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Procyclic morphisms

Francis Wlazinski

April 15, 2024

Abstract

We generalyse the notion of cyclic morphism and we study some properties of procyclic
morphisms, in particular, for k-power freeness.

1 Words

An alphabet A is a finite set of symbols called letters. A word over A is a finite sequence of
letters from A. The empty word ε is the empty sequence of letters. Given a non-empty word
u = a1 . . . an with ai ∈ A for any integer i from 1 to n, the length of u denoted by |u| is the
integer n that is the number of letters of u. By convention, we have |ε| = 0.

w = clebaba is a word sur A = {a, b, c, e, l} of length |w| = 7.

w = 011010011001011010010110011010011001 is a word over over B = {0, 1}. It
is a prefix of Thue-Morse word.

Equipped with the concatenation operation, the set A∗ of words over A is a free monoid with
ε as neutral element and A as set of generators. We denote by A+ the set of words of positive
length over A, i.e., A+ = A∗ \ {ε}.
Since an alphabet with one element is limited interest to us, we always assume that the
cardinality of considered alphabets is at least two.
In the rest of this paper, A and B are two alphabets such that Card(A) ≥ 2 and Card(B) ≥ 2.
A word u is a factor of a word v if there exist two (possibly empty) words p and s such that
v = pus. We denote Fcts (v) the set of all factors of v. If u ∈ Fcts (v), we also say that v
contains the word u (as a factor). If p = ε, u is a prefix of v. If s = ε, u is a suffix of v. If
u 6= v, u is a proper factor of v. If u, p and s are non-empty, u is an internal factor of v.
Let w be a non-empty word and let i, j be two integers such that 0 ≤ i − 1 ≤ j ≤ |w|. We
denote by w[i..j] the factor of w such that |w[i..j]| = j− i+ 1 and w = pw[i..j]s for two words
s and p verifying |p| = i − 1. When j > i, w[i..j] is simply the factor of w that starts at the
ith letter and ends at the jth. Note that, when j = i− 1, we have w[i..j] = ε. When i = j, we
also denote by w[i] the factor w[i..i] which is the ith letter of w. In particular, w[1] and w[|w|]
are respectively the first and the last letter of w.

Powers of a word are defined inductively by u0 = ε, and for any integer n ≥ 1, un = uun−1.
Given an integer k ≥ 2, since the case εk is of little interest, we call a k-power any word
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uk with u 6= ε. And a word is k-power-free if it does not contain any k-power as factor. A
primitive word is a word which is not a `-power of another word whatever the integer ` ≥ 2.

When k = 2 (resp. k = 3), a k-power is also called a square (resp. a cube).

If a is a letter and if X is a (eventually empty) word, a word of the form aXaXa is called
an overlap. And a word of the form aXXa is called a framed-square (Zolotov ([9]) called it a
weak square).

Given an integer k ≥ 2, a word is k-power-free (resp. overlap-free or framed-square-free) if it
does not contain any factor that is a k-power (resp. an overlap or a framed-square).

Let us note that, for a word w of length lower or equal to three, w is square-free if and only
if w is framed-square-free.

Let us first recall a well known result of Fine and Wilf [5, 6].

Theorem 1.1 Let x and y be two words. If a power of x and a power of y have a common
prefix of length at least equal to |x| + |y| − gcd(|x|, |y|) then x and y are powers of the same
word.

As a consequence of Theorem 1.1, we get:

Corollary 1.2 [2] Let x and y be two words. If a power of x and a power of y have a common
factor of length at least equal to |x| + |y| − gcd(|x|, |y|) then there exist two words t1 and t2
such that x is a power of t1t2 and y is a power of t2t1 with t1t2 and t2t1 primitive words.
Furthermore, if |x| > |y| then x is not primitive.

Two words u and v are conjugated if u = t1t2 and v = t2t1 for two (possibly empty) words t1
and t2. We also say that v is a conjugate of u. We trivially get that:

Lemma 1.3 Every conjugate of a primitive word is primitive.

The following proposition gives the well-known solutions (see [5]) to elementary equations on
words and will be widely used in the following sections:

Proposition 1.4 Let u, v, w be three words over A and let x, y be two letters in A.

1. If vu = uw and v 6= ε, then there exist two words r and s over A, and an integer p such
that u = (rs)pr, v = rs et w = sr.

2. If vu = uv, then there exist a word w over A, and two integers p and q such that u = wp

and v = wq.

3. If xu = uy, then x = y and there exists an integer q such that u = xq.

As immediate consequences of Proposition 1.4(2), we get the two following results:

Lemma 1.5 [2, 4] If a non-empty word v is an internal factor of vv, i.e., if there exist two
non-empty words x and y such that vv = xvy, then there exist a non-empty word t and two
integers i, j ≥ 1 such that x = ti, y = tj, and v = ti+j.
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Corollary 1.6 Let u, v, w be three non-empty words of A+. If uvw = wvu then there exist
two words r and s et three integers i, j and k such que u = (rs)ir, v = (sr)js and w = (rs)kr.

We will consider another equations on words:

Lemme 1.7 Let u,w be two words of A∗ and let x, y be two letters of A. If uxw = wyu then
either x = y or there exists two words u′, w′ of A∗ such that u′xw′ = w′yu′ and |u′| + |w′| <
|u|+ |w|.

Proof.
If u = ε or if w = ε, by Case 3 of Proposition 1.4, we get x = y.
If |u| = |w| then u = w and x = y.
So, we may assume |u| 6= |w| and, by a symetric way and without loss of generality, we may
assume that |u| > |w| > 0.
By Case 2 of Proposition 1.4, the equality u(xw) = (wy)u implies that there exist two words
r and s and an integer p such that wy = rs, xw = sr and u = (rs)pr.
If |s| = 0 then wy = r = xw. By Case 3 of Proposition 1.4, we get x = y.
If |s| ≥ 1 then, from the two equalities, wy = rs and xw = sr, we get that s starts by x
and ends with y. If |s| = 1 then s = y = x. If |s| ≥ 2 then there exists then a word s′

such that s = xs′y. So, we get wy = rxs′y and xw = xs′yr, that is, rxs′ = w = s′yr with
|rs′| < |w| < |u|+ |w|.
We obtain the result takong u′ = r and w′ = s′.

Corollary 1.8 Let u,w be two words of A∗ and let x, y be two letters of A. If uxw = wyu
then x = y.

Corollary 1.8 is a consequence of Lemma 1.7. Indeed, considering the length of the words,
there does not exist a strictly decreasing (infinite) sequence of natural integers.

Corollary 1.9 Let u,w be two words of A∗ and let x, y be two letters of A. If xuw = wuy
then x = y.

Proof.
If u = ε or if w = ε (that is |w| = 0), by Case 3 of Proposition 1.4, we get that x = y.
So, let us assume that |w| ≥ 1 and that u 6= ε. From the equality xuw = wuy, we get that w
starts by x and ends with y. If |w| = 1, we get w = x = y. If |w| ≥ 2, there exists a word w′

such that w = xw′y. The equality xuw = wuy becomes xuxw′y = xw′yuy, i.e., uxw′ = w′yu.
And, by Corollary 1.8, it follows that x = y.

Corollary 1.10 Let u,w be two words of A∗ and let x, y be two letters of A. If xuw = wyu
then x = y.

Proof.
If u = ε or if w = ε (that is |w| = 0), we get x = y by Case 3 of Proposition 1.4.
If |u| = |w|, we get u = w and, always by Case 3 of Proposition 1.4, it follows that x = y.
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By Case 1 of Proposition 1.4, the equality (xu)w = w(yu) implies that there exist two words
r and s and an integer p such that xu = rs, yu = sr and w = (rs)pr.
If |r| = 0 or if |s| = 0 then xu = yu and we get x = y.
If |s| ≥ 1 and |r| ≥ 1 then, from the two equalities xu = rs and yu = sr, we get that r starts
by x and s starts by y. There exist two words r′ and s′ such that r = xr′ and s = ys′.
So, we get xu = xr′ys′, yu = ys′xr′ and u = r′ys′ = s′xr′. And, by Corollary 1.8, it implies
that x = y.

Proposition 1.11 Let t be a primitive word. If there exist an integer α ≥ 2 and two words
υ and ` such that |υ| ≥ |t| and υ`υ is a factor of tα then υ` is a power of a conjuguate of t.
In particular, |υ`| ≡ 0 mod |t| and, if ` 6= ε, then υ` is not primitive.

Proof.
The word υ`υ is a common factor of (υ`)2 and of tα. Moreover, since |υ| ≥ |t|, we get
|υ`υ| ≥ |υ`|+ |t|. By Corollary 1.2, there exist two words t1 and t2 and two integers β and γ
such that t = (t1t2)

β and υ` = (t2t1)
γ with t1t2 and t2t1 primitive words. Since t is a primitive

word, we get β = 1. If ` 6= ε, we get |υ`| > |t| and so υ` is not primitive, that is, γ ≥ 2.

2 Canvas of a word

Definition 2.1 Let 1 ≤ n ≤ 9 be an integer and let δn be the map from [[0;n]]+ to [[0;n]]∗

defined in such a way: for a word |w| ≥ 2, δn(w) is the word w where, for any integer i from
1 to |w| − 1, the letter w[i] is the remainder of the Euclidean division of w[i + 1] − w[i] by
n+ 1. In other words, we have w[i] = w[i+ 1]− w[i] mod (n+ 1).

If w = 0112102 then w = δ2(w) = 101222.

If µ = 0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001 0110 1001 then
µ = δ1(µ) = 1011101 0 1011101 1 1011101 0 1011101 0 1011101 0 1011101 1 1011101.

If f = 010010100100101001010 then f = δ1(f) = 11 0 1111 0 11 0 1111 0 1111.

We extend this definition to letters: by convention, for a letter x in A, δn(x) = ε.

We can also extend, in a natural way, this definition to infinite words.

Let us remark that |w| = |w| − 1 and that, if w does not contain any square of letters then
w does not contain any 0. Moreover, this map δn is not a morphism. More precisely, if
u, v ∈ [[0;n]]∗ with u = u1u2 . . . up and v = v1v2 . . . vq, we have δn(uv) = δn(u)δn(upv1)δn(v)
that is δn(uv) = δn(u)δn(u[|u|]v[1])δn(v).
A word w is fully determined by only one w[i] and w. And, in particular, if u[1] = v[1] and if
u = v then u = v. We say that w is the canvas of the word w. And, from this canvas, we can
get other words changing one of the letters of w.

w2 = 1220210 is the word of [[0; 2]]∗ obtained from w = 101222 starting by the
letter 1.
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w3 = 1223131 is the word of [[0; 3]]∗ obtained from w = 101222 starting by the
letter 1.

f2 = 012201200122012001201 is the word of [[0; 2]]∗ obtained from f = δ1(f) =
11011110110111101111 starting by the letter 0.

µ1 = 0 0100 1110 1110 0100 1110 0100 is the word of [[0; 1]]∗ obtained from µ =
0110 1001 1001 0110 1001 0110 starting by the letter 0.

For any letter a ∈ [[0;n]] and for any word C ∈ [[0; p]]∗ where p ≤ n, we denote (a,C)n the
word of [[0;n]]∗ whose canvas is C and that starts by a. In particular, if w ∈ [[0;n]]∗, we wrote
w = (w[1], w)n.

Let us remark that, if two words u and v have the same canvas, then, for any integer i from
1 to |u|, the difference u[i]− v[i] is constant (equal to u[1]− v[1]) modulo n+ 1.

The relation ”having the same canvas” is an equivalence relation on words. The point here is
not to study quotient sets. Similarly, the study of words whose canvas would have a particular
form (for instance the Thue-Morse word, the Fibonacci word or more generally the Sturmian
words) could be interesting. Another idea could be to study the different patterns of a word
in an alphabet larger than the word itself. But the ways to explore are too numerous to state
them or, even less, to attempt an approach of one of them in this article. We only will focus
on morphisms and powers.

Definition 2.1 can be extended to any alphabet:

Definition 2.2 Let n ≥ 1 be an integer, let A = (a0, a1, a2, . . . , an) be a ordered alphabet and
let δn be the map from A∗ to A∗ defined by δn(w) = w where, for any integer i from 1 to
|w| − 1, if w[i] = ar and w[i+ 1] = as, then we get w[i] = at where t ≡ s− r mod (n+ 1).

If A = {a, b, c} and w = abacca then w = bccab.

Let us note that, for us, there are simply n+ 1 different symbols in the alphabet [[0;n]].

In the rest of the paper, N ≥ 1, n ≥ 1 and p ≥ 1 are three integers.

For any word w of [[0;N ]]∗, we will denote Somme(w)N+1 the remainder of the Euclidean

division of
∑|w|

i=1w[i] by N + 1.

Proofs of the following lemmas are left to the reader.

Lemme 2.3 For any word w in [[0;N ]]∗, we have Somme(w)N+1 = w[|w|]−w[1] mod (N+1).
In particular, w starts and ends with the same letter if and only if Somme(w)N+1 = 0.

Lemme 2.4 Let k ≥ 2 be an integer.
A word w in [[0;N ]]∗ contains a k-power if and only if w contains a factor of the form (Xy)k−1X
with X a word and y a letter such that Somme(Xy)N+1 = 0.

Corollary 2.5 Let k ≥ 2 be an integer and let w be a word in [[0;N ]]∗.
If w contains a [(N + 1)× k]-power then w contains a k-power.
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Proof.
It comes directly from Lemmas 2.3 and 2.4 and from the fact that, for any non-empty word
v, we have Somme(vN+1)N+1 = 0.

3 Morphismes

Let A and B be two alphabets. A morphism f from A∗ to B∗ is a map from A∗ to B∗ such
that f(uv) = f(u)f(v) for all the words u, v over A. When B has no importance, we simply
say that f is defined over A or that f is defined on A∗.

Let k ≥ 2 be an integer. A morphism f is k-power-free if the images of all k-power-free
words are also k-power-free. When k = 2 (resp. k = 3), a k-power-free morphism is called a
square-free morphism (resp. a cube-free morphism).
In a same way, a morphism f over A is framed-square-free (resp. overlap-free) if the image
of any framed-square-free (resp. overlap-free) word is also framed-square-free (resp. overlap-
free).

A morphism f over A is k-power-free (resp. framed-square-free or overlap-free) up to ` if
the image of any word w such that |w| ≤ ` by f is k-power-free (resp. framed-square-free or
overlap-free).

A morphism f over A is called prefix (resp. suffix ) if, for any letters a and b in A, the word
f(a) is not a prefix (resp. not a suffix) of f(b). A morphism is bifix if it is prefix and suffix.
A morphism f is non-erasing if f(a) 6= ε for any letters a.

Let us note that a prefix (resp. suffix) morphism is injectif and is non-erasing.

A morphism f of A∗ to B∗ is a ps-morphism if the equalities f(a) = ps, f(b) = ps′, and
f(c) = p′s with a, b, c ∈ A (eventually c = b) and p, s, p′, and s′ ∈ B∗ imply b = a or c = a.

Let us note that a ps-morphism is bifix.

Lemma 3.1 comes directly from the definition of a prefix morphism or a suffix morphism.

Lemma 3.1 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be four words
over A.
The equality f(u) = f(v)p where p is a prefix of f(w) implies u = vw′ for a prefix w′ of w
such that f(w′) = p.
Symetrically, the equality f(u) = sf(v) where s is suffix of f(t) implies u = t′v for a suffix t′

of t such that f(t′) = s.

Lemma 3.2 [2, 4] If f is not a ps-morphism then f is not a k-power-free morphism for any
integer k ≥ 2.

Assuming that f(w) = puks for a factor w of a word w and a non-empty word u, and assuming
that w contains a factor w0 such that |f(w0)| = |u|, if f is a ps-morphism, Lemma 3.4 states
that w necessarily contains a k-power w′k such that f(w′) is a conjugate of u. We will say
that f(w) contains a synchronized k-power uk or that f(w) and uk are synchronized. More
precisely:
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Definition 3.3 Let k ≥ 2 be an integer. Let f be a morphism from A∗ to B∗, let w be a word
over A, and let u be a non-empty word over B such that f(w) contains the k-power uk. Let w
be a shortest factor of w whose image by f contains uk, i.e., f(w) = puks with |p| < |f(w[1])|
and |s| < |f(w[|w|])|.
We say that f(w) and uk are synchronized if there exist three words w0, w1, and w2 such that
|f(w0)| = |u| and w = w1w0w2 with p = ε if w1 = ε, and s = ε if w2 = ε.

Let f be the morphism from {a, b, c}∗ to {a, b, c, d}∗ defined by f(a) = abcd,
f(b) = ac and f(c) = d.
If w = abcbcbaa, then we get f(w) = ab(cda)3 c abcd abcd. Taking u = cda, w =
abcbcb and w0 = bc, we get that f(w) and u3 are synchronized.

Let us remark that f is not a suffix morphism and so it is not k-power-free k(≥ 2).

Lemma 3.4 [8] Let k ≥ 2 be an integer, let f be a ps-morphism, and let w be a word such
that f(w) = puks with |p| < |f(w[1])| and |s| < |f(w[|w|])|. If f(w) and uk are synchronized
then w starts or ends with a k-power of the form wk0 with f(w0) and u conjuguated words.

Let us recall some results of Leconte:

Theorem 3.5 [3] Let f be a morphism from A∗ to B∗. If f is square-free up to three then f
is k-power-free for any integer k ≥ 4.

Theorem 3.6 [3] Let f be a morphism from A∗ to B∗. If f is square-free up to three and
if, for any letter a in A, the word f(a2) does not contain any cube, then f is k-power-free for
any integer k ≥ 3.

Definition 3.7 We say that two morphisms f and g from [[0;n]]∗ to [[0; p]]∗ are equivalent if
there exist a permutation σ1 of [[0;n]] et a permutation σ2 of [[0; p]] such that f ◦ σ1 = σ2 ◦ g.

The morphisms f, g from {0, 1, 2}∗ to {0, 1}∗ defined by f(0) = 011, f(1) = 101,
f(2) = 110, g(0) = 010, g(1) = 001 and g(2) = 100 are equivalent.

Remark 3.8 The reader can easily verify that ”be equivalent” is a equivalence relation on
morphisms.

Lemme 3.9 Let f and g be two equivalent morphisms. Then, for any integer k ≥ 2, f is
k-power-free if and only if g is k-power-free.

Proof.
By symmetry, we only have to show that f is not k-power-free implies that g is not k-power-
free.
Let us assume that f ◦ σ1 = σ2 ◦ g and that f(w) = puks with u 6= ε and w k-power-
free. The word σ−11 (w) is k-power-free and g(σ−11 (w)) = σ−12 (σ2(g(σ−11 (w))) = σ−12 (f(w)) =
σ−12 (p)(σ−12 (u))kσ−12 (s) with σ−12 (u) 6= ε.
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Lemme 3.10 Let f be a morphism from A∗ to B∗ and let a, b be two different letters of A.
When f is a square-free morphism or a framed-square-free morphism, if f(a) ends (respectively
starts) with x ∈ A+ then f(b) does not start (respectively does not end) with x.
When f is an overlap-free morphism, if f(a) ends (respectively starts) with x ∈ A+ then f(b)
does not end (respectively does not start) with x.

Proof.
We only have to consider f(ab), f(ba), f(baa) or f(aab).

Definition 3.11 [1, 9] An endomorphism f of [[0;n]]∗ is cyclic if f commutes with the per-
mutation σ = (0 1 2 . . . n).

The map f from {0, 1, 2}∗ to {0, 1, 2}∗ defined by f(0) = 2102, f(1) = 0210 and
f(2) = 1021 is a cyclic morphism.

We extend this definition here.

Definition 3.12 We say that a morphism from [[0;n]]∗ to [[0; p]]∗ is procyclic if δp(f(a)) =
δp(f(b)) for any letters a and b of A. This common value will be called the canvas of the
morphism.

In other words, a morphism is procyclic if all the images of the letters have the same canvas.
Since, for all a in A, we have f(a) = ((f(a))[1], C)p, a procyclic morphism f from [[0;n]]∗ to
[[0; p]]∗ is defined by its canvas C and the set of the first letters (or any another fixed letter) of
the images of all the letters in [[0;n]] that is {(f(`))[1] | ` ∈ [[0;n]]}.
If a morphism f is already defined, we only use f(a) = f(b) for all a, b ∈ A to characterize the
fact that f is procyclic.

The morphism f from {0, 1, 2}∗ to {0, 1, 2, 3}∗ defined by f(0) = 0123, f(1) = 3012
and f(2) = 1230 is a procyclic morphism with canvas 111.

Remark 3.13 The Thue-Morse morphism (µ : {0; 1}∗ → {0; 1}∗; 0 7→ 01 and 1 7→ 10) is a
procyclic morphism with canvas 1. It is also a cyclic endomorphism.

Example 3.14 In this example, we are interested in the word of Thue-Morse µ which is ob-
tained by infinitly iterating the Thue-Morse morphism from 0. In other words, µ = limn→∞ µ

n(0).
Let us note that, for any integer n ≥ 0, µn(0) ends with 0 if n is even and ends with 1 if n is
odd. Moreover, µn(1) always starts by 1.
Let µn be the canvas of the morphism µn, i.e., µn = µn(0) = µn(1) and let t be the sequence
defined by tn = 0 if n is even and tn = 1 if n is odd.
So, for all integers n ≥ 2, we get that µn = µn−1(0)µn−1(1) = µn−1tnµn−1: it means that µn
is a bordered word (a sesquipower).

Remark 3.15 A procyclic morphism from [[0;n]]∗ to [[0; p]]∗ is defined by its canvas and a map
from [[0;n]] to [[0; p]] corresponding to the first letter (or another fixed one) of the image of the
letters of [[0;n]].
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Remark 3.16 Let us remark that a procyclic morphism is not necessarily an endomorphism
and that, by definition, it is uniform.
Let us also note that a cyclic endomorphism is a procyclic morphism.

Remark 3.17 As in the example 3.14, the study of the canvas of a word generated by a
procyclic endomorphism surely leads us to sesquipowers.

4 Procyclic morphisms and k-power

Lemme 4.1 Let k ≥ 2 be an integer. A procyclic k-power-free endomorphism on [[0;n]]∗ is
equivalent to a cyclic endomorphism.

Proof.
Let A be the alphabet [[0;n]]. Let f be a procyclic k-power-free endomorphism on A∗ with
canvas C and let a, b be two letters of A.
Since f is procyclic, if f(a) and f(b) start by the same letter then f(a) = f(b). So, if a 6= b, we
get that f(ak−1b) contains a k-power. It would mean that f is not a k-power-free morphism:
a contradiction with the hypotheses.
So, we have a 6= b⇒ (f(a))[1] 6= (f(b))[1]. In other words, {(f(`))[1] | ` ∈ A} = A. It implies
that there exists a permutation τ of [[0;n]] such that, for any letter a in [[0;n]], we have that
(f ◦ τ)(a) starts by a.
The endomorphism g = f ◦ τ is also procyclic with canvas C.
Taking σ = (0 1 2 . . . n), we get (σ ◦ g)(a) = σ((f ◦ τ)(a)) = σ((a,C)n) = (σ(a), C)n =
(f ◦ τ)(σ(a)) = (g ◦ σ)(a).

Lemme 4.2 Let f be a procyclic square-free endomorphism on [[0;n]]∗. Then, for any letter
a in [[0;n]], f(a) starts and ends with the same letter.

Proof.
Let us assume that f is L-uniform with L ≥ 1 and let a, b be two letters in A = [[0;n]].
As in the proof of Lemma 4.1, if f(a) and f(b) start or end by the same letter then f(a) = f(b)
and f(ab) is a square. Since f is square-free, it only happens when a = b.
So {(f(`))[1] | ` ∈ A} = A = {(f(`))[L] | ` ∈ A}.
Let us now assume that f(a) ends by the letter x. For any letter b 6= a, if f(b) started by x
then f(ab) would contain the square xx, i.e., f is not square-free: this is a contradiction with
the hypotheses. Since {(f(`))[L] | ` ∈ A} = A, it means that f(a) starts by x.

Remark 4.3 Lemma 4.2 is not suitable for procyclic framed-square-free endomorphisms. For
instance, the endomorphism on [[0; 1]]∗ defined by f(0) = 01 = f(1) is a procyclic morphism
which is not square-free since f(01) = (01)2. But it is a framed-square-free morphism since
the image of any word satisfies (01)i for an integer i: it does not contain any framed-square.
And yet, f(0) starts and ends with different letters.
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Lemme 4.4 Let f be a procyclic morphism from [[0;n]]∗ to [[0; p]]∗ with canvas C. Let X, Y
and Z be the images of some letters by f .
If we have the equality XY b = SZP where b is a letter, S is a non-empty suffix of the
image of a letter by f and P is a prefix of the image of a letter by f with |P | ≥ 2, then
X[|X|]Y [1] = Y [|Y |]b = S[|S|]Z[1] = Z[|Z|]P [1]

When f(w) and a k-power are not synchronized, we do have the condition |P | ≥ 2.

Proof.
If we denote α = X[|X|]Y [1], β = Y [|Y |]b, γ = S[|S|]Z[1] and δ = Z[|Z|]P [1], from XY b =
SZP , we get that CαCβ = XY b = SZP = C2γCδC1 where C1 is a prefix of C and C2 is a
suffix of C.
Furthermore, since |CαCβ| = |C2γCδC1|, we get |C| = |C2C1|. In other words, C = C1C2

and the equality becomes C1C2αC1C2β = C2γC1C2δC1.
It means that C1(6= ε) ends with β. And, since |C1C2α| = |C2γC1|, from the prefix of the
equality, we get C1C2α = C2γC1, that is, C1 ends with α. In other words, we have α = β.
There exists a word C ′1 such that C1 = C ′1α and so C ′1αC2αC

′
1αC2α = C2γC

′
1αC2δC

′
1α

By length criterions, we get the equalities C ′1αC2 = C2γC
′
1 and C ′1αC2 = C2δC

′
1. We conclude

with Corollary 1.8: α = γ and α = δ.

We show in a identical way:

Lemme 4.5 Let f be a procyclic morphism from [[0;n]]∗ to [[0; p]]∗ with canvas C. Let X, Y
and Z be the images of some letters by f .
If we have bXY = SZP where b is a letter, S is the suffix of the image of a letter by f with
|S| ≥ 2 and P is the non-empty prefix of the image of a letter by f , then bX[1] = X[|X|]Y [1] =
S[|S|]Z[1] = Z[|Z|]P [1]

Corollary 4.6 Let ` ≥ 2 and L ≥ 2 be two integers and let f be a L-uniform procyclic
morphism from [[0;n]]∗ to [[0; p]]∗ with canvas C. Let x0, x1 . . . x`+1, x

′
0, x
′
1, . . . x

′
` be some letters

of [[0;n]].
If we have the equality s0f(x1) . . . f(x`)p`+1 = s′0f(x′1) . . . f(x′`−1)p

′
` with f(x0) = p0s0, f(x′0) =

p′0s
′
0, f(x`+1) = p`+1s`+1 and f(x′`) = p′`s

′
` with p′0, p`+1, p′` some non-empty words then the

letters (f(xi)[L]f(xi+1)[1])i=1..` and (f(x′i)[L]f(x′i+1)[1])i=0..`−1 are all the same letter α.

Moreover, if |s0| 6= 0 then f(x0)[L]f(x1)[1] = α.

Proof.
Since |s0f(x`)p`+1| = |s′0p′`| and |f(x`)p`+1| > |p′`|, we get |s0| < |s′0|. Let s′′0 be the suffix of
s′0 such that s′0 = s0s

′′
0. It means that s′′0 is also a suffix of f(x′0).

The equality becomes: f(x1) . . . f(x`)p`+1 = s′′0f(x′1) . . . f(x′`−1)p
′
` (1)

So we get f(x1)f(x2)x = s′′0f(x′1)p where x is the first letter of f(x3) and p is a prefix of
f(x′2). Since |s0| < |s′0|, we get |s′′0| ≤ |s′0| < L and so |p| ≥ 2. By Lemma 4.4, we get that
f(x1)[L]f(x2)[1] = f(x2)[L]f(x3)[1] = f(x′0)[L]f(x′1)[1] = f(x′1)[L]f(x′2)[1] = α.

If |s0| 6= 0 then, using the last letter of s0, by Lemma 4.5, we get f(x0)[L]f(x1)[1] = α.
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If ` ≥ 3, we remove the L×(`−2) first letters of the words of Equation (1) to obtain recursively
the result.

Considering a non-empty prefix of f(x`) in Corollary 4.6, we immediatly get:

Corollary 4.7 Let ` ≥ 2 and L ≥ 2 be two integers and let f be a L-uniform procyclic
morphism from [[0;n]]∗ to [[0; p]]∗ with canvas C. Let x0, x1 . . . x`, x

′
0, x
′
1, . . . x

′
` be some letters

of [[0;n]].
If we have the equality s0f(x1) . . . f(x`−1)p` = s′0f(x′1) . . . f(x′`−1)p

′
` with |s0| < |s′0|, f(x0) =

p0s0, f(x′0) = p′0s
′
0, f(x`) = p`s`, f(x′`) = p′`s

′
` and p′0, p`, p

′
` non-empty words then the letters

(f(xi)[L]f(xi+1)[1])i=1..`−1 and (f(x′i)[L]f(x′i+1)[1])i=0..`−1 are all the same letter α.

Moreover, if |s0| 6= 0 then f(x0)[L]f(x1)[1] = α.

Lemme 4.8 Let k ≥ 2 be an integer and let f be a procyclic morphism from [[0;n]]∗ to [[0; p]]∗

with canvas C.
If there exist two words π and σ, a non-empty word u and a word w of length greater or equal
to 2k+ 2 such that f(w) = πukσ with |π| < |f(w[1])| and |σ| < |f(w[|w|])| and if f(w) and uk

are not synchronized then there exists a letter α, two integers 2 ≤ i < j and two words t1 and
t2 such that f(w) = (Cα)|w|−1C, Cα = (t1t2)

i and uu[1] = (t2t1)
j with t1t2, t2t1 primitive

words and j is not a multiple of i.

Proof.
For all integers j between 0 and k, let ij the be smallest integer such that |f(w[1..ij ])| ≥ |πuj |.
Since f is L-uniform for an integer L and since |w| ≥ 2k+2, we have |uk| ≥ |f(w[2..|w| − 1])| ≥
2k × L. Since f(w) and uk are not synchronized, we have |u| > 2L and 1 = i0 < i1 < i2 <
· · · < ik−1 < ik = |w|. For all integers 0 ≤ q ≤ k, there exist some words pq and sq such that
f(w[iq]) = pqsq and, for all integers 1 ≤ q ≤ k, we get u = sq−1f(w[iq−1 + 1..iq − 1])pq with
pq 6= ε (by definition of iq). Furthermore, s0 6= ε, p0 = π and sk = σ.

The previous situation can be summed up by Figure 1.

=/ ε

u k

=/ ε =/ ε =/ ε =/ ε

f w(       )  [   ]i f w(       )  [   ]i f w(       )  [   ]if w(       )  [   ]i

sp

=f (   )w

0 0

u u u

p s
1 1

p s
2 2

p s
-1 -1k k

p s
k k

0 f i1 2 k -1 k[      ]w(          )  

Figure 1: Decomposition of a k-power

If, for any integer 1 ≤ q ≤ k, we had iq ≤ iq−1 + 2 then we would have |w| = ik ≤ 1 + 2k: this
is a contradiction with the hypotheses. It means that |w[iq + 1..iq+1 − 1]| ≥ 2.
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Since f(w) and uk are not synchronized, we get si 6= sj when i 6= j. Let ` be the in-
teger such that |s`| = min0≤i≤k−1 |si|. Since, for any integer 1 ≤ q ≤ k, we have |u| =
|sq−1f(w[iq−1 + 1..iq − 1])pq|, it implies that |w[i` + 1..i`+1 − 1]| ≥ |w[iq + 1..iq+1 − 1]| ≥ 2.

If ` 6= k − 1, then u = s`f(w[i` + 1..i`+1 − 1])p`+1 = s`+1f(w[i`+1 + 1..i`+2 − 1])p`+2. By a
length criterion, the integers i`+2 − i`+1 and i`+1 − i` can only differ by 1. By Corollaries 4.6
et 4.7, the letters (f(w[q])[L]f(w[q + 1])[1])q=i`..i`+2−1 are the same and are all denoted by
α. The words uu = uu[1]u = uu[|u|]u[1]u and Cα have a common factor of length |uu| ≥
|uu[1]|+ |Cα|.
By Corollary 1.2, there exist two words t1 and t2 et two integers i and j such that Cα = (t1tj)

i

and uu[1] = (t2t1)
j with t1t2 and t2t1 primitive words.

If j is a multiple of i (in particular when i = 1), since L = |Cα| and |u| = |uu[1]|, we get that

|u| is a multiple of L and so that f(w) and uk are synchronized: this is a contradiction with
the hypotheses. Moreover, since |u| > L, we get j > i.

The case ` = k − 1 is solved in a same way, considering u = s`−1f(w[i`−1 + 1..i` − 1])p` =
s`f(w[i`+1 + 1..i`+2 − 1])p`+2.

We already got a test-set to verify whether a uniform morphim is k-power-free:

Proposition 4.9 [7] A uniform morphim defined on A is k-power-free if and only if it is
k-power-free up to k × Card(A) + k + 1.

We get a lower bound for procyclic morphisms.

Proposition 4.10 A procyclic morphism from [[0;n]]∗ to [[0; p]]∗ is k-power-free if and only if

it is k-power-free up to `k = max

{
2k + 2;

⌈
1 + (n+ 1)× k

2

⌉}
.

Proof.
Let us assume that f is a procyclic morphism from [[0;n]]∗ to [[0; p]]∗ with canvas C.
By contradiction, we assume that f is k-power-free up to `k but that there exists a k-power-
free word w of length greater or equal to `k + 1 such that f(w) contains a k-power. More
precisely, we assume that w is the smallest word such that f(w) contains the k-power uk, that
is, f(w) = puks with |p| < |f(w[1])| and |s| < |f(w[|w|])|.

Since w does not contain any k-power, by Lemma 3.4, f(w) and uk are not synchronized.
And, since |w| ≥ 2k + 2, by Lemma 4.8, there exist a letter α, two integers 2 ≤ i < j et two
words t1 and t2 such that f(w) = (Cα)|w|−1C, Cα = (t1t2)

i and uu[1] = (t2t1)
j with t1t2 and

t2t1 primitive words.

Since i ≥ 2, it follows that f(w) contains (t1t2)
2|w|−2(t1t2) = (t1t2)

2|w|−1.

Since |w| ≥
⌈

1 + (n+ 1)× k
2

⌉
, we get 2|w| − 1 ≥ (n+ 1)× k. By Corollary 2.5, it means that

w contains a k-power: a final contradiction.
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5 Square-free morphisms and framed-square-free morphisms

Non-synchronisation and definition of a ps-morphism with square-free morphisms lead us to
the following lemma:

Lemme 5.1 Let f be a morphism from A∗ to B∗.
If there exist three letters x, y and z of A such that f(x) = sp with s a non-empty suffix of
f(y) and p a non-empty prefix of f(z) with x 6= y or x 6= z then f is not square-free.

Proof.
We only have to consider f(yx) or f(xz).

Proposition 5.2 A uniform square-free morphim is framed-square-free.

Remark 5.3 The converse is false as shows by the example of Remark 4.3.

Proof.
Let f a L-uniform (with L ≥ 1) morphism from A∗ to B∗.

By contraposition, we assume that f is not framed-square-free. We will show that f is not
square-free, that is, there exists a square-free word whose image contains a square.

In other words, we assume that there exists a framed-square-free word w of A∗ such that
f(w) = pbUUbs with b ∈ B and U ∈ B∗.
Let us assume that the length of w is minimal (the image of a word of length lower than |w|
does not contain any framed-square). It implies that |p| < |f(w[1]| and |s| < |f(w[|w|]|.
Let us recall that, if |w| ≤ 3, then w is square-free is equivalent to w is framed-square-free. It
ends the proof in this case since the image of w contains a square.

Let us note that, if L = 1, then f(w) = pbUUbs implies that w contains a framed-square. It
is a contradiction with the hypotheses. So we will work with L ≥ 2.

By Lemma 3.2, we also can assume that f is a ps-morphism.

Let us also note that, if f(w) contains a square of letters, then this square is factor of the image
of a word w0 of one letter or of two letters that would be factor of w. So w0 (framed-square-
free) is square-free and f(w0) contains a square (of letters): we get that f is not square-free.
It ends the proof in this case.

From now, let us assume that |w| ≥ 4, that U 6= ε and that, as w, f(w) does not contain any
square of letters.

From |w| ≥ 4, we get that either |pbU | ≤ |f(w[1..2])| or |Ubs| ≤ |f(w[|w| − 1..|w|])|. Since
|pb| ≤ |f(w[1])| and |Us| ≤ |f(w[|w|])|, we get that one of the two occurences of U necessarily
contains at least one image of a letter by f .

If f(w) and U2 are not synchronized, by Lemma 5.1, f is not square-free: it ends the proof in
this case.

Since f(w) and U2 are synchronized and, by Lemma 3.4, w starts or ends with a word w2
0.

Moreover, f(w0) is a conjuguate of U .
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If w starts with w2
0, since |w0| ≥ 2, there exist two words U1 and U2 such that U = U1U2

and f(w0) = pbU1 = U2U1. So U2 = pb and f(w) ends with Ubs = U1U2bs = U1pbbs that
contradicts the fact that f(w) does not contain any square of letters.

In a same way, if w ends with w2
0, we get a contradiction with the hypotheses.

Remark 5.4 An other example showing that the converse is false is given by Zolotov (Theo-
rem 2 in [9]): The procyclic endomorphism φ : {0, 1, 2}∗ → {0, 1, 2}∗ defined by φ(0) = 01210
φ(1) = 12021 and φ(2) = 20102 is framed-square-free.
But it is not square-free since φ(101) = 12021 01210 12021 = 120(2101)22021. Let us also
remark that since φ(101) contains an overlap, the endomorphism φ is not overlap-free.

6 Power-free morphisms

Proposition 6.1 If f is a morphism from A∗ to B∗ and if, for any a ∈ A, we have f(a)
square-free and f(a) starts and ends with the same letter then f(a2) can not contain any cube.

Proof.
By contradiction, let us assume that f(aa) = α1u

3α2 with u 6= 0.
If |α1u

2| ≤ |f(a)| then α1u
2 is a prefix of f(a): it contradicts the hypotheses.

If |α1u| ≥ |f(a)| then u2α2 is a suffix of f(a): it is again a contradiction with the hypotheses.
So |α1u| < |f(a)| < |α1u

2|. But f(a) starts and ends with the same letter x. So xx is a factor
of u which is factor of f(a): a final contradiction with the hypotheses.

By Lemma 4.2, it follows that:

Corollary 6.2 If f is a procyclic square-free endomorphism then f(a2) can not contain any
cube.

And, by theorems 3.5 and 3.6, we immediatly get that:

Corollary 6.3 A procyclic square-free morphism is k-power-free for any integer k ≥ 4.

Corollary 6.4 A procyclic square-free endomorphism is k-power-free for any integer k ≥ 3.

Remark 6.5 In the case where f is not an endomorphism, Corollary 6.3 can not be improved.
For instance, let g be the procyclic morphism defined by g : {0, 1, 2}∗ → {0, 1, 2, 3, 4, 5, 6}∗;
g(0) = 0304303, g(1) = 1415414 and g(2) = 2526525. We get that g is square-free (and so
k-power-free k ≥ 4). But g(00) contains (30)3 and so g is not cube-free.
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