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Abstract

Analytical/quasi-analytical solutions are proposed for a steady, compressible, two-phase flow in mechanical
equilibrium in a rectilinear duct subjected to heating followed by cooling. The flow is driven by the pressure ratio
between a variable outlet pressure and an upstream tank. A critical pressure ratio distinguishes subsonic and
supersonic outlet regimes: the article proposes a methodology to determine the full flow behaviour, as a function
of pressure ratio and heat-flux distribution. Going forward, these analytical reference solutions will help validate
numerical codes for more complex industrial applications. Specific results are studied for a mixture of liquid water
and water vapour.

1 Introduction
Analytical solutions for heated compressible flows have firstly been developed for simple 1D cases [8]. To obtain
those solutions, the conditions of the flow must be specified at the inlet. However, when the flow is subsonic,
acoustic waves will travel up and down the duct, resulting in a change of inlet state. Thus, to consider upstream
variations and determine solutions, the inlet is connected to a tank, therefore providing constant inlet stagnation
state. Consequently, subsonic flows can be recovered without specifying the flow quantities.

In doing so, the study provided in [2] has shown that, at most, a heated flow in a duct connected to a tank can
accelerate up until the sonic point. Then, further research presented in [7] described what happens once a cooled
subsection is appended: if the end of the heated subsection reaches the sonic state, then the cooled subsection can
either bring the flow back to the subsonic state, or it can accelerate it into a supersonic regime. This branching
depends on the pressure ratio between the outlet and the tank: according to this pressure ratio and the applied
function of heat flux, the behaviour of the flow can be determined. As the tank conditions are given fixed data,
variations in flow behaviour can be obtained by varying the outlet pressure.

This previous study has defined the possible regimes and critical pressure ratios; it was demonstrated that there
was no possible steady shock wave, as the flow is ruled by the intersection of its Rayleigh line and Crussard curve.
This description shows a similarity with the study of flows in nozzles. The role of the area of the cross section of the
nozzle was correlated to the local amount of heat applied on the duct: however, it was shown that where a single
ratio of areas is needed to determine nozzle flows, both heating and cooling power values are needed for heated and
cooled flows.

In the following paper, we study a two-phase flow under mechanical equilibrium: both phases evolve freely in
terms of thermal and chemical aspects but share a single velocity and single pressure. This kind of flow was first
presented in [1] for condensed granular matter. It then has been largely used to describe liquid-gas mixtures [5] [6].
The prime and novel objective of this study is to propose analytical reference solutions for this type of flow, following
the previously described set-up [7]: the solutions are extended to a one-dimensional two-phase steady compressible
flow, subjected to heating, and then cooling power. These reference solutions are developed using the “Stiffened-Gas”
equation of state [3], allowing to consider both liquids and gases. This work will help validate numerical tools for
the simulation of non-adiabatic compressible flows, but also to size engineering processes and installations.
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2 Two-phase flow model: mechanical equilibrium
2.1 Unsteady model
The following system describes the baseline unsteady model of our study, for a two-phase, compressible, inviscid flow
in a mechanical equilibrium. It is an extension of the model presented in [1], with the addition of an external heat
source term δq̇ [W.m−3]: 

∂tα1 + u.∇.α1 = K∇.u + Θδq̇/ρ
∂t(α1ρ1) + ∇.(α1ρ1u) = 0
∂t(α2ρ2) + ∇.(α2ρ2u) = 0
∂tρ + ∇.(ρu) = 0
∂t(ρu) + ∇.(ρu ⊗ u + P I) = 0
∂t(ρE) + ∇.((ρE + P )u) = δq̇

(1)

Both phases share a single pressure P and velocity u. Mixture quantities are defined as followed: v = 1/ρ =∑
k Ykvk, E = e + 0.5u2, e =

∑
k Ykek, where v is the mixture specific volume, ρ is the mixture density, E is the

mixture total energy and e is the mixture specific internal energy.
Each symbol indexed by (·)k denotes a phase k variable: vk, ρk = 1/vk and ek are respectively the specific volume,

density, and internal energy of said phase. Yk represents its mass fraction within the mixture, whereas αk = Ykvk/v
is its volume fraction. It must be noted that

∑
k Yk =

∑
k αk = 1. The mixture entropy is defined as s =

∑
k Yksk

and the entropy equation for phase k is the following, with sk the entropy and Tk the temperature of the phase:

ρ
dsk

dt
= δq̇

Tk
(2)

With c2
k = ∂Pk/∂ρk)sk

the definition for the speed of sound of phase k, the mixture sound speed of this model is
the Wood sound speed cw [9]:

1
ρc2

w

=
∑

k

αk

ρkc2
k

(3)

The compressibility factor for a two-phase flow is K = (ρ2c2
2 − ρ1c2

1)/(ρ1c2
1/α1 + ρ2c2

2/α2): K∇.u describes the
variations of the volume fraction under acoustic perturbations. We demonstrate Θ = (ρ2Γ2 − ρ1Γ1)/(ρ1c2

1/α1 +
ρ2c2

2/α2), where Γk = vk∂Pk/∂k)ρk
is the Gruneisen coefficient of phase k. For a positive heat source term, if phase

1 is denser than phase 2 (therefore ρ1 > ρ2), the volume fraction α1 will decrease.
The system is closed using a convex equation of state (EOS) ek = ek(Pk, vk) for each phase k. In this paper, the

“Stiffened-Gas” (SG) EOS is used: it allows to describe both liquids and gases as the equation considers attractive
and repulsive effects in matter:

ek(Pk, vk) = Pk + γkPk,∞

γk − 1 vk + ek,ref (4)

The EOS parameters γk, Pk,∞ and ek,ref are obtained from reference thermodynamic curves, characteristics of
the material and transformation under study (see [4] for details). Therefore, by using SG EOS, the speed of sound
of phase k reads:

c2
k = γk(Pk + Pk,∞)vk (5)

2.2 Steady-state analysis
2.2.1 System description

Let us consider a one-dimensional steady flow in a rectilinear duct, defined by a length L, a constant cross-section
S and a circumference C. The outer surface Sext = C × L of the duct receives a 2-steps function of heat flux φ(x)
[W.m−2] along axis x ; xheat denotes the end of the heated subsection and the beginning of the cooled subsection
(defining the subscript (·)heat). This yields a corresponding power function defined as Q(x) =

∫ x

0 φ(η) C dη [W]:

φ(x) =
{

φheat > 0 if x ≤ xheat

φcool < 0 otherwise =⇒ Q(x) =
{

C x φheat if x ≤ xheat

C [xheat φheat + (x − xheat) φcool] otherwise
Therefore, the power received by the entire heated subsection is Qheat = C xheat φheat, the power lost by the entire

cooled subsection is Qcool = C (L − xheat) φcool and the total power received by the duct is Qout = Qheat + Qcool.
Finally, the power received per unit area of cross-section defined previously can be retrieved at any point x by the
following relationship: q̇s,x = Q(x)/S ∝ Q(x).
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The inlet of the duct is connected to a tank, which is characterized by tank conditions with zero velocity, known
stagnation pressure, temperature, and phases distribution. By coupling both systems, the flow is prescribed along
the duct based on given parameters: stagnation conditions, outlet pressure, and an applied heat flux function. The
system is depicted in Figure 1.
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Figure 1: Fluid flowing from a tank into a heated and cooled duct.

2.2.2 Duct relations

Integration of system (1) at steady-state between two points (·)in and (·)x along axis x of the duct yields:

ρinuin = ρxux = ṁs (6)

ρinu2
in + Pin = ρxu2

x + Px (7)

ṁs(Hx − Hin) = q̇s,x (8)

where ṁs = ρu = ṁ/S is the mass flow rate per unit area of cross-section, q̇s = Q/S is the power received per
unit area of cross-section and H = h + 0.5u2 is the total specific enthalpy of the mixture. The mixture internal
enthalpy h is defined as h =

∑
k Ykhk, with hk = ek + Pkvk the internal specific enthalpy of phase k. Combining

equations (6) and (7) yields the equation of the Rayleigh line of the mixture in the (P, v) plane:

Px = ṁ2
s(vin − vx) + Pin (9)

As we hypothesize a uniform distribution of heat flux between the phases, we add the following relation between
(·)in and (·)x to close the problem:

ek,x − ek,in + Px + Pin

2 (vk,x − vk,in) = q̇s,x

ṁs
(10)

This guarantees the conservation of the mixture energy:

∑
k

Ykek,x −
∑

k

Ykek,in + Px + Pin

2

(∑
k

Ykvk,x −
∑

k

Ykvk,in

)
=
∑

k

Yk
q̇s,x

ṁs
(11)

Combining equation (10) with the SG EOS expression of phase internal energy ek(Pk, vk) (4) yields the expression
of phase k specific volume, which describes the Crussard curve for phase k in the (P,v) plane:

vk,x(Pin) = (γk + 1)(Pin + Pk,∞) + (γk − 1)(Px + Pk,∞)
(γk + 1)(Px + Pk,∞) + (γk − 1)(Pin + Pk,∞)vk,in + 2(γk − 1)

(γk + 1)(Px + P∞) + (γk − 1)(Pin + Pk,∞)
q̇s,x

ṁs

(12)

2.2.3 Tank-inlet relations

The tank, denoted by subscript (·)0, contains a mixture at mechanical and thermal equilibrium. The two phases
are respectively in Yk,0 = αk,0ρk,0/ρ0 mass proportions, which are conserved from the tank throughout the duct
in mechanical equilibrium as there is no phase change, yielding Yk,0 ≡ Yk. The phase k density within the tank
is retrieved through the SG EOS, as ρk,0 = ρk,0(P0, T0). The inlet (denoted by subscript (·)in) stagnation state is
recovered by slowing down the flow to rest through an adiabatic process and is equivalent to the tank state. This
means that P0,in ≡ P0 and T0,in ≡ T0.
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On the tank-inlet side, the only available relations are the conservation of total specific enthalpy (Hin = H0)
and specific entropy (sin = s0) of the mixture. Even if the supersonic solution is mathematically acceptable, only
the subsonic solution is sought to be consistent with an actual tank. Therefore, the mass flow rate is expressed as
followed:

ṁs(Pin) =
√

2(h0 − hin)
vin

(13)

As there is no possible shock wave or input of heat between the tank and the inlet, the model is also isentropic
from the point of view of each phase k (dsk/dt = 0). With the use of the SG EOS, we obtain the following equations:

vis
k,in(Pin) = vk,0

(
P0 + Pk,∞

Pin + Pk,∞

)1/γk

(14)

his
k,in(Pin) = γkvk,0(P0 + Pk,∞)

γk − 1

(
P0 + Pk,∞

Pin + Pk,∞

)(1−γk)/γk

+ ek,ref (15)

3 Reference solutions: determining flow behaviour
In the following analysis, the characterization of the flow is done from the point of view of the mixture. Two-
phase flows behaviour can be divided in specific regimes by the same critical pressure ratios as for single-phase flows
subjected to heating and cooling powers [7]: Π1 and Π3 (see Table 1). The flow can be subsonic, supersonic, or choked
(sonic) at specific locations. We find out by analytical calculations what are the conditions required to determine
the flow regime and we seek the values of the different critical pressure ratios by solving the system of equations
composed of the duct relations and the tank-inlet relations.

We define the dynamical parameter of the flow, which is the pressure ratio between the outlet and the tank:
Π = Pout/P0. As P0 is a fixed parameter, the outlet pressure Pout will be modified to cause a change in behaviour.

Π = 1 No flow
Π1 < Π < 1 Fully subsonic flow
Π = Π1 Subsonic inlet, choked flow at the end of the heated subsection and subsonic everywhere

Π3 < Π < Π1
Subsonic inlet, choked flow at the end of the heated subsection and supersonic outlet
(shock waves outside of the duct)

Π = Π3
Subsonic inlet, choked flow at the end of the heated subsection and supersonic outlet
(adapted flow outside of the duct)

Π < Π3
Subsonic inlet, choked flow at the end of the heated subsection and supersonic outlet
(expansion waves outside of the duct)

Table 1: Pressure ratios definition for a flow in heated and cooled duct.

3.1 Fully subsonic flow
When the mixture is fully subsonic between the inlet and the outlet, it means that Π > Π1: information coming
from downstream can travel back up and impact the inlet state. Given the previous statement, to firstly determine
the inlet mixture pressure Pin and therefore the inlet state, we evaluate the Rayleigh line (9) between the inlet (·)in

and outlet (·)out:

f(Pin) = ṁ2
s

(∑
k

Ykvk,out −
∑

k

Ykvis
k,in

)
+ Pout − Pin = 0 (16)

On one hand, the isentropic relations allow to determine the mass flow rate ṁs(Pin) (13) and inlet specific volumes
of the phases vis

k,in(Pin) (14). On the other hand, the outlet pressure Pout is a known constant, as well as the outlet
heat flux q̇s,out, and thus the specific phase volumes at the outlet, vk,out(Pin), are computed from equation (12).

Now that the inlet state is known, the flow state along each point of the duct must be determined. Knowing the
inlet pressure Pin, the unknown is now the duct pressure at any point x, Px. To evaluate it, we consider again the
Rayleigh line (9), but this time between the known inlet and undetermined point x of the duct:

f(Px) = ṁ2
s

(∑
k

Ykvk,x −
∑

k

Ykvis
k,in

)
+ Px − Pin = 0 (17)
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All inlet related variables, Pin, ṁs(Pin) and vis
k,in(Pin) are known and constant for a given pressure ratio Π.

Therefore, the remaining variable to determine are the specific phase volumes vk,x(Px) from equation (12), given
that we know the heat flux function q̇s,x at all points of the duct. Equation (17) yields two positive roots: the lowest
one corresponds to a supersonic regime, which is not our case of study, and the highest one corresponds to a subsonic
regime, which is therefore the one that is retained for the value of subsonic pressure P sub

x (Pin).

3.2 Choked flow
We now consider that the mixture is choked at xheat ≡ (·)heat point: it means that Π ≤ Π1 and information coming
from the cooled subsection cannot impact the heated subsection and the inlet state. Having reached a choked flow
at the end of the heated subsection, we assume that M = 1 at that point, and that there are two possible states in
the cooled subsection: choked and then supersonic, or subsonic. Therefore, we now evaluate the Rayleigh line (9)
between (·)∗

in and (·)heat, to numerically determine P ∗
in, where (·)∗

in denotes the inlet state for which the flow ends
up choked:

f(P ∗
in) = ṁ2

s

(∑
k

Ykvk,heat −
∑

k

Ykvis
k,in

)
+ Pheat − P ∗

in = 0 (18)

The specific phase volumes at the inlet vis
k,in(P ∗

in) are determined from equation (14) and the mass flow rate
ṁs(P ∗

in) from equation (13). The remaining variable, Pheat, which is the mixture pressure at the end of the heated
subsection, will further constrain the system to ensure a sonic state at that point. The conservation of total energy
(8) between (·)∗

in and (·)heat yields the following equation (given that Hin = H0 =
∑

k Yk,0hk,0):

f(Pheat) = Hheat − H0 − q̇s,heat/ṁs = 0 (19)

Determining P ∗
in thus requires imbricating two numerical methods to solve the equations presented in (18) and

(19). The total mixture enthalpy at (·)heat point for a choked flow (M = 1 → u = c) is expressed as followed:

Hheat(Pheat) =
∑

k

Ykhk,heat + 0.5c2
heat (20)

The Wood sound speed cw is evaluated by equation (3) at point (·)heat. The phase specific internal enthalpy
hk = ek + Pk vk is determined from the SG EOS (4).

Once the inlet state has been determined for a choked flow, we want to determine the flow state along the entirety
of the duct. With the same approeach as for the fully subsonic flow, equation (9) is evaluated between (·)∗

in and (·)x:

f(Px) = ṁ2
s

(∑
k

Ykvk,x −
∑

k

Ykvis
k,in

)
+ Px − P ∗

in = 0 (21)

For the heated subsection, between (·)∗
in and (·)heat, the flow can only be subsonic. Therefore, the subsonic

solution is determined by retaining the highest positive root of equation (21), P sub
x (P ∗

in). For the cooled subsection
(x ≥ xheat), the flow can either be subsonic — then again Px = P sub

x (P ∗
in) — or supersonic, where Px = P sup

x (P ∗
in),

which is the lowest positive root of equation (21). The critical outlet states are determined for (·)out: therefore
Π1 = P sub

out /P0 and Π3 = P sup
out /P0.

4 Results: variation of pressure ratio
We now present some results that illustrate the flow behaviour in various conditions. They are obtained by solving
the analytical solutions proposed above, in the following configuration:

• Water vapour (·)v: γv = 1.358, Cv,v = 1247, eref,v = 1.97 × 106 [J.kg−1], Pv,∞ = 0 [Pa] (particular case of SG
EOS)

• Liquid water: γl = 3.423, Cv,l = 1231.2, eref,l = −1.15 × 106 [J.kg−1], Pl,∞ = 8.99 × 108 [Pa]
• Tank state: P0 = 2 [Bar], T0 = 394 [K], α0,l = 0.99, α0,v = 0.01
• Geometry (cylinder of radius R and volume V ): V = 1/4π [m3], R = 1/2π [m], S = πR2 = 1/4π [m2],

C = 2πR = 1 [m], L = 1 [m], xheat = L/2 [m]
• Power: Qheat = 100 kW, Qcool = −100 kW (Qout = 0)
The critical pressure ratios can first be calculated by the method presented in Section 3.2, which yields the

following values: Π1 = 0.0828, Π3 = 0.0762. To depict the multiple possible behaviours that are described in Tab. 1,
the pressure ratio Π must be specified and can then be varied. The whole solution is then calculated between the
inlet and the outlet.
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Fig. 2 displays mixture variables such as pressure and Mach number. Fig. 3 displays phase variables for liquid
water and water vapour, such as volume fraction and temperature. All these variables are represented for various
values of Π ∈ [0.0825; 0.0925], themselves depicted in different colours. The specific solutions corresponding to Π1
and Π3 are labelled in the figures, respectively as dashed and dotted lines.
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Figure 2: Behaviour of heated and cooled mixture of water and vapour under mechanical equilibrium, for different
values of pressure ratio (different colours).
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Figure 3: Behaviour of heated and cooled liquid water (left) and water vapour (right) under mechanical equilibrium,
for different values of pressure ratio (different colours).

4.1 Analysis of results for Π > Π1

Multiple solutions are represented for Π > Π1: the mass flow rate ṁs(Pin) varies as the state of the flow in the
heated subsection still depends on the variations of Pout. When Π decreases but the flow is still subsonic, the flow
overall accelerates (increase of Mach number) and its pressure decreases. Locally, the Mach number increases in the
heated subsection, and then decreases in the cooled subsection, which follows the evolution described in [8].
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The volume fraction of water decreases when the flow is heated and increases when it is cooled. This is related
to the description provided in Section 2.1: heating the denser phase (here, the water) contracts it. Now considering
their temperature, the evolution is not so straightforward. For the water, the decrease of Π only causes an overall
slight decrease of temperature, and generally, the temperature follows an obvious pattern: it increases when the flow
is heated and decreases when it is cooled. The temperature of the vapour, however, behaves counter-intuitively: it
decreases in the heated part and increases in the cooled part. For single-phase flows, this specific evolution happens
when 1/

√
γ < M < 1 [8].

4.2 Analysis of results for Π ≤ Π1

Once Π ≤ Π1, the mixture is choked at the end of the heated subsection (Mheat = 1). It can remain subsonic in the
cooled part if Π = Π1, or become supersonic if Π < Π1: this branching only depends on the applied pressure ratio
Π. When Π ≤ Π1, the mass flow rate ṁs(P ∗

in) is fixed by heated subsection choked state, which is determined and
cannot change. If Π < Π1, then whatever the value of Π, every supersonic solution is overlapping (see red curves)
and there is no steady shock wave in the cooled subsection.

The difference in range of variation for each phase is noticeable: while the solutions for the vapour are quite
distinct and display a clear change of behaviour in the cooled subsection once Π < Π1, the solutions for the water are
only slightly varying between different pressure ratios. This may be caused by the gap between the critical pressure
ratios of the mixture and the critical pressure ratios of the single-phase flow, which is presented in [7].

5 Conclusion
Following the studies done on solely heated [2] and then on heated and cooled single-phase compressible flows [7]
connected to a tank, reference solutions were developed for two-phase compressible heated and cooled flows in a
mechanical equilibrium.

Starting from the unsteady model, a steady-state analysis was developed to underline the relations defining the
flow within a non-adiabatic duct. Then, by coupling the inlet of said duct to a tank with known fixed conditions, the
state of the flow was prescribed throughout the duct. The definition of two possible states was provided: either the
pressure ratio between the outlet of the duct and the tank is greater than a specific critical pressure ratio and the
mixture remains fully subsonic, or the pressure ratio is lower and therefore the cooled subsection triggers a supersonic
flow. The method to determine this critical pressure ratio was developed, depending on the value of the heat flux
function applied to the duct. Results and analysis were then provided for a mixture of liquid water and vapour.

The analytical solutions stemming from this work are expected to be used for the validation of non-adiabatic
compressible flows numerical simulation tools, which are largely used in industrial applications (nuclear, aerospace),
as those involve strong heat fluxes and thermal exchanges. Future works will consist in applying the same set-up on
limit cases for other equilibrium models, such as thermal and thermodynamical equilibriums, which were studied in
[2] for solely heated flows.
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