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Abstract

We consider the standard first passage percolation model on 74 with bounded and bounded away
from zero weights. We show that the rescaled passage time T, x restricted to a compact set X satisfies
a large deviation principle (LDP) at speed n¢ in a space of geodesic metrics, i.e. an estimation of the

form P (’f‘nx ~ D) ~ exp(—I(D)n?) for any metric D. Moreover, I(D) can be written as the integral

over X of an elementary cost. Consequences include LDPs at speed n¢ for the point-point passage
time, the face-face passage time and the random ball of radius n. Our strategy consists in proving

the existence of lim,, s —% log P (Tn,[o R g) for any norm g with a multidimensional subaddivity

argument, then using this result as an elementary building block to estimate P(’f‘n X ~ D) for any

metric D.

1 Introduction

1.1 Framework

First passage percolation. Let d > 2 be an integer. Let E? the set of all non-oriented nearest-
neighbour edges in Z%. A finite sequence 7 := (zo,...,x,) of elements of Z% is called a discrete path if for
alli € [0,r —1], (i, zi41) € B2

Let v be a probability distribution on [0, co[ and denote by a and b the infimum and supremum of its
support respectively. We consider a family (7¢).cge of i.i.d. random variables with distribution v. The
variable 7, is called the passage time along the edge e. Given a discrete path m = (zo,...,z,), the passage
time along 7 is defined as

,3
|
—

T(ﬂ-) = T(xs,wi01) (11)

s
Il
o

For x,y € Z%, the passage time between x and y is defined as

T(z,y) = inf 7(7), (1.2)

T~y

where the infimum is taken over all discrete paths whose endpoints are x and y. The map T(:,) is a
metric on Z?. We call discrete geodesic between z and y any minimizer in (1.2). A well-known result



(Equation 2.4 in [2]) states that under a moment condition on v, there exists an homogeneous function p
on R? known as the time constant, such that almost surely, for all z € Z¢,

T(0, nx)

n n—00

u(a). (13)

The time constant is a norm if v({0}) < p.(Z%), where p.(Z%) is the critical parameter for bond percolation
in Z¢. Otherwise p(x) = 0 for all 2 € Z?. As a consequence of (1.3) the probability of an event of the form
{T(0,ne1) < (n}, with ¢ < p(er) or {T(0,ne1) > (n}, with ¢ > p(er) (the so-called lower tail and upper
tail large deviation events) converges to 0 as n — oco. In 1984, Kesten [13] obtained estimates for the speed
of convergence: there exists (Theorem 5.2 in [13]) a convex decreasing function J : |a, pu(e1)[ — ]0,00[
such that for all a < ¢ < p(er),

lim —— log P(T(0, ne1) < ¢n) = J(O). (1.4)

n—oo n

Moreover (Theorem 5.9 in [13]), under the assumption b < oo, for all u(e;) < ¢ < b,

. 1 — 1
0< n%—mlogP(T(O,nel) >(n) < Jgngo—mlogP(T(O,nel) > (n) < oo. (1.5)
These results can be generalized to any direction with minor proof adaptations. Under an additional
regularity assumption on v, Basu, Ganguly and Sly [3] proved in 2021 that the limit in (1.5) actually
exists in the case d = 2, x = ey, and as stated in their paper, their arguments are still valid for any

dimension and any = € R%\ {0}. Although not explicitly stated, their theorem implies the existence of
T(0,ne1)
)n>

n

a rate function I, : [0,b] — [0, 00] with which the process (
principle (LDP) at speed n?. In other words, for all Borel sets A C [0, b],_

) satisfies the large deviation

inf Iy(¢) < lim —110gP(T(O’”61) e A) < Tim —1log]P’<T(O’ne1) € A) < inf Ip(¢).  (1.6)
n n—00 n

CeA n—oo  Qp Qan CeA

Corollary 1.6 generalizes this LDP to any distribution with bounded support and a subcritical atom at 0.

Large deviations. We give here some general large deviations theory tools. See Dembo and Zeitouni
(2009) [11] for the general theory.

Definition 1.1. Let X a Hausdorff topological space. We call rate function a lower semicontinuous map
I:X —[0,00],i.e. amap whose sublevels are closed. We further say that I is a good rate function if its
sublevels are compact.

We say that a random process (X,)p>1 with values in X satisfies the large deviation principle, at
speed a,, with the rate function [ if for every Borel set A C X,

1 — 1
inf I(z) < lim ——logP(X,, € A) < lim ——logP(X,, € A) < inf I(z). (1.7)

z€A n—oo Adp n=oo Gy €A

d

In this article only the case a,, = n® is considered. Lemma 1.2 will be of constant use.

Lemma 1.2. Let (X,dx) be a metric space and (Xp)n>1 a random process with values in X . Define, for
all z € X,

- — 1
I(z) == lim? lim —Wlog}P’(dx(x,Xn) <e)

e—=0 n—oo

1
and I(x) = lim?t lim ——logP(dx(z, X;) < €).
n

e—=0 n—oo

Then



(i) T and I are rate functions on X.

(ii) For every open set U C X,

— 1 R
nl;ngo—ﬁlogP(Xn el)< ;IEI{[I(IL‘) (1.8)
(iii) For every compact set K C X,
1
lim —— loglP(X,, € K) > min I(z). 1.9
i~ o8P € 10 2 mig 1) )

Although they are straightforward adaptations of the proof of Theorem 4.1.11 in [11], we prove them
in Appendix A for completeness, and because the formalisms are quite different. Note that on a compact
metric space, with the notations of Lemma 1.2, I := I = I implies that (X, ),>1 satisfies a LDP at speed
n®, with the rate function I.

1.2 Main theorem

The aim of this paper is to prove that the rescaled metric T restricted to a box satisfies a LDP with a good
rate function Ix (i.e. a function whose sublevels are compact) at speed n. Unless specified otherwise we
work under the following assumption.

Assumption 1. The bounds of v’s support satisfy 0 < a < b < oco.

We endow R? with the norm defined by

d
el = llly = > _lail, (1.10)
i=1
for all x = (x1,...,24) € R%. We define d as the metric associated with this norm. Let S denote the unit

sphere for this norm and B(z,r) (resp. B(z,7)) the open (resp. closed) ball of center z and radius 7. Let
K denote the set of all compact convex subsets of R? with nonempty interior. Elementary properties of
such subsets are gathered in Appendix B.

The rescaled metric. Given a polygonal path 7 = (xq,...,z,) with Vi € [0,r],2; € R?, we general-
ize (1.1) by defining
r—1
T(m) = ) 7(@i, Tiy1), (1.11)
i=0
where for all 2,2/ € R,
Toollz — 2’ if there exist adjacent vertices v,v’ € Z¢ such that z, 2’ € [v,v/],
T(Z,Z,> . v,v H ) H ' J [ ] (1'12)
bllz — 2| otherwise.
The passage time between two points z,y € R? is generalized to noninteger points by
T(x,y) == inf 7(7), (1.13)

T~y



where the infimum is taken over all finite sequences whose endpoints are x and y. Note that it differs from
the usual generalization, which consists in replacing = and y by their projections on Z?. For all X € K,
x,y € X, we define
Tx(z,y) = inf 7(7). (1.14)

Ty

TCX
The maps T and Tx are metrics on R? and X respectively. It is shown in Proposition 2.5 that the maps
defined in (1.2) and (1.13) indeed coincide on integer points. Likewise, if X = []%,[t;, )] with t;, ¢, € R
and t; < t}, and 7,y € X NZ? then restricting the infimum in the definition of Ty (z,y) on discrete paths
only defines the same object.

For all n > 1, we also define the rescaled versions of T and Tx as
Tox: X xX —[0,00] and T, :RIxR? — [0, 00] (1.15)

1 1

The limit space. The random variable ’i‘n x belongs to the space Dx defined below (see Proposi-
tion 2.4).

Definition 1.3. Let X € KU {Rd}. We define the set of admissible metrics Dx as the set of all metrics
D on X such that

(i) For all z,y € X,
allz —y| < D(z,y) < bllz —y]|. (1.16)

(ii) The metric space (X, D) is geodesic, i.e. for all z,y € X, there exists an isometry o : [0, D(z,y)] — X
which maps 0 to z and D(z,y) to y.

We call such a function o a D-geodesic (or simply geodesic when there is no ambiguity) between = and y.
A geodesic may be seen as a continuous path linking = to y, whose D-length (see (1.41)) is minimal, with
a parametrization chosen such that the travel speed (with respect to the metric D) is 1. For all X € K,
Dx is endowed with the uniform distance defined for every D1, Do € Dx by

aoo(DlaD2) ‘= maXx |D1(ac,y) - D2($ay)|a (117)
(z.y)eX?

which makes it compact (see Proposition 2.1), and its Borel o-algebra B(Dx). For all D;, Dy € Dx we
denote by D; < Dy the assertion

Vez,y € X, Di(z,y) < Da(z,y), (1.18)

which defines a partial order on Dx.

Definition 1.4. Let A denote the set of norms g on R such that al|-|| < g < b||-||. If D is a metric on
X € K associated with such a norm, i.e. D(z,y) = g(x —y) for all z,y € X, we will identify D and g.
Let N* denote the subset of N consisting of norms ¢ such that Va # 0, g(z) < b|z||.

One key property of a metric D € Dx is that around almost every z € X, D "behaves like" a norm
(grad D), € N (see Subsection 2.4).



Result statement.

Theorem 1.5. Let X € K. Under Assumption 1, the process (TnX) o satisfies the large deviation
n>
principle at speed n® with a good rate function Ix : Dx — [0,00], i.e. for all A € B(Dx),

. . 1 - T 1 i~ .
inf Ix(D) < nhjn;o—ﬁlogp(Tn,X €4) < nlgrolo—ﬁlogp(n,x €4) < inf Ix(D) (1.19)

Moreover, Ix is nondecreasing for the partial order defined in (1.18) and for all D € Dx,

Ix(D) = /X Iy ya((grad D).)dz. (1.20)

1.3 Applications

By the so-called contraction principle (see e.g. Theorem 4.2.1 in [11]), Theorem 1.5 implies a LDP at
speed n? for the image of the process (T, x)n>1 through a continuous map (see Lemma 6.1). We give
three examples of such processes.

Point-point passage time.

Corollary 1.6. Assume that 0 < a < b < oo and v({0}) < p.(Z?). Let x € R?\ {0}. Then the process
(M)nx satisfies the LDP at speed n with a good rate function Iy ¢ [allz|,bllz]]] — [0,00].

n

Moreover, Iy is continuous and nondecreasing. In particular, for all a|z| < ¢ < bljz|],

1 ('I‘(O;Lmv) > C) = Lop(@) (©)- (1.21)

Note that by the definition of the time constant (1.3) and the order of the probability of the upper
tail large deviation events (1.5), for all x € R%\ {0} and a|z| < ¢ < bl|z||,

Ipp(x)(() >0 (> ,u(x)

Crossing times. For all n > 1, the rescaled crossing times of the box [0, n]d are defined as

Teross(n) = (T, g ya(H, HY), o T, 0o (Ha, H)), (1.22)
where H; := {x = (x1,...,2q) € [O,I]d ‘ xT; = O} and H/ = {x = (x1,...,mq) € [O,I]d ‘ T = 1}.

Corollary 1.7. Assume that 0 < a < b < oco. The process (’i‘cross(n)) . satisfies the LDP at speed nd
nz

with the good rate function

Teross : [aab]d — [0700]

C: (Cla"'aCd) '—>I[g’1]d<g<)7 (123)
where ¢¢ is the seminorm defined by
9°(u) = max (Gilui]), (1.24)

and I['g e is a function on seminorms defined in Lemma 6.3 which coincide with I[O e on elements of

N under Assumption 1. Moreover:



(i) Ieross is continuous on |a,b]®.

(ii) Icross s mondecreasing on [a,b]d for the componentwise order, i.e. for all ( = ((1,...,(q) and
¢ = (¢, ) infa, b, if G < ¢ for all i, then Lioss(C) < Toross(C).

(7i7) Icross s separately convex on [a,b]d, ie. foralll <i<d and (1,...,C-1,Ci+1,---,Cq € [a,b], the
function
t = Teross(Qly -+ -5 Gim1, 65 Git1s - - -, Ca)

is convex on |a ,bl.

(1v) Icross(b,...,b) < oo if and only if v({b}) >0

In particular, for all ¢ € |a, b[d,

d
lim —log]P’(ﬂ{~ (0,172 (Hi, HJ) > g}) = Ieross(€)- (1.25)

=1

Note that Corollaries 1.6 and 1.7 are stated in more general context than Theorem 1.5. For each
result, we first treat the case a > 0 then take the limit when a — 0 with a standard truncation argument.
The assumption v({0}) < p.(Z?) in Corollary 1.6 is used to show that with high probability, any geodesic
from 0 to nzx is included in a box of linear size, which is crucial to apply Theorem 1.5.

Rescaled growing ball. For all n > 1, let us consider the rescaled growing ball

B(n) = %{x e R? ‘ T(0,z) < n} {:): € R? ‘ n(0,2) < } (1.26)

Corollary 1.8. Under Assumption 1, the process (E(n)) o satisifies the LDP at speed n® with a good
nz

rate function, in the space of compact sets of R% endowed with the Hausdorff distance defined as

(K, Ks) == inf{a >0 ] K1 C Ky +B(0,¢) and Ky C Ky + E(o,g)}. (1.27)

We don’t know much about the rate function mentioned in Corollary 1.8 beyond the properties granted
by the contraction principle.

1.4 Sketch of the proof

Let X € K. For all D € Dx,n > 1 and € > 0, we define the large deviation event
LD, x(D,¢) = {Doo (D,’i‘n,x) < 8}, (1.28)

alongside with the lower and upper rate functions

Iy (D)= h_r)r(l)T lim ——logP(LDnX(D £)), (1.29)
Ix(D) == lim? lim ——logP(LDnX(D £)), (1.30)

e—=0 n—oo



i.e. Iy and Ix are a special case of I and I as defined in Lemma 1.2, for (X,dy) = (Dx,0). The
core of the proof consists in proving that Iy and Ix are actually equal, which implies the LDP thanks
to Lemma 1.2.

Section 2 presents some topological preliminaries on the space of admissible metrics Dx and properties
of its elements, including the definition and existence of the gradient of any D € Dx at almost every
point of X. We also present general methods for constructing and transforming metrics in Dy.

In Section 3 it is shown that Iy and Ix are nondecreasing, which will imply that Ix is nondecreasing
once the equality Ix = = I x is proven. The general idea is that if Dy < Dy, then a configuration in which
Tn x =~ D> can be transformed into a configuration in which Tn x =~ D1 by altering a subvolumic number
of edge passage times.

In Section 4 we prove with a somewhat classic subadditive argument (see Section 1.5) that I 0,1 and

T[O 17 coincide on NV, i.e. Theorem 1.9. We also study properties of I, [0,1]¢ O N, namely Propositions 1.10
and 1.11.

Theorem 1.9. Under Assumption 1, for all g € N, Ly 4a(9) = 7[071](1(9). We will denote I, .a(g) their

common value.

[0,1)¢

Proposition 1.10. Under Assumption 1, for all g € N,

(i) I[O’l]d(g) = o0 if and only if g € N\ N* (i.e. 3x #0,g(x) = b||z||) and v({b}) = 0.
(ii) I[O’l]d(g) =0 if and only if g < p, where u is defined by (1.3).

Proposition 1.11. Under Assumption 1, the restriction of I[o 1jd on N* is continuous for the metric 0oo
defined by (1.17). If furthermore v({b}) = 0, then the restriction of Iig 4y on N is continuous.

Section 5 concludes the proof, which essentially amounts to showing that for all D € Dx,

Tx(D) < /X Iy yalgrad D), dz < I(D). (1.31)

The general idea is to approximate D by a metric whose gradient is constant on each element of a tile
partition X then use Theorem 1.9 on each tile.

Section 6 is devoted to proving results of Subsection 1.3.

1.5 Open questions and related works

Lower tail large deviations. Theorem 1.5 does not provide a satisfying estimate for P(’i‘n X~ D)

for metrics D € Dx such that D < p. Given (1.4), we conjecture that the appropriate speed for the study
of such events is n.

Upper tail large deviations under milder assumptions. Chow and Zhang proved in 2003 [6] that
under a finite exponential moment condition, the probability of the upper tail large deviation event for
the face-face passage time, i.e. {Tn 0 I]d(H17 HY) > C} with ¢ > p(e1) and the notations of Corollary 1.7,

is of order exp(—@(nd)) and the existence of the rate function. Note that their result is neither a special
case nor an extension of Corollary 1.7 because while the former is valid in a larger framework, the latter
provide the LDP for all directions simultaneously.



Cranston, Gauthier and Mountford proved in 2009 [9] a criterion for P (%T(O, ney) > C) with ¢ > p(er)

to be of order exp(—@(nd)>, for a certain family of distributions. On the other hand Cosco and Nakajima
recently showed [7] that if v([t, oo[) =~ exp(—at”), with @ > 0 and 0 < r < d, then

1 —O(n" if 0 <r <d,
P(T(O,nel) . C) _ Jex( @(n ))nd %f _;
" eXp(_ <<logn>d—1)) hr=d

Moreover, they provide a description of the associated rate functions with a variational formula.

In particular, outside the bounded support assumption, for some distributions, the probability of
different upper tail large deviation events may be of different order. Hence, for these distributions, a
single LDP for the random metric as Theorem 1.5 cannot give appropriate estimates for the probability
of all upper tail large deviation behaviours; rather, several LDPs, at different speeds, would be needed.

The subadditivity argument. The main idea of Chow and Zhang [6] to prove the existence of the
limit
. ]- = /
nh_)rglo 0 IOgP(T[OJ]d(Hl, Hy) > C>7
with ¢ > p(ey), is to assemble k¢ independent configurations on [0,n]? satisfying {’i‘n 0 1}d(H 1, H) > ¢ }
to create a configuration on [0, kn]? satisfying {’i‘kn 0 1]d(H1, Hi) > C}, leading to

~ , k‘d _ .
P(T, e (H1, HD) > C)" < P(Ty, o e (L HY) > C),

and the end is standard. However, this simple plan fails because there is no general link between the
crossing times of the small boxes and the crossing time of the large one. The solution proposed by the
authors is to consider a subset Z,, of {Tn 0 1]d(H1, H{) >¢ } with equivalent log-probability, such that

configurations on [[O,n]]d satisfying Z, are compatible, in the sense that assembling them creates no
"shortcuts".

To prove the existence of the limit

Ji%rgoélogP(;T(O,nel) > C),
Basu, Ganguly and Sly [3] adopt a similar approach, with an added subtlety regarding the way con-
figurations on the small boxes are assembled: each small box is fragmented into smaller tiles and the
configuration on the large box is constructed so that, for example, its top left corner is made of the top
left corner tiles of all the small boxes. To ensure that corresponding tiles are compatible, they essentially
proceed as follows:

1. Prove that for a well-chosen (random but within a deterministic range) tile size, most of the tiles
are stable, in the sense that the restriction of the random metric on each tile is similar to some
(random, tile-dependent) norm.

2. Define Z,, as a subset of {%T(O, ney) > C} for which the good tile size and the norms on each tile

1
n

are prescribed, chosen so that its log-probability is equivalent to IP’( T(0,ne1) > C).



In this article, we adopt a somewhat different approach, as the subadditivity argument is only used
in the proof of Theorem 1.9. The fact that we are, at this step, only interested in uniform environments
makes our version of the argument less sophisticated than the one in [3], as tile compatibility is free. This
enables us to avoid the technical difficulty of proving tile stability properties for the random metric that
are uniform in the realization; this work is done in a rather simpler deterministic setting here.

Streams and maximal flows. The general philosophy of our proof is inspired by the recent work of
Dembin and Théret [10] on large deviations of the streams and the maximal flows: in order to estimate
the probability that there exists an admissible stream resembling a target stream, they first study the
easier case where the target stream is uniform. They then use the estimate in the elementary case as a
building block to get an estimate in the general case.

1.6 Notations

Elements of R?. We denote by (ei)?zl the canonical basis of R? and (-, -) the standard inner product
on R?. We denote by < the coordinatewise order on R?. For all z = (z1,...,24) € R% we define

|lz] = (lz1],...,|zq]) and [z] = ([21],..., [z4])- (1.32)

A sequence (7,,),>1 of elements of R? is said to have monotone coordinates if for all i € [1,d]), the sequence
((n, €:)),>1 is monotone.

Exponents. Whenever several families of edge passage times are considered and distinguished by ex-
ponents, the associated metrics T, Ty, etc. will be marked with the same exponents. For example, T()
is the process defined as (1.13), with 7V instead of 7.

Cardinal and volume. We denote by #A the cardinal of the set A. If A is a Borel subset of R% we
denote by Leb(A) its Lebesgue measure.

Edges. Given an edge e, the sentence "z € ¢" will mean "z belongs to the segment between endpoints of
e". For all A C R? we will denote E(A) the set of all edges e € E? included in A. We will denote Eex(A)

the set of all edges e € E%, seen as segments, intersecting A. For all discrete path o = (aj)gzo, we define
Epatn (@) = {(j, j41),5 € [0, — 1]}, (1.33)

which is consistent with the previous definition of E(-).

Paths. Given a polygonal path v = (zg,...,z,), we will write "z NS y" as a shorthand for "xry = = and

. = y". We will write "x % y" to further indicate that for all 0 < i <7, x; € X. For all 0 < iy <1y <,

we define
Vifin o] = (Ei)in<iin- (1.34)

We call continuous path a continuous function v : [0, 7] — R?. The length of the segment on which a
continuous path v is defined will be denoted by T%,. Given a continuous path v, we will write "x NS y" as a
shorthand for "y(0) = x and y(T;) = y". We will write "z «)7? y" to further indicate that for all t € [0, 7],

~v(t) € X.



Tiles. For all v € Z% and k > 1, we define the set

Tile(v, k) := %(v +10,11%). (1.35)
For all £ > 1 and X € K, we define
Virt(X) = {v € 27| Tile(v, k) C X } (1.36)
and VE*(X) == {v € 2¢ | Tile(v, k) N X # 0}. (1.37)
They satisfy (see Lemma B.4)
Jlim #V’;:;()Q = lim W = Leb(X). (1.38)

Metrics. Given X € K and D € Dy, it will be useful to extend D to R? by defining

D(x,y) = min( /m/iélx(bHac — ||+ D', y') + blly — ¥'|]), bllx — yH) (1.39)
X 7y
It is a metric that verifies (1.16). Given X € KU {Rd}, a metric D on X and two subsets A, B C X, we
define
D(A, B) = inf D(z,y). (1.40)
€A
yeB

When D is the metric associated with the norm ||-||, we denote by d(A, B) this quantity. If v: [0,7] — X
is a continuous path, we define the D-length of v as

r—1

D(y) = sup Y D(y(t:),y(tit1))- (1.41)
0<to<-<t,<T ;=3

By the triangle inequality, for all continuous paths z > v, D(y) > D(z,y). If D € Dx, then for all
z,y € X, any geodesic z ~- y satisfies D(¢) = D(xz,v). Since o is 1-Lipschitz for D, it is Lipschitz for ||-||
by (1.16). Consequently, if D € Dy, then for all z,y € X,

D(z,y) = min{D('y) x ;7; Y,y Lipschitz}. (1.42)

We call diameter of a subset X C R? the quantity

diam(X) := sup |z — y]|. (1.43)
z,yeX

Absolutely homogeneous functions. Let Cyon (Rd, ]R) denote the set of all continuous and absolutely

homogeneous functions f : R? — R, i.e. satisfying f(Az) = |A|f(x) for all x € R, A € R. We endow this
space with the norm defined as

1/l from = suplf (w)]- (1.44)
u€eS
We endow Criom (Rd, R) with the cylinder o-algebra, which is also its Borel o-algbera.

10



2 The space Dy

In this section we work under Assumption 1. We gather deterministic results about metrics in Dx used
throughout the article.

2.1 Compactness

This subsection aims to show Proposition 2.1.

Proposition 2.1. For all X € K, the space (Dx,0x) is compact.

We first state a criterion for elements of Dx which is a direct application of the Hopf-Rinow theorem
(see e.g. [, Proposition 3.7]).

Lemma 2.2. Let X € KU {Rd}. Let D be a metric on X that satisfies (1.16). Then D € Dx (i.e.
(X, D) is geodesic) if and only if for all z,y € X and e > 0, there exists z € X such that

max(D(z,2), D(z,y)) < =D(z,y) + €. (2.1)

N =

Moreover, in this case, for all x,y € X, there exists z € X such that
1

Proof of Proposition 2.1. We first prove that Dy is closed in the space C(X?2,R) of continuous functions
from X2 to R for the uniform convergence. Let (D,),>1 be a sequence of elements of Dx converging
to D. It is clear that D is a metric satisfying (1.16). In light of Lemma 2.2, it is therefore sufficient to
prove (2.1). Let z,y € X. For all n > 1, there exists z, € X such that

1
Dn(l‘, zn) = Dn(znay) = §Dn(x>y)
Hence for all n,

D(z, zy)

IN

Dn (2, 2n) + 950(D, Dy)

NN =

Dy (z,y) +9s0(D, Dy)

IN

D(z,y) + 2000 (D, Dn),

and the same goes for D(z,,y). Thus D satisfies (2.1) so D € Dy.
Note that for all D € Dx,z,2',y,y € X,

|D(x,y) = D(2',y)| < D(z,2") + D(y,y") < b([|la" — =[] + [[y" = y]]).

Consequently, Dx is a uniformally bounded, closed and equicontinuous subset of C(X 2, R), therefore it is
compact thanks to the Arzela-Ascoli theorem. O
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2.2 Length of the geodesics

Lemma 2.3 will be of constant use, as it essentially entails that if D € Dx and z,y € X, D(z,y) only
depends on a local environment around z, of radius O(||x — y||).

Lemma 2.3. Let X € ICU{Rd} and D € Dx. Let o be a D-geodesic between x andy. Then its ||-||-length
satisfies

b
ol <~z —yll. (2.3)
a
In particular, for all 0 <t < D(x,y),
b
lz = o@)l < ~llz =yl (2.4)
Likewise, for all z,y € X the infimums in (1.13) and (1.14) may be restricted to finite sequences included
in E(x, bl — yH) only.
Proof. Let 0 =ty < t; <...t, = D(z,y). By definition of o, for all 0 <i <r —1,
D(o(ti), o(tit1)) = tiy1 — ti.
The lower bound in (1.16) implies
allo(ti) — o(tiv1)ll < tip1 — ts.

Summing over ¢ and applying the upper bound in (1.16), we get
r—1
a) llo(t;) —o(ti)ll < D(o) = D(z,y) < bllz —yl|,
i=0
hence (2.3). The rest is analoguous. O

2.3 Properties of the passage time

In this subsection we show that the metric T x belongs to Dx (Proposition 2.4), and that it is an extension
of the usual passage time (Proposition 2.5).

Proposition 2.4. For all X € K, Tx € Dx. For alln > 1, T € Dya.

Proof. Let X € K. Then Tx is clearly a metric that satisfies (1.16), so it suffices to prove that it
satisfies (2.1). Let z,y € X and ¢ > 0. Without loss of generality, we can assume x= # y. Let
= (z = x0,...,2, = y) be a finite sequence in X such that

7(m) < Tx(z,y) +e.

There exists 1o € [0, — 1] such that

ro—1 1

Z T(zj, j41) < 5 Z (2, 2j41) >§T(7T)-

=0 =0

l\DH
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A straightforward consequence of the definition of 7on R xR? (see (1.12)) is that for all z, 2’ € [x,, , Tr41],

/
Zz—Z
T(sz/) < H H 7'(377"07«Tr0+1)§

= @ = ol

hence, denoting by z the point on the segment [z, ,z,, + 1] such that

LS. lry — 2| 1
Z T(:E]?xj"rl) + || || T(‘TTO’J"T‘O'i‘l) - 27’(7’[’),
=0 $T0 - $T0+1
we have )
ro— r
1 1
Z T(xj’$j+1) + T(xrovz) < 57(77) et T(Z7$7"0+1) + Z T(xﬁxj-‘rl) < 57—(71-)'
j=0 j=ro+1
Consequently,
1 1
max(Tx (z,2), Tx (5,9)) < 5 Tx(,9) + 5=,
which concludes the proof of the first part. The second part is analoguous. ]

Proposition 2.5.
(i) The maps defined by (1.2) and (1.13) coincide on Z< x 74,

(ii) Assume that X = [ty ,t}] x -+ X [ta,t})] and z,y € X NZL. Then the infimum in (1.14) is attained
on a discrete path.

Proof. We first show that the second part implies the first. By Lemma 2.3, for all z,y € Z,

: x b d
T(l’,y) = Hlf{T(ﬂ') T ~y, T g T+ _EHx - y” 75”3; - y”:| } = Tx+[fg\|xfy|| ,ngfyH]d(m’y)’

d
thus the discrete path « given by the second part with X =z + {—3 lz —yl|, 2|z — yH] satisfies 7(y) =
T(z,y).
Let us show the second part. The key property of X used here is that for all z1, 20 € X,

any finite sequence of points with monotone coordinates and endpoints z; and zs is included in X.
(2.5)
Let v = (z = z9,21,...,2, = y) be a finite sequence in X. It is sufficient to show that there exists a
discrete path from x to y with passage time at most 7(7).

Step 1: Removing points outside E¢. For all 1 < j < r — 1 such that 2j & Ueerd €

T(2j-1,j41) < bllwj1 — x4
<bllzj—1 — x| +bllzj — i1

=T1(zj-1,25) + (T4, Tj11),

thus removing such points from v can only decrease the passage time. From now on we may therefore
assume that for all 0 < j <7, z; € X N (U.cpa €)-
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Step 2: Inserting integer points. Let 0 < j <r—1such that z; and ;41 are not both integer points.
Without loss of generality we may assume that x; < x;41 for coordinate-wise order. All coordinates of
xj except possibly one are integer, so ; and |x;] belong to a common edge. The same goes for =11 and

[zj41]-
Case 2.1: Assume that [z;] < |x;4+1]. Property (2.5) implies that [z;], [2;+1] € X NZ?. Moreover
the sequence v; == (xj, [x;], |zj41], xj41) satisfies
T(75) < bllzg — zjall = (25, 2541).
Case 2.2: Assume that [x;] £ |2j4+1]. Then there exists 1 < i < d and k € Z such that
k< <‘ijei>a <xj+1aei> <k+ 17
and all other coordinates of x; and x;4; are integers. Thus x; and z;11 belong to the strip
B = U [ootel

v=(v1,...,uq) EXNZE
vi=k

Consequently, by inserting the sequence 7; between x; and ;11 for all j satisfying Case 2.1, one constructs
a sequence v = (x = yo, ..., ys = y) such that for all 0 < j < s—1, at least one of the following assertions
is true:

Both y; and y;41 are integer points. (2.6)
Both y; and yj4+1 belong to a common strip E; ;(X).

Step 3: Deleting non integer points. Let 0 < j; < 51 +2 < jo < s be indices such that y;, and
yj, are integer points but for all j; < j < jo, y; is not. We claim that the subsequence of 7' between j;
and j» may be replaced by a sequence of points in X N Z? with a lesser or equal passage time. For all
j1 < j < jo, there exists a unique pair (i(j), k(j)) such that y; € E;(; x(;)(X). Hence, (2.7) yields the
existence of a pair (i, k) such that for all j1 < j < ja, y; € E; x(X).
Case 3.1: Assume that (yj, — yj,,€;) = 0. Then
Jo—1
bllys, — vinll <D D7 bl{y; — yja1,e0)]
i#i 5=
Jo—1
<> (i i),
J=
therefore (y;,,v;,) is a suitable sequence (see Figure 1, top).

Case 3.2: Assume that (yj, — yj,,€i) = £1. We only treat the subcase (y;, — yj,,€i) = 1. The other
one is similar. We have

J2—1 Jo—1
Yo TWiyi) = D0 | Ky —wisasen)] _min 7(v,0+e) + D bl{y; — yien,en)] |
— — veV (41,72) Y
J=0 J=0n i F#£0
where V (j1,j2) = {ly;], Jj1 <j < jo}. Thus, by fixing vg € argmin 7(v,v + €;),

veV (j1,42)

j2—1 j2—1
> 7y, yi+1) = blly; — voll + (Z [(y; — yj+1aei>|) 7(vo, vo + €;) + b|vo + €; — yj41|
J=ij1 J=j1

> bHyj — ’U()H + T(Uo, Vg + ei) + b”?)o +e — yj+1H.
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Y Yjo

/\\\ /' E; x(X)

Yj, Vo

Figure 1: The subsequence of 7/ between y;, and y;, (solid line) can be replaced by a quicker sequence
(dotted lines) using only integer points.

Moreover the assumption on X implies that vy and vy + e; are elements of X. Thus (y;,,vo,v0 + €, Yjs,)
is a suitable sequence (see Figure 1, bottom). Consequently, by considering every pair of indices (j1, j2)
corresponding to consecutive integer points in 7/, one constructs a sequence 7" of points in X N 74, with
passage time at most 7(7'), whose endpoints are x and y. Finally, due to property (2.5), 74" can be
assumed to be a discrete path. O

2.4 Gradient of a metric

In this subsection X € U {Rd} and D € Dx are fixed. We define the gradient of D at a point z € X.
Proposition 2.9 and Proposition 2.10 essentially state that D can be reconstructed from its gradient and
locally approximated by it, respectively. These two propositions are mere applications and reformulations
of well known results around the so-called metric derivative, a tool initially introduced by Kircheim [14]
to extend the area formula to functions taking values in a general metric space.

Lemma 2.6 will be of constant use in this subsection, as well as in Subsection 2.5. It is a consequence
of the fact that absolutely continuous functions satisfy the fundamental theorem of calculus (see e.g. [15,
Theorem 7.18]). The first part is a special case of Rademacher’s theorem (see e.g. [12, Theorem 3.1.6]).

Lemma 2.6. Let v :[0,T] — R? be a Lipschitz path. Then ~ is differentiable almost everywhere and for

a”OStlStQST,
to

V(t2) —y(t1) = t Y (t)dt. (2.8)
1
Definition 2.7. The gradient of D at z € X is defined as the function
(grad D), : RY — [0, 00]
. D(z,z+ hu)
u+— lim ————->,
h—0 Al

with D defined by (1.39). If z € X, then D can be replaced by D in (2.9).

Proposition 2.8 (Elementary properties of the gradient).

15



(i) Let z € X. Then (grad D), is b-Lipschitz and absolutely homogeneous. In particular it belongs to

the space Crom (Rd,R> defined in Subsection 1.6.
(ii) Let z € X. Then for all u € RY,
allul| < (grad D). (u) < blu].
(iii) The map

X — CHom (Rd, R)
z+— (grad D),

s measurable.

Proof. Notice that for all uj,us € R% h # 0,

|D(z, z + hu1) — D(z, 2z + hua)| < D(z + hui, z + hug) < blh|||luz — u1]|.

Hence (grad D), is b-Lipschitz. The rest is clear.

Proposition 2.9. For any Lipschitz path v : [0,T] — X,

T
D) = [ (grad D)o (7 (1)

where D(7) is defined by (1.41). In particular, for all x,y € X,

T
D(z,y) = min{/ W(grad D)y ())dt | x wj{» Y,y Lipschz’tz}
0

and any geodesic from x to y attains the minimum.

(2.10)

(2.11)

(2.12)

Proof. Let v :[0,T] — X be a Lipschitz path from z to y. Theorem 4.1.6 in [1] implies that the limit

5) = 20020

exists for almost every 0 < ¢ < T, and
T
D) = [ 4t

Let 0 < ¢ < T be such that both 4(¢) and +/(¢) exist. We have

[D(y(8),v(E+ 1)) = D(v(t), () + 7' (OR)] < D(y(t + 1), v(t) + ' (t)h)

< b||y(t + h) = ~(t) =~ (t)h]| = o(h).

Dividing by h and letting h — 0 yields

(grad D)) (7'(1)) = (1)

The proposition follows from Equations (2.13) and (2.14).
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Proposition 2.10. For almost every z € X, (grad D), € N, and there ezists a function ¢ : [0,00] —
[0, 00[ such that £(0%) =0, for all z,y € X,

[D(x,y) — (grad D). (y — )| < e(fz — 2| + |y = 2]) - (|2 = 2[ + [y — 2]). (2.15)

Proof. 1t is a special case of Theorem 2 in [14] for the identity map. However some minor adaptations
need to be made, because their result is stated for maps taking values in a Banach space. The map

1 (R, D) — 2°(RY)
x+— D(x,-) — D(0,-)

is an isometry from R? to the space £*°(R?) of bounded real functions on R% endowed with the sup norm
denoted by ||| jc(ga), therefore

fo®REJ) — (R
x— 1(x)

is Lipschitz and takes values in a Banach space. Theorem 2 in [14] hence implies that almost every z € X
satisfies the following.

(i) For all u € R?, the limit

D(F,2)() = Jim (= + ) — 7)o (216)
h>0

exists (the notation MD, for metric derivative is from [14]).
(ii) The function MD(f, z)(-) is a seminorm.

(iii) There exists a function ¢ : [0, 00[ — [0, 00 such that €(0%) = 0 and for all z,y € X,
17 @) = f@)ll g (ay = MD(£,2)(y = 2)| S ez =2l + [y —2)) - (le — 2| + |y — =) (217)
Let us fix such a z. As MD(f, 2)(-) is a seminorm, Equation (2.16) can be rewritten as

D(f,2)(u) = lim Hf(2+h10 F(2) oo (may- (2.18)

Since ¢ is an isometry,

1
D(f,2)(u) = hm STl D(z+ hu,z) = hm ]h\ D(z + hu, z) = (grad D), (u),

and (2.17) can be rewritten as
[D(x,y) = MD(f, 2)(y — z)| < ez = 2 + |y = 2[) - (|2 = 2[ + [y — 2]).

Hence (2.15) and (grad D), is a seminorm. Finally, (grad D), satisfies (2.10) therefore (grad D), € N'. [
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2.5 Building metrics

In this subsection we give some tools to manipulate and build admissible metrics: Lemma 2.11 essentially
states that a metric D € Dx can be defined by prescribing its gradient. Lemmas 2.13, 2.14 and 2.16 state
that rescaling, translating or restricting an admissible metric yields an admissible metric. Lemma 2.15
states that stitching admissible metrics on different subsets of R? yields an admissible metric on their
reunion.

Lemma 2.11 (Prescribing the gradient of a metric). Recall the definition of Crom (Rd,R) as the space

of absolutely homogeneous functions from R® to R in Subsection 1.6. Let
g: X — Ciiom (R, R)
Z g
be a measurable map such that for all z € X, al|-|| < g, < b||-||. Consider

D:X%—[0,00]

T’Y
(z,y) — inf { /0 gy (' (t))dt

T v;» Y,y Lipschitz}. (2.19)

Then
(’L) D e Dx.

(ii) The infimum in (2.19) may be restricted to Lipschitz paths = ~> y such that ||| < ng —yl|.

(iii) For almost every z € X,
(grad D), < g.. (2.20)

(iv) If zg € X is such that g, is a norm and z — g, is continuous at zy for 'l rom then gz, = (grad D)., .

Proof. The fact that the integral in (2.19) is well-defined is a consequence of the measurability of (z,u) —
g-(u), v and 7.

Proof of (i). The map D is clearly a metric on X. Let us show (1.16). Let z,y € X. As X is convex,
the affine path defined on [0, 1] by ~(t) := (1 — t)x + ty is Lipschitz and takes values in X, thus

1 1
Day) < [ g @)t < [ oy O]d = bz =yl

For the other inequality, Lemma 2.6 implies that any Lipschitz path x % y satisfies

/0 Y ma

In light of Lemma 2.2, it is sufficient to show that D satisfies (2.1). Let x,y € X and € > 0. By definition
of D there exists a Lipschitz path x «)7; y such that

T, ) T, )
| s @z [ aly @) > a = allz ~ 9.

T’Y
9y(Y ())dt < D(z,y) +e.
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The intermediate value theorem implies the existence of 0 <ty < T’, such that

[ om0 @ <

Ty ,
and [ g, (7 ()t <
0

D(z,y) +

D(z,y) +

N~ N~
N DN M

Thus

max(D(z,7(to)), DO (to),y) < 5D(w,9) + 3, (2.21)

1
2
therefore D € Dx.

Proof of (ii). Tt is a straightforward adaptation of the argument used in the proof of Lemma 2.3.

Proof of (iii). As the g, and the (grad D), are continuous and absolutely homogeneous, it is sufficient
to prove that for all v in a countable dense subset of S,

for almost every z € X, (grad D).(u) < g.(u). (2.22)

For the sake of simplicity, we only treat the case u = e;. The proof may be adapted to any u € R%. The
boundary of X has zero Lebesgue measure (see Lemma B.3), thus it is sufficient to prove (2.22) for almost
every z € X. Let z € X and ¢ > 0 such that z + 0, e] C X. Fubini’s theorem yields

/[O ]d gz+w<el)dw - /[0 (/ gz+te1+w2 d(el)dt>d<w27 seey d)?

with the notation we.q := ch‘l:2 wje;. Moreover, it follows from (2.19) that for all (wa,...,wg) € [0, 5]d71’
£
/0 92+te1+w2:d(el)dt > D(Z + wa.q, 2 + €1 + w2:d)7
hence ) ,
~d /[0 o Gzrw(er)dw > ed—1 0.2 ED(Z + wo.q, 2 + €1 + wo.g)d(wa, . .., wyq). (2.23)

Lebesgue’s differentiation theorem (see e.g. [15, Theorem 7.10]) implies that as ¢ — 0, the left-hand side
of (2.23) converges to g.(e1) for almost every z € X. Besides, Proposition 2.10 implies that the right-hand
side converges to (grad D), for almost every z € X. This proves (2.22).

Proof of (iv). Let zyp be a point of X as described in item (iv) of the lemma. Then z — g, admits a
modulus of continuity w at zg, i.e. for all z € X,

192 = 920 [lHom = w(llz = 20l)),

blh|

and lim. ,ow(e) = 0. Let u € S, h # 0. Let 2 «3{» 2o + hu be a Lipschitz path such that [|y]| < ==. In

particular, for all 0 < 7T < T,

Consequently,

< [V v ®) - gaoe' ()

<w(M) [y )ar

(b|h|> blA|
<w|l— | - —.
a a

T, T
et = [0/t
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Hence

T

D(zg, 20 + hu) — inf{/o ’ 9zo (7/(t))dt

20 «% 20 + hu,y Lipschitz} < w<b’h‘> : M (2.24)

a a

Besides, g, is a norm so Jensen’s inequality yields, for all Lipschitz paths ~,

Ty / I /
Gao (Y (@)t =To - = [ g2 (7 (2))dt
v J0

1 [,
ZT'y'gzo ?/O V(t)dt :
Y

A final application of Lemma 2.6 yields

Ty

hu
Gz (VI(t))dt > T’YQZO (T
i

> = |hlgzo (u). (2.25)

Moreover any affine path from zg to zg + hu is an equality case in Equation (2.25). Thus Equation (2.24)
may be rewritten

D(zp,z0 + hu) ‘ (b|h!> b

ST g )] w22 -2, 2.26

et g <w (7)) (226)
and letting h — 0 concludes the proof. O
Remark 2.12. Even in the case where g, is a norm for every z € X, equality in (2.20) needs not to occur
on a positive measure subset: take X :=[0,1]? and g, := a|-|| if at least one coordinate of z is rational,
b||-|| otherwise. In this example D = a|-|| but g, = bl|-|| for almost every z € X.

Lemma 2.13 (Scaling a metric). Let D € Dx and A > 0. Consider the metric on \X defined for all
x,y € AX by
Sea(D)(z,y) = )\D<$, y) (2.27)
AT
Then Scy(D) € Dyx and for all z € A\X,

(grad Scy(D)), = (grad D) -.

2z
A

(2.28)

Proof. The metric Scy(D) clearly satisfies (1.16). To show that it is a geodesic metric, consider z,y € AX.
Let § «% 1 a D-geodesic in the sense of Definition 1.3. Define

g :[0,Scex(D)(z,y)] — A\X

t
t Aol — .
— O'()\>

Then for all 0 < s <t < Scy(D)(x,y),

Sex(D)(5(s),5(t)) = AD(ﬁ(s) &(t)>
t
A
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Since o is an isometry from [0, D(%, %)] to (X, D),
Sea(D)(6(s),a(t)) =t — s,

thus & is an isometry from [0, Scy(D)(z, y)] to (AX, Sca(D)). Moreover, 5(0) = x and (Scx(D)(z,y)) = y.
In other words, & is a Scy(D)-geodesic from z to y, thus Scy(D) € Dyx.

The equality (2.28) comes from the fact that for all z € R, u € S and h > 0,

—_— Dz =z hu
Sea(D)(z, z + hu) D(X?X"‘T)
h h '

(2.29)

O]

Lemma 2.14 (Translating a metric). Let X € K, D € Dx and zy € X. Consider the metric on X + 2o
defined for all x,y € X + 29 as

Troo (D) (@, y) = D(x — 20,y — 20)- (2.30)
Then Tr, (D) € Dx 42, and for all z € X + zp,

(grad Tr,, (D)), = (grad D) (2.31)

zZ—2z20"
Proof. The metric Tr,, (D) clearly satisfies (1.16). Moreover the image of a D-geodesic under x +— x4z is
a Tr,, (D)-geodesic, so Tr,, (D) € Dx ... The equality (2.31) comes from the fact that for all z € R, u € S
and h > 0,

Tr.(D) (2,24 hu)  D(z— 2,2 — 20 + hu)
h B h '

(2.32)
O

Lemma 2.15 (Stitching metrics). Let (Xy)yev be a finite family of subsets in IC, each included in X € K.
Let (Dy)yev be a family of metrics such that for all v, D, € Dx,. Consider the metric D € Dx defined
on X? by (2.19), with

g:(u) = (mél (grad Dv>z<u>) v (llul).
z€Xy

Then for all z € X, N (Uv,# Xv/>c,
(grad D), = (grad Dy).. (2.33)

Besides, for all z € X N (Uyey Xo)©,
(grad D). = b]||. (2.34)

Proof. Recall that the infimum in Equation (2.19) can be restricted to paths included in E(m, ng - ?JH)

In particular, by (2.12), forallv € V and z € X, N (Uv,?ﬁv XU/)C, D and D, coincide on a neighbourhood
of z, hence (2.33). We prove (2.34) similarly. O
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Lemma 2.16 (Restricting a metric). Let Y, X € K be such that Y C X, and D € Dx. Define

Diy(z,y) = inf{D(v)

T %» Y,y Lipschitz}. (2.35)

Then D|y € Dy, and it is the minimum of the set of metrics D' € Dy such that for all x,y € Y,
D'(xz,y) > D(z,y). Moreover the gradients of D and D|y coincide on'Y . Finally, we have

Txly =Ty. (2.36)
Proof. Indeed, D|y is a metric satisfying (1.16), and a straightforward application of Lemma 2.2 yields
D)y € Dy.

Let D’ € Dy be such that for all z,y € Y, D'(x,y) > D(x,y). Then for all Lipschitz paths « included
in Y, D'(v) > D(v). Therefore (1.42) applied for the metric D’ implies D" > Dy

Let z € Y. Lemma 2.3 implies the existence of a neighbourhood V' of z such that for all z € X, the
D-geodesics from z to = are included in Y, therefore Dy (z,x) = D(z,x), hence the equality of gradients.

Equation (2.36) remains to be shown. The inequality
Txly <Ty (2.37)

is clear. Let us prove the converse inequality. Let o be a T x |y-geodesic. It suffices to show that

Ty (0(0),0(T5)) < Tx(0), (2.38)
since (2.38) implies

Ty(0(0),0(T5)) < Txly(0) = Tx|y(c(0),0(15)).
By Lemma 2.3, for all z,y € o,
TX(:I:7 y) = TY—Q—E(O,%Hx—y”) ($7 y)

In particular, for all € > 0,

Tx (o) = TY+E(O,&) (o) > TY+§(O,&) (0(0),0(Ty)). (2.39)
Besides, by continuity from above for the 1-dimensional Hausdorff measure H!,
. 1 (md = _
lim 7 (BYn ((v +B(0,e)\Y)) =0. (2.40)

Let € > 0 and 7 = (=, ..., x,) be a polygonal path from o(0) to o(7,,) included in Y +B(0, ). We lower
bound 7(7). Since for all 0 <i <r—1and z € [x;,;11],

T(24,2) + 7(2,2i41) < 7(24, Tig1),

we may assume that 7 is self-avoiding and for all 0 < ¢ < r — 1, |a;,2;41[ is included in either Y or
(Y +B(0,e))\ Y. Let & denote the path obtained from 7 by deleting points outside Y, i.e. informally by
replacing excursions outside Y by segments. Then

7(#) < v(m) + bH' (EY 0 (Y +B(0,0))\ V),
thus
Ty (0(0),0(T5)) < Ty 50, ((0),0(T,)) + b1 (B 1 (¥ + B(0,6)) \ V).

Applying (2.40) gives
Ty (0(0).0(1)) = lim Ty 50 (0(0). (L)) (2.41)

Combining (2.39) and (2.41) yields (2.38). O
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2.6 The corridor lemma

Lemma 2.17 will be our main tool to get lower bounds for Tn x. It is an adaptation of ideas used in the
proof of Lemma 4.1 in Basu, Ganguly and Sly [3].

Lemma 2.17. Let X, X1,..., Xg € K be such that for all1 < k < K, X;; C X. Let D,D’' € Dx and
Xo=X\UK | Xy. Let 0 < §; < diam(X) and 6 > 0. Let 0 < & < %. Assume

V1<k<ks <K, inf |z—y|>d, (2.42)
CCEXkl
yeXkQ
vk Z 17 any c Xk:a D/‘Xk(x7y) Z D(.’L’,y) - 527 (243)
Vv :]0,T[— Xo Lipschitz, D'(y) > (b—2e)|v|. (2.44)
Then for all x,y € X,
)
D'(z,y) > D(z,y) — 3diam(X) (&? + ;) (2.45)
1

Proof. Let 2,y € X and 2 ~» y be a D’-geodesic. The naive lower bound on D’(z,y) obtained by
decomposing o in subpaths included in only one Xj, 0 < k < K, and plugging in (2.43) or (2.44) to
control each subpath is useless. Indeed, each application of (2.43) results in an additive error d2, but we
have no bound on the number of subpaths as ¢ may for example go back and forth between Xy and X a
large number of times. However a simple way to circumvent this obstacle is to replace ¢ with a slightly
longer path that does not have such a pathological behaviour using (2.42) and (2.44).

Step 1: Regularizing 0. We call excursion any interval |s, s'[ such that 0 < s < s’ < D’(z,y) and

K
o(s),o(s) € | J Xg, and o(]s,s'[) C Xo.
k=1

We will denote by Ex(c) the set of all excursions. Note that excursions are pairwise disjoint. We class
them into two types, whether their endpoints belong to the same X or not:

Ex;(0) == {]s,s'[ € Ex(o) ‘ Jk e [1,K], o(s),0(s)¢€ Xk}
Exo(0) = Ex(0) \ Ex1(0).
Let us define the Lipschitz path

v:10,D'(z,y)] — X
. {0(8) + L= (o (s") — o (s)) if s <t < s with |s,s'[ € Ex;i(0),

s —S8

) (2.46)
o(t otherwise.

In other words, v is the path obtained from o by replacing first-type excursions by segments (see Figure 2,
left).

The path ~ satisfies

D'(z,y). (2.47)
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Figure 2: Left: in this example, o has three first-type excursions (blue, dashed lines). The path - is
obtained by replacing o by an affine path on each first-type excursion (blue, dotted lines). Right: The
path ~ contains only second-type excursions (red, solid lines) and subpaths included in a Xy, for k € [1, K]
(green, dashed lines).

Indeed, consider a subdivision (0 =ty < t; < --- <ty = D'(x,y)). It is sufficient to show that

N-1 b
> D'(1{tn) A tns1)) < 5——D'(z,y). (2.48)
n=0

Without loss of generality, one may assume that (tk)fzo can be written
<UO70 << UGy = S1 = t170 < t171 < e < t17j1 = 8/1
=0 < <Upg =8y < <8y
=uLo << uL,z‘L),

where the ug; don’t belong to any first-type excursion and for all 1 < ¢ < L, ]sg,s)[ is a first-type
excursion. Forall 0 </ < L,0<i<1p—1,

D’(W(W,i% '7(“E,i+1)) = D/(U(Ué,i)v U(W,Hl))- (2.49)

A is an affine path, therefore (1.16) and (2.44) imply

L)

Besides, for all 1 < ¢ < L, gl

Je—1
Y D'((tes) (e 1)) < bllv(se) = (s0)
Jj=0

< D ((s0). 7 (50): (250)

Equations (2.49) and (2.50) yield (2.47).
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Moreover « can be decomposed as

oy ,ygxt ,\/ilnt , ,fot ,yiznt ,Ygxt .
T =Ty ~ T ~ Ty ~> T2~ o0 ™ Tryl =Y,

where each path 4™ is included in one of the subsets X}, whereas the paths 7' do not intersect any of

the X}, except possibly at their endpoints, and for all 1 < i < r — 1, 2} and z;4; belong to different X},

(see Figure 2, right). The paths 7§** and v&** may be empty.

r

Besides, (2.42) and (2.44) imply that for all s € [1,r — 1],

(b=2)or < (b= )| < D' ().
Summing over i and applying (1.16), we get
(r—1)(b—e)d; < §D’(fyf"t) < D'(0) < bllz — y|| < bdiam(X).
i=1
Consequently,
r< b(iia_nggi) +1 < 2diam(X) dia;l(X). (2.51)

Step 2: Lower bounding D’(v). Hypothesis (2.43) and Inequality (2.51) yield

T '
ZD(%“) > ZD(xi,x;_H) — 1y
i=1 i=1

T 3diam(X)é
>3 Dl o) - 2N (2.52)
=1

Besides, (2.44) and (1.16) yield

> D'(78) 2 Do (b—e)af — @i |
1=0

=0

b _ s
> b c Z D(w;, xi—l—l)‘ (2.53)
1=0

Inequalities (2.52) and (2.53) imply
" 4 3 diam(X)ds

D'(v) > b ; £ (Z D(z;,z5,1) + ZD(ﬂcg,:ﬂHl)) - 5

i=1 =0

Thus, by triangle inequality,

Therefore, by (2.47),

3(b — ¢) diam(X)do

by ’
—2eb + &2 3(b — ) diam (X )do
v e y )
b1

(2.54)



It follows by (1.16) that

B 3 diam(X)52

D'(z,y) > D(x,y) — 2e diam(X) 5 ,
1

(2.55)

which concludes the proof. ]

3 Monotonicity of the lower and upper rate functions

In this section X € K is fixed and v satisfies Assumption 1. The main result of the section is Proposi-
tion 3.1, which states the monotonicity of Iy and Ix (see (1.29) and (1.30)). It is proven in Subsections 3.1
and 3.2.

Proposition 3.1. The maps Iy and Ix are nondecreasing on Dx.

A useful consequence of Proposition 3.1 is that LD, (D, ) may be replaced in (1.29) by
LD, y(D,e) = {Vw, yeX, Tux(z,y)>Dlx,y) - 8}- (3.1)
Corollary 3.2. For all D € Dx,

lim? lim —idlogP(LD;X(D,e)) = I(D). (3.2)

e=20 nsoo N

Proof of Corollary 3.2. Let D € Dx. For all € > 0 the inclusion LD,,(D,¢) C LD (D, ¢) is clear, thus

e—0 n—oo nd

limt lim —ilogP(LD;X(D,e)) < Iy(D). (3.3)

Consider the set K. := {D' € Dx |Vz,y € X,D'(z,y) > D(z,y) —¢}. As K, is compact, Lemma 1.2
implies

lim —idlogP(LD;X(D,a)) = lim —idlogIP’(’i‘mX € K.)

n—oo N n—oo NN
> min I+(D").
> min Iy(D)

For all € > 0, let D. be a minimizer of Iy on K.. By compactness, there exists a decreasing sequence
(¢x), converging to 0, such that D. converges to a metric Dj in Dx. Since Ix is lower semicontinuous,
letting £k — oo yields

lim? lim —%logP(LDIX(D,e)) > lim Ix(DL,)

e—0 n—oo k—oo
> Ix(Dyg)

in Ix(D).
B Ix(D)

IV

Applying Proposition 3.1 to simplify the right-hand side, we get

1
lim? lim —— logP(LD}! (D,e)) > Iy(D). (3.4)
- ,

e—=0 n—oo
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3.1 The highway method

Let D, Dy € Dx be such that Dy > D. Let ((asp,yp))p>1 be a dense sequence in X? and, for all p > 1, a

D-geodesic x,, 3 yp. We consider the sequence of maps D), : X? — RT defined recursively by the relation

Dpyi(z,y) = min (Dp(z,2') + D(@",y) + Dp(y',y)) A Dp(x,y). (3.5)

Ilvyleo—p+1

Informally, D, is the metric obtained from Dy by adding the network of highways {o1,...,0,}, thus
reducing the passage time. The key arguments in the proof of Proposition 3.1 are:

1. The limiting metric for a large number of highways is D (Lemma 3.3).
2. The cost of adding one highway is negligible (Lemma 3.4).

Lemma 3.3. For all p > 0, D, € Dx. Moreover the sequence (D,)p>0 is nonincreasing and converges
to D.

Proof. 1t is straightforward to see that for all p > 0, b||-|| > D, > Dpy1 > D.

We show by induction that for all p > 0, D, € Dx. Let p > 0. Assume that D, € Dx. Let z,y,z € X.
The hardest case to consider when proving the triangle inequality for D, between x,y and z is when
there exists 2, ¢, y", 2" € 0,41 such that

DP-H(‘T? y) = Dp(xﬂ xl) + D(‘rlv y/) + Dp(y/7 y) and Dp+1(y7 Z) = Dp(ya y”) + D(y”7 Z//) + Dp(zlla Z)' (36)
Thanks to the definition of D1, the triangle inequality for D and D, > D,

Dpi1(x,2) < Dp(z,2") + D(2',2") + Dp(2, 2)
< Dp(z,2") + D(a,y) + D(y',y) + D(y,y") + D(y",2') + Dp(', 2)
< Dy(x,2') + D(2',y') + Dp(v', y) + Dp(y,¢") + D(y", 2") + Dp(#', 2)
= Dpt1(2,y) + Dp11(y, 2)-
The other cases are analogous. Hence Dp11 is a metric. Moreover a direct application of Lemma 2.2
shows that D,,1 € Dx.

As Dx is compact (see Proposition 2.1), to prove the convergence, it is sufficient to show that D
is the unique adherence value of (Dy),>0. For all k > 1 and p > k, Dp(zk, yx) = D(xk,yx), thus any
adherence value of (D,),>0 must coincide with D on a dense subset of X?, therefore must be equal to D
by continuity. O

Lemma 3.4. There exists a constant C1, depending only on a,b and X such that for allp > 0,0 <6 <1,

for large enough n,

o v(la,a+d])

1 1 2
—d log P(LDy, x (Dp+1, C16)) < _WlogP(LDn,X(Dpvé )) - nd_llog(z)- (3.7)

We prove this lemma in Subsection 3.2.

Proof of Proposition 3.1. Let p > 0 and 0 < § < 1. Taking the inferior limit in n in (3.7), we get

1 1
lim —- logP(LD,, x (Dps1,C10)) < lim —— log P (LD, x(Dy, %))

n—oo N n—oo M
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Letting § — 0 gives
Ix(Dpt1) < Ix(Dp). (3.8)

Thanks to Lemma 3.3 and the lower semicontinuity of Iy, we get

1x(D) = Ly( Jim D, ) < lim (D).

pP—0 p—00
Applying (3.8), we obtain
Ix(D) < Ix(Dy). (3.9)

We proceed analogously for Ix. d

3.2 Proof of Lemma 3.4

Without loss of generality it is sufficient to treat the case p = 0. Let 0 < § < 1. The idea is to build
a configuration satisfying LD,, x (D1, C1d) by modifying certain edge passage times in a realization of
LD,, x (Do, %) in order to "create" the geodesic 1. We first prove a technical lemma which essentially
states that an homothety of a geodesic can be well approximated by a discrete path with a linearly upper
bounded number of edges. In the whole subsection, the sentence "for large enough n, P,," will mean "there
exists ng > 1, depending on a, b, X and  such that Vn > ng, P,".

Lemma 3.5. For every D € Dy, every D-geodesic © <> y and every X\ > 0, there exists a discrete path
o= (aj)§:0 and a surjective, nondecreasing, right-continuous map j : [0, D(z,y)] — [0,p] such that

Y0 <t < D(z,y), Haj(t) - )\a(t)H <d+1 (3.10)

t2
VO <t <ts < D(wy), j(t2) — () < /\/ o’ ()| du + d. (3.11)
t1

Lemma 2.6 guarantees that the integral in (3.11) is well-defined. Note that a needs not to be included
in AX. The inequality (3.11), along with (1.16), implies

. . A
i(t2) —J(t) < —(t2 — 1) +d. (3.12)
In particular,
b
p < —diam(X) + d. (3.13)
a

Proof. For all 0 <t < D(z,y), we write o(t) :== (01(t),02(t),...,04(t)). The idea of the approximation is
to replace Ao;(t) by the last visited integer. On instants ¢ such that several coordinates of o(t) are integer,
this approximation may have a jump between two non adjacent vertices of Z%. Since we aim to build a
discrete path, the existence of such ¢ causes a minor problem. Applying a small translation neutralizes
this obstacle.

We claim that there exists z € B(0, 1) such that for all 0 <¢ < D(x,y),
#{ie1,d] ' Aoi(t) + 2 €2} < 1. (3.14)
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Indeed, let 1 <4y < iy < d and v € Z?. Consider
A(iy,ig,v) = {z € B(0,1) ‘ 30 <t < D(z,y), Aoy, (t)+ zi; =v1 and Aoy, (t) + zi, = vg}
- {v*()‘ah(t)’)‘glé(t))v OStSD($ay)}'

Besides, t — (Aoj, (t), Aoy, (t)) is Lipschitz therefore its image has Lebesgue measure zero (by Lipschitz
property it may be covered by a family of K balls of radius O(1/K)). Hence the set U A(iy, i2,v)

2<i <ipg<d
vEZ
of points z € B(0, 1) such that (3.14) fails has measure zero.
Consider the map
g [O,D(Cﬂ,y)] _>Zd
t— (6’1(t), c ,5’d(t)),

where

- | Adi(0) + 2] it (Aoi([0,t])+2))NZ =10,

o; =

Aoi(sup{s € [0,t] | Aoi(s) + z; € Z}e) + z;  otherwise.

In other words, up to a translation, 6;(t) is an approximation of Ao (t) by the last visited integer, except
before the first visit. The map & = (61,...,d4) is right-continuous. Moreover, (3.14) implies that its
jumps have norm 1. Let p be the total number of jumps of 6 and j(t) be the number of jumps before the
instant ¢t. It is straightforward to see that j is nondecreasing, right-continuous and surjective on [0, p].
For all 5 € [0, p], define

aj = 0o(tj),
where t; is any element of j71(j) (e.g. the instant of the j'' jump). The inequality (3.10) is clear.

Let 1 <4 < d. For all pairs u; < us of consecutive jump instants of &;, Lemma 2.6 yields

1 =6i(u1) — 6(uz)|

= Aloi(ur) = oi(uz)]

uz
/ ol (u)du

1

=A

< )\/ 2|a§(u)‘du.
u

Thus, for all 0 < ¢; < to < D(z,y), by denoting ¢t < u; < ...u, < to the jump instants of 6; in [t1, o],
we have

#lu €[t to] | 63(u™) #6i(u)} =r— 141
< )\/ r|a£(u){du+ 1
ut12
< )\/ o () | du + 1.
t1
Summing over ¢ we obtain (3.11). =

Let 29 € )o(, n > 6% and («,j) the pair given by Lemma 3.5 with parameters o = 01, x = z1, y = 11
and A = n(1 — 62). For all 0 < j < p, define

& = o + {néQzOJ.
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Since « is a discrete path, & is also a discrete path. Lemma B.2 implies the existence a constant Cy > 0,
depending only on X and zg, such that

d((1 = 0%)X + 6220, R\ X ) > Cod?,
therefore

d(n(l — 0%)X 4 nd%z, R\ nX) > Cynd®.

In particular & C nX for large enough n. Consider independent random variables 72 and 7 (B for Box
and G for Geodesic) following the distribution V®]Ed, along with a i.i.d. family (Xe)eeEpath(d) of Bernoulli

variables with parameter 1/2. We assume (Xe)ceE,,,,(a) to be independent of (7B, 7). For all e € E,
we define

N (3.15)

Te otherwise.

{XeTeG + (1= X)t8  if e € Epan(@),
Te =
The family 7 = (7¢),cga also follows the distribution v®E" The core of the proof is Lemma 3.6.

Lemma 3.6. There exists a constant Cs, depending only on a,b and X such that for all large enough n,

there exists a random TB-measurable set Eggt C Epath(&) such that

{7 € LD, x (Do, 52)}m( N (X = nEfm(e)}> m( N {f<a+ 5}) C {r € LD,.x (D1, C30)}.

e€Epath (&) e€Epath (&)
(3.16)
Indeed, (3.13) yields
#Epath (&) =p < n(l;é%b diam(X) +d
< %b diam(X) + d
< Cyn, (3.17)

where Cy only depends on a,b and diam(X). Consequently,

IP’( N {TG§a+6}) > v([a,a+ 6])%"

eeEpath(d)
#Epath(&)
i o0 st -2

eeEpath(&)

Thus taking probabilities on both sides of (3.16) leads to

P(LDn,X(D0752)) : <W)C4” < P(LDy,x (D1, C30)).

As LD, x (D, €) is nondecreasing in e, we have proven (3.7) with Cy := C3V C4. This concludes the proof
of Lemma, 3.4. ]
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Figure 3: Edges in Ff,g are represented by the thick red lines.

Proof of Lemma 3.6 . Let us consider a realization of the event {TB € LD, x (Do, 52)}. The general idea
behind the construction of Eg,sg is to set the passage time of all edges along & between &;(g) to &j(s2) to
a, choose t; > 6% adequately, set the passage time of all edges along & between Qj(ty) $0 @4, 462) to a and
so on. The t; are chosen as small as possible, but such that the modified random metric never gets too
far below the target time. We will denote by Ef,g the set of modified edges (see Figure 3).

Preliminary step: & well approaches o;. There exists a constant C5, depending only on X and 2y,
such that for large enough n, for all 0 < ¢ < D(z,y),

bis
’ % - Ul(t)H < C562. (3.18)
Indeed, for all 0 <t < D(z,y), triangle inequality and (3.10) yield

0 — 49| = gy — nn 0]

< 1 lls = o] + s = n1 = 018 + o1 = 82301 = nr o)

< [(ms?HzOH + 1) F(d+1)+ n52HU1(t)H].

1
n
Thus for large enough n, for all 0 <t < D(x,y),

hence (3.18). We define

Yo gl(t)H < (2]1z0]) + diam(X) + 1)2,
n

b
Co = 26C5 +2+ . (3.19)
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Step 1: Building Ef,g. We claim that there exists a 7B

<o < tg < D(x,y)) such that D(z,y) — tx < Cgd, and

-measurable finite sequence (0 =ty < t; <

Vi<k<K, 62 <t —th_y < Cgd, (3.20)
_ Qs b
VI<k<K, Vizt, TU% (J(j’;l) ;i”) > (t— ty_1)(1 - 6), (3.21)
~ &) [ Yt G
V1< k<K, T, (J(;l) J7(1k)> <t —ty 1, (3.22)
where
k—1
SON A ifee lU Epath (d‘[J'(tl),j(tz-i-fSQ)]) (3.23)
e —0 .
8 otherwise.

Indeed let us assume that to, ..., t, have already been defined and satisfy (3.20), (3.21) and (3.22) for all
1 < k < q. Notice that if ¢ = 0, we do not assume anything. If D(z,y) — t; < Cg6 then the construction
is over with K = ¢q. Otherwise two cases need to be considered: either the latest modification has made
the passage time far below the target time, and we need to skip an appropriate number of edges along
& before the next modification, or the passage time is not far below the target time, and we resume
modifying the edge passage times without any skip.

Case 1: there exists t > t4 + 6% such that

ri‘(q}l) <aj(tq) : Qaj t)) < (t _ tq>(1 _ 5) (324)

Let
tgr1 = Sup{t >ty + 62

T, (C“j“” , “J'“’) <(t—t)(1~ 5)}.

n n

We first show that (3.20) is true for k = ¢+ 1, i.e. tg41 < tq+ Cs6 < D(x,y). Indeed let t > ¢, + Cgd.

Fj(tq) &)
z )

n

~ 1
Consider a Tfiq;l)—geodesic NS Let z its last point belonging to — U e, with
: n

eeEpath (&‘ [O J(tq)})
the convention on edges given in Subsection 1.6 (see Figure 4). There exists 0 < s < t4 such that
z € [% , W} Inequality (3.12) implies that for large enough n,
n(1 — 6%)52 né>

+d<—, (3.25)

. 2y . <
J(tq+5) J(tq)f a a

G5t
n

B Aj(t))

~ As AV 2
> T8y (aJ(S) , Jt)) _b b (3.26)

B 7& 7_6(‘14‘1).

therefore the subpath of v whose endpoints are z and use at most ”7‘52 edges e such that 7,

Consequently, for large enough n,

~(a+1) [ Qitty) Qjo) T(g+1)
T >T
n, X ( n ’ n ) = *n,X

N
3




CB

(Xj(tq—2> (Xj(tq72+52)

Figure 4: For the sake of simplicity, the set nX is not represented and & is represented as a straight line.
The newly modified edges are represented by the thick, red, solid line while the other modified edges are
represented by the thick, green, dashed lines. Edges used by the portion of v (blue curved line) lying
between 2z and &;(;) are either unmodified or newly modified.

Besides, since we work with a realization of {TB € LD, x (Do, 62)} and Dy > D,

FB (%(s) @j(w) >D(@j<s> f%'(t)) 52
nX\n T on )T n ' n ’

The triangle inequality then yields

_ Ay Qs & As
TB j(s) .l(t)) >D —D( J(S))_D( Jt)>_ 2
B (2,59 > Do (s),1(8)) ~ D ra(s), % 71(), 90 5
Applying (3.18) and (1.16) on the second and third terms we obtain
T2 (M2, 59 > Do (5),1(8)) — (26C5 + 1)6° (3.27)

Combining (3.26) and (3.27) gives

~ Vs Al 2
T (O‘JS’ O‘ji”) > D(oa(s), () — 2 — 22 — (2005 + 1)67

Z D(O‘l(s),dl(t)) - 0652

for large enough n. Moreover, o is a D-geodesic therefore D(oi(s),01(t)) =t — s. Consequently,

~(a+1) [ Ytg) o) 2
T > (t —ty) — Cgd”.
n,X ( n  n ) > ( a) — Ce

Ty (ajg“ : O‘jj“> — (t = tg)(1 = 8) > (t —tg) — Cod® — (t — 1) (1 — 8)

> §(t —ty — Cd) > 0. (3.28)

In other words, for all t > t, 4+ Csd, inequality (3.24) fails, thus (3.20) holds.

Inequality (3.21) for k = ¢ + 1 is a direct consequence of j’s right-continuity and the fact that for all
te }tq—i-l 7D($7y)]7

~(g+1) [ Yty Y
T Sita) B S )1 = 5).
n,X < n ' n ) = (t tq)( 6)
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To show inequality (3.22) for k = ¢ + 1, it suffices to notice that

Tiq;1)<dj<tq>7dj<tq+1>> < Fty <é‘j(tq)7aj(tq_+1)> L b

n n n n n

b
< (tg41 —tg)(L = 0) + o

< tq—i—l - tq
for large enough n.

Case 2: for all t > t, + 02, inequality (3.24) fails. We define t,41 == t, + 62. Only inequality (3.22) is
non trivial. Edges along &[j(t,),j(t4+1)] have passage time a in the configuration 7@+ therefore

~(q+1) [ Qity) Qiltarr) a,. .
T Sda) Tiltar) ) o Dy (g ).
n, X ( n n > > n(']( g+1) —i(tq))

Applying (3.12) we get

tq & tq a n(l — 62
T;‘]}l)( J( ) 3( +1)> < n( ( )(tq+1—tq)+d>

n n a
ad
=(1- 52)(tq+1 —tg) + N
<tgr1 — g
for large enough n, thus (3.22) is proved for k = ¢ + 1.
We define
K-1
Efast, = U Epath( | [j(tx) . tk+62)]> (3.29)
k=0
The integer K is the number of steps in the construction. By the lower bound in (3.20),
D(z1,1)
K < 52 < 00. (3.30)

Step 2: Estimating the passage time between two milestones. We claim that for all 0 < k; <
k? S Ka

- Q; Qg
thy — tr, — Cr0 < TK) (J(t’“l) W) <ty — ths (3.31)
’ n n
where C7 is a constant depending only on a,b and X.

Let 0 < k1 < k9 < K. The triangle inequality for 'i‘g;% and the inequality ’i‘g;g < 'i‘gg( for all
0< k<K yield

~(K) dj(tm %(% S Qi)
T [ k) T )
’fL,X< n > Z ( n ’ n )7

k= k1+1
Z T < §(tr— 1)’O‘j(tk)>_
kg n n

Applying inequality (3.22) gives the upper bound in (3.31).
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T (K)

We now turn to the lower bound. Consider a T, x-geodesic
point of v belonging to

. Let z denote the first

&j(tkl) ;Y_) dj(th)
n

K-1
1 N
n U Epath (O“[j(tl) ,.i(tz+52)]>'
I=k1+1
Ay
Note that z always exists, since ~ takes the value % There exists ty,+1 <t < D(x1,y1) such that

9

. [%’(t) aj(t)+1]‘
n n

The edges used by 7 before reaching z have the same passage time in configurations 7(¥1+1) and (%),

therefore
K 3(tey) ki+1 3(tky)
g (A2 ) i (B,

. &
Since Hz — %

Applying (3.21), we get

b
ﬂﬁ(m”w>2@—MJﬂ—®—- (3.32)
n n
In the easier case where ¢ > t,, inequality (3.32) implies
_ Qg Q;
%&Jfﬂ'f“>zw2tma®ﬁ (3.33)

for large enough n, which is stronger than the desired bound. Otherwise there exists k1 +1 < k < ks —1
such that ¢, <t <t + §2. Every edge along Q|[j(ty) (t)] has a passage time a in configuration 5 thus
inequality (3.12) yields

~(K) Qi) Y t)) a,. )
T SOY < L) —
09, 50 < 2659 - )
ad
<=0t —te) +
<t—tp+06° (3.34)

for large enough n. Since 7 is a geodesic,

) [ Q) Qj(ty,) ~ (K) dj(t;q) F09) Qj(tr,)
W) Z30k) ) (K [ 730 TV W) ) .
T, X( n ' n ) n,X< n + n (3.35)

Since Hz — % < %, the triangle inequality yields

& A oo (G G
Tffi%( i(t) J<tk2>) T§f§§< (th),aj(t))Jrng(a;it)’ J(tk2>>_2b_ (3.36)

n n n n n n
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Applying again the triangle inequality yields

g (P, ) g (B, 0 ) 30 (S, W) )
_ ) (@juk) dj(t)) 2

n, X ’ .

n n n

(3.37)

In the right-hand side of (3.37), lower bounding the first term with (3.21) and the third with (3.34) gives

_ & b N Aen \ Qs 9
% (J“’”’ , *'“’“”) > (L= 0)(t — 1) + TV (0‘”” , ij”) Fle—t) -8 -2

n,

n n n n
=) (Gt Viltay) 5 2b
=T 1= 8)(ty — tyy) — 6t — t),) — 6% — =
n,X< T >+( Ytk — th,) — 0t — tg) ~
As t —t, < 2, for large enough n,
=) [ Qi) Yilny) \ o ) Qi) Pittay) 3
T — —=1>T — —= 1—0)(tk — tx,) — 30°. 3.38
n,X( n n > = n,X( n n +( )(k k?l) ( )

~ Ay &y
It remains to get a lower bound on ng, )2 (%Sk), J(:L’“Q)> Using recursively the same arguments one gets

a lower bound analogous to (3.38) or (in at most K steps) finally analogous to (3.33). This leads to

- Q; Q;
(400, 2 ) > (1 - ) - 30

Applying (3.30) and tx, — tx, < D(x1,%1), hence the lower bound in (3.31) is proven.
Step 3: Extending (3.31) beyond milestones. We show that for all 21,29 € X,
Dy (21, 22) — (g6 < 'i‘ff;%(zl, ZQ) < Dy (21, 22) + Cy9, (339)

where Cg may only depend on a,b and X.

Let z1,2z0 € X. We start with the lower bound. Let z; NS z9 be a ’i‘ffgz—geodesic. If v does not
intersect %Efast, then as 78 € LD,, x (Do, 6%),

~ (K -
T (1) = T x(3) 2 Do(z1,22) = 6° = D1, 22) — 6,
thus the lower bound in (3.39) is proven. Otherwise v can be decomposed as
L ™ R
Rl ™7 ZL Y7 ZR Y7V 22,

where z;, and zy are respectively the first and last visit of v in %Efast. We have

T () = TV () + TV () + T ()
= TP () + T4 () + T2 x (90),
thus
T () = T8 (21, 2) + TR (2 20) + T8 (2, 22). (3.40)
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As TB S LDn7x(D0,(52),

T?’E:’,X(Zl? 21) > Do(21,20) — 62 > Dy(21,2) — 62 (3.41)
and

’TE”X(zR, 23) > Do(zr, 22) — 62 > D1 (2, 22) — 6°. (3.42)
By definition of 2, there exists t;, € {t;,1 <k< K —1} and ¢, < s, < t, + 62 such that 2z, €
{M , %} Therefore (3.12) yields

n

Q4
2 — 3(tL)

’ < (i - 1)52. (3.43)
Applying (3.18) gives
|2 — o1 (t)]| < <C5 + % + 1)52. (3.44)

We define tg similarly and zy satisfies analogous inequalities. Triangle inequality, (3.43) and (1.16) yield

TV (21 20) = Thg (O‘JSL) %SR)> - zb@ - 1)52.
Applying (3.31), we get

T (o, 20) > [ — | — 26(61Z + 1) 8 — Crd. (3.45)
Besides, the triangle inequality, (3.44) and (1.16) yield

Dy (21, 20) < Di(on(t), o1 (k) + 2b(05 e 1)52.

By definition of D; (see (3.5)), Di(o1(tn),o1(tr)) = D(01(tL),01(tr)). Moreover, o1 is a D-geodesic,
therefore

1
Combining (3.45) and (3.46), we get
~ 2
T (21, 20) = Di(er, 20) — 20 (05 +o 2) 52 — C6. (3.47)

Inequalities (3.41), (3.42) and (3.47) give a lower bound for each term in (3.40), leading to the lower
bound in (3.39).

We now turn to the upper bound in (3.39). Recall the definition of Dy given in (3.5). If Dy(z1,22) =
Do(Zl, 2‘2) then

T (21, 22) < T8 (21, 22) < Do(z1, 22) + 6% = Dy (21, 22) + 6°. (3.48)
Otherwise, there exists z;, 2z € o1 such that Dj(z1, 22) = Do(21, 21.) + D(zL, 2r) + Do(zr, 22), therefore
Tif,i%(zl, 2) TV (21, 2) + TEL{()%(ZL, 2n) + TS (2, 2)
< TP (21, 2) + Ty (21, 20) + Th x (20, 22)
< Do(z1,2) + T (21, 20) + Do(zn, 22) + 282 (3.49)

Besides, there exist 0 < sp,sg < D(x1,y1) such that z;, = 01(s.) and zg = o1(sg). The upper bound
in (3.20), along with D(z1,y1) — tx < Cgd, imply the existence of t,tx € {tr, k € [1,K]} such that
[t — su|, [tr — sr| < Cgd. Proceeding as for (3.47), we show that the second term in (3.49) is upper
bounded by D(zy, zg) + O(d) = D1(z1, zr) + O(d), hence the upper bound in (3.39) is proven.
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Step 4: Conclusion. On the event

{5 € LD, x(Do,6%)} N ( N {X.= nEfm(e)}) N ( N {“<a +5}>,
(@)

eeEpath eeEpath(d)

configuration 7 and 7(5) agree on all edges except those in Ep.g where they may differ up to 6. Conse-
quently, for large enough n,
5#Efast

2o (T4, T x ) < L

Moreover, #FEf,gs is bounded by #a, thus by (3.13), for large enough n,

(1—8%)b

b
B < diam(X) +d < % diam(X).

Consequently, for large enough n,
~(K) bo .
(S (Tn, ,me) < o diam(X). (3.50)

Combining inequalities (3.39) and (3.50) concludes the proof. O

4 The elementary rate function

In this section we prove Theorem 1.9, Proposition 1.10 and Proposition 1.11. We work under Assump-
tion 1.

4.1 Existence

In this subsection we fix g € N and prove Theorem 1.9, which is a consequence of Lemma, 4.1.

Lemma 4.1. There exists a constant Cy9 > 0, depending only on a,b and d, such that for all € > 0 and
0 <9 <1, for large enough n, for large enough m,

1 1
3 logIP’(LDmJO’Hd(g, Cy(e + 5))) < o log]I"(LDn’[O’Hd(g, 52)) — Codlogv([b—e,b]). (4.1)

Proof of Theorem 1.9. Let ¢ > 0 and 0 < 6 < e A1l. For all m > 1, LD 0 1]d(g,09(5—|—5)) -
LDmy[OVI]d(g, 2C9e). Hence (4.1) implies that for large enough n, for large enough m,

1 1
3 log]P’(LDm’[O’Hd(g7 2096)) < —a lOgP(LDn7[O71}d(Q, 52)) — Cydlogv([b—e,b]).
Considering the superior limit in m then the inferior limit in n, we get
I 1 ] 1 2
Jim - logP(LD,, , 1j4(g,2Coe)) < lim —— logP (LD, 114(g,6%)) — Codlogu([b— < ,b]). (4.2)

Letting 6 — 0 then € — 0 gives 7[071}d(g) < l[oyl]d(g). This concludes the proof. O
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1 ~ 9
—
Tile (0,3) Tile? (1,3) TileX (2,3) Tile, (3,3)
Tile* (0,2) Tile* (1,2) Tile* (2,2) Tile (3,2) o
n
Tile (0,1) Tile? (1,1) TileX (2,1) Tile?, (3,1)
Tile? (0,0) Tile* (1,0) Tile? (2,0) Tile? (3,0)

Figure 5: Illustration of the tiles defined by (4.3) in the case d =2, k = 4.

Proof of Lemma 4.1. Fix ¢ > 0 and 0 < § < 1. Let n,m > 1 and k be the only integer such that
nk(l+4d) <m < n(k+1)(1+6). We will build an event included in LD 0 1]d(g,C'9(€ +6)) from k¢

independent realizations of LD [0 1]Ut(g, 52).

For all v € [0,k — 1], let
1+0
Tile? (v) == [0, 1] + LI, (4.3)
n
(see Figure 5). The set n Tile} (v) is an integer translation of [0,n]? therefore by stationarity of (7.) ccRd

P (LD, rie; () (96%)) = P(LD,, 4 1ja(g,6%)). (4.4)

Moreover, for large enough n, the variables (Tn’Tﬂe;"L(,U)) live on pairwise disjoint subsets of

vel0,k—1]¢
E? therefore are independent. Let Corridor denote the set of edges included in [0, m]d but not in any
n Tile} (v). This set satisfies

# Corridor = #E([0,m]") — K*#E([0,n]") < d(m + 1)! — dk(n - 1)°. (4.5)
We define the favorable event
Fav* = m LDn,Tile;‘L(v) (.97 52) N ( ﬂ {Te >b— 5}) . (46)
vel0,k—1]¢ ecCorridor

Applying (4.4) and (4.5) gives

d(m +1)% — dkd(n — 1)4
ma

1 . k¢
— TogP(Fav®) < —(m> log B(LD,, 5 1yu(9,6%)) - log v([b—  , b))

1
< —d logP(LDm[O’l]d(g, 52)) — Crodlogv([b —¢,b]), (4.7)
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for large enough n, large enough m, where Cy only depends on d.

From now on we assume that Fav* occurs. We first lower bound ’i‘m 0,174 using Lemma 2.17. For all

U1 7é V2,
inf —y|| > nd —d. 4.8
eyl zn (48)
yen Tilej, (v2)
Equation (2.36) in Lemma 2.16 implies that on the event LDn,Tile;(v)(9752)a for all v € [0,k — 1]]d,
z,y € nTiley (v),

0,1 ity oy (B0 9) = TnTiter (2 9)

> g(z —y) —nd”. (4.9)
On the event M.ccormidoriTe = b — €} for all Lipschitz paths 7 included in [0, m]\ Upego 5174 n Tile} (v),
Tl e () = (0 —&)|]. (4.10)

Thanks to Lemma 2.17 with 6; := dn — d and &y := ndé?, we get, for all z,y € [O,m]d,

: no?
T[O,m]d(xv y) > glr —y) — 3d1am([0 , m]d> <5 + S d)

> gla —y) — ddm(e + )

for large enough n, with fixed 6 > 0. Thus for all z,y € [0, 1]d,

T, 0.1¢(@y) = gz —y) — 4d(e +9). (4.11)

We now turn to the upper bound. For all v € [0,k — 1]%, for all 2,2 € nTile%(v), on the event
LDn,TilefL(v) (97 52)7
Ty i (2:2) < Tomiter (2, 2) < g(z = &) + §*n. (4.12)

Let x,y € [O,m]d and Z, ¢ their respective projections on Uve[[O k-1 n Tile) (v) (in case of non-unicity
the choice does not matter). Consider the map

f+|JnTile},(v) — [0, nk]?
zr—z—([n(1+0)] —n)v if z € Tile), (v),

which translates n Tile) (v) onto n Tile(v, 1), defined by (1.35). We claim that with fixed n and ¢, for
large enough m,
|z — f(2)] <2dk(nd +1). (4.13)

Indeed,
|z — 2] < d[m—n—(k—1)[n(l+0)]]

<dm-n—(k—1)n(1+90)+ (k—1)]
<d[n(1+29)+ (k—1)],
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1 B A
},...N /6 = f(y)
z5 f
5'24 ) / .’135
1 - / $4
2 _...._/Z3 / s
/ Z3
€2
e
z(’) ______7 Zi o ¥ f(i“)
/ 21
20 =% T
Figure 6: Construction of the points (z;)o<i<, and (2})o<i<r—1 in the case d =2, k = 4.
and
|2 = f(@)] < ([n(1+0)] —n)(k—1)d
< nd(k — 1)d, (4.14)

therefore by triangle inequality,
o — f(@)|| < d[n(1+20)+ (k—1) +nd(k - 1)],
thus (4.13) for large enough m.
The segment from f(Z) to f(§) can be decomposed as
[F(@), f@)] = [zo, z1] U [z, 2] U Ulzr_1, 2],

where each segment [z; ,x;41] is included in a tile n Tile(v;, 1), and the (v;)o<i<y—1 are pairwise distinct.
Moreover the sequence (v;)o<i<r—1 may be chosen so that it has monotone coordinates. In particular,
r < kd. For all 0 <4 <r —1, let [z, 2] denote the unique segment included in n Tile},(v;) whose image
under f is [x;,2;4+1] (see Figure 6). The triangle inequality yields

T r—1
T[O ’m}d(ff}, Q) < Z T[O 7m]d(zi, ZZ/) + Z T[O 7m]d(27€, Zz'+1)- (4.15)
i=0 i=0
Inequality (4.12) gives
g / - / 2
ZT[O ]d(ZZ,Z,L-) < (g(zl—z)—i—6 n)
i=0 i=0
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thus
i%T[o il ) < g(F(@) — F(@) + (r+ 1. (1.16)
Consequently, using the triangle inequality, (4.13) and ¢g < b||-|| in (4.16), we get
XT: LATPTE 2 < gla —y) + 4bdk(nd + 1) + (r + 1)6>n. (4.17)
i=0

Besides, for all 0 <¢ <r —1,
Ty, ,m]d(zz/‘, zit1) < 0|2 — ziga || < bd(6n + 1),

thus

r—1
T}y (20 2i41) < rbd(dn +1). (4.18)
0

Combining (4.15), (4.17) and (4.18), we obtain

Ty gt (2,9) < gla —y) + 4bdk(nd + 1) + (r + 1)6°n + rbd(dn + 1).
Applying r < kd, we get

Ty gt (2,9) < gla —y) + 4bdk(nd + 1) + (kd + 1)8*n + kbd*(dn + 1),
thus a final use of the triangle inequality and (4.14) leads to

Ty i (2:Y) < g —y) + 2bdnd(k — 1) + 4bdk(nd + 1) + (kd + 1)8%n + kbd* (6n + 1)
< g(x —y) + 6bdk(nd + 1) + (kd + 1)0°n + kbd*(dn + 1)
for large enough m. Consequently, for all § > 0, for large enough n, for large enough m, for all z,y € [0, 1]d,

T, 014 y) < g(z —y) +2d(6b + bd + 6)0. (4.19)

The lemma is a consequence of (4.7), (4.11) and (4.19). O

4.2 Characterizing the cases /|, 1(g) < oo and [, ja(9) = 0 : proof of Proposition 1.10

Thanks to Proposition 3.1, it is sufficient to prove Lemmas 4.2 and 4.3.

Lemma 4.2.
(i) For alla < ( <b,
I[o,l]d(CH'H) < —dlogv([C,b]). (4.20)

(it) If g € N satisfies ||g|lgom = b — 1, then

Iy yya(g) > —log2 — %logV([b—lln,b])- (4.21)
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Proof. Proof of (i). Let a < ( < b. Note the inclusion

N {2 <{T, 00 =}

eEE([[O ,n]]d)

Consequently, Corollary 3.2 yields (4.20).

Proof of (ii). Assume that ||g/;o, = 0 — 1. Then there exists u € S such that g(u) > b —n. By
convexity and symmetry there exists e; such that g(e;) > b — n; without loss of generality we assume
i = 1. The argument consists in proving that on a large deviation event around g, a volumic number of
edges must have a passage time close to b. For all v € [0,n]*"!, let 7, denote the segment from (v,0) to

(v,n). Since LD, (g,7) € N, {7(7y) > n(b—2n)} and the (7(ny)), are i.i.d.,

d—1

P(LDn(g,n)) < P((m) = n(b — 2n))"

Besides, if at least /2 indices i € [0,n — 1] are such that 7(ieq, (i + 1)e;) < b — 4n, then

7(mo) < g(b —4n) + %b =n(b—2n).

Consequently,
P(r(mg) > n(b—2n)) <P U ﬂ {r(ie1, (i + 1)e1) > b—4n}
AC[0 ,n—1] icA
#A=|n/2]
< 2"w([b—4n, b))%,
therefore

. 1 1
I ye(9) 2 lim ——5log P(LDy (g, 7)) = —log2 — S logv([b — 41, b]).

n—oo TN

Lemma 4.3.
(i) I[o,l]d(,“) = 0.

(ii) Let g € N'. If there exists u € R such that g(u) > p(u), then I, 1]d(g) > 0.

Proof. Proof of (i). Let z,y € [0, 1]d and £ > 0. By triangle inequality and (1.16),

() > T<L7?JL72?/J) L)

Consequently, by definition of u (see (1.3)),

P(Tn(%y) =z —y) - 6) — L

n—o0

Besides, for large enough k, for all n > 1,

N A{Tu@y) = p@—y) —c} SLDS | (i, 2).
a:,yG%[[O,k]]d
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By (4.24), with fixed k, the probability of the left hand-side of (4.25) converges to 1 as n — oco. We
conclude with Corollary 3.2.

Proof of (ii). We adapt the arguments used by Kesten to prove a bound on the probability of the
upper tail large deviation event for the point-point passage time, in the direction e; [13, Equation (5.13)].
Assume that there exists u € R? such that g(u) > u(u). By homogeneity we can assume u € S. For all
n, k > 1, define the tilted box

Box(n, k) == {tu +z,2 € B(0,n) Nut,t e [O,nk]},

where ut the orthogonal complement of u. As in [13, bottom of page 198], one shows that there exists
n > 1 such that for all k£ > 1,

E [TBox(n,k) (0, nku)]
nk
Consequently, by Talagrand’s inequality (see e.g. [2, Theorem 3.13]), there exists £ > 0 such that

< g(u).

> g(u) — 25) >0 (4.26)

Moreover, there exists C1; > 0 such that for all £ > 1, there exists vy, ... U Ok | € 7%, such that

the boxes (Box(n, k) +vi), ;< Ei pairwise disjoint and included in [0,2nk]%. This implies the

inclusion

Tw—&-Box(n,k) (UZ} v; + nku)

- > g(u) —25},

and the terms of the intersection are independent. Consequently, by stationarity,

LDan,[O,l]d(g75) < m
=1

{Cll’fle{

1 Cllkd_l TBox n,k (07 nku)
—WlogIP’<LD2nk7[07l}d(g,6)> > —Wlogﬂ” ( 7n)k > g(u) —2¢ .

Letting k — oo and applying (4.26), we get 1[071]d(g) > 0. O

4.3 Continuity of the rate function on N* : proof of Proposition 1.11

We already know by Lemma 1.2 (i) that the restriction of I qy¢ on N* is lower semicontinuous, thus it
is sufficient for the first part of the proposition to show that this function is upper semicontinuous. This
follows from Lemma 4.4.

Lemma 4.4. Let g e N* and 0 < n < %. Then there exists a constant Ci2 > 0, depending only
on d, such that for all p > 1,

C
I[o,lld( H ”) g 1ye() = = logv([b = . b)), (4.27)

Indeed, let (g,) be a sequence of norms in N'* converging to g € N* and 7 as in Lemma 4.4. Let
p > 1. For large enough n,

n
p
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therefore by (4.27) and Proposition 3.1,

- C
lim I[071}d(gn) < 1[071}11(9) - 712 logl/([b - Uab])~

n—oo

Letting p — oo, we get

lim I[071]d(9n) < I[oﬂd(g)a (4.28)

n—oo

i.e. the restriction of [, 0,14 o1 N* is upper semicontinuous.

To prove the second part of Proposition 1.11, note that by Proposition 1.10, if v({b}) = 0 and
g € N\ N* then [ [071]d(g) = 00, thus upper semicontinuity at g is straightforward. O

Proof of Lemma 4.4. Let p,k > 2. For all v € Z%, v is said to be hard if at least one of its coordinates is
a multiple of p, and soft otherwise. Recall the definition of Tile(-,-) given by (1.35). Let

S(k,p) = U Tile(v, kp) and H(k, p) == [0,1]4\ S(k, p). (4.29)

vel0,kp—1]¢
v soft

The choice of notations S and H refers to soft and hard respectively. Note that
#{v efo,kp—1]° ’ v hard} = k:d<pd —(p— l)d). (4.30)

We define the metric Dlip ) by prescribing its gradient as in Lemma 2.11, Equation (2.19) with X = [0, l]d

and
g — {g %f 2 € Sk, p), o
O —=n)l-IIif z € H(k,p).
We first show that
Lig e (Dlip)) < Ig 410(9) — C;DHV([b —1,b]), (4.32)

where C12 > 0 only depends on d. Our construction is similar to the one performed in the proof of
Lemma 4.1, except for the soft/hard distinction and the fixed number of tiles involved. Let 0 < £,0 < i

and n > 1. Let m = nkp. For all v € [0, kp — 1]]d, we define the tile

Tilef (v) = v + {LZ(;J , M(ln 6)1]d.

(4.33)

Note that it is not equal to the tile Tile) (v) we defined as in (4.3). For large enough n, the variables

(Tn,TﬂeL (v))U€[07kp_1H , live on pairwise disjoint subsets of E® so they are independent. Let Corridor

denote the set of edges included in [0,m]? but not in any n Tilef (v). This set satisfies
# Corridor = #E([[O , m]]d) — kIpIH4E (n TileL(O)) < d(m +1)? — dk¥p?(n(1 — 26) — 2)%. (4.34)
We define the event

Fav! = m LDn,TileL(u) (9, 52) N ﬂ ﬂ {re > b—n}
vel0,kp—1]¢ v€[0,kp—1] e€E (n Tilef, (v))
v soft v hard
N ﬂ {re >b—c}|.
ecCorridor
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By stationarity, for all v € [0, kp — 1]]d7

P(LD, 1)) (9:6) =P (LDn, [0, =0 Lol 195 )

=P(LD nd?
- (m(1=-8)1=1nal .0 1\ P T = 8Y] — [nd] ) )

Consequently, for large enough n,

PLD, 1) (9:0%) 2 B (LD g1y sy 0,2 (99°)): (4.35)

By independence, stationarity, (4.30) and (4.34), for large enough n,

(pk)? d(pd_ (p—1)4) (nr1)d
]P)(FaVT) > ]P)(LD]'TL(I*(S)]*UL&L[O,1}d(g7 52)) . V([b— n’b])dk (p (p—1) )( +1)

(4.36)
. V([b —¢, b])d((m+1)d—kdpd(n(1—26)—2)d) )

—nd — ndé?
m.[0,1]9 01 = 7> and d2 = -, on the event

Thanks to Lemma 2.17 with X = [0,1]%, D = D,ip), D =T
Fav', for all z,y € [0,1]d,

T né? m
Too (@ y) 2 DY (x,y) ~ 3 (5 +—

i.e. Favl C LD} (D,(Cp),?)(e + 5)) Taking the log in (4.36), multiplying by —# and letting n — oo, we
therefore get

. 1 C
lim —— logP (LD}, (D", 3(c +9)) ) < (1= 26)I 5 1a(g) — = Flogv([b—n,b)

m—00 m

(4.37)
— Ci36logv([b—€,0]),

where C12 and Ci3 only depends on d. Choosing ¢ small enough then § small enough and applying
Corollary 3.2, we obtain (4.32).

Let D®) be an adherence value of (D,ip))’pz and z,y € [0, 1]d. We claim that
D () > gl =) + - o~ (4.38)

Indeed, let x J+d y be a Lipschitz path. In order to lower bound D® (z,y), we bound the integral
[0,1]

in (2.19). We have

T, T,
/0 Gy (' (1) dt = /0 (Tar0e )G = I O] + Lo (VD)9 (¥ (1)) )t
T, T,
=/0 g(v’(t))dtJr/O L(ey (YD) [0 =)V (D] = 9(+' ()] dt.

Applying Jensen’s inequality on the first term and ||g||y,,, < b — 27 on the second gives

Ty Ty
| 00/ ©)t = g =)+ [ LGOI Ot (139
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Using the notations = (z1,...,24), ¥y = (Y1,.--,Y4), Y(t) = (71(t),...,74(t)), standard integral manip-
ulations give

T, d_ T,
/ L g ey (V@) |7 (8) || At = Z/ L1y (7(2)) | i (2) | dt

0 i—1 0

d T,
zz/nmwmmwww

dt

Lz ([kpryi(t)])i(t)

d

23/ pzkmD

fofone {21

thus

Ty k|$z yz
/0 L) (V)Y (2)|| At > Z
Zux—yu_gi
p pk
Combining this inequality with (4.39), we get

T lz—yll nd
'())dt > gz —y) + 2 YL 0%
/0 9y (Y (1) dt = gz —y) . s

Taking the infimum with respect to v then letting & — oo yields (4.38). O

5 Proof of the main result

In this section X € K is fixed and v satisfies Assumption 1. We prove Theorem 1.5. Thanks to Lemma 1.2,
the remark following it and the compactness of Dy, it is sufficient to show that the upper and lower rate
functions defined in (1.30) and (1.29) are respectively upper bounded and lower bounded by the integral
n (1.20), i.e. Propositions 5.1 and 5.3. Note that for every D € Dy, the integrand in (1.20) is well-defined
almost everywhere, since the gradient of D at almost every point belongs to N/ (Proposition 2.10) and
the lower and upper rate functions agree on A/ (Theorem 1.9). Besides I 0,14 is measurable as a limit of
measurable functions, and z — (grad D), is also measurable (see Proposition 2.8), therefore the integrand
n (1.20) is measurable. Recall the definitions (1.36) and (1.37).

5.1 Upper bounding the upper rate function

Proposition 5.1. Let D € Dx and (g.).ex = ((grad D)), x its gradient. Then

Ix(D) < XI[OJ}d(gz)dz. (5.1)
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The general idea is to "build" the metric D by assembling together tiles on which the rescaled passage
time resembles g,. We actually use this procedure only in the case where D has a constant gradient on
each tile at a certain scale then use the properties of the rate function to extend the result to any metric.

We first need Lemma 5.2 to account for the case where X is not of the form Hle[ti L]

Lemma 5.2. Assume X C [0, Then for all g € N,
Ix(9) < AT e(9). (52)

Proof. Let g € N',n > 1,6 > 0. Consider the convex, compact set

X ={ze X |d(zX°) > 5}, (5.3)
Lemma B.5 states that
max d(z, X %) — 0. (5.4)
zeX 6—0

From now on 4 is chosen small enough so that X~ is not empty.

Assume that the event LD\ 0 1]d(g, §?) occurs. Let z,y € nX. We have

A N c =5 . bddiam(X) | _. A s A
Let & and ¢ be the projections of x and y on n X ~°. Forall 0 < < [T—‘ =7, let x; = &+i(§—2)/r.
By convexity all the z; belong to nX 9. Lemma 2.3 implies that for all 0 < i < r — 1, any T[0 FRAT]e

geodesic from x; to x;41 is included in E(mi, nd) € nX. Consequently,

T,x(zi,xit1) = T[O,’—n)\-l]d(ﬂfi,l'i+1) < g(.fcr—yj) + [n)\w?.
The triangle inequality then yields
Tox (2,9) < (& — §) +r[nA]6%,
hence, by (1.16),

T,x(z,y) < glx —y)+4bn max d(z, X %) + r[nX]6%. (5.6)
zE

Inequalities (5.5) and (5.6), along with (5.4) imply that for all € > 0 there exists § > 0 such that for large
enough n,

P(LDy x(9:€)) 2 B(LDp, 1y 114(9:6). (5.7)
thus (5.2). O

Proof of Proposition 5.1. We first prove the bound (5.1) for three particular cases with extra regularity
on D.
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Case 1: Constant, noncritical gradient on each tile. Assume that there exists k > 1 and a
family (gv)vevzxt( x) of elements of N* such that D is the metric defined like in Lemma (2.15), with

X, = Tile(v, k)N X and D, = ¢°. Let 0 < d,e <1and n > 1. For all v € [0,k — 1]¢, we define
Tile! (v, k) == (Tile(v, k) N X)~°, (5.8)

with the notation defined in (5.3). We assume that ¢ is small enough for all the tiles Tile*(v, k), with
v e [0,k —1]% to be non empty. Consider the set

Corridor := Eext (nX) \ U E (n Tile* (v, /-c)) ,
vEVE(X)

where Eqx(nX) is defined in Subsection 1.6. It satisfies

<Z+2)d— (Z—zné—Qﬂ. (5.9)

# Corridor < #(VeXt( ))

Consider the event
Favt := N LD, (@8) |0 ) {e=b-c}). (5.10)
vEVEH(X) e€Corridor

By independence and (5.9),

ext n d n nS— d
]P’(Favi) = H P(LDn,Tilei(v,k)(9v752)) ~I/([b—5,b])#v’“ (X){(’“H) (5 —2nd-2) }
VEVERL(X)

(5.11)

We follow the same strategy as in Lemma 4.1. Assume that the event Fav' occurs. Lemma 2.17
implies that for all z,y € X,

T x(2,9) > D(,y) — 3diam(X)(e + ). (5.12)
We define
n=n(d) = Ue{fr?gg )r;leag?d(a: Tile (v,k)). (5.13)
By Lemma B.5,
lim n(6) = 0. (5.14)
6—0

Let (z/)1<¢<r, be a finite family of points in X such that the balls B(xy, ) cover X. By definition of D and
convexity of the (gv)vevzxt(X), for all 1 < ¢,¢" < L, there exist sequences (x¢ = yo(£,€'), ..., yree)((,€) =

zp) € XTEO and (vg(6,0), ... w1 (6,€) € VEX) ) such that for all 0 < j < r(£,€) — 1
both y;(¢,¢") and yj41(¢,¢") belong to Tile(v;(¢,¢'), k), and

r(6,0")—
D(zq,2p) > Z gvaW () =y (6,0) —e. (5.15)
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Let r :== maxj<g o< 7(¢,0') and fix 1 < £,¢' < L. We claim that
Ty x (26, 20) < D(we,xe) + &+ (r+1) 8% + by (5) . (5.16)

The arguments are similar to the ones used in the proof of (4.19). To lighten the notations we omit the
dependancy in (¢,¢') in the proof of this claim. For all 0 < j < r, let p; denote the projection onto
Tilei(vj, k). By triangle inequality,

Ty, x (20, 20) < T x (22, p0(x)) + O T x (95 (y7)s 2 (Yj41))

=0
- i (5.17)
> Tox (0 (j41): Pi+1(yi41) + T x (pr (w), 200).
=0
By definition of Fav*, the second term in the right-hand side of (5.17) satisfies
> T x (997, P (yi41) < D [0 (03 (07) — Py (w541)) + 67
=0 =0
Applying the definition of n and (1.16), we obtain
> T (3 (), 2y (511)) < D [0% (5 — 1) + 6% + 2bm
=0 =0
thus, by (5.15),
> T x(pi(9),pi(yi1)) < D 9" (yj — yj1) + (x+ 1)(6° + 2bn)
=0 =0
< D(zy,zp) + €+ (r + 1)(6% + 2bn). (5.18)

Applying the definition of n and (1.16) to the three other terms in the right-hand side of (5.17), we get
Ty x (20, x0) < D(g,20) + € + (r + 1)(62 + 2bn) + 2bn + 2bry, (5.19)

hence (5.16). Equations (5.12) and (5.16), alongside with the fact that the balls B(zy,¢€) cover X and the
limit (5.14) imply that for all € > 0, for small enough § > 0, for all n > 1,

Favt C LD,, x(D, C14¢), (5.20)

where C14 only depends on diam(X).
From (5.11) and (5.20) we deduce

— 1
lim *ﬁ IOgP(LDn,X(D, 0146))

n—oo

. ; #Vext X
<Y Tan (@) - T (1 (1 2k0)) togu((p < b)),
vEVE(X)

By stationarity and (5.2), we get

— 1
lim _E IOgP(LDn’X(D, 0145))

n— o0
1 . dvext(x
=3 D g le”) - W(l - (1= 2k5)d) log v([b — ¢, b]).
vEVEE(X)
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Letting § — 0 then € — 0 yields

— 1 "
’UGViXt(X)

Lemma 2.15 implies that for all z in the interior of Tile(v, k) N X, g, = g*, hence

Tx(D) < /X Iy ya(g:)dz + Leb U Tile(w k) | \X | max Ty ele”). (520)
vEVEL(X) veVy

Let K be a multiple of k. Then D may be seen as a metric built from uniform tiles of size 1/K rather
than 1/k, thus inequality (5.21) may be enhanced to

TX(D)g/XI[OJ]d(gz)dz+Leb J Tile(v, k) [ \ X ve\%gggx)j[oyl]d(gv)'
eV (X) k

Note that the maximum in the second term is considered over V(X)) rather than V§¥*(X). It is finite
thanks to Proposition 1.10. Letting K — oo and applying (1.38) yield (5.1).

Case 2: Continuous, non critical gradient. Assume that there exists a continuous map

X —N

Z— g,

such that ¥ = sup,¢ x |Gzl gom < b and D satisfies (2.19) with (§.).cx. In this case, by Lemma 2.11 (iv),
for all z € X, g, = g, thus (5.1) is equivalent to

Tx(D) < [ Ty ya(d:)d (5.22)

For all k£ > 1, we consider the metric Dy € Dx defined as in Lemma 2.15, with X, = Tile(v, k) N X and
D, = gf,k) = §,, with z being any fixed point in Tile(v, k) N X, for all v € V§¥*(X). Then Dy, falls under
Case 1, therefore

. *)
Tx(Dy) < /X Iy 1y (gmz J)dz. (5.23)

(k)

Besides ¢ () COBVErges to g, in Crom (Rd, R) as k — oo, uniformly on X. Since the restriction of [,

1 [Ovl]d
k
on the compact {g € N | a||-|| < g < V|]|} is continuous and bounded (see Propositions 1.10 and 1.11),

(k) R
/X To (9; Lsz>d2 [ 1j2(32)dz (5.24)

(k)
- % lkz]
by lower semicontinuity of I x, letting &k — oo in (5.23) yields (5.22).

Moreover, the convergence of g to §, and Lemma 2.11 (ii) imply the convergence of Dy to D. Thus
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Case 3: Non critical gradient. Assume that b’ := sup,cx||9:|/jom < b- We use a routine convolution
argument (see e.g. [4, Theorem 4.22]) to regularize z — g,. Let (£™) be a sequence of test functions from
R to [0, 00], of integral 1, such that the support of £ is included in B(0,1/n) . For all z € X and u € R?,
we consider the convolution

g (u) = /Rd gz—s (W)€ (s)ds < Vu], (5.25)

with the convention g, s = b'[|-|| if z — s ¢ X. For all u € R%, as n — oo, ¢"(u) converges to g.(u) in
LY(X,R), thus almost everywhere on X along a subsequence. By a standard diagonal argument, this
convergence is still true for all u € Q¢ almost everywhere on X. As the g, and g7 are b-Lipschitz, there
exists an extraction ¢ such that for almost every z € X,

st
et —em, g (5.26)

Let D¥(™ denote the metric defined by (2.19) with the function z — gf(n). Since Dx is compact (see

Proposition 2.1) there exists an extraction 1 such that D¥°¥(™) converges to some D' € Dx. We claim
that D’ > D. Indeed, for all z,y € X and Lipschitz paths = ~ y, Fubini’s theorem yields
X

T, T

/0 wél)/}( (v /(t))dt:/o (/Rd gv(t)s(vl(t))f“’ow(”)(s)ds>dt
T’Y

/Rd< A gfy(t)—s(’r’(t))dt) 2oV (s5)ds.

Applying (2.12), we get

Ty
| @t > [ D= sy - g s)ds,
0 R4

thus

DF O y) = [ Do = sy~ )7 (5)ds (5.27)
R

By a standard regularization argument (see [4, Proposition 4.21]) the right-hand side of (5.27) converges
to D(x,y) as n — oo, thus D'(z,y) > D(m,y).

Besides, foralln > 1, z — g7° Y(n)

by (5.22) (see Case 2),

ow(n) H < bby (5.25), therefore

DFeY n) / ] saozb ))d

The restriction of I; ;a on {geN|a|]] <g<V||} is continuous and bounded (see Proposition 1.11),
therefore by (5.26),

nILH;oIX D‘pm’b”) /101 a(gz)dz.

Applying lower semicontinuity and Proposition 3.1, we obtain
Tx(D) < Tx( / Iy ya(g:)dz. (5.28)
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General case. Let D™ denote the metric defined by (2.19) with

n—1 a
gy = ——9:+ EIHI- (5.29)

Equation (2.12) implies that for all Lipschitz paths z «)/} v,

n—1

T Iy a [Ty
/0 g (V' (1)dt = /0 g0 (7 () dt + — /0 [EAGIEE

n—1 a
>—0D —||lz —vyll. 5.30
> D(a,y) + Sl — g (5:30)

n

Consequently, for all z € X, (grad D), > ¢7. Besides, Lemma 2.11 implies the converse inequality,
therefore (grad D™), = ¢g7. The metric D" falls under Case 3, thus

TX(D”)S/XI[O,l]d(g?)dZ‘

Letting n — oo gives (5.1) by lower semicontinuity and monotone convergence. O

5.2 Lower bounding the lower rate function
Proposition 5.3. Let D € Dx and (g.).ex its gradient. Then
I(D) > /X I ya(g:)dz. (5.31)
Lemma 5.4 provides a link between the lower rate function evaluated on a metric and on a rescaled,
translated version of it, as defined by (2.27) and (2.30).
Lemma 5.4. Let k > 1,v € Z% and D € Drje(y ). Then

1
Ltie(o) (D) 2 731 o (Tr—o(Sei (D)) (5.32)

Proof. Let ¢ > 0, m > 1 and n be the unique integer such that nk < m < (n 4 1)k. Note that for all
z € nk Tile(v, k),

m ]
— T — < —< . .
an . xH < B <o 44 (5.33)
In particular,
nk Tile(v, k) € m Tile(v, k) + B(0, ||Jv]| + d). (5.34)
Consider the event
Fav** := LD,, Tite(v1) (D €) N N {r.>b—c}].

e€Eext (m Tﬂe(v,k)—i—E(O, [Jv]| +d))\Eext (m Tile(v,k))

One easily checks that

. 1 o 1
lim ——; logP(Fav™) = lim ——dlogP(LDm’Tile(%k)(D,s)). (5.35)

m—oo TN m—oo 1N
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Assume that the event Fav** occurs. Let x,y € nk Tile(v, k). By (5.34),
Tk Tile(v,k) (137 y) > Tm Tile(v,k)+§(0,||v||+d) (l" y)

Triangle inequality and (1.16) yield

mx my
TnkTile(v,k) ('T’ y) > Tm Tile(v7k)+E(O,||v||+d) (’I’Ll{i’ ’I’Ll{2> - 2b(||UH + d) (536)

Let 2 e = be a TmTile(v,k) LB (0ol + d)—geodesic and v the path obtained by replacing excursions

of o outside m Tile(v, k) by segments, as in (2.46). Since edges in Eex (m Tile(v, k) + B(0, ||v]| + d)) \

Eext(m Tile(v, k)) have a passage time greater than b — ¢,

b—e¢

mr my

b—e¢ mx my
TmTile(v,k)+§(0,||v||+d) (nk’ nk) = TX<‘7) > b TX(’Y) > b TmTile(v,k) (nk’ nk)’ (5-37)
with the definition (2.35). Combining (5.36) and (5.37), we get
b—e mx my
T, > T,, i e A
nk Tile(v,k) (1‘7 y) = m Tile(v,k) ( nk’ nk > b(HUH + d)
m(b—¢) r oy > }
> p( =, L) —e| —2
> MO D (2 L) — ] - 2a(lol + ),
thus for small enough £ > 0 and large enough m (thus large n), for all z,y € Tile(v, k),
~ b—e 2b
) > PN
Tnk,Tlle(v,k) (CC, y) = b [D(CC, y) 5] nk (”UH + d)
> D(z,y) — - diam(Tile(v, k)) — <1 + 1) 2 1ol + )
z,y) — - diam(Tile(v —e— — - —(||v
- ’y b K n m )
therefore
x v|| +d v|| +d
Fav™ C LD:k,Tile(v,k) (D, Cis <€ + HHWL)) = LD:,Tile(v,l) (Sck(D), kCis (5 + ”‘ln>>, (5.38)
where C15 only depends on b and LD is defined in (3.1). Equations (5.35) and (5.38) lead to
1
Irjte(u,1) (D) = @lTile(v,l)(SCk(D))- (5.39)
We conclude by stationarity. O
Proof of Proposition 5.3. Let k > 1, ¢ > 0. Define
X, = |J Tile(v,k). (5.40)

veVIR(X)

Note that for all z € X , 2 € X}, for large enough k. The idea is to show that a large deviation event
around D is included in an intersection of large deviation events around restrictions of D (see (2.35))
on tiles of the type Tile(v, k). We first need to make minor adjustments on the boundary of tiles to
ensure independence. For all v € VI"(X), let Epq(n Tile(v,k)) denote the set of edges belonging to
Eext(n Tile(v, k)), but not included in the interior of nTile(v,k). Consider a family of #(Vi*(X)) + 1
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independent configurations (7‘, (7‘(“)) >, each with distribution »®E’. For all v € Vit(X), e € E<,

veVIR(X)
define )
Bl Te if e € Epq(n Tile(v, k)), (5.41)
Te otherwise.
Note that (Te[v]) . ,v € VI®*(X) ) are independent. Consider the event
e€Eext (n Tile(v,k))
Favil = {T € LD;;X(D,S)} N ﬂ ﬂ {Te(”) >b— 5}
veVINt(X) e€Epq(n Tile(v,k))
By independence,
P(Fav't) > P(LD} y(D,2)) - w([b — &, b)) F(V¥" (X)) H#(Enaln Tile(0.1)), (5.42)

Let v € Vi™(X) and n > 1. Equation (2.3) implies that any T, x-geodesic or ’ﬂf ]X—geodesic o has length
at most bdiaTm(X). Besides, for all e € E?,

T,Lv} > Te — €,

thus
. bdiam(X
Fav'T - {7_[ ] € LDZ,Tile(v,k) (DTile(v,k)v < a (7> + 1) €> }
Consequently,
bdiam (X
Falt € ) {T[v} € LD 1o (DTilew)’ ( : X 1> 5) } (5.43)
veVIN(X)

The events in the intersection are independent. Applying (5.42), we get

#(VI(X)) - #(Bpa(n Tile(0, k)))

1
_Wlogp(LD;X(D,g))— log v([b — ¢, b))

nd
1 bdiam(X)
> Z —— 1ogIP><LD;Tﬂe(M) (DTHQW), (a + 1) 5>)
vEVIM(X)
Thanks to Corollary 3.2, letting n — oo then € — 0, we obtain
Ix(D)= > Itiewp (D‘Tile(v,k))-
UGV}J“(X)
Applying Lemma 5.4 yields
1
Iy (D) > 7d Z l[O 14 (Tr—v (Sck (-D ‘Tile(v,l))))
veVirt(X)
> /Xk l[O )¢ (Tr—vk (2) (Sck (D ‘Tile(vk(z),1)>))dza (544)
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where vy (z) is such that z € Tile(vk(2), k), chosen in a measurable way in case of non-unicity. Proposi-
tion 2.10 implies that for almost every z € X, for all £ > 0, for large enough k, for all z,y € [0, 1]d,

Tr_y,(2)(Ser(D)) (2, y) = k;D<x + Zk(Z)’ Y+ Zk(Z))

)

> g.(x —y) — 2ed.

x + vg(z)
k

BN

o )5]

Consequently, for almost every z € X, for all € > 0, for large enough k,

l[O,l}d (Tr_vk(z) (SCk(D‘Tﬂe(vk(z) )))) > hm IOgP(LDJr[ 7}d(gz,?)dz?)>.

n—o00 TL

Letting £ — oo then ¢ — 0 and applying Corollary 3.2 again, we get, for almost every z € X,

leH;O I[ 14 (Tr,vk(z) (SCk (D‘Tﬂe(vk(z)J)))) > I[O,l}d(gz)‘ (545)
We conclude the proof by applying Fatou’s lemma to (5.44) and using (5.45). O

6 Proof of the corollaries

Lemma 6.1 gives a LDP for any process that is the image of ( n,X )n>1 through a continuous map. We
recall that it is a special case of the contraction principle (see e.g. [11, Theorem 4.2.1]).

Lemma 6.1. Let X € K. Under Assumption 1, for every Hausdorff topological space Y and continuous
map f : Dx — Y, the process (f(TmX)) o satisfies the large deviation principle with the good rate
nz

function
y — {0 ) OO]
Y — Drgg)l{ Ix(D) = DI?&I( / Iig 4y (grad D),dz. (6.1)
f(D)=y f(D)=y

However, as Corollaries 1.6 and 1.7 are stated with assumptions on v milder than Assumption 1, we
need extra work consisting in taking the limit as o — 0 of the model constructed with the passage times

Te(a) =Te V Q. (6.2)
Let v(® denote their distribution. Let Dg?) denote the space defined as in Definition 1.3, with o > 0
instead of a. The set V(@ is defined likewise. Let SA” denote the set of seminorms g such that g < b|-||
and SN the set of seminorms g such that g < (b —n)]|-||, for some n > 0. Both are endowed with the

topology induced by ||-||j,, (see (1.44)). For every rate function introduced in this section we will mark
with the exponent -(® the corresponding function when v is replaced by ().

6.1 Preliminaries: limit of the elementary rate function

For all g € SN, we introduce

-+
Tjg 1ja(9) —Q%Tnlgﬂgo—*logp( LD, x(g,¢)) (6.3)
+

and Ly a(9) —ig%Tnlgngo—glogP( D} x(9.€)), (6.4)
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with the definition (3.1). The functions TEB 17 and [ [Jg ¢ aTe lower semicontinuous for the norm ||-|| o

In this subsection we show that they are equal and have a simple expression using the elementary rate
function under the distribution (@),

Lemma 6.2. For all g € SN and o > 0,

I, o) = Ly (e) = 187 (el 11V 9)- (6.5)

We denote by I[J(;’(l?g (g) this number.

Proof. Let g € SN and € > 0. Theorem 1.5 with X = [0, 1]d and the distribution v(®), applied to the

compact set A, = {D € D[(o )1]d Va,y € [0,1]d,D(m,y) >g(r—vy) — 6} gives

min I(a)]d(D) < lim —1logIP’(T(a) e € A€> < lim —1logP<T(a) 4 cA ) < inf I(a)l]d(D).

DeA. 0,1 n—oo né [0, n—oo  nd [0,1 ped. [0
. (6.6)
The norm [a|-||] V ¢ is in A, therefore the upper bound in (6.6) implies
. ple) < 1@
ligt Tim — 5 log (T € A.) < 169 (all 1)V o). (6.7

Besides, by the lower bound in (6.6), there exists D, € A, such that

lim —1og]P>< T 1yt € A5> > 1 (D).

n—00 n n,[0 [0,1]

By compactness of D[(gl)l]d,
(@) ’
Iig e

(De)e>0 has an adherence value D as € — 0, thus by lower semicontinuity of

lim?T lim —logIP’<T( ) qe € Ae) > I(Oa) (D).

e—=0 n—soo 7[

Since D > [a|+]|]] V g and I [( )} 4 1s nondecreasing, we have
_ ple) > 7@ )

ligt li g logP(E) 1, € 4) = 1) (all) v o) (6.8)

The lemma is a consequence of (6.7) and (6.8). O

Lemma 6.3. For all g € SN,

Ty ya(9) = L a(9) = im0 (g), (6.9)

+
0.1

with uniform convergence on the compact subsets of SN*. We denote by I

the restriction of I
[0,1]

]d(g) this number. Moreover,

4 on SN* is continuous.
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Proof. Let g < bl|-|| be a seminorm. For all 0 < ay < a, the inclusions

{7’ € LDI(g,a)} - {T(al) € LD,J{(g,s)} - {T(O‘Q) € LDZ(Q,E)},

hold, thus by Lemma 6.2,

+ + (a)

Let us show the converse inequality. Let p > 1. Consider the event

b
H._ ) (o) + (@) > 2
Fav ._{ e LD 0.1 (g,e)}ﬂ {T > 2} ;

eEE([O ,n]d)
e hard

where for all v = (v1,...,v4) € Z9 and i € [1,d], the edge e = (v,v + ¢;) is called hard if v; € pZ. By the
FKG inequality, there exists a constant C1g, depending only on d, such that

n—oo n

C b
= Ea = (c) + _ 16 e
nhm o logIP’<Fav >< lim logP( eLDn7[071}d(g,s)) logy([2,b]>. (6.11)

Assume that Fav™ occurs. Let z,y € [0, n]]d and z 5 y be a discrete T[0 n}d—geodesic. Since 7 is

self-avoiding, it uses at least HVHJ hard edges. Consequently,

b |y
(B < B et < bl -,

2

thus
17l < 2|z — y|| + 1)p? < 2(nd 4 1)p?
(a)

Since for all edges e, 7¢ ' and 7, differ by at most «,

Ty e(7) > TEO) (1) = 20(nd + 1)p*

thus for all z,y € [0, Tl]]d;

Tyg e (@) 2 T () = 2a(nd + )’

This bound can be extended to all z,y € [0, n]d, up to a bounded additive error term thanks to (1.16).
Consequently, for large enough n,

Favit C {7’ €LD! (g, % + 2adpd) } (6.12)

Combining (6.11) and (6.12), we get

n—

hrgo—log]P’(LD”L[O 1]d(g,28+2adpd)> < nh_)rgo—ﬁlogIF{T( ) € LD;(g,E)) - ;logy<[ bD
Thus, by definition of I[o (1]3( ) and by (6.5),
1 (@ Cl b
Tim —— logP(LD+[O 1]d(g, % + 2adpd)> < z[;}l]g(g) -=F logy([Q bD

-0 N
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For small enough «, 2adp® < ¢, thus

n=oco nd

b
lim —log]P’(LDJ“[ }d(g,SE)) < hmﬂ[g i (g)—%l ([2 bD
Letting p — oo and € — 0, we obtain

T ye(9) < hmTIFS 1‘;3( ). (6.13)

This concludes the proof of (6.9).

Let n > 0. Lemma 4.4 and the monotonicity of the rate function imply that for all a > 0, for all
norms o < g1.g2 < (b— 2n)]||| such that gy — g2l < 2.

(o) 7@
I[ 1} (gl) S o, 1]d(92+ 7H H)

1 (g) — Criz o @)

Since the roles of g1 and go are symmetric, this gives

< _Cpmlogwa)([b b)) < —%ngu([b —,0)).

Iohalan) = 1" a(92)
Moreover, for all g1, g2 € SN,

< llg1 — 92|l tiom-

Hom

il v g1 ol v

Applying (6.5), we deduce that on the set of seminorms g such that ¢ < (b — 2n)||-||, the functions

1 [J(; (1}) form an equicontinuous family, hence we obtain the announced uniform convergence and
a>0
continuity. ]

For all X € K and D € D(a) we define

I (D) = hmTI hmT/ I .((grad D), dz—/ .((grad D) )dz. (6.14)
0 1] 0.1

a’'—0

6.2 Point-point passage time: proof of Corollary 1.6

Fix € R%\ {0}. In this subsection, we assume that 0 < a < b < oo, with ({0}) < p.(Z%). In particular,

1
ap = Qiréféu( u) > 0. (6.15)
Let Cy7 beO” and X = [—~Ci7,C17]%. The Cox-Durrett shape theorem (see [8, Theorem 3] for the case
d=2 and [13, Theorem 1.7] for the general case) implies that
Tim P(T,, x(0,0X) > bflz]) = 1. (6.16)

Corollary 1.6 is a consequence of Lemmas 6.4 and 6.5.
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Lemma 6.4. The process (T(Oﬁnx)) satisfies the LDP at speed n® with the good rate function

Top() © lallz]] , bllz[]] — [0, 00
¢+ min I%(D). (6.17)

DeD):
D(0,2)=(¢

Lemma 6.5. The function I, is continuous on [allz]| ,bl|z]]].

Proof of Lemma 6.4. For all al|z|| < { < b||z||, we define

T (¢) = lim? lim —%logP(Tn’X(O,x) >(— 5)

pp(z) =50 n—oo

1 N
and I, (¢) = lim? lim —WlogIP’(TmX(O,x) >(—e).

~pp(z) 50 oo

We claim that for all 0 < o < ap and al|z| < ¢ < b||z]|,

(@) (@) (@) oy . (a)
Ipp(m) (€)= Ipp(ﬂ?)(C) = lpp(x)(O = DGII;(I(}O): Iy (D). (6.18)
D(0.2)2¢

Indeed let € > 0 and
Ao ={DeD{" | D(0,2) > ¢ —¢}.

[e%
)

Since ’i‘;))( satisfies the LDP with the rate function I§(0‘),

() . 1 ~(a) — 1 ~(a) . (o)
Jin Iy’ (D) < nh—%o—ﬁ logP(TmX € A5> < nl;ngo—ﬁlogP(Tn7X € AE) < Dlélfffg Iy’ (D).

Besides, by the FKG inequality and the definition of «y,

P(T% € A) ~ P(T(0,2) > ¢ —¢),

thus
1 .
in I\Y(D) < lim —— log P(T) > (-
Bip (D) < lim —2qlog (T, x(00) 2 ¢ —c)
< lim —ilogIP’('i‘(a) (0, z) >C—6) < inf I(a)(D)'
—nSoo  pd XA B " DeA. X

(a)

Thanks to the lower semicontinuity of I )?
and (6.8) give (6.18).

, the same arguments as the onesused for the proof of (6.7)

The same arguments as the ones used in the proof of Lemma 6.3 lead to

I () =T () = I ) (Q) = Hmt 1) (),

a—0

We claim that

: (@) ) — : + _.
éli%TIpp(x) () = Denll)l()?()): IX(D) = Ipp(:r)(C)' (6.19)
D(0,2)=¢
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Indeed, the inequality

. +,(a) . +

i%TIPP(m) (0= Derr;g?o): Ix(D)
D(0,x)>¢

is a direct consequence of Ig?) < I}E and (6.18). Let us prove the converse inequality. For all a > 0, the

set
Ko = {D e Do)

D(O,2) > ¢, IO(D)< hmM*’(a')(o}

o' —0 pp(z)

is compact. Moreover if a; < a9 then Ig?l) > IE?Q), thus K,, € K,,. Hence the intersection Ky of all
the K, contains at least one element . We have

(D) = lim 117 (D) < limt I560)(0), (6.20)

thus (6.19).
For all al|z|| < ¢ < b||z||, define

Top(@) (¢) = lim? Tim 1 logP<‘Tn(O,x) - g‘ < 5)

e—0 n—oo  nd

and I, () = lim? lim —id logIP<"i‘n(O,x) - (‘ < 5).

o e>0 n—soo N

Thanks to Lemma 1.2, it remains to show that

The inequality
is a direct consequence of the inclusion
{"i‘n(o,x) — C‘ < 5} - {’i‘mX(O,x) >(— 5}.
To prove the converse inequality, first note that by the FKG inequality and (6.16),
P(me(o,x) >(— 6) o P(’i‘n(o,x) >(— 5),
thus

T 1 T T 1 T
lim —d logIP)(TmX(O,x) >(— 5) = T}Lrgo—mlogP(Tn(O,m) >(— 5). (6.23)

n—oo

Let n > 1 be an integer large enough so that

1 b
—(alllna]| +bd) < (+eand — <e.

Let v = (0 = Y0 YLy > Y| [na)|| = Ln:rj) be a discrete path from 0 to [nz] with minimal number of edges.
For all R € [0, |||nz]||], we define the configuration 7 by

T[R] :: {a ifee Epath (7\[0,]?})7 (624)

T, otherwise.
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On the event {Tn(O, x) > (— s}, for large enough n,

TION0,2) = Tp(0,2) > ¢ —¢
and T (0, 2) < %(aHLnxJ | +bd) < C+e.
Moreover, for all R € [0, ||[nz]] — 1],

S,

S|

0 < T,(0,2) = TH(0,2) <
hence there exists a -measurable random integer Ry such that
EI0.0) | <=

take for example the smallest R such that ’i‘q[lR] (0,2) < ¢ + . Consider a configuration 7" with the same
distribution as 7, and (X;)1<,<| lnz)|| @ family of independent Bernoulli variables with parameter 1 /2, and
assume the 7, 7" and (X, ) are independent. The configuration defined by

e {Xﬂé +(1—-X,)7e if e = (yr—1,yr), with 1 <r <|||nz]|, (6.25)

Te otherwise,

has the same distribution as 7. Reasoning as in Step 4 of the proof of Lemma 3.6, on the event

Il Lna] ] [l Lnz] ]l
(F.00) 2 ¢} ( A {x.- nm,Rom}) " ( A (oo < a+g}),

r=1

the configurations 7* and 7f0! agree on all edges except Ry of them, where they may differ up to e.
Consequently,

n— o0 nd n=oo nd

— 1 ~ — 1 .
lim —*logP(Tn(O,x) zc—s) > lim —1ogp((Tn(o,x) —g\ < (1 + }f:J)g)
>m—ilop|’1‘ (0,2) —¢| < 4 Inzlly (6.26)
T nSoo pd g LA — n . .
Combining (6.23) and (6.26) and letting € — 0, we get
7pp(ac) (C) < I;rp(:p)(C) (6.27)

Consequently, (6.21) holds. This concludes the proof of the lemma. O]

Proof of Lemma 6.5. Since I, is nondecreasing and lower semicontinuous, it is sufficient to prove the
right-continuity. Let al|z|| < ¢ < bljz||. By (6.17) there exists D € Dg?o) such that D(0,x) > ¢ and

Lop(w) () = IX (D). (6.28)
The idea is to build another metric D whose cost is slightly larger, such that D(O, x) > ¢, leading to
Tp(a) (€ < Tpp(a) (€)- (6.29)

The details of the construction of D differ whether v has an atom at b or not.
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Case 1: v({b}) > 0. Without loss of generality we assume that z; > 0 for all i € [1,d]. For all
A C[1,d], we define the sets

X4 = {yeX‘VieA,yiE?andWE[[l,d]]\A,yigzi}

and

X,/A = XA+€Z$iei.
i€A

We define D’y as the metric on X/ defined by translating D|x, by za = €Y ;c4 i€, ie. Dy =
Tr,,(D|x,) (see Lemmas 2.14 and 2.16). We define D’ as the metric on (1 4+ £)X constructed as in
Lemma 2.15, with the family of subsets (X/)a and the family of metrics (D’y)4. Finally, we define
D :=Sc L (D') (see Lemma 2.13). Thanks to the equality of gradients provided by these four lemmas,

(1+€ AC%:d]] I, (D'y) + Leb ((HE)X\ACL[[{CIHXA) o a0l ||)]
= (ng)d [I;?(D) + ((1 +e)4 — 1) Leb(X )I[g e (b||-|)]. (6.30)
We claim that . el "
T 1+

Indeed let 0 ~5 (1+¢)x be a D’-geodesic. Since the gradient of D’ is b|-|| outside the tiles X (see (2.34)),
D’(v) does not increase when replacing every excursion of v outside the tiles by the concatenation of d
(possibly degenerate) segments, such that the i*" one is colinear to e;. In particular we may assume that
v is of the form

int ext int ext ext int
T2

0% y(1) ™% 2(1) % y2) % % a(r) E g, (6.32)

where

(i) Every 4" is included in some tile X AG)-
(if) For all j € [1,r], v = [y(4) . 2(7)]-

(iii) For all j € [1,7], y(j) — 2(j) is colinear to some e;;) and Jy(j),z(j)[ € [(1 +¢&)X]\ (UAg[u d] X,/4)~

The concatenation of the translated paths (f)/;nt
thus

(j))je[[l ] is a path from 0 to = (see Figure 7),

r+1

Z D' (1) = D(0,z) > ¢. (6.33)
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!
Xi2)
it X2y X112}
. X
e i
0 0
" "
X Xty X X1y
(1+¢)X

Figure 7: Up to translations, the paths v}nt may be concatenated into a path from 0 to z.

Moreover,

>0 (55) = S blu(i) — =G

=be ) i)
j=1

Since (1 +¢e)x € X [/[1 d)> every coordinate of x appear at least once in the sum above, hence
T
> D'(45) > belal. (6.34)
j=1
Inequalities (6.33) and (6.34) give
D'(0,(1+e)z) = ¢ + be||=]],
ie. (6.31). By (6.17), (6.30), and (6.31),

¢+ eb||x|| ) 1
I <
pp(m)( l+e¢ ~(1+e)d
Besides, (4.20) and (6.9) imply I[g 1]d(b||-\|) < co. Letting e — 0, we obtain (6.29).
Case 2: v({b}) = 0. For all z € X, we write g, := (grad D),. We follow the proof of Proposition 1.4
in Basu, Ganguly and Sly [3], in a deterministic setting: rather than slightly increasing every edge

(D) + (1 +2)* = 1) Leb(X)L] L B]11)|.
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passage times in an configuration satisfying {~ (0,2) > ¢ } we slightly increase g, to build D. Let

bl — +
0 < <9< o 0.1

such that agl-|| < g < (b—9)||-||, which is compact (see Lemma 6.3). Define the sets

Let ws be a modulus of continuity for the restriction of 1™ _, on the set of norms ¢

X(6) ={z € X \ 19 l5tom < (b= 26)} and X5 (8) = X \ X1(6). (6.35)
For all z € X, define
o {gﬁsH-H if 2 € X1(9),
T UG-8 Vg if 2 € X ().

Let D denote the metric defined by (2.19), with the family (§.).cx. Note that by (2.20), for all z € X,
(grad D), < g,. Consequently,

+( 7 < — .
BD) < [ el ez [ n (0= s8]V 02)a (6.36)
The first term is upper bounded by

S oo el DAz < [T () 4 Leb (X (@)s(e) < (D) + Leb(Xhus(e). (637

Let us bound the second. Let z € X5(d). First, note that for all a > 0, by (4.20) and (4.21),
I[(Sl,)ud((b —88)|[l) < —dlogv¥([b—85,b])

< 241

0 71]d(gz) + 2dlog 2.

Letting a — 0, we get

1 (6= 89)|) < 2ar’

01 ]d(gz) + 2dlog 2. (6.38)

Moreover, by the FKG inequality,

I8 O =881V g) ST (=8O + T u(02)

< (2d + 1)[571}11(92) + 2dlog 2.

This implies

/ It (b =8|V g.)dz < (2d + 1)/ It .(g.)dz + 2d Leb(X2(9)) log 2. (6.39)
X5(6) 01 X5(6) [0:1]

Combining (6.37) and (6.39), we obtain

[+(D) < I+(D) + Leb(X)ws(e) + (2d + 1) /

2(92)dz 4+ 2d Leb(X3(6)) log 2. (6.40)
X2(5) [0 e

We claim that D(0,z) > ¢. Let 0 «)/} x be a Lipschitz path. If
Skl

T’Y
[ IOl oG > S
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then

T, T,
| a0 ®)at = 6=30) [ O Lxe (o)t

= ¢+ oz (6.41)
Otherwise,
T T, T,
LI Ol (= [ @la— [T ol te oo
¢+l
> R 1had 1
T &
_ bllzll = ¢ —9]|]]
b— 86
_ lal
~b—85°
Consequently,

T, T, T,
| 061z [ g @ [ (500'0) = 00 0/0)) Lx o ()t
T’Y
> D) +e [0 Ex o (1)t
_C+———Wll (6.42)

Combining inequalities (6.41) and (6.42) with the definition of D, we get D(0,z) > ¢. Thus, by (6.28)
and (6.40),

Ipp(m)(<+) < Ipp(x)(C) + Leb(X)ws(e) + (2d + 1)/ (9.)dz + 2d Leb(X2(6)) log 2. (6.43)

X2(9) [0 e

Besides, since ¢ < b||z||, I (D) = Iy (C) < I+<?‘” ||||) < 00, therefore by (6.38), Leb(X2(0)) converges

to 0 as 6 — 0. Thus, letting € — 0 then § — 0 in (6.43), we get (6.29). O

6.3 Crossing time: proof of Corollary 1.7

In this subsection, we only assume that v has a bounded support, i.e. 0 < a < b < oo, and X = [0, 1]d.
For all & > 0, Lemma 6.1 implies that (Tﬁ?@ss(n)) . satisfies the LDP at speed n® with the rate function
n=z

Cross

I o, b — [0, oc]

(— min Ig%daﬂ (6.44)
DE'D[0 1’ ’

Vi, D(H;, H})=G;

Corollary 1.7 is a consequence of Lemmas 6.6, 6.7 and 6.8.

Lemma 6.6. For all a >0, ¢ € o, b]%,

I(E](r)é)ss(C) = I[—g:(ﬁd (gC). (6.45)



Lemma 6.7. The process (’i‘cross(n)) o satisfies the LDP at speed n® with the rate function
n>

1z (o) _ 7+ ¢
ICTOSS(C) b i%TICI.OSS(C) - I[O,l]d(g ) (6'46)
Lemma 6.8.
(i) Icross 1S continuous on [a,b]d.
(ii) Icross s mondecreasing on [a,b]d for the componentwise order, i.e. for all ¢ = ((1,...,(q) and
¢ =((,...,¢) in [a,b]d, if G < ¢ for all i, then Ieross(C) < Ieross(¢')-
(i7i) Icross is separately convexr on [a,b]d, i.e. foralll <i<d and (1,...,C-1,Ci+1,-.-,Cq € [a,b], the
function

t— Icross(gb .. -7Ci—17t7 <i+1> . -yCd)

is convex on |a,b].

(1v) Icross(b, ..., b) < oo if and only if v({b}) > 0.
Proof of Lemma 6.6 . Fix a > 0 and ( € [a, b]d. The inequality
1604(0) < I (6 v lall) = 252 (o°) (6.47)

is straightforward. Let us prove the converse inequality.

For all A C [1,d], let

ha: |0 1}d+12e~—>{0 T
Ao T '2
€A
z—r 2+ Z(l —2z;)e; (6.48)
icA

denote the orthogonal symmetry with respect to the affine subspace {z € R4 ‘ Vie[l,d],z=1/ 2}. For
all D € Dg?), let s(D) denote the metric on [0,1]% defined as in Lemma 2.15 with the family of sets

d
<[0 , %} + %ZiGA ei) — and the family of metrics (Da)acqi 4 defined by

Da(z,y) = SC1/2(D)(hA(x)7 ha(y)),
(see (2.27) and Figure 8). We postpone the proof of Claims 6.9 and 6.10 to the end of the subsection.
Claim 6.9. Let D € D . Forall1<i<d,

(0,1]
s(D)(H;, H]) = D(H;, HY). (6.49)
Moreover,
16 4(s(D)) = 1" (D). (6.50)

Claim 6.10. Let D € D' s andn>1. Forall z,y € [O,I}d and z € 27" 178 such that © + z,y + z €

0,1)° o
s"(D)(z,y) = s"(D)(z + 2,y + 2). (6.51)
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Figure 8: Illustration of the first two iterations of s in the case d = 2.

Let K denote the set of minimizers in (6.44). Let D € K. A straightforward induction argument

using Claim 6.9 implies that for all n > 1, s"(D) € K. Moreover [ [(Oa )1}(1 is lower semicontinuous, therefore

K is compact, therefore (s"(D)),,»; has an adherence value D’ in K. Letting n — oo in (6.51), we obtain
that for all z,y € [0, 1}‘1 and z € R? with dyadic coordinates such that = + z,y + 2 € [0, 1]d,

D'(z,y) = D'(x + z,y + 2).

Since D’ is continuous, this equality is true for any z. Consequently, z — (grad D’), is constant on
10,1[%. Proposition 2.10 further implies that for all z € ]0,1[%, (grad D’). is equal to a norm g € N,
Consequently,

I506(0) = 1 u(9): (6.52)

Cross [0 ,l]d

Moreover, ¢ is invariant by orthogonal reflexions with respect to the hyperplanes {J:‘ e R4 | xT; = 0}, and
for all 1 <i<d, g(e;) > .

Letx:(:z:l,...,xd)e]RdandlSigd. We have

d
_ o—d+1
€T;€; = 2 Z Z )\jxjej,
Ae{-1,1}¢J=1
Ai=1
thus

d
|milgle;) <27+ % 9(2 /\jxjej)

Ae{-1,1}% \J=l
=1

Besides, since ¢ is invariant by orthogonal reflexions with respect to the hyperplanes {1: e R? | zj = 0},
every term the right-hand side is equal to g(x). Applying g(e;) > ¢; leads to

Gilzi| < g(),

ence g > ¢g°. Proposition 3.1 and Equation (6. yie A45).
h . P 3.1and E 6.52) yield (6.45 O
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Proof of Lemma 6.7. For all ¢ € [a,b]?, we define

Teross(€) = i%TJLIIC}O_EIOgP(HTcrOSS(n) - CHOO < 6), (6.53)
&ross(C) = ;E}%TJEEO _% IOgP<HTcross(n) - CHOO < 5)7 (6.54)

D&

_ 1
Tt . (0) = lim? Iim —— —glogP

Cross e—0' n—00

{N o (His Hi) > G — 8}), (6.55)

s
Il
—

l(—:t‘oss(g) - hmT hIIl o d IOgP

e=0 nsoco nd

o
=

{Tmm’ud(ﬂi, HY) > ¢ — 5}) (6.56)

s
Il
R

The same arguments as the ones used in the proof of Lemmas 6.2 and 6.3 lead to

I52(0) = Toa2 Q) = LR (©) = 15 (o) (6.57)
and .
ICJ’;OSS(C) = ICrOSS(C) = I:’;‘OSS(C) = llmT CrOSS (C) = I[—(")_ l]d( C) (6'58)
Following the proof of (6.21), we now show by a modification argument that
ICI“OSS(C) = TCTOSS(C) Icross(g) Ictoss(() (659)
The inequality
Teross(€) 2 Thoss(€) (6.60)

is straightforward. Let us prove the converse inequality. Consider a configuration 7 with the same
distribution as 7, and (X.) a family of independent Bernoulli variables with parameter 1/2, indexed by
UL {(re;, (r +1)e;),0 <7 <n—1}. We assume 7,7’ and (X,) to be independent. The configuration
defined by

T, =

. _{XeTé—F(l—Xe)Te 1fe€U i {(rei, (r+1)e;),0 <r <mn-—1}, (6.61)

Te otherwise,

has the same distribution as 7. As for Lemma 3.6 and (6.21), the idea is to construct an event Fav® whose
probability has the same order as P(ﬂle{'i‘n 0 1]d(H7;7 H)) > ¢ — 6}), such that

Fav® C {HTO - CHOO <e}. (6.62)

Let n>1and 1 <¢<d. For all 0 < R < n, consider the modified configuration defined by

[i,R] {a if e € {(rej, (r+1)¢;),0<r < R—1}
T =

T. otherwise.

Define the random variable

R; —IIIII]{O<R<TL 0 1%

T (H, HY) < c}

It is clear that Tz[rg 1](]Z(Hi, H!) = a < (;, thus R; is well-defined. Note that

b

G — < T (i, HY) < G (6.63)

69



Let

d
Epast = [J{(rei, (r + 1)e;),0 < r < R; — 1}, (6.64)
i=1
We can now define Fav® as
d ~ d n—1
Fav® == (ﬂ{Tn,[o,ud(HmH{) > Gi— 5}) N (ﬂ ﬂ {X(reu(r-i-l)ei) =1En. (e)}>
i=1 i=17r=0
Lo (6.65)
N <ﬂ ({7 (rei, (r + 1)e;) < a+ 5})
=1 r=0

By independence of 7,7’ and (X.),

d n
P(Fav’) = P(H{Tn,m,mm,ﬂn > G- a}> ()" o ey (6.66)

i=1
For all 1 <4 < d, there exists a T[0 n]d—geodesic nH; ~- nH/ which does not use any edge in nH;, therefore
T H;, H) = TA

n,[0,1]¢ 3 n,[0,1]¢
inequality (6.66) then implies

(H;, H]). Consequently, applying (6.63), we get (6.62) for large enough n. The

— %logP(HTcross(H) B CHOO < E)
d

1 . / p |
< —ndlogP<m{Tn,[o,1}d(Hi,Hi) > G — a}) - — log(V([a ;H—a]))

i=1

Taking the superior limit as n — oo then € — 0,

ICTOSS(C) < Ictoss(g) (667)

thus (6.59). Consequently, by Lemma 1.2 and the remark below it, (Teross(n))n>1 satisfies the LDP with
the rate function I.0ss. Besides, by (6.9) and (6.58),

ICYOSS(C) I[—g l]d( g)

Proof of Lemma 6.8. We prove the different parts in order of difficulty.

Item (ii) is a consequence of Lemma 6.7 and the monotonicity of I 0 1%

Item (iv) is a consequence of Lemma 4.2.

To prove Item (iii), it is sufficient by Lemma 6.7 to prove that for all a > 0, Ié%)ss is separately
convex on [a,b]d. Let o > 0. Without loss of generality, we only prove that, given a < (o,...,{q < b,

Icmss( C2y---,Cq) is convex. Let 0 < 0 <1 and a < (q,¢] < b. Consider the metric D defined on [0, l]d
by prescribing its gradient, as in Lemma 2.11, (2.19), with

_ gl&oCala) v if0< 2z <6,
T\ gl val | if0<2 <1.



Then

D(Hy, Hy) = 0¢ + (1 - 0)
and for all 2 <17 <d,

D(H;, H}) = G.
Moreover, by (1.20),

_ 7@
Iy 1a(D) = 01",

Equations (6.44) and (6.45) yield

I(S;Xo)ss(egl + (1 - 9)({7 C27 SRR Cd) < 01cross(<17 <27 s 7Cd) =+ (1 ) cross (Cla C27 <o >Cd)7 (668)

thus Item (iii) is proven.

d<g(C1,C2,...,Cd) V. a””) +(1— G)I[(Ooi)l}d (g(Ci’Cmm,Cd) Vi a||||>

To prove Item (i), we proceed differently whether v has an atom at b or not.

Case 1: v({b}) > 0. Let ¢ € [a,b]%, ¢ > 0 and @ > 0. Consider the metric D on [0,1]¢ defined by
prescribing its gradient, as in Lemma 2.11, (2.19), with

._{gwan-n ifze0,1—¢",
A

bl|-]] otherwise.

Then for all 1 <1 < d,
D(H;,H)) > eb+ (1 —¢)¢ = (.

Note that U = {C € la, b “ V1 <i<d, G < C’} is a neighbourhood of ¢ in [a, b] regardless of whether
¢; = b for some 7 or not. Besides,

(D) = =G (o) + [1 = = TR,

therefore
Q) < 1= TH (o) + [1 - = o)| Sl

Letting o — 0, applying (6.46) and Item (ii), we deduce that for all (e,
Loross (§) < (1= &) 18 () + [1 = (=)} 15 LBl

<1f a(9f) + 1 - =y L)

= Taoss(O) + |1 = (1= )15 (bl

A

therefore Ieposs is upper semicontinuous on [a, b]”. Since g0 is lower semicontinuous, it is continuous on

[a,b]?

Case 2: v({b}) = 0. Lemma 6.3 and Equation (6.46) imply that . es is continuous on [a,b[?. By
Proposition 1.10, I¢ess(¢) = o0 if §; = b for some 1 < i < d. Since g5 is lower semicontinuous, it is
continuous at such ¢, thus (i). O

This concludes the proof of Corollary 1.7, up to the proof of Claims 6.9 and 6.10.
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Proof of Claim 6.9. Let a > 0 and D as in the lemma. Without loss of generality, we only prove (6.49)
for i = 1. By rescaling and concatenating a D-geodesic between Hy and H| with its symmetric, one shows
the inequality

s(D)(Hy, Hy) < D(Hy, Hy).

For all z € [0,1]% and u € RY, let

. 14 1
g2(u) = mm{(gradDA)z(u),A C[1,d]st. z¢€ [O, 2] t3 Zei}
i€A

be the map involved in the definition of s(D) (see Lemma 2.15). Note that if z belongs the interior of
0,1/2]4 +1/2 > ica€i for some A C [1,d], then A in the definition of g,(u) is unique. Moreover, for all
pairs (A1, A2), ha, and ha, agree on the intersection

bl sty a)n (ol s

g Tl 2] Ta
i€Aq

We can thus define without amibiguity

h:[O,l]d—>[O,1r

2
— ha(z) if e{o 1r+12~ (6.69)
z A(z) if z '3 5 2 Ci .
€A
d
It is straightforward to check for all z € [0 , %} + %ZieA €,
(grad Da), = (grad D)y, , () © fa, (6.70)

where fj denote the orthogonal symmetry with respect to {Vi € A, z; = 0}. In particular, for all z €
d d
{0, %} + % > ica€iand u € R? such that z 4 cu € [O, %} + % > ica € for small enough e > 0,

9:(u) = (grad D)y, ,.) © fa(w). (6.71)

Let z € Hy, y € Hj and z Jh}d y a Lispchitz path. For all ¢, let A(t) denote a subset A C [1,d] such
[0,1]
that v(t) € [0,1/2]¢ +1/2 > icA €i, chosen in a measurable way. By (6.71),

T, T,
/0 gw(t)('yl(t))dt:/o (gradD)2ho'y(t) OfA(t)('V/(t))dt
T’Y
_ /0 (grad D)y, ) (h o v)'(8))dt
1 T~
= /0 (grad D)por(p) ((2h 0 7)' (1) dt. (6.72)

Moreover, 2h o 7y is a Lipschitz path going from H; to H{, then going back to Hi, therefore

Ty
| oo (@)t = De, ).
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Consequently,
S(D)(H, H}) > D(Hy, HY). (6.73)
This concludes the proof of (6.49).
By (2.33) and (6.71),

I( ) (s(D / I( o)
= Z / I( @) (grad D)y, () © fa
AC[1 d] [0, ] +5 D iea [0.11° ( )
Since the model is invariant in distribution with respect to the orthogonal transformations of Z<,
(o) ()
16 - 3 / fay I[Djl]d((grad D)oy ) 4.
AC[[l ,d] 72 ca®

Equation (6.50) follows. O

Proof of Claim 6.10. Recall definition (1.35). Let z,y,z as in the lemma. We assume that z < y, the
other cases being similar. Let v, = [2"z| and v, == [2"y]. For all v,w € [0,2" — 1] such that
v —w € 2Z%, the restriction of s”(D) on the tiles Tile(v, 2") and Tile(w, 2") are equal up to a translation
(see Figure 8, right). It is thus sufficient to show that there exists a s (D)-geodesic = ~» y included in
the box B = {z G]Rd| 5 << vy}.

We claim that for all 0 < k < (vg, e1), there exists a s™(D)-geodesic @ ~> y included in

k
2n§z’1§1}.

For k = 0, there is nothing to prove. Let 0 < k < (v, e1) such that the statement is true. There exists a

By = {z' e R?

s"(D)-geodesic © ~» y included in By. Applying to the points of vN (B, \ Bri1) the orthogonal symmetry

with respect to
k+1
/ d I
{z eR| 2] = on },

we obtain a geodesic included in By (see Figure 9). The claim follows by induction on k.

Applying a similar construction on the other side, we obtain a geodesic included in

{z’ € R4

Finally, repeating the procedure along other coordinates concludes the proof. O

6.4 Rescaled random ball: proof of Corollary 1.8

d
Let & denote the set of compact subsets of R? et X = {—l l} . Define the map

a’a

®:Dx — 8
D+ {ze X |D(0,z) <1}. (6.74)
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(D

K =
\ o |_—

v

Figure 9: The symmetry argument used in Lemma 6.10, with d = 2,n = 3,k = 1. The set B; \ B2
is represented by the shaded strip. The path v (solid line) may be transformed into a path of same
s"(D)-length, included in Bs.

The lower bound in (1.16) implies that for all n > 1, B(n) = ®(T,, x). By Lemma 6.1, it is thus sufficient
to show that ® is continuous for the Hausdorff distance. We actually prove that it is %—Lipchitz. Let
Dy,Dy € Dx and x € ®(D;). By definition of 04,

DQ(O, l‘) < Dl(O, .T) + Doo(Dla DQ) <1+ OOO(Dla DQ)
Let 0 < 2 be a Do-geodesic and y := o ([D2(0, ) — 050(D1, D2)] A0). Then y € ®(D3) and
1 1
”I - y” < 5D2($,y) < EDOO(Dla DQ)
Consequently,
=/ 1
®(Dy) C ©(D2) +B (0, ~Voo(D1, Dg)).
Transposing D1 and Ds leads to
=/ 1
®(Dy) C ©(D1) +B (0, ~Voo(D1, Dg)).

Hence @ is é—Lipschitz. O

A Large deviations tools: proof of Lemma 1.2

Let X, (X,,), I and I as in the lemma. We denote by By (z,7) the closed ball of center z and radius r in
(X,dx).
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Proof of (i). Let (x1)r>1 a sequence converging to z when k — oo in X and € > 0. Then for all n > 1,
{dx(zr, Xn) <€} C {dx(z, Xp) < e+ du(z, 28)},
thus
1 1
Tl logP(dX(a:k,Xn) < 6) > Y lOgP(dx($, Xn) <e+ dx(x,l’k)).
Letting n — oo, we get, for any ¢ > 0,

1
I(xy) > lim —— logP(dx (7, Xpn) < &+ dx(z, 7))

n=oo  nd

In particular, for large enough k,
- 1
I(xy) > nl;ngo—mlogP(dX(x,Xn) < 2e¢),
therefore
1
lim I(zg) > hm —— logP(dx (7, Xy) < 2€).
k—o0 nd

Letting € — 0 yields

lim I(zy) > I(),

k—o00
i.e. I is rate function. Likewise I is a rate function.

Proof of (ii). Let U C X be an open set and x € U. There exists ¢ > 0 such that By(z,e) C U. In
particular, for all n > 1,
{dx(z, Xn) < e} C{X, € U},
thus . .
lim —ﬁlogP(Xn el)< T}Lrgo—mlogp(dx(x,Xn) <eg) < I(x).

n—oo

Taking the infimum over x € U, we get (1.8).

Proof of (iii). Let K C X a compact set and & > 0. There exists a finite family () of elements
of K such that

K C

C*u

Bx (zp,€)-

p=1

Consequently by union bound, for all n > 1,

P(X, € K) ZIP (dx(zp, X)) <€)
< leax P(dx(zp, Xpn) <e).
<p<

Taking the log, dividing by —n? and letting n — oo, we get

lim ——logP(X € K)> lim —log( max P(dx(xp,Xn) < 8))

n— 00 nd n—00 nd

= lim min <—logIP(dX(xp,Xn) §5))

n—oo 1<p<P nd

_ _= <e). :
1211101213 nh_)rr;o nd log P(dx(xp, X5) <€) (A1)
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Let us denote by Z(¢) an element z, on which the minimum is attained. By compactness there exist a
sequence (ex)r>1 converging to 0, such that (Z(ey)),~, converges in K. We write & its limit. Then for all
k>1, B

1 1
lim ——loglP(X,, € K) > lim —— logP(dx(2(ex), Xn) < ek)
n—oo T n—oo N
1
> lim ——dlogIP’(dX(i',Xn) < ek +dx(£ﬁ,i(€k))).
n—oo N

Letting k — oo gives

1
lim ——; log P(X,, € K) > I(2),

n—o00 n

thus (1.9). O

Remark A.1. The permutation of lim and min in Equation (A.1) is false in general with lim instead of
lim, thus this proof may not be adapted to show

1 _
lim ——logP(X,, € K) > min I(z).

n—oo  n, zeK
As a consequence we have no straightforward proof of the analogue of Corollary 3.2 with Ix instead of

Iy.

B Properties of compact, convex sets with nonempty interior

In this section X € K is fixed. Let z € X. We define the function
d, x :RY— [0,00]

xn—>inf{t>0‘$t_z+z€X}. (B.1)

Lemma B.1. For all z € R and X > 0,
O, x(Ax+2) = A0, x(x+ 2). (B.2)
Moreover, ®, x is convex and for all x € X,
reX <= &, x(x) <1 (B.3)

Proof. Equation (B.2) is straightforward.
Let 21,22 € R% and 61,65 € [0, 1] such that 67 + 03 = 1. Let t1,t2 > 0 such that

r1 —z Tro — 2

+ 2z € X and +z € X.
t1 to
Then
0121 + G20 — 2 . 01t1 xr1 — =z Osto To — 2
01t + Oata 01ty + Oats t1 01t1 + Oato to
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By convexity of X,
0121 + 0o — 2

01t1 + Oato

€ X.
Consequently,

O, x (0121 + O2x2) < O1t1 + Oats.
Taking the infimum over ¢; and ty, we get

O, x (0121 + Oax2) < 019D, x (1) + 02D, x(22),

thus ®, x is convex.

We now turn to the proof of (B.3). The part == is clear. Let = € R? such that ¢, x(z) <1. Then
for all n > 1,

T f +ze X,
thus by compactness,
r—z
T = 1 +ze X.
O
Lemma B.2. Forall0 < <1,
0
d((1=0)X 46z,R4\ X) > B.4
(( ) oz \ ) T MaXyes <I>2,X(u) ( )
and
d(X Rd\((1+6)X—5z)) > 0 . (B.5)
’ ~ maxyes P, x (u)

Proof. Let 0 <9 <1andz € (1—9)X +0z. By Lemma B.1,

O, x(x) <1—0.

Consequently, for all y € B (O
homogeneous,

, m), since by Lemma B.1, ®, x(- + z) is convex and positively

P.x(x+y) = x(r—2+y+2)

|

T —z
2

+Z+z>

1
<25 [@ox(@— 24 2) + By + 2)

=&, x(2) + P2 x(y + 2)
<1—=0+ ||yl max @, x(u+ 2)
u€eS

<1,
i.e. z+y € X. This concludes the proof of (B.4). Inequality (B.5) is proven analogously. O

Lemma B.3. The boundary of X is Lebesque-negligible.
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Proof. Let 6 > 0. By Lemma (B.2),
(1-0)X+0z2CO0X C(146)X —dz,

thus
Leb(9X) < [(1+8)" = (1 - 8)] Leb(X).

Letting 0 — 0, we get Leb(0X) = 0, which concludes the proof.

Lemma B.4. Recall definitions (1.36) and (1.37). These sets satisfy

HVint(X

#Vit (X) (X) _ Leb(X).

lim —%——> = lim
k—o0 k‘d k—o0 k?d

Proof. Let § > 0. By Lemma B.2, for large enough k,

(1-6)X +0zC U Tile(v, k) C U Tile(v, k) C (14 0)X — 2,
veVIRt(X) vEVEE(X)

thus by taking the Lebesgue measure,
HVEUX) _ #VEX)

(1 —6)%Leb(X) < < (1+6)?Leb(X).

kd . kd
Consequently,
int X ext X
(1 —0)?Leb(X) < lim #Vkid() < lim # ’;{;d( ) < (14 6)%Leb(X).
k—o00 oo

Letting § — 0 concludes the proof.

Lemma B.5. The set X0 defined by (5.3) satisfies

lim max d(az, X_6) = 0.

60—0 zeX

Proof. The inequality (B.4) implies that for all § > 0,

_ C 76.
(1 5rilgé< <I>Z7X(u)>X + 51325((@%;((21))2 CX

Consequently, for all z € X,

- —0
<1 5%12§(<I>Z’X(u)>x+5%125((@3,)((@)2EX ,

thus

d(m, X_6) <

x— <1 - 5121}2% @Z,X(u)>:n - 5132§(¢Z,X(u))z

= §max(®. x (u))]}e - |

<46 maéi(szx (u)) diam(X).
ue

This concludes the proof.
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