially on the non-stationary time series.

3.1.5 Probabilistic forecast

The proposed generative model allows to sample trajectories to assess the confidence of the forecast, see
Figure [2 for an illustration. So as to evaluate the proposed approach on this specific point, 100 trajectories
are computed with the method for each time series. Then, the MASE is computed for each trajectories and
the average and standard deviation is displayed in Table 2] The DeepAR method is also used as it allows
to sample several predictions. We can see that the proposed model outperforms DeepAR and improves its
probabilistic predictions when the influencers external signals are used.

3.2 Reference dataset
3.2.1 Dataset presentation, Baseline models and the proposed approach

The presented model is also evaluated with a collection of 8 reference datasets used in many recent contri-
bution dealing with time series forecasting, see|Li et al.|(2019); Zhou et al.|(2021al, 2022));[Woo et al.| (2022));
Wu et al.| (2022); [Liu et al.| (2022)); Zeng et al.| (2022); Wu et al.| (2023)); (Challu et al.| (2023)); [Woo et al.
(2023); Nie et al.|(2023). A review of these datasets is given in Appendix

As benchmark against the proposed models, methods and results presented in the two following recent
papers are used Wu et al.| (2023); Nie et al.| (2023): the two best Transformer-based methods on the 8
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Table 2: Fashion dataset probabilistic forecast accuracy results. Final accuracy of methods providing
probabilistic forecasts. For each method, 100 trajectories and their associated MASE are computed for each
time series. The average and standard deviation is then calculated on the whole dataset and 2 sub samples.

Non-stationary Stationary
Fashion dataset time series time series
MASE MASE MASE
Mean Std Mean Std Mean Std
DeepAR 0.969 0.339 1.407 0.519 0.708 0.262
Ours 0.951 0.273 1.364 0.394 0.655 0.153
Ours-es 0.943 0.268 1.319 0.362 0.656 0.166

datasets named PatchTST (Nie et al.,|2023) and TimesNet (Wu et al.,|2023)), a neural network called Dlinear
that, as our approach, only relies and fully connected layers (Zeng et al., |2022) and 5 Transformer-based
methods called FEDformer (Zhou et al.,[2022), Autoformer (Wu et al., 2022}, Informer (Zhou et al.,[2021a)),
Pyraformer (Liu et al., [2022) and LogTrans (Li et al.,[2019).

Concerning the proposed approach, recurrent neural networks used on the fashion use case are replaced
by fully connected networks as they are too computationally intensive for the long-term forecasting tasks
(H=720). For all the reference datasets, the number of hidden states was set to 3 and the same architecture
was used. Only a small grid search was run on each dataset for the shortest forecasting task to fix the length
of the method inputs. Additional information concerning the proposed model on the reference dataset can
be found in Appendix and a code base is released to reproduce the resultsﬂ

3.2.2 Accuracy metrics

On the reference datasets, forecasting methods are evaluated on several horizons (lying between 24 to 720
time steps) and with 2 errors metrics, the Mean Square Error (MSE) and the Mean Absolute Error (MAE):

h h
1 N 1 ~
MSE = - J§:1(YTH —Yri;)?, MSE = 7 j; Yrij — Yoyl

with & the forecast horizon. The last 20% of each time series is kept hidden and used as test set.

3.2.3 Results

Table [3| displays the accuracy results of the benchmark models along with the proposed method on the 8
reference datasets. We can see that depending on the dataset and the horizon, the proposed method and
the Transformer-based method PatchTST outperform all alternatives. These results illustrate two important
features of the presented approach

* The proposed method can be used for a large variety of time series forecasting task.

3https://github.com/etidav/next
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Table 3: Reference datasets accuracy results. The best methods are highlithed in bold and the second best
results with an underline.

Ours PatchTST/64 TimesNet DLinear FEDformer Autoformer Informer Pyraformer LogTrans

H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

. 96 0.154 0.199 0.149 0.198 0.172 0220 0.176 0237 0.217 0.296 0266 0.336 0300 0.384 0.896 0.556 0.458 0.490
S 192 | 0198 0242 0194 0241 0219 0261 0220 028 0276 0336 0307 0367 0598 0544 0622 0.624 0.658 0.589
§ 336 || 0.252 0286 0.245 0.282 0.280 0.306 0265 0.319 0339 038 0359 0395 0.578 0.523 0.739 0.753 0.797 0.652
720 || 0.316 0.332 0.314 0334 0365 0.359 0323 0362 0403 0428 0419 0428 1.059 0.741 1.004 0.934 0869 0.675

96 0.396 0.282 0.360 0.249 0593 0.321 0410 0282 0.562 0349 0.613 0.388 0.719 0.391 2.085 0.468 0.684 0.384
5:5 192 || 0423 0301 0379 0.256 0.617 0.336 0423 0.287 0.562 0.346 0.616 0382 0.696 0.379 0.867 0467 0.685 0.390
& 336 || 0437 0306 0392 0.264 0.629 0336 0436 0296 0.570 0323 0.622 0.337 0.777 0420 0.869 0.469 0.733 0.408
720 || 0.480 0.328 0.432 0.286 0.640 0.350 0.466 0.315 0.596 0.368 0.660 0.408 0.864 0.472 0.881 0473 0.717 0.396
96 0.140 0.240 0.129 0.222 0.168 0272 0.140 0237 0.183 0.297 0201 0.317 0274 0.368 0.386 0.449 0.258 0.357
3 192 || 0.158 0256 0.147 0.240 0.184 0.289 0.153 0.249 0.195 0.308 0.222 0334 0296 0.386 0.386 0443 0266 0.368
M336 || 0.176 0274 0.163  0.259 0.198 0.300 0.169 0.267 0.212 0313 0231 0.338 0300 0.394 0378 0.443 0.280 0.380
720 || 0.217 0307 0.197 0.290 0220 0.320 0.203 0.301 0.231 0.343 0.254 0361 0.373 0439 0376 0445 0283 0.376
240 || 1.985 0.825 1.319 0.754 2317 0.934 2215 1.081 2203 0963 3483 1287 5764 1.677 1420 2.012 4480 1444
5 36 1746 0.783 1.579 0.870 1.972 0.920 1.963 0963 2272 0976 3.103 1.148 4755 1467 7394 2031 4.799 1467
= 48 1722 0.790 1.553 0.815 2238 0940 2.130 1.024 2209 00981 2669 1.085 4763 1469 7.551 2057 4.800 1468
60 1.684 0.792 1470 0.788 2.027 0.928 2368 1.096 2545 1.061 2770 1.125 5264 1.564 7.662 2.100 5.278 1.560
96 0379 0.389 0.370 0.400 0.384 0402 0375 0.399 0376 0419 0449 0459 0.865 0.713 0.664 0.612 0.878 0.740
= 192 | 0440 0424 0413 0429 0436 0429 0405 0416 0420 0448 0500 0482 1.008 0.792 0.790 0.681 1.037 0.824
E 336 || 0483 0.445 0422 0.440 0491 0469 0439 0443 0459 0465 0.521 0496 1.107 0.809 0.891 0.738 1.238 0.932
720 || 0.570 0.524 0.447 0.468 0.521 0.500 0.472 0490 0.506 0.507 0.514 0512 1.181 0.865 0963 0.782 1.135 0.852

96 0.271 0332 0.274 0337 0.340 0.374 0289 0.353 0346 0.388 0358 0.397 3.755 1.525 0.645 0597 2116 1.197

S 192 || 0347 0382 0341 0382 0402 0414 0383 0418 0429 0439 0456 0452 5602 1931 0788 0.683 4315 1.635
E 336 || 0.380 0.409 0.329 0.384 0452 0452 0448 0465 0496 0487 0482 0486 4.721 1.835 0907 0.747 1.124 1.604
720 || 0.420 0.446 0.379 0422 0462 0468 0.605 0.551 0463 0474 0515 0511 3.647 1.625 0963 0.783 3.188 1.540

96 0.288 0.335 0.293 0346 0.338 0375 0299 0.343 0379 0419 0505 0475 0.672 0571 0.543 0510 0.600 0.546
T 192 || 0331 0363 0333 0370 0374 0387 0335 0365 0426 0441 0553 0496 0795 0.669 0557 0537 0.837 0.700
E 336 || 0.364 0.385 0.369 0392 0410 0411 0369 0.386 0.445 0459 0.621 0537 1212 0.871 0.754 0.655 1.124 0.832
720 || 0429 0426 0416 0420 0478 0450 0425 0421 0543 0490 0.671 0561 1.166 0.823 0.908 0.724 1.153 0.820

96 0.162 0.249 0.166 0256 0.187 0267 0.167 0.260 0203 0.287 0.255 0.339 0.365 0453 0435 0.507 0.768 0.642
T 192 || 0218 0.288 0223 0296 0249 0309 0224 0303 0269 0328 0281 0340 0533 0563 0730 0.673 0989 0.757
E 336 || 0.271 0.325 0.274 0329 0.321 0.351 0281 0.342 0325 0366 0.339 0372 1363 0.887 1201 0.845 1334 0.872
720 || 0.355 0.380 0.362 0.385 0.408 0.403 0397 0421 0421 0415 0422 0419 3379 1.388 3.625 1451 3.048 1.328

* By combining elementary neural networks components with hidden processes and a computationally
efficient training procedure, the accuracy of our model reaches state-of-the-art standards and provide
uncertainty quantification.

However, we can see that the Transformer-based model PatchTST outperforms the proposed model on some
reference datasets such as Traffic or ECL. A main reason is that these two datasets gathers similar time
series with long term evolution. In this context, the interest in introducing hidden states is low and the
models used in the emission laws do not manage to outperform very complex and high dimensional models
such as PatchTST. Additional numerical results on the reference datasets can be found in Appendix [B]along
with examples of predictions for each reference dataset.
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4 Conclusion

In this paper, a new time series forecasting model combining discrete hidden Markov models and deep
architectures is introduced. Depending on the dynamics of the hidden states, several emission laws are
learned and activated to produce the final predictions. We proposed a two-stage training procedure, based
on the ELBO and inspired by recent variational quantization approaches. Our model was first tested on a
fashion dataset and outperformed state-of-the-art methods in particular when using external signals. Then, its
performance were assessed on 8 reference datasets with similar performance as Transformer-based methods.
The approach allows to obtain an estimation of the predictive distribution of future observations. This
generative model can be further investigated by providing an automatic selection of the number hidden
states, and extending recent results on variational learning of hidden Markov models to obtain theoretical
guarantees on the variational distribution.
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A Fashion dataset

A.1 Benchmark models
We present in this section the baseline methods tested on the fashion dataset against the proposed approach:
* Snaive: A method that only repeats the last past period of historical data.

» Thetam: A parametric model that decomposes the original signal in #-lines, predicts each one sepa-
rately and recomposes them to produce the final forecast (Hyndman et al.| (2020)).

* Ets: The exponential smoothing method (Brown and Meyer| (1961)/Holt| (2004)).
* Tbats: A parametric model presented in|Livera et al.|(2011).

e Stlm: A parametric model that uses a multiplicative decomposition and models the seasonally ad-
justed time series with an exponential smoothing model (Hyndman et al.[ (2020)).

* HERMES: a hybrid method mixing per-time-series TBATS predictors and a recurent neural network
global corrector |David et al.| (2022a).

* Prophet: a parametric model introduced in Taylor and Letham|(2017) and widely used in the indutry.

* N-BEATS: a full-neural-network-based method that shows striking results on numerous datasets of
the literature |Oreshkin et al.| (2019).

e N-HiTS: The evolution of N-BEATS |Challu et al.| (2023]).

* DeepAR: a full-neural-network-based method used at Amazon that provided sharp probabilistic fore-
casts [Salinas et al.| (2020).

* PatchTST: A Transformer-based model that emerged as the best method using Transformers on sev-
eral datasets of the literature [Nie et al. (2023)).

For the methods DeepAR, N-BEATS, N-HiTS and PatchTST, the package “neuralforecast” was used to train
them (Olivares et al., [2022)).

A.2 Architecture used for hidden states and emission laws

We detail in this section the architecture used for the proposed model on the Fashion dataset. For the
emission laws, a LSTM layer is first used to process the past of the main signal and external signals. Then,
Fully Connected (FC) layers are used to compute the different parameters of the emission laws. For the
standard deviation of the Gaussian emission laws, a “softplus” activation is applied on the last layer to
ensure that the model outputs remain positive. Concerning the hidden state prior law, two LSTM layers
are used to process the past inputs (main signals plus external signals) and some outputs of the emission
laws. Outputs are concatenated and fed to two Fully Connected layers followed by a ”softmax” activation to
compute the initial law and transition matrices of the hidden state processes. Finally, for the posterior law of
the hidden states, past and future windows of the main signal are first provided to two LSTM layers. Outputs
are concatenate and fed to a Fully Connected layers and a “softmax” activation to compute the posterior
variational probabilities. See Figure [3|for an illustration of the different components.
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Figure 3: Example of model architecture. Example of architecture used for the proposed approach on the
Fashion dataset. (Left) Model used to compute parameters of the k-th emission law. (Middle) Model used to
compute the hidden state probabilities. (Right) Model used to approximate the posterior law of the hidden
states.

A.3 Fixing the number of hidden states

Table [ displays results of several variations of the proposed model with a number of hidden states between
2 and 4. We see that the variation achieving the best accuracy is the method with two hidden states and that
increasing the number of hidden states does not always lead to an increase in final accuracy. Indeed, we
notice that the more the model has hidden states, the more difficult it is to differentiate them, which leads to
redundant emission laws. See Appendix [A.3]for prediction examples of the variation with 4 hidden states.
Future works will focus on providing an automatic selection of K.

A.4 Grid search

So as to produce the final results of the benchmark methods and the proposed model on the Fashion dataset,
several grid searches were run to fix the different hyper parameters. For the methods PatchTST, N-HiTS,
N-BEATS, DeepAR and our method, a grid search was run on the learning rate and the batch size. Table[3]
summarizes the grid search results for these 5 models. The best configuration in terms of MASE on the test
set was selected and used to produce the final results displayed in Section 3.1}

A.5 Example of predictions

Finally, we display additional examples of predictions using the proposed model on the Fashion dataset.
First, Figure [] displays a comparison between predictions of the model having access to the influencers
external signals and without having access to them. We can see that in some examples, the inclusion of
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Table 4: Hidden states grid search. Average MASE of the proposed model with a number of hidden states
lying between 2 and 4 are assessed on the Fashion dataset. For each model, 10 models are trained with
different seeds. The mean and standard deviation of the 10 results computed with the 10 replicates are
displayed.

Non-stationary Stationary
Fashion dataset time series time series
MASE seed std MASE seed std MASE seed std

Ours 3hs 0.693 0.001 1.118 0.006 0.441 0.002
Ours 4hs 0.693 0.001 1.113 0.004 0.442 0.001
Ours 2hs 0.692 0.001 1.116 0.006 0.44 0.001
Ours-es 3hs 0.685 0.001 1.031 0.005 0.452 0.002
Ours-es 4hs 0.685 0.001 1.029 0.005 0.452 0.002
Ours-es 2hs 0.684 0.001 1.03 0.006 0.449 0.002

Table 5: Fashion dataset benchmarks grid search Grid searches run on the Fashion dataset for the follow-
ing benchmark methods: DeepAR, PatchTST, N-HiTS, N-BEATS and our method. The metrics displayed
are the final MASE of each model variation on the test set.

DeepAR PatchTST
i : Ours
Learning rate Learning rate Learning rate
0.05  0.005 0.0005 0.05  0.005 0.0005 H 0005 Do00s 000005
8 076 0791 0.874 8 085 0714 0717
S 6 | 0733 0736 0831 S 64 | 0881 0705 0707 § 5| ol ol 0T
= 256 || 0.774 0771 0772 = 256 | 0913 0705 0708 £ tooa |l 0sor 0696 0709
3 1024 || 0754 075 0754 = 1024 || 0.818 0.704 0.709 5 o || 06os 0693 0702
B 2048 || 0727 0745 0752 B 2048 || 0947 0709 0.709 = : - :
N-HiTS N-BEATS
Learning rate Learning rate
0.05  0.005 0.0005 0.05  0.005 0.0005
. 8 0733 0709 0.701 . 8 0740 0709  0.700
S 64 | 0716 0733 0702 S 64 | 0713 0734 0702
S 256 || 0719 0733 0702 = 256 | 0719 0738 0.703
S 1024 || 0715 0734 0.702 S 1024 || 0718 0737 0.704
B 2048 || 0717 0734 0703 B 2048 || 0.876 0741 0704
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the external signals greatly helps one of the emission laws to explore new distributions and accurately catch
non-stationary evolution. Then, Figure [5] shows the prediction of the presented model with 4 hidden states
and illustrates that adding hidden states does not necessarily lead to a better exploration of the dataset but
may lead to redundant regimes. Finally, Figure [6] displays examples of prediction of the proposed model
along with some of the best benchmark models.

B Reference dataset

B.1 Reference Datasets
We present in this section the 8 references dataset used in Section [3.2]

e ETTm2 (Electricity Transformer Temperature): a dataset gathering time series following characteris-
tics of an electricity transformer in China from July 2016 to July 2018 with values measured every 15
minutes [Zhou et al.| (2021D)).

* ECL(Electricity): time series representing the evolution of the electricity consumption of 370 clients
from 2012 to 2014 Trindade|(2015)).

* Exchange-Rate: a dataset gathering 8 time series representing the evolution from 1990 to 2016 of
the daily exchange rates of the following countries: Australia, British, Canada, Switzerland, China,
Japan, New Zealand and Singapore [Lai et al.| (2018)).

* Traffic (San Francisco Bay Area Highway Traffic): 862 time series representing roads occupancy
measured by 862 sensors spread over the State of California from January 2015 to December 2016.

» Weather: dataset gathering the evolution of 21 meteorological variables in Germany during the year
2020.

* ILI(Influenza-like illness): time series representing the weekly evolution of the number of influenza-
like illness patient in The United States, from January 2002 to July 2020.

B.2 Architecture used for hidden states and emission laws

An overview of the architecture used for the proposed model on the 8 reference dataset is displayed in
Figure[7} As recurrent neural layers considerably slow down the model for some of the long-term forecast-
ing tasks (especially where horizon=720), they are all replaced by fully connected layers. Except for this
modification, the architecture used with the reference datasets is similar to that used on the Fashion dataset.

B.3 The importance of hidden states

On all the 8 benchmark datasets, we fix the number of hidden states to 3 for the proposed model. However,
as for the past dependency parameter, a gridsearch can be done to find the optimal number of hidden states.
On three reference datasets (Traffic, Weather and ETTh2) and for the forecasting task where horizon is fixed
to 96, we train 4 variations of the proposed method with a number of hidden states lying between 1 to 4.
Results are displayed in Figure[6] We can see that the optimal number of hidden states can change depending
on the use case but the difference in terms of accuracy remains low between 2 and 4 hidden states.
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Figure 4: Ours vs Ours-es predictions. Ours and Ours-es model predictions on three fashion time series:
(Top) br_female_shoes_262”, (Middle) “eu_female_outerwear_177”, (Bottom) “’eu_female_texture_80”. On
several fashion time series, Ours-es correctly leverages the influencers external signal and capture sudden
non-stationary evolution impossible to forecast without them.
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Figure 5: Proposed method with 4 hidden states predictions. Emission laws predictions of the pro-
posed model with 4 hidden states on three fashion time series: (Top) “br_female_shoes 262, (Middle)
“eu_female_outerwear_177”, (Bottom) “eu_female_texture_80”. For this model, the influencers external sig-
nal was only given to the third and the fourth emission laws. The third and the fourth emission laws learned
different distribution but the first and the second oneg geems to be redundant.
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Figure 6: Presented method and benchmark models predictions. Final prediction of the presented model
and some of the benchmark methods on three fashion time series (Top) “’br_female_shoes_262”, (Middle)
“eu_female_outerwear_177”, (Bottom) “eu_female_texture_80”. The model Ours seems to compute more
accurate predictions than benchmark methods on these examples but the best forecast are provided by the
model Ours-es with the use of the influencers externglsignal.
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Figure 7: Example of model architecture. Example of architecture used for the proposed approach on the
8 reference datasets. (Left) Model used to compute parameters of the k-th emission law. (Middle) Model

used to compute the hidden state probabilities. (Right) Model used to approximate the posterior variational
law of the hidden states.

Table 6: Hidden state parameter Analysis of the importance of the number of hidden states on 3 of the 8

reference datasets. We test a number of hidden states from 1 to 4. The metrics displayed are the final MSE
and MAE on the validation and test set.

hidden states 1 hidden state 2 hidden states 3 hidden states 4 hidden states
Eval Test Eval Test Eval Test Eval Test
dataset H || MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 96 || 0.399 0280 0.155 0.201 0.397 0.278 0.154 0200 0398 0.276 0.153 0.199 0399 0277 0.154 0.200
Traffic 96 || 0.329 0.244 0.399 0287 0330 0.243 0400 0.286 0.330 0242 0399 0.284 0.330 0.242 0.399 0.285
ETTh2 96 || 0236 0.316 0.273 0.334 0239 0313 0276 0332 0.238 0311 0273 0331 0236 0310 0.272 0.331
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Table 7: Preprocessing analysis Analysis of the impact of the preprocessing on the proposed method. The
Minmaxscaler (scale the inputs between 0 and 1) and the Standardscaler (scale the inputs to have mean 0 and

a variance of 1) approach are tested. The metrics displayed are the final MSE and MAE on the validation
and test set.

preprocess name MinMaxscaler Standardscaler

Eval Test Eval Test
dataset H MSE MAE MSE MAE MSE MAE MSE MAE
ETThl 96 0.487 0.451 0379 0.389 0494 0458 0.380 0.394
ETTh2 96 0.239 0315 0.271 0.332 0.271 0.348 0.306 0.362
ETTml 96 0.303 0.354 0.288 0.336 0.304 0.355 0.292 0.340
ETTm2 96 0.124 0.233 0.162 0.249 0.134 0.241 0.167 0.253

B.4 Minmaxscaler versus Standardscaler

On the 8 reference datasets, we investigate the potential impact of the preprocessing step on the proposed
model. Consequently, on 4 of the 8 reference datasets (ETThl, ETTh2, ETTml and ETTm2) and for the
forecasting task where horizon is fixed to 96, the two normalization included by the proposed model (Min-
maxscaler and StandardScaler) are tested. Table [/|displays results of the different trainings and we can see
that accuracy results can be strongly impacted by the preprocessing. As the Minmaxscaler normalization
seems to be more robust than the Standardscaler, it was selected for the proposed architecture on the 8
reference datasets.

B.5 past dependency grid search

On the 8 reference datasets presented in Section [3.2] a gridsearch was run to set the best past dependency
length for the proposed approach. For each dataset, several input sizes were tested from half of the seasonally
to 8 times the seasonality. The best one was selected based on the MSE of the resulting model on the
validation set. Table 8| summarizes the results of each gridsearch.

B.6 Example of predictions

Finally, we provide examples of predictions on the 8 reference datasets. Figure [§] and [9] display for each
dataset a prediction of the proposed approach along with the prediction of the emission laws when the
hidden state is fixed to 0, 1 or 2.
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Figure 8: Predictions on reference datasets. Example of final prediction of the proposed model on the
reference datasets Traffic, Weather, ECL and ILI. (Left) 100 simulations along with the mean prediction of
the model (Right) 100 simulations and mean prediction of the three emission laws when the hidden state is
fixedto O, 1 or 2.
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Figure 9: Predictions on reference datasets. Example of final prediction of the proposed model on the ref-
erence datasets ETTh1, ETTh2, ETTm1 and ETTm2. (Left) 100 simulations along with the mean prediction
of the model (Right) 100 simulations and mean prediction of the three emission laws when the hidden state
is fixed to 0, 1 or 2.
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Table 8: Past dependency grid search Grid searches run on the 8 reference datasets to fix the optimal
past dependency parameter for the proposed model. We tested a range of values between the half of the
seasonally to 8 times the seasonality. The metrics displayed are the final MSE and MAE on the validation
set.

Past dependency || 0.5%seasonality — 1*seasonality =~ 2*seasonality = 3*seasonality =~ 4*seasonality =~ 5*seasonality
dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Weather 96 0.639 0346 0470 0290 0433 0277 0423 0276 0.409 0.276 0.400 0.276
Traffic 96 0537 0333 0366 0254 0337 0243 0329 0241 0328 0240 0324 0.239
ECL 96 0.183 0256 0.132 0.225 0.122 0.217 0.119 0.215 0.118 0.215 0.118 0.216
ILI 96 0322 0405 0.146 0.232 0.296 0317 0.237 0276 0217 0314 0.263 0.373
ETThl 96 0485 0450 0500 0.465 0.498 0476 0512 0490 0.512 0.490 0.520 0.499
ETTh2 96 0244 0319 0.234 0309 0.239 0312 0239 0312 0237 0313 0.242 0.320
ETTml 96 0.463 0439 0345 0375 0314 0360 0309 0360 0306 0356 0308 0.357
ETTm2 96 0.141 0250 0.134 0.242 0.131 0.239 0.125 0.234 0.129 0.237 0.126 0.234
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