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Veterinary Research

Emergence and genomic chion of Proteus 
mirabilis harboring blaNDM-1 in Korean 
companion dogs
Su Min Kyung1, Jun Ho Lee1, Eun‑Seo Lee1, Xi‑Rui Xiang1 and Han Sang Yoo1*   

Abstract 

Proteus mirabilis is a commensal bacterium dwelling in the gastrointestinal (GI) tract of humans and animals. Although 
New Delhi metallo‑β‑lactamase 1 (NDM‑1) producing P. mirabilis is emerging as a threat, its epidemiology in our 
society remains largely unknown. LHPm1, the first P. mirabilis isolate harboring NDM‑1, was detected from a compan‑
ion dog that resides with a human owner. The whole‑genome study revealed 20 different antimicrobial resistance 
(AMR) genes against various classes of antimicrobial agents, which corresponded to the MIC results. Genomic regions, 
including MDR genes, were identified with multiple variations and visualized in a comparative manner. In the whole‑
genome epidemiological analysis, multiple phylogroups were identified, revealing the genetic relationship of LHPm1 
with other P. mirabilis strains carrying various AMR genes. These genetic findings offer comprehensive insights 
into NDM‑1‑producing P. mirabilis, underscoring the need for urgent control measures and surveillance programs 
using a “one health approach”.

Keywords Carbapenem, carbapenemase, multidrug resistance, NDM, Proteus mirabilis, whole‑genome sequencing, 
epidemiology, One health

Introduction
Proteus mirabilis is a ubiquitous bacterium found not 
only in soil, water, and sewage environments but also as 
a commensal bacterium in the gastrointestinal (GI) tract 
of humans and animals [1]. P. mirabilis is one of the most 
significant pathogens responsible for urinary tract infec-
tions (UTIs) in health care settings, with a suspected ori-
gin of the GI tract [1, 2]. P. mirabilis is also responsible 
for various clinical conditions, including respiratory tract 
infections, neonatal meningoencephalitis, empyema, 
and osteomyelitis [3]. Several broad-spectrum antibiotic 

agents, such as ampicillin, amoxicillin-clavulanate, cef-
triaxone, ciprofloxacin, levofloxacin, trimethoprim-sul-
famethoxazole (TMP-SMX), piperacillin-tazobactam, 
and carbapenems, are important treatment options for 
clinical P. mirabilis infections. Therefore, the emergence 
of carbapenemase-producing P. mirabilis could dramati-
cally reduce treatment options for these clinical infec-
tions [4].

Multidrug-resistant (MDR) bacterial infection, espe-
cially that caused by New Delhi metallo-β-lactamase 
1 (NDM-1)-producing gram-negative bacteria has 
already become a major threat to the nosocomial envi-
ronment and public health [5–7]. Carbapenemase-
producing strains acquire resistance to more than 
2–3 classes of antibiotics, including carbapenems [8], 
which makes it incredibly difficult to treat these MDR 
pathogens in clinical situations. With a major asso-
ciation with mobile gene elements such as conjugative 
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plasmids and integrative conjugative elements (ICEs) 
[9–11], blaNDM-1 is rapidly mutating and disseminating 
worldwide.

Carbapenem usage in animals is not allowed globally, 
yet unauthorized adjustments of the drugs in animal clin-
ical environments remain, leading to the dissemination 
of carbapenemase-producing strains as an unaddressed 
threat. Therefore, the unidentified dissemination of car-
bapenemase producers among companion animals in 
our society should be considered a major threat to pub-
lic health [12, 13]. Carbapenemase-producing bacteria 
are not a concern limited to human health; they require 
novel and urgent control measures and should not be 
neglected. However, there is only a limited amount of 
investigative data on carbapenemase-producing strains 
in animals in our society.

In this study, we employed molecular epidemiological 
approaches to investigate a carbapenemase producing P. 
mirabilis isolate. Because this was the first identification 
of an NDM-1 harboring P. mirabilis isolated from a com-
panion dog in South Korea, a molecular approach in a 
whole-genome manner was performed to obtain detailed 
information about the genomic characteristics of the 
identified strain. The aim of our study was to gain a com-
prehensive understanding of future control measures in 
order to achieve the “one health approach” in our society.

Materials and methods
Bacterial strain isolation, carbapenemase gene detection 
and minimum inhibitory concentration determination
Swabbed samples obtained from rectal and nasal swabs 
of dogs and cats visiting an animal clinical hospital in 
Seoul, South Korea, were subjected to screening on 
meropenem-impregnated (1 μg/mL) MacConkey (MIM) 
agar for carbapenem-resistant strain identification. 
The total bacterial DNA was isolated using the Wizard 
Genomic DNA purification kit (Promega, Madison, WI, 
USA). For the identification of carbapenemase genes, 
PCR screening using previously described primers [14] 
was initially performed, and the confirmed strains were 
subjected to minimum inhibitory concentration (MIC) 
level identification and next-generation sequencing 
(NGS). The identified microbial species were determined 
with matrix-assisted laser desorption ionization–time of 
flight-mass spectrometry (MALDI-TOF-MS; Bruker Dal-
tonik GmbH, Bremen, Germany).

The MICs of the isolates were determined for 14 
antimicrobial agents using E-test (Biomerieux, Marcy 
L’Étoile, France) technique in accordance with the man-
ufacturer’s instructions. E. coli strain ATCC 25922 was 
used as a quality control strain and only drugs with qual-
ity standards were used in the test.

Illumina/MinION sequencing and characterization
For whole genome sequencing, purified DNA acquired 
from a Wizard Genomic DNA Purification Kit (Pro-
mega, Madison, WI, USA) was used. In summary, two 
independent genomic DNA libraries were prepared 
for both short and long read systems and sequenced. 
Long read genomic sequencing with Oxford Nanopore 
(Oxford Nanopore Technologies, Oxford, UK) platforms 
was corrected using Illumina NovaSeq 6000 (Illumina, 
San Diego, CA, USA) following a paired-end 2 × 150-bp 
protocol.

The DNA library was prepared according to the Illu-
mina TruSeq DNA PCR-Free Library Prep protocol (Cat. 
20015963). For sample library preparation, 2  μg of 550 
bp inserts of high molecular weight genomic DNA was 
randomly sheared to yield DNA fragments using the 
Covaris S2 system. The fragments were blunt ended and 
phosphorylated, and a single “A” nucleotide was added to 
the 3’ ends of the fragments in preparation for ligation to 
an adapter that has a single-base “T” overhang. Adapter 
ligation at both ends of the genomic DNA fragment con-
ferred different sequences at the 5’ and 3’ ends of each 
strand in the genomic fragment. The quality of the librar-
ies was verified by capillary electrophoresis (Bioanalyzer, 
Agilent).

The ONT library was constructed by using a Liga-
tion Sequencing Kit (SQK-LSK109). This library was 
sequenced with a Ligation Sequencing Kit (SQK-
LSK109), a Flow Cell Priming Kit (EXP-FLP002), and a 
Flowcell (FLO-MIN106). All runs were performed on the 
MinION sequencer.

After quantification using the QX200 Droplet Digital 
PCR System (Bio-Rad), we combined libraries that were 
index tagged in equimolar amounts in the pool. WGS 
sequencing was performed using the Illumina NovaSeq 
6000 system according to the protocol provided for 
2 × 150 sequencing.

Reads were trimmed and filtered for long and high-
quality reads using FiltLong v0.2.0 [15]. Filtered long 
read data were prepared using Flye v2.8.3 to proceed de 
novo assembly [16] and checked to determine whether 
they were circular or linear for the contig produced as a 
result of assembly using Circlator v1.5.5 [17]. Data pol-
ishing was carried out with Pilon v1.23 [18] for the con-
tigs whose structural shape was identified, and evaluation 
of the assembly results was carried out through BUSCO 
v4.1.2 [19]. After polishing, structural annotation was 
performed using Prokka v1.14.6 [20] for the contigs to 
determine the location, length and number of CDS, 
rRNA and tRNA. Functional annotation was performed 
with DIAMOND v 0.9.26 [21] to process the file, and 
then Blast2GO v4.1.9 [22] was used to perform Gene 
Ontology analysis.
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Genetic structure analysis and bioinformatic comparison
For genomic structure visualization of the whole chro-
mosome, CGView [23] was employed. Easyfig 2.2.3 was 
used for the pairwise BLASTn alignment of genomic 
structures, including characteristic transposons.

A total of 98 whole-genome datasets of P. mirabi-
lis strains were downloaded from the National Center 
for Biotechnology Information [24] for comparison 
with the sequence in this study by bioinformatic man-
ners. The assembled genomes were screened for com-
parison of the resistance genes and plasmid types on 
the Center for Genomic Epidemiology (CGE) server 
[25] in silico utilizing ResFinder 4.1 and PlasmidFinder 
2.1. The whole-chromosome structure map was gen-
erated using the CGView server [23], with P. mirabilis 
HI4320 (GenBank accession no. AM942759.1) applied 
as a backbone. Whole-chromosome single nucleotide 
polymorphism (SNP) datsets were generated [26], and 
a concatenated alignment was created using CSI Phy-
logeny [27] with standard settings and using P. mirabilis 
HI4320 (GenBank accession no. AM942759.1) as a ref-
erence. MEGA 11 software [28] was employed for reli-
able maximum likelihood (ML) tree construction with 
1000 bootstrap replicates. The epidemiological visuali-
zation was generated on iTOLs [29] for comparison of 
the characteristic information heatmaps along with the 
whole-genome phylogenetic tree.

This study describes the first carbapenemase-pro-
ducing P. mirabilis strain isolated from a companion 
animal in South Korea. The identified whole-genome 
structure revealed 20 different AMR genes, includ-
ing 2 tandem copies of blaNDM-1, which contributed to 
the MDR capacity of the isolate. Multiple variations in 
MDR gene regions and phylogenetic relatedness were 
identified by whole-genome analysis. The findings from 
the carbapenemase-producing P. mirabilis strain from 
a companion animal indicate that the problem of AMR 
is not limited to human health and should be addressed 
from the perspective of the “one health approach”.

Results
Characterization of carbapenemase‑producing P. mirabilis 
and MIC determination
Proteus mirabilis strain LHPm1 was isolated on 9 April 
2021 from a companion dog at a clinical animal hos-
pital in Seoul, South Korea. The isolate was identified 
from a rectal swab of 6  year-old neutralized female 
poodle, without any characteristic clinical symptoms. 
Rectal swabs were performed along with nasal swabs 
for the purpose of screening and identifying carbap-
enem-resistant Enterobacterales (CRE). LHPm1 was 

isolated as a result of rectal swab screening on merope-
nem impregnated (1 µg/mL) MacConkey (MIM) agar.

As a result of PCR identification, the carbapenem-
resistant isolate was found to carry the carbapene-
mase-producing gene blaNDM. Subsequently, the isolate 
underwent MIC evaluation and whole-genome sequenc-
ing. The MIC was evaluated against 14 different antimi-
crobial agents (Table 1) and was confirmed to have high 
(MIC value higher than 32  µg/mL) meropenem resist-
ance. The isolate was found to have resistance against 
β-lactam agents, such as amoxicillin/clavulanic acid 
(penicillin), ceftazidime and ceftriaxone  (3rd generation 
cephalosporin), ceftolozane/tazobactam  (4th generation 
cephalosporin), and piperacillin/tazobactam (ureido-
penicillin). Tetracycline, chloramphenicol, gentamicin, 
and polymyxins were also found to be unreliable options. 
Reliable options against LHPm1 included aztreonam 
(monobactam), amikacin (aminoglycoside), tigecycline 
(glycylcyclines), and nalidixic acid (quinolone).

Sequenced and assembled whole‑genome datasets
As a result of the whole genome sequencing and assem-
bly, a high-quality sequence was generated (Additional 
file 1). A 4000428 base-pair long chromosome was iden-
tified, without any identifiable plasmid (Table 2).

Whole‑genome structure and characteristic gene 
visualization
The whole-genome structure was visualized (Fig-
ure  1) using CGView, with the P. mirabilis HI4320 

Table 1 Minimum inhibitory concentrations of 14 
antimicrobial agents (µg/mL) against LHPm1 

The minimum inhibitory concentration was determined with the E-test strip 
technique for 14 different antimicrobial agents. E. coli strain ATCC 25922 was 
used as a quality control strain.

Antimicrobial agents MIC results (µg/
mL)

Resistance 
determinant

Amikacin 12 S

Amoxicillin/clavulanic acid (2:1) 48 R

Aztreonam  < 0.016 S

Ceftazidime  > 256 R

Ceftriaxone  > 256 R

Ceftolozane/tazobactam  > 256 R

Chloramphenicol 96 R

Colistin  > 256 R

Doxycycline 32 R

Gentamicin 16 R

Meropenem  > 32 R

Nalidixic acid 3 S

Piperacillin/tazobactam  > 256 R

Tigecycline 0.25
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(GenBank accession no. AM942759.1) sequence as a 
reference. A total of 20 different antimicrobial resist-
ance (AMR) genes were identified from the whole 
genome of LHPm1. Genomic positions of characteris-
tic genes, such as AMR genes, mobile genes and CDS, 
are depicted with distinguishable colored arrows in the 
whole chromosomal map.

Two genomic regions were identified with concen-
trated AMR genes and mobile genes. Comparative 

visualization (Figure  2) revealed the variated struc-
ture of the genomic regions, from previously reported 
datasets.

A 50,640-base pair-long Tn7-like transposon structure 
with a transposition module of tnsA-tnsB-tnsC-△tnsD 
was identified, with novel variations (Figure  2A). The 
MDR gene region was found to harbor various classes 
of AMR genes, namely, aminoglycoside (aac(6’)-lb, 
aac(3)-IV, aph(4)-la, aph(3’)-la and aadA1), rifampin 

Table 2 Genomes identified as a result of sequencing and assembly 

LHPm1 was found to carry a 4 000 428 base-pair-long chromosome. A plasmid was not found in the bacterial genome.

Bacterial Strain Gene type Gene Length (bp) Gene form GC contents CDS rRNA tRNA

LHPm1 Chromosome 4000428 Circular 39.17 3,579 22 84

Figure 1 Identification of the whole chromosome structure of LHPm1. The whole chromosome of NDM‑1‑carrying P. mirabilis (4 000 428 
bp) was identified in this study and visualized. The chromosomal map of P. mirabilis HI4320 (4 063 606 bp, GenBank accession no. AM942759.1) 
was utilized as the backbone for visualization and is depicted as a black circle. The characteristic gene positions, such as that of resistance genes 
and mobile gene elements, are additionally highlighted in the outermost 2 circles. The circular map was generated by CGView.



Page 5 of 10Kyung et al. Veterinary Research           (2024) 55:50  

(arr-3), sulfonamide (sul1 and sul2), florfenicol and 
chloramphenicol (floR), macrolide (mphE and msrE), 
trimethoprim (dfrA1) and lincosamide (linF) AMR 
genes. The novel variation of the Tn7-like region was 
identified in comparison to Tn6450 (GenBank acces-
sion no. MF805806.1) and Tn6765 (GenBank accession 
no. MT503200.1). In particular, a class I integron was 
identified to be interrupted with a reversed gene region 
of Tn21, consequently leading to the deletion of the 
blaDHA-1 gene.

Two sites of the blaNDM-1 gene were identified in 
LHPm1 and associated with multiple mobile gene ele-
ments (Figure  2B). Both blaNDM-1 genes had base-pair 
substitution sites at C621A. A particular blaNDM-1 gene 
sequence contained an additional mutated 107T inser-
tion and G108A substitution, speculatively resulting in 
a frame shift of the amino acid sequence and marked 
(*) in Figure  2B. The blaNDM-1 gene was coupled with 
mobile genes and multiple AMR genes, such as sul1, 
arr-3, aadA12 and dfrA27. The 41,315-base pair-long 
gene structure between the two sites of ISVsa5 was dif-
ferent from previously reported gene structures and 

was comparatively visualized with corresponding simi-
lar genes identified in E. coli strain Y5 (GenBank acces-
sion no. CP013483.1) and P. mirabilis strain PMBJ023-2 
(GenBank accession no. CP065145.1). While the MDR 
regions, including sul1, arr-3, bleMBL and blaNDM-1, were 
similar, the outer structure was different among the 
strains.

Epidemiologic gene characterization in comparison 
with worldwide datasets
A total of 98 P. mirabilis whole-genome datasets available 
from the National Center for Biotechnology Informa-
tion [24] were employed for whole-genome comparison 
(Additional file  2). The strains were isolated between 
1933 and 2021 and from 20 different countries (66 strains 
from China). The strains were isolated from various 
sources, including 15 different host species (48 strains 
from humans) and environmental samples. Pathogenic 
bacterial strains identified from human clinical infec-
tions were also included in the study. As a result of whole 
genome database screening, a total of 80 heterogene-
ous AMR genes were identified from the whole-genome 

Figure 2 Genomic comparison of the identified novel variants in the MDR region. Multiple AMR genes and mobile genes were found to be 
concentrated in particular gene regions and visualized via linear comparison. The transposable elements of LHPm1 were identified and compared 
with the Tn6450 part discovered in P. mirabilis strain SNYG17 (GenBank accession no. MF805806.1) and the Tn6765 part in strain SCBX 1.1 (GenBank 
accession no. MT503200.1). Transposons and integron structures are indicated with black arrowheads. Two sites of blaNDM-1 were identified 
from LHPm1 in a variated form and comparatively visualized with corresponding structures identified from E. coli strain Y5 (GenBank accession no. 
CP013483.1) and P. mirabilis strain PMBJ023‑2 (GenBank accession no. CP065145.1). Gray shading was adjusted to indicate corresponding shared 
regions with more than 96% gene identity. Easyfig 2.2.3 was used for the pairwise BLASTn alignment comparison.
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datasets of 99 P. mirabilis isolates (Additional file  3). 
PlasmidFinder 2.1 analysis revealed 3 types of plasmids, 
namely Col3M, IncC and IncQ1, identified in 6 P. mira-
bilis whole-genome datasets (Additional file 4). Of these, 
5 strains carried Col3M (% identity 98.09) whereas P. 
mirabilis strain LB UEL H-11 (GenBank accession no. 
CP086377.1) carried IncC and IncQ1.

Whole chromosome SNPs were identified using the 
CSI Phylogeny pipeline, with P. mirabilis HI4320 (Gen-
Bank accession no. AM942759.1) as a reference gene 

for pairwise SNP difference measurement. The pair-
wise SNP difference (Additional file  5) ranged from 0 
(between C74 and C55) to 45,353 (between MPE0156 
and CCUG70746). The P. mirabilis strain XH1568 (Gen-
Bank accession no. CP049941.1) was revealed to have the 
smallest pairwise SNP difference (6302 positions) from 
LHPm1.

Subsequently, a whole chromosome SNP-based ML 
tree was constructed based on the pairwise SNP differ-
ence. To gain a clearer epidemiological perspective of 

Figure 3 Epidemiological comparison of the whole genome datasets of 99 P. mirabilis strains. The whole‑genome SNP identification using 
P. mirabilis HI4320 (GenBank accession no. AM942759.1) as a reference was adjusted to construct a maximum likelihood (ML) tree and the results 
were visualized by iTOLs. The LHPm1 strain identified in this study is highlighted with a black background. The years that each strain was isolated 
are listed in the square boxes and colored differently according to their location of origin. The isolation source, whether from humans, animals, 
or the environment, is displayed using colored boxes. The AMR gene identities were displayed by heatmaps, colored differently according 
to the antimicrobial classes. The identified phylogroups (A–E) are depicted in distinguishable colored backgrounds.
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LHPm1, epidemiological information, such as isolative 
sources, location, year and the AMR gene identity heat-
map, was visualized with the whole chromosome phylo-
genetic tree (Figure 3). As a result of the whole genome 
epidemiology of the P. mirabilis datasets, 5 phylogroups 
were distinguishable based on phylogenetic relatedness, 
isolative source or resistance gene distribution pattern. 
The identified phylogroups are depicted in Figure 3 with 
colored backgrounds. LHPm1 was grouped in phylo-
group C (green background), which is a clade that can be 
characterized by highly distributed AMR genes.

Discussion
In this study, carbapenemase NDM-1 carriage was 
revealed from the common rectal screen of companion 
animals, which are close members of human society yet 
outside of the major surveillance system of our commu-
nity. Featuring high mortality and morbidity especially in 
nosocomial environments, most of the infections caused 
by MDR Enterobacterales are likely derived from the 
gastrointestinal (GI) tract [30, 31]. P. mirabilis is a com-
mensal strain, and it has been suspected to be responsi-
ble for UTI infections originating from the GI tract [1, 
2]. However, the host dog of the isolate in this study was 
healthy to the best of our knowledge, and showed no spe-
cial symptoms or clinical situation. This is not strange 
because P. mirabilis is known as a commensal strain in 
the GI tract of humans and animals [1]. In human investi-
gations of Korea, P. mirabilis was reported as the  5th most 
prevalent (6.5%) urine isolate and  5th most prevalent 
(2.8%) species among CREs [32–34]. Among carbapene-
mase-producing P. mirabilis isolates, the most prevalent 
carbapenemase type was NDM-1, consistent with the 
findings in this study. The NDM-1-producing P. mirabi-
lis isolate in this study was the first strain detected in a 
dog in our country. In a nationwide surveillance study on 
dogs [35], P. mirabilis was reported as the  4th most iso-
lated species from stools (4.4%),  5th from skin (3.7%), and 
 2nd from urine (20.0%). There has been no clear report 
supporting direct dissemination or infection of P. mira-
bilis between humans and animals. However, considering 
the increasing role of companion dogs in human society, 
the discovery of NDM-1 harboring P. mirabilis in the GI 
tract of a companion dog should be taken seriously.

Although LHPm1 was isolated from a dog without 
any identified clinical symptoms, the clinical potential 
of MDR P. mirabilis as a pathogen should also be con-
sidered. Several key virulence factors of P. mirabilis, 
including iron acquisition systems, lipopolysaccharide, 
hemolysins, proteases, and flagella, are known to confer 
pathogenicity to the isolates [36, 37]. Although it is still 
unclear, swarming capability on surface is suspected to be 
correlated with urease and crystalline biofilm formation 

[38]. Fimbriae formation is also known to be responsible 
for adhering to the uroepithelium, localizing in the uri-
nary tract, and forming biofilms [39, 40]. There are 17 
important virulence factors reported to affect fimbriae 
formation, including the well-known mannose-resistant 
Proteus-like (MR/P) fimbria [41]. The genomic varia-
tions identified in this study (Figure  2) did not include 
any differences of known virulence factors of P. mirabilis. 
Interestingly, pathogenic factors such as swarming motil-
ity, mutual growth, and biofilm formation were reported 
to be correlated with the AMR capacity of P. mirabilis 
[42]. MDR P. mirabilis strains exhibited higher mutual 
growth and biofilm formation but lower swarming motil-
ity. However, LHPm1 was identified in a dog without 
any clinical complaints, and the clinical potential of the 
strain was not assessed in this study. Therefore, potential 
clinical impact of the LHPm1 should not be neglected, 
and further investigation into its potential pathogenicity 
should be undertaken.

The result of whole-genome resistance gene identi-
fication using a public database was consistent with the 
MIC values. The MIC evaluation revealed resistance to 
multiple classes of antibiotics, including β-lactam agents 
such as cephalosporins, penicillins and carbapenems, 
aminoglycosides, chloramphenicol, macrolides and poly-
myxins. NDM-1 is a well-known carbapenemase, that 
confers resistance against β-lactam agents by hydrolyz-
ing antibiotics containing β-lactam rings [43]. The resist-
ance level of LHPm1 against meropenem, cephalosporins 
(ceftazidime and ceftriaxone), and penicillin (amoxicil-
lin) seems to be due to the presence of NDM-1. Various 
aminoglycoside genes were identified in the chromo-
some of LHPm1, namely aac(3)-Iid, aac(3)-IV, aac(6’)-
Ib-cr, aadA1, aadA16, aph(3’)-Ia, aph(3’’)-Ib, aph(3’)-Via, 
aph(4)-Ia and aph(6)-Id [44]. These genes are speculated 
to be responsible for the resistance of LHPm1 to gen-
tamicin. The loss of mobile gene elements in the genomic 
region (Figure 2), such as ISCR1, the istAB operon, and 
IS1353, indicates that the AMR genes linked with these 
genes would be stable in the chromosome of the LHPm1 
[45]. The variations in the genomic region could stabilize 
the AMR genes and drug resistance ability derived from 
this region, such as aminoglycosides, rifampicin, and 
sulfonamides, potentially making treatment using these 
drugs difficult. The resistance of the isolate to doxycy-
cline seems to be due to the presence of the tet(J). The 
MIC determination also revealed the resistance of the 
isolate to chloramphenicol, which is believed to be due to 
the existence of the resistance genes catB3 and floR. Simi-
larly, qnrA1 is suspected to be responsible for the resist-
ance to nalidixic acid [46].

Tn7-like transposons contribute to the horizon-
tal transfer of AMR genes among bacterial species via 
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transposases [47]. However, the role of Tn7-like trans-
posons in MDR isolates in our society remains largely 
unexplored. In this study, multiple genetic variations 
were discovered in LHPm1 and comparatively visualized 
with the Tn7-like structures Tn6450 (GenBank accession 
no. MF805806.1) and Tn6765 (GenBank accession no. 
MT503200.1).

The identification of MDR genes associated with mul-
tiple mobile genes from companion dogs is highly wor-
risome, considering the increasing role of animals in our 
society. Furthermore, MDR genes coupled with multiple 
mobile gene elements were identified with two tandem 
copies of blaNDM-1, which could confer an even broader 
spectrum of MDR capacity to the strain. Two tandem 
copies of blaNDM-1 have been reported from multiple 
species of bacterial chromosomes in previous reports 
[48–50], including P. mirabilis. Isolates with multiple 
copies of blaNDM-1 are known to show elevated carbap-
enem resistance [50]. In this study, 2 copies of blaNDM-1 
were identified in P. mirabilis, yet one of them seems to 
have undergone a frame shift of the amino acid sequence. 
Although the other copy of blaNDM-1 seems to be enough 
to confer carbapenem resistance for the isolate (MIC 
value higher than 64  µg/mL), the underlying reason for 
the identified mutation remains unknown.

The whole-genome epidemiological study has recon-
firmed that P. mirabilis is a ubiquitous bacterial species 
that can be isolated from humans, animals (both wildlife 
and domestic) and the environment. The whole-genome 
study revealed various classes of AMR genes in P. mira-
bilis datasets. Tetracycline resistance genes, mostly 
tet(J), were identified in all of the investigated P. mirabilis 
strains. Among the datasets, the largest number of AMR 
genes was identified in FZP3105, with a total of 28 differ-
ent AMR genes. Although only whole-genome datasets 
of significant isolates tend to be accessible in GenBank, 
it is clear that P. mirabilis is capable of carrying various 
AMR genes. In the whole genome phylogeny, 5 phylo-
groups were identified. Interestingly, isolates grouped 
in an identical phylogroup had a similar resistance gene 
distribution pattern. Isolates of phylogroup A origi-
nated from various animal species in China and carried 
either blaNDM-1 or blaOXA-1. Phylogroup B, C and E were 
characterized by a high distribution of aminoglycoside, 
amphenicol, and folate pathway antagonist resistance 
genes, relative to other phylogroups. Phylogroup D was 
identified with extended-spectrum β-lactamase (ESBL) 
and carbapenemase genes, yet other AMR genes, such 
as aminoglycoside, macrolide and quinolone resistance 
genes were relatively less prevalent. LHPm1 was included 
in phylogroup C, which is capable of colonizing both 

humans and animals, and was found to carry various 
AMR genes.

In phylogroup C, four P. mirabilis strains were closely 
grouped with LHPm1, raising concerns about serious 
clinical situations for humans. The four isolates of phylo-
group C included two strains isolated from humans and 
the other two from animals. P. mirabilis strain XH1568 
was identified from a gallbladder sample collected in 
China [51], from a patient diagnosed with gallblad-
der carcinoma. An ESBL blaCTX-M-65 producing isolate 
FZP2826 was also isolated in human patient [52]. P. mira-
bilis strain CC15031 was isolated from a canine diar-
rhea sample [53] and characterized to demonstrate high 
pathogenicity and antimicrobial resistance. An MDR P. 
mirabilis strain ChSC1905 was from nasal swab of a dis-
eased pig of swine farm [54]. Given the host range of phy-
logroup C and its proximity to LHPm1, the potential for 
upcoming human infections must be taken seriously.

Therefore, novel control measures, from the perspec-
tive of the “one health approach”, are needed for public 
health, based on the findings from the whole-genome 
epidemiology.

This study describes the first carbapenemase-produc-
ing P. mirabilis strain isolated from a companion animal 
in South Korea. The identified whole-genome struc-
ture revealed 20 different AMR genes, including 2 tan-
dem copies of blaNDM-1, which contributed to the MDR 
capacity of the isolate. Multiple variations in MDR gene 
regions and phylogenetic relatedness were identified by 
whole-genome analysis. The findings from the carbapen-
emase-producing P. mirabilis strain from a companion 
animal indicate that the problem of AMR is not limited 
to human health and should be addressed from the per-
spective of the “one health approach”.
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