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Antonio Marco Maisano1, Salvatore Catania4, Marcelo Gottschalk5 and G. Loris Alborali1 

Abstract 

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute 
form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Sero‑
type diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 
were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from out‑
breaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 
(39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated 
in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed 
by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, 
with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes 
and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly 
associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 
5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our 
results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile 
are crucial to effectively manage APP infection and improve antimicrobial stewardship.
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Introduction
Actinobacillus pleuropneumoniae (APP) is a Gram-neg-
ative bacterium frequently associated with porcine pleu-
ropneumonia. Particularly, APP infections may lead to 
necrotizing and haemorrhagic pneumonia which usually 
affects only one diaphragmatic lobe and is accompanied 
by significant pulmonary oedema [1]. The acute form of 
the disease is highly contagious and often fatal, resulting 
in significant economic losses for pig farmers due to pro-
duction losses and antimicrobial treatment costs [2].

Actinobacillus pleuropneumoniae strains can be 
classified according to their biotypes or serotypes. 
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Traditionally, APP was distinguished into two biotypes: 
biotype I, which is nicotinamide adenine dinucleotide 
(NAD) dependent, and biotype II which can synthesize 
NAD in the presence of specific pyridine nucleotides or 
their precursors [3]. Isolates belonging to biotype II seem 
to induce milder infections than those belonging to 1 [4]. 
Currently, 19 APP serotypes are recognised based on 
capsular antigens [5, 6]. Serotype classification tends to 
be more informative than biotype classification because 
serotypes greatly differ in pathogenicity and are charac-
terised by different combinations of the four main APP 
toxins. Apx IV has haemolytic but no cytotoxic activ-
ity, and is present in all serotypes, making it suitable for 
diagnosis [7, 8]. Apx I–III largely determine, through 
their cytotoxicity and haemolytic activity, the virulence of 
the serotype and one or two of the three are present in 
all serotypes [2]. The difference in virulence among the 
different serotypes can be partly explained by the differ-
ential production of the Apx toxins; however, this rela-
tionship is not always straightforward [9]. For example, 
serotype 8 could be considered “mild” based on its toxins 
combination, but is actually the most virulent variant of 
APP in the UK [10]. Similarly, serotype 7, which produces 
only one cytotoxin and is traditionally considered among 
the least virulent strains, is the causative agent of half of 
the clinical outbreaks of APP in Canada [11]. The dis-
tribution of serotypes involved in outbreaks in different 
regions of the world is indeed radically different: strains 
of a specific serotype may typically be highly virulent in 
a region, while conversely be low in virulence in another 
region [1]. Although APP outbreaks are currently a rela-
tively minor problem in North America, they remain a 
challenge for swine production in Italy and other Euro-
pean countries, as well as in Asia and Latin America [1].

Strategies to prevent porcine pleuropneumonia are 
mainly based on external biosecurity measures to avoid 
the introduction of new serotypes/strains by carrier pigs 
(usually gilts in breeding herds and growers in fattening 
herds), as well as internal biosecurity measures to inter-
rupt infection chains, for example, by age-segregated 
rearing [12] and litter-segregated rearing [13]. Although 
several vaccines against APP are available, their efficacy is 
limited by the presence of numerous serotypes, mostly in 
the case of bacterins. Moreover, the pathogenic mecha-
nisms and virulence factors (other than toxins) of APP 
are not fully known yet [14]. To control the disease after 
the onset of the first clinical symptoms, early treatment 
of diseased animals with effective antimicrobials is there-
fore still a necessity [15], and metaphylactic treatment of 
exposed pigs could be required to minimize losses, all the 
more so because, in acute and hyperacute disease, pigs 
often die without showing any typical clinical signs [2]. 
On the other hand, reducing the use of antimicrobials 

in animal production is crucial for public health. Cur-
rent EU legislation on veterinary medicines requires 
metaphylaxis to be used only in scenarios where the risk 
of transmission is high, and no suitable alternatives are 
available [16].

Proper use of antimicrobials for the treatment of 
APP infections requires knowledge of the susceptibil-
ity of the infecting strain. Differences in antimicrobial 
resistance (AMR) patterns have been observed not only 
among different serotypes but also over time [4]. Several 
studies have also reported differences in AMR patterns 
depending on the country in which they were conducted. 
Nevertheless, different antibiotic susceptibility testing 
techniques have been used and the methods are not fully 
comparable. Only a limited number of studies have been 
conducted using the microdilution method (MIC) [4, 15, 
17, 18]. Knowledge of APP resistance profiles is neces-
sary not only for clinical but also for epidemiological pur-
poses. Antimicrobial resistance (AMR) is on the rise and 
there is a need to closely monitor antimicrobial suscep-
tibility, to observe trends over time and ensure the long-
term effectiveness of antimicrobials [19].

This study aimed to retrospectively evaluate the sero-
type diversity and antimicrobial susceptibility of APP 
strains in northern Italy, analysing trends over 8  years 
(2015–2022), including multi-drug resistance (MDR).

Materials and methods
Isolation of bacterial strains
A total of 572 APP isolates were collected from 2015 to 
2022 at the Istituto Zooprofilattico Sperimentale della 
Lombardia e dell’Emilia Romagna (IZSLER), which rou-
tinely receives samples from swine farms located in 
Northern Italy. All the strains were recovered from the 
lungs of pigs that died of acute respiratory diseases and 
were submitted to the institute for analysis. Bacterial 
strains were isolated on an agar plate with Staphylococ-
cus aureus (ATCC 25923) added to the centre of the plate 
and incubated at 37 °C with 5%  CO2.

Serotyping
The serotypes were determined by molecular methods. 
Bacterial DNA was extracted via lysis boiling (98  °C, 
10 min) and subsequent amplification was performed by 
a multiplex PCR of specific sequences of genes associated 
with the prevalent APP serotypes of diagnostic interest: 
1, 2, 3, 4, 5, 6, 7, 8, 9/11, 12, 13, 14, 17, and 18. The analy-
sis consisted of two multiplex PCR: the first identifies the 
species-specific apxIV toxin and serotypes 2, 4, 5, 7, 8, 
9/11, and 13. The second identifies the serotypes 1, 3, 6, 
12, 14, 17, and the nadV gene that identifies biotype II [5, 
6].
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The Qiagen Multiplex PCR Plus kit (Qiagen) was 
used according to the manufacturing instructions and 
all the primers used have been described previously [5]. 
Multiplex PCR reactions mix were composed as fol-
lows: 12.5 μL of Multiplex PCR master mix (2×), 2.5 μL 
of Coral Dye and 1.25 μL of primer mix 10× (0.5 μL of 
each primer) 2 μL of genomic DNA and 6.75 μL of RNase 
DNase-free water to a final volume of 25 μL. The cycling 
parameters were as follows: an initial denaturation at 
95 °C for 5 min; 30 cycles at 95 °C for 30 s, 62 °C for 90 s, 
and 72 °C for 60 s; a final extension at 72 °C for 15 min. 
The amplified PCR products were subjected to electro-
phoresis at a 1.5% agarose gel in 1× TBE buffer.

Determination of antimicrobial resistance
APP isolates were subjected to antimicrobial suscepti-
bility testing by the microdilution method. Minimum 
Inhibitory Concentrations (MICs) were determined by 
broth microdilution using a commercial plate (Sensititre 
Vizion Digital MIC, Thermo Fisher Scientific USA), that 
includes 11 antimicrobials belonging to nine different 
classes (Sensititre ITISVE3 plate, Thermo Fisher Scien-
tific, USA).

The strains were classified as susceptible or resistant 
based on epidemiological cut-off values (ECOFFs) rec-
ommended by the European Committee on Antimicro-
bial Susceptibility Testing (EUCAST). The cut-off values 
for the tested antimicrobials are reported in Additional 
file 1.

Statistical analysis
Variation in AMR during the study period was analysed 
through a set of nine mixed logistic regressions, one for 
each of the tested antimicrobials. Only 369 out of 572 
isolates (64.5%) belonging to the most common sero-
types (i.e., prevalence  > 5%) were included in the analy-
sis. In each model we included the serotype and year of 
each APP isolate as explanatory variables, and the farm 
ID as a random intercept, to account for different iso-
lates submitted by the same farm. In all models,  year2 
was initially included to account for potential curvilinear 
trends, and removed from final models when non-sig-
nificant (p-value for removal set at 0.1). The same model 
was applied to investigate the probability of an isolate 
being multidrug-resistant (MDR), i.e., resistant to at least 
three antimicrobial classes [20]. Post-hoc comparisons 
between serotypes were performed through t-tests on the 
difference of least square means, applying Tukey correc-
tion for multiple comparisons. The alpha-level for signifi-
cance was set at 0.05. All the analyses were carried out in 
SAS/STAT 9.4 software (Copyright © 2011, SAS Institute 
Inc., Cary, NC, USA).

Results
From 2015 to 2022, a total of 572 strains of APP were iso-
lated from swine samples that were submitted to IZSLER 
by 337 different North Italian farms experiencing APP 
outbreaks. The number of samples per year ranges from a 
minimum of 38 in 2015 to a maximum of 86 in 2020. The 
61% of the outbreaks occurred in finishers, 38% in wean-
ers and 1% in sows. Most of the farms (66%) submitted 
samples from a single outbreak during the study period, 
19% from two outbreaks, 7% from three outbreaks and 
8% of farms submitted samples from more than three 
outbreaks (Additional file 2). A single isolate per outbreak 
was obtained: serotype analysis was performed on all the 
572 strains/outbreaks, while MICs were determined for 
465 of them.

Overall, 502 (87.8%) isolates were typed successfully, 
while 70 were untypable. Out of the serotyped isolates, 
most belonged to serotypes 9/11 (39.2%) and 2 (28.1%). 
Serotypes 13, 5, 8, 6 and 7 were less common and other 
serotypes were rarely found (i.e., <1%, see Table  1 for 
detailed prevalence). Overall, the vast majority of the iso-
lates (89.2%) belonged to biotype I, which was predomi-
nant in all serotypes except for serotype 13, where 70.2% 
of the isolates belonged to biotype II, and serotypes 2 
and 3, where the few isolates all belonged to biotype II 
(Table 1). The geographical location of the sampled farms 
and the distribution of serotypes are shown in Figure 1.

The prevalence of the most common serotypes varied 
from year to year. In particular, the prevalence of serotype 

Table 1 Prevalence of APP serotypes 

Prevalence and its 95% Confidence Interval of the successfully serotyped APP 
strains (n = 502) isolated from disease outbreaks occurred in north Italian 
swine farms from 2015 to 2022. For each serotype, the percentage of isolates 
belonging to biotype II is also reported.

Serotype N Prevalence 95% CI of the 
prevalence

% Biotype II

9/11 197 39.24 34.96–43.53 5.29

2 141 28.09 24.14–32.03 1.42

13 49 9.76 7.16–12.37 70.83

5 44 8.76 6.28–11.25 0

8 31 6.18 4.06–8.29 3.23

6 12 2.39 1.05–3.73 0

7 11 2.19 0.91–3.48 9.09

3 4 0.8 0.02–1.58 25.0

4 3 0.6 0–1.27 0

14 3 0.6 0–1.27 100

10 2 0.4 0–0.95 0

15 2 0.4 0–0.95 100

1 1 0.2 0–0.59 0

12 1 0.2 0–0.59 0

18 1 0.2 0–0.59 0
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5 increased significantly over the study period (p = 0.012; 
 R2 = 0.74), from 3.5% in 2015 to more than 10% of sam-
ples in 2020 and 2021. Serotype 8 emerged starting from 
2017 (Figure 2). In general, there was an increase in the 
serotype diversity of circulating APP, from four different 
serotypes detected in 2015 to nine serotypes in 2022.

Regarding AMR, 317 out of 465 (68%) of the exam-
ined isolates were resistant to at least one antimicrobial 

class. The most common resistances were against tetra-
cycline (53% of isolates) and ampicillin (33%), followed 
by enrofloxacin, florfenicol and trimethoprim/sulfameth-
oxazole (23% each). Resistance to ceftiofur and tilmicosin 
occurred in 10% and 8% of isolates respectively. Resist-
ance to tildipirosin (7%), tulathromycin (6%), tiamulin 
(5%) and amoxicillin/clavulanic (4%) was less frequent 
(Figure 3).

An MDR was found in 148 out of 465 (32%) of 
the isolates, two of which were resistant to all the 

Figure 1 Location of sampled pig farms. Location of pig farms experiencing APP outbreaks during 2015–2022 and included in the present study. 
Circle colours and background shading represent, respectively, the serotypes isolated within each farm and the density of swine in each province, 
as detailed in the figure legend.
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Figure 2 Prevalence of APP serotypes by year. Prevalence 
of serotypes by year in the APP isolates (n = 502) serotyped 
during the study period.
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Figure 3 Prevalence of AMR in APP isolates. Resistance 
of the examined APP isolates (n = 465) to the tested antimicrobials.
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nine antimicrobial classes tested. The probability of 
observing MDR depended on the serotype (χ2

4 = 28.2; 
p < 0.001), the smallest proportion of MDR isolates was 
found in strains belonging to serotype 2 (17%), the big-
gest in serotype 9/11 (46%). No temporal trend in MDR 
prevalence across years was detected (p > 0.05).

Resistance of APP isolates to ampicillin (χ2
4 = 16.1; 

p = 0.003), enrofloxacin (χ2
4 = 25.7; p < 0.0001), florfeni-

col (χ2
4 = 15.1; p = 0.004), tetracycline and trimetho-

prim/sulfamethoxazole (χ2
4 = 42.4; p < 0.0001) all varied 

by serotype (Figure  4). Isolates belonging to serotype 
9/11 were significantly more resistant to florfenicol 
than serotypes 2, 13 and 5. Resistance to enrofloxa-
cin was observed more frequently in association with 
serotype 9/11 and 8, and was less common in 2 and 5. 
Compared with the other serotypes, serotype 5 rarely 
showed ampicillin resistance, but conversely was the 
serotype most commonly associated with tetracycline 
and trimethoprim/sulfamethoxazole resistance, which 
were instead rarely encountered in serotype 2 iso-
lates. Resistance to all the other antimicrobials tested 
was instead independent of serotype and equally likely 
(p > 0.05).

None of the resistances showed any linear variation 
over time during the study period, although a tendency 
(p = 0.053) for florfenicol resistance to increase can be 
observed starting from 2020 onwards. However, resist-
ance to tetracycline (χ2

1 = 6.0; p = 0.016) and to trimeth-
oprim/sulfamethoxazole (χ2

1 = 10.8; p = 0.0013) showed 
a curvilinear temporal trend: both peaked around 2019 
regardless of serotype, and decreased again in the fol-
lowing years (Figure 5).

Discussion
We retrospectively evaluated the serotypes and AMR 
profiles of more than 500 APP strains isolated from out-
breaks that occurred over 8 years in farms located in the 
main Italian pig production area (Figure 1). Our analysis 
revealed that the serotype diversity of APP strains cir-
culating in the area under investigation has increased in 
recent years, and that AMR is strongly serotype-depend-
ent, highlighting that APP serotyping may help to select 
the appropriate antimicrobial therapies and improve 
antimicrobial stewardship.

Our data showed that, although most of the strains 
causing APP outbreaks in northern Italy belong to 
serotypes 9/11 and 2, several other variants occasion-
ally occur, especially in the areas where pig density and 
movements are higher. Overall, serotype 9/11 was the 
most prevalent (39%), followed by serotype 2 (28%). This 
result is in contrast with previous studies carried out in 
the Czech Republic, Germany and Spain, where serotype 
2 was the most common variant [9]. Indeed, the distri-
bution of APP serotypes is known to be highly variable 
in space and time [21, 22]. For instance, in Switzerland, 
only 7% of strains belonged to serotype 9/11, with the 
most common serotypes being 7 and 12 [17], which were 
instead rarely found in our study.

Regarding the less common serotypes in our study, 
serotype 8 appeared in 2017, while serotype 5, which is a 
common serotype in other parts of the world (e.g., Korea 
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Figure 4 Prevalence of AMR by serotype. Prevalence 
of antimicrobial resistance by serotype in the APP isolates examined 
during the study period. Only the most common serotypes (i.e., total 
prevalence > 5%) and resistances (i.e., total prevalence > 10%) are 
shown.
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Figure 5 Resistance to tetracycline and trimethoprim/
sulfamethoxazole across years. Temporal trends in resistance 
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[23] and Canada [11]), increased in prevalence dur-
ing the study period: from 3.5% in 2015 to 10% in 2021. 
Three new serotypes have recently been described, sero-
types 17 and 19 in Europe and Canada, whereas serotype 
18 has only been found in Europe [6, 24]. While we did 
not find any APP strains belonging to serotypes 17 or 19, 
we identified a strain belonging to serotype 18 (Table 1) 
from an outbreak that occurred in 2022 on a farm in the 
Lombardy region. Notably, approximately 13% of our iso-
lates was untypable, possibly due to genetic mutations 
within primers annealing regions of known serotypes, 
but also potentially indicating new serotypes. Although 
investigating more in depth these untypable isolates 
went beyond the scope of the present study, it certainly 
deserves further attention in the future.

Preserving the efficacy of antimicrobials is crucial for 
both human and veterinary medicine. In particular, cer-
tain classes of antimicrobials have been identified as 
the highest priority critically important antimicrobi-
als (HPCIAs) for human medicine by the WHO [25]. 
Some of these (i.e. third- and fourth-generation cepha-
losporins, quinolones, and polymyxins) have also been 
included in category B “Restrict” by the European Medi-
cines Agency [26]. These antimicrobials should only be 
used in the absence of effective alternatives in less criti-
cal categories [27]. This is particularly important con-
sidering that resistance can be transferred from animals 
to humans, either directly or through the environment 
[27]. Regarding the antimicrobial susceptibility of APP, 
a wide range of antimicrobials are effective against the 
pathogen, although an increase in resistance to non-crit-
ical antimicrobials such as tetracyclines, ampicillin and 
sulphonamides has been observed in recent years [28]. 
More than half of our isolates were resistant to tetracy-
cline, a result similar to that reported in other countries 
such as Canada [15] and Spain [4]. In agreement with 
previous studies, we also found a relatively low number 
of isolates resistant to third-generation cephalosporins 
(i.e., ceftiofur), pleuromutilins (i.e., tiamulin) and mac-
rolides (i.e., tilmicosin, tildipirosin, tulathromycin) [15]. 
Regarding the aminopenicillins, resistance to amoxicil-
lin/clavulanic acid was rare, but more than 30% of the 
isolates were resistant to ampicillin. Notably, resistance 
to ampicillin was widespread among isolates belonging 
to all serotypes, with prevalence ranging from 20 to 40%. 
The only exception was serotype 5, which still appeared 
to be highly susceptible to this antimicrobial. However, 
isolates belonging to serotype 5 showed concerning 
levels of resistance (i.e., over 80%) to tetracycline and 
trimethoprim/sulfamethoxazole.

A previous study investigating AMR in APP isolates 
was carried out in Italy from 1994 to 2009 [29]. Although 
comparisons with it should be made with caution, as the 

authors used the disk diffusion method while we used 
MICs to estimate AMR, the frequent resistance of APP to 
tetracycline, ampicillin and trimethoprim/sulfamethoxa-
zole detected in our study is consistent with the patterns 
described for the previous decade. Conversely, compared 
to their data, a relative decrease in the proportion of iso-
lates resistant to tiamulin, tulathromycin and tilmicosin, 
and a parallel increase in resistance to florfenicol and 
enrofloxacin can be observed [29].

The in  vitro activity of florfenicol against clinical iso-
lates of APP has been studied extensively and low resist-
ance levels have been found in Germany, South Korea, 
Spain and Japan [4, 30–32]. Conversely, we observed a 
relatively high number of isolates resistant to florfenicol, 
mainly belonging to serotypes 9/11 and 8, confirming the 
importance of continuous monitoring of clinical isolates 
to preserve the efficacy of this antimicrobial. Notably, the 
higher proportion of isolates resistant to florfenicol and 
enrofloxacin, an HPCIA and a category B antimicrobial, 
belonged in both cases to serotype 9/11, which is also the 
most widespread serotype in the area and one of the most 
virulent. Even though the resistance rate of APP isolates 
to most of the antimicrobials tested was relatively stable 
during the study period, our data revealed curvilinear 
patterns of susceptibility to tetracycline and trimetho-
prim/sulfamethoxazole. The proportion of resistant iso-
lates peaked around 2019, regardless of serotype. We also 
observed a tendency for increased resistance to florfeni-
col towards the end of the study period which, although 
not significant, should be kept under close surveillance. 
Italian sales data of veterinary antimicrobials for the 
period 2010–2021 show a reduction in sales of tetracy-
clines and sulphonamides starting around 2016, accom-
panied by a 26% increase in amphenicols sales, which 
might explain the observed variations in resistant isolates 
over the years [33, 34]. However, although pig produc-
tion can be a major driver of antimicrobial consumption 
[35, 36] and is the second-largest livestock sector in Italy 
[33], these data should be interpreted with caution as 
they cover the whole Italian livestock production, making 
it challenging to draw conclusions regarding a specific 
sector. Multiple drug resistance was stable over time but 
widespread, with more than 30% of the isolates resistant 
to at least three different antimicrobial classes, two of 
which were resistant to all nine classes tested. The preva-
lence of MDR was serotype-dependent. In particular, the 
highest prevalence was found in serotype 9/11 (46%), 
which was almost three times higher than the one with 
the lowest prevalence, serotype 2 (17%).

To the best of our knowledge, this is the first study 
attempting to detail the APP serotypes circulating in 
Italy and to associate them with antimicrobial resistance. 
However, the study focuses on northern Italy, which is 
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the area where most of Italian pig production is concen-
trated, and this does not allow us to exclude that different 
patterns may occur in central and southern Italy. In addi-
tion, our analysis was limited by the lack of information 
about treatment history of the sampled animals, as well as 
a lack of data regarding herd vaccination, both of which 
could have altered detection rate. Despite these limita-
tions, the different AMR profiles of serotypes and their 
temporal changes highlight the need to rely on detailed 
diagnostic data to control the disease more effectively 
and preserve the efficacy of antimicrobials, preventing 
the emergence of clinical resistances. Moreover, as previ-
ously mentioned, the genetic and phenotypic diversity of 
the different serotypes of APP hinders the development 
of a broadly protective vaccine covering all serotypes 
[37, 38]. Distinguishing between the 19 serotypes of APP 
might be therefore relevant not only for disease manage-
ment, but also for the production of geographically rel-
evant vaccines [14, 22].

In conclusion, the evaluation of over 500 APP strains 
from several Italian pig farms revealed an increasing 
serotype diversity, with serotype 9/11 being the most 
prevalent, and serotype-dependent AMR patterns. Our 
study also identified emerging serotypes, such as 8, and 
an increase in serotype 5 prevalence. Resistance to tet-
racycline was widespread while resistances to critical 
antimicrobials, such as third-generation cephalospor-
ins, were still relatively low. Continuous monitoring is 
crucial, as resistant isolates showed curvilinear patterns, 
and serotype 9/11 exhibited the highest MDR prevalence. 
These findings underscore the need for detailed diagnos-
tic data and antimicrobial stewardship to curb the infec-
tion and also preserve antimicrobial efficacy on the long 
term. Particularly, considering the potential transfer of 
resistances from animals to humans.
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