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Abstract

We consider the standard first passage percolation model on Zd with bounded and bounded away
from zero weights. We show that the rescaled passage time T̃n,X restricted to a compact set X satisfies
a large deviation principle (LDP) at speed nd in a space of geodesic metrics, i.e. an estimation of the
form P

(
T̃n,X ≈ D

)
≈ exp

(
−I(D)nd

)
for any metric D. Moreover, I(D) can be written as the integral

over X of an elementary cost. Consequences include LDPs at speed nd for the point-point passage
time, the face-face passage time and the random ball of radius n. Our strategy consists in proving
the existence of limn→∞ − 1

nd logP
(

T̃n,[0 ,1]d ≈ g
)

for any norm g with a multidimensional subaddivity

argument, then using this result as an elementary building block to estimate P
(

T̃n,X ≈ D
)

for any
metric D.

1 Introduction

1.1 Framework

First passage percolation. Let d ≥ 2 be an integer. Let Ed the set of all non-oriented nearest-
neighbour edges in Zd. A finite sequence π := (x0, . . . , xr) of elements of Zd is called a discrete path if for
all i ∈ J0 , r − 1K, (xi, xi+1) ∈ Ed.

Let ν be a probability distribution on [0 ,∞[ and denote by a and b the infimum and supremum of its
support respectively. We consider a family (τe)e∈Ed of i.i.d. random variables with distribution ν. The
variable τe is called the passage time along the edge e. Given a discrete path π = (x0, . . . , xr), the passage
time along π is defined as

τ(π) :=
r−1∑
i=0

τ(xi,xi+1). (1.1)

For x, y ∈ Zd, the passage time between x and y is defined as

T(x, y) := inf
x

π
⇝y

τ(π), (1.2)

where the infimum is taken over all discrete paths whose endpoints are x and y. The map T(·, ·) is a
metric on Zd. We call discrete geodesic between x and y any minimizer in (1.2). A well-known result
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(Equation 2.4 in [2]) states that under a moment condition on ν, there exists an homogeneous function µ
on Rd, known as the time constant, such that almost surely, for all x ∈ Zd,

T(0, nx)
n

−−−→
n→∞

µ(x). (1.3)

The time constant is a norm if ν({0}) < pc(Zd), where pc(Zd) is the critical parameter for bond percolation
in Zd. Otherwise µ(x) = 0 for all x ∈ Zd. As a consequence of (1.3) the probability of an event of the form
{T(0, ne1) ≤ ζn}, with ζ < µ(e1) or {T(0, ne1) ≥ ζn}, with ζ > µ(e1) (the so-called lower tail and upper
tail large deviation events) converges to 0 as n → ∞. In 1984, Kesten [13] obtained estimates for the speed
of convergence: there exists (Theorem 5.2 in [13]) a convex decreasing function J : ]a , µ(e1)[ → ]0 ,∞[
such that for all a < ζ < µ(e1),

lim
n→∞

− 1
n

logP(T(0, ne1) ≤ ζn) = J(ζ). (1.4)

Moreover (Theorem 5.9 in [13]), under the assumption b < ∞, for all µ(e1) < ζ < b,

0 < lim
n→∞

− 1
nd

logP(T(0, ne1) ≥ ζn) ≤ lim
n→∞

− 1
nd

logP(T(0, ne1) ≥ ζn) < ∞. (1.5)

These results can be generalized to any direction with minor proof adaptations. Under an additional
regularity assumption on ν, Basu, Ganguly and Sly [3] proved in 2021 that the limit in (1.5) actually
exists in the case d = 2, x = e1, and as stated in their paper, their arguments are still valid for any
dimension and any x ∈ Rd \ {0}. Although not explicitly stated, their theorem implies the existence of
a rate function Ipp : [0 , b] → [0 ,∞] with which the process

(
T(0,ne1)

n

)
n≥1

satisfies the large deviation
principle (LDP) at speed nd. In other words, for all Borel sets A ⊆ [0 , b],

inf
ζ∈A

Ipp(ζ) ≤ lim
n→∞

− 1
an

logP
(T(0, ne1)

n
∈ A

)
≤ lim

n→∞
− 1
an

logP
(T(0, ne1)

n
∈ A

)
≤ inf

ζ∈Å
Ipp(ζ). (1.6)

Corollary 1.6 generalizes this LDP to any distribution with bounded support and a subcritical atom at 0.

Large deviations. We give here some general large deviations theory tools. See Dembo and Zeitouni
(2009) [11] for the general theory.

Definition 1.1. Let X a Hausdorff topological space. We call rate function a lower semicontinuous map
I : X → [0 ,∞], i.e. a map whose sublevels are closed. We further say that I is a good rate function if its
sublevels are compact.

We say that a random process (Xn)n≥1 with values in X satisfies the large deviation principle, at
speed an, with the rate function I if for every Borel set A ⊆ X ,

inf
x∈A

I(x) ≤ lim
n→∞

− 1
an

logP(Xn ∈ A) ≤ lim
n→∞

− 1
an

logP(Xn ∈ A) ≤ inf
x∈Å

I(x). (1.7)

In this article only the case an = nd is considered. Lemma 1.2 will be of constant use.

Lemma 1.2. Let (X , dX ) be a metric space and (Xn)n≥1 a random process with values in X . Define, for
all x ∈ X ,

I(x) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP(dX (x,Xn) ≤ ε)

and I(x) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP(dX (x,Xn) ≤ ε).

Then
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(i) I and I are rate functions on X .

(ii) For every open set U ⊆ X ,

lim
n→∞

− 1
nd

logP(Xn ∈ U) ≤ inf
x∈U

I(x). (1.8)

(iii) For every compact set K ⊆ X ,

lim
n→∞

− 1
nd

logP(Xn ∈ K) ≥ min
x∈K

I(x). (1.9)

Although they are straightforward adaptations of the proof of Theorem 4.1.11 in [11], we prove them
in Appendix A for completeness, and because the formalisms are quite different. Note that on a compact
metric space, with the notations of Lemma 1.2, I := I = I implies that (Xn)n≥1 satisfies a LDP at speed
nd, with the rate function I.

1.2 Main theorem

The aim of this paper is to prove that the rescaled metric T restricted to a box satisfies a LDP with a good
rate function IX (i.e. a function whose sublevels are compact) at speed nd. Unless specified otherwise we
work under the following assumption.

Assumption 1. The bounds of ν’s support satisfy 0 < a < b < ∞.

We endow Rd with the norm defined by

∥x∥ = ∥x∥1 :=
d∑
i=1

|xi|, (1.10)

for all x = (x1, . . . , xd) ∈ Rd. We define d as the metric associated with this norm. Let S denote the unit
sphere for this norm and B(z, r) (resp. B(z, r)) the open (resp. closed) ball of center z and radius r. Let
K denote the set of all compact convex subsets of Rd with nonempty interior. Elementary properties of
such subsets are gathered in Appendix B.

The rescaled metric. Given a polygonal path π = (x0, . . . , xr) with ∀i ∈ J0 , rK, xi ∈ Rd, we general-
ize (1.1) by defining

τ(π) :=
r−1∑
i=0

τ(xi, xi+1), (1.11)

where for all z, z′ ∈ Rd,

τ
(
z, z′) :=

{
τv,v′∥z − z′∥ if there exist adjacent vertices v, v′ ∈ Zd such that z, z′ ∈ [v , v′],
b∥z − z′∥ otherwise.

(1.12)

The passage time between two points x, y ∈ Rd is generalized to noninteger points by

T(x, y) := inf
x

π
⇝y

τ(π), (1.13)
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where the infimum is taken over all finite sequences whose endpoints are x and y. Note that it differs from
the usual generalization, which consists in replacing x and y by their projections on Zd. For all X ∈ K,
x, y ∈ X, we define

TX(x, y) := inf
x

π
⇝y

π⊆X

τ(π). (1.14)

The maps T and TX are metrics on Rd and X respectively. It is shown in Proposition 2.5 that the maps
defined in (1.2) and (1.13) indeed coincide on integer points. Likewise, if X =

∏d
i=1[ti , t′i] with ti, t

′
i ∈ R

and ti < t′i, and x, y ∈ X ∩Zd then restricting the infimum in the definition of TX(x, y) on discrete paths
only defines the same object.

For all n ≥ 1, we also define the rescaled versions of T and TX as

T̃n,X : X ×X −→ [0 ,∞[ and T̃n : Rd × Rd −→ [0 ,∞[ (1.15)

(x, y) 7−→ 1
n

TnX(nx, ny) (x, y) 7−→ 1
n

T(nx, ny).

The limit space. The random variable T̃n,X belongs to the space DX defined below (see Proposi-
tion 2.4).

Definition 1.3. Let X ∈ K ∪
{
Rd
}

. We define the set of admissible metrics DX as the set of all metrics
D on X such that

(i) For all x, y ∈ X,
a∥x− y∥ ≤ D(x, y) ≤ b∥x− y∥. (1.16)

(ii) The metric space (X,D) is geodesic, i.e. for all x, y ∈ X, there exists an isometry σ : [0 , D(x, y)] → X
which maps 0 to x and D(x, y) to y.

We call such a function σ a D-geodesic (or simply geodesic when there is no ambiguity) between x and y.
A geodesic may be seen as a continuous path linking x to y, whose D-length (see (1.41)) is minimal, with
a parametrization chosen such that the travel speed (with respect to the metric D) is 1. For all X ∈ K,
DX is endowed with the uniform distance defined for every D1, D2 ∈ DX by

d∞(D1, D2) := max
(x,y)∈X2

|D1(x, y) −D2(x, y)|, (1.17)

which makes it compact (see Proposition 2.1), and its Borel σ-algebra B(DX). For all D1, D2 ∈ DX we
denote by D1 ≤ D2 the assertion

∀x, y ∈ X, D1(x, y) ≤ D2(x, y), (1.18)

which defines a partial order on DX .

Definition 1.4. Let N denote the set of norms g on Rd such that a∥·∥ ≤ g ≤ b∥·∥. If D is a metric on
X ∈ K associated with such a norm, i.e. D(x, y) = g(x − y) for all x, y ∈ X, we will identify D and g.
Let N ∗ denote the subset of N consisting of norms g such that ∀x ̸= 0, g(x) < b∥x∥.

One key property of a metric D ∈ DX is that around almost every z ∈ X, D "behaves like" a norm
(gradD)z ∈ N (see Subsection 2.4).
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Result statement.

Theorem 1.5. Let X ∈ K. Under Assumption 1, the process
(
T̃n,X

)
n≥1

satisfies the large deviation
principle at speed nd with a good rate function IX : DX → [0 ,∞], i.e. for all A ∈ B(DX),

inf
D∈A

IX(D) ≤ lim
n→∞

− 1
nd

logP
(
T̃n,X ∈ A

)
≤ lim

n→∞
− 1
nd

logP
(
T̃n,X ∈ A

)
≤ inf

D∈Å
IX(D). (1.19)

Moreover, IX is nondecreasing for the partial order defined in (1.18) and for all D ∈ DX ,

IX(D) =
∫
X
I[0 ,1]d((gradD)z)dz. (1.20)

1.3 Applications

By the so-called contraction principle (see e.g. Theorem 4.2.1 in [11]), Theorem 1.5 implies a LDP at
speed nd for the image of the process (T̃n,X)n≥1 through a continuous map (see Lemma 6.1). We give
three examples of such processes.

Point-point passage time.

Corollary 1.6. Assume that 0 ≤ a < b < ∞ and ν({0}) < pc(Zd). Let x ∈ Rd \ {0}. Then the process(
T(0,nx)

n

)
n≥1

satisfies the LDP at speed nd with a good rate function Ipp(x) : [a∥x∥ , b∥x∥] → [0 ,∞].
Moreover, Ipp(x) is continuous and nondecreasing. In particular, for all a∥x∥ ≤ ζ < b∥x∥,

lim
n→∞

− 1
nd

logP
(T(0, nx)

n
≥ ζ

)
= Ipp(x)(ζ). (1.21)

Note that by the definition of the time constant (1.3) and the order of the probability of the upper
tail large deviation events (1.5), for all x ∈ Rd \ {0} and a∥x∥ ≤ ζ ≤ b∥x∥,

Ipp(x)(ζ) > 0 ⇔ ζ > µ(x).

Crossing times. For all n ≥ 1, the rescaled crossing times of the box [0 , n]d are defined as

T̃cross(n) :=
(
T̃n,[0 ,1]d(H1, H

′
1), . . . , T̃n,[0 ,1]d(Hd, H

′
d)
)
, (1.22)

where Hi :=
{
x = (x1, . . . , xd) ∈ [0 , 1]d

∣∣∣ xi = 0
}

and H ′
i :=

{
x = (x1, . . . , xd) ∈ [0 , 1]d

∣∣∣ xi = 1
}

.

Corollary 1.7. Assume that 0 ≤ a < b < ∞. The process
(
T̃cross(n)

)
n≥1

satisfies the LDP at speed nd

with the good rate function

Icross : [a , b]d −→ [0 ,∞]

ζ = (ζ1, . . . , ζd) 7−→ I+
[0 ,1]d

(
gζ
)
, (1.23)

where gζ is the seminorm defined by
gζ(u) := max

1≤i≤d
(ζi|ui|), (1.24)

and I+
[0 ,1]d

is a function on seminorms defined in Lemma 6.3 which coincide with I[0 ,1]d on elements of
N under Assumption 1. Moreover:
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(i) Icross is continuous on [a , b]d.

(ii) Icross is nondecreasing on [a , b]d for the componentwise order, i.e. for all ζ = (ζ1, . . . , ζd) and
ζ ′ = (ζ ′

1, . . . , ζ
′
d) in [a , b]d, if ζi ≤ ζ ′

i for all i, then Icross(ζ) ≤ Icross(ζ ′).

(iii) Icross is separately convex on [a , b]d, i.e. for all 1 ≤ i ≤ d and ζ1, . . . , ζi−1, ζi+1, . . . , ζd ∈ [a , b], the
function

t 7→ Icross(ζ1, . . . , ζi−1, t, ζi+1, . . . , ζd)

is convex on [a , b].

(iv) Icross(b, . . . , b) < ∞ if and only if ν({b}) > 0.

In particular, for all ζ ∈ [a , b[d,

lim
n→∞

− 1
nd

logP
(

d⋂
i=1

{
T̃n,[0 ,1]d(Hi, H

′
i) ≥ ζi

})
= Icross(ζ). (1.25)

Note that Corollaries 1.6 and 1.7 are stated in more general context than Theorem 1.5. For each
result, we first treat the case a > 0 then take the limit when a → 0 with a standard truncation argument.
The assumption ν({0}) < pc(Zd) in Corollary 1.6 is used to show that with high probability, any geodesic
from 0 to nx is included in a box of linear size, which is crucial to apply Theorem 1.5.

Rescaled growing ball. For all n ≥ 1, let us consider the rescaled growing ball

B̃(n) := 1
n

{
x ∈ Rd

∣∣∣ T(0, x) ≤ n
}

=
{
x ∈ Rd

∣∣∣ T̃n(0, x) ≤ 1
}
. (1.26)

Corollary 1.8. Under Assumption 1, the process
(
B̃(n)

)
n≥1

satisifies the LDP at speed nd with a good
rate function, in the space of compact sets of Rd endowed with the Hausdorff distance defined as

dH(K1,K2) := inf
{
ε > 0

∣∣∣ K1 ⊆ K2 + B(0, ε) and K2 ⊆ K1 + B(0, ε)
}
. (1.27)

We don’t know much about the rate function mentioned in Corollary 1.8 beyond the properties granted
by the contraction principle.

1.4 Sketch of the proof

Let X ∈ K. For all D ∈ DX , n ≥ 1 and ε > 0, we define the large deviation event

LDn,X(D, ε) :=
{
d∞
(
D, T̃n,X

)
≤ ε

}
, (1.28)

alongside with the lower and upper rate functions

IX(D) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP(LDn,X(D, ε)), (1.29)

IX(D) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP(LDn,X(D, ε)), (1.30)
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i.e. IX and IX are a special case of I and I as defined in Lemma 1.2, for (X ,dX ) = (DX , d∞). The
core of the proof consists in proving that IX and IX are actually equal, which implies the LDP thanks
to Lemma 1.2.

Section 2 presents some topological preliminaries on the space of admissible metrics DX and properties
of its elements, including the definition and existence of the gradient of any D ∈ DX at almost every
point of X. We also present general methods for constructing and transforming metrics in DX .

In Section 3 it is shown that IX and IX are nondecreasing, which will imply that IX is nondecreasing
once the equality IX = IX is proven. The general idea is that if D1 ≤ D2, then a configuration in which
T̃n,X ≃ D2 can be transformed into a configuration in which T̃n,X ≃ D1 by altering a subvolumic number
of edge passage times.

In Section 4 we prove with a somewhat classic subadditive argument (see Section 1.5) that I [0 ,1]d and
I [0 ,1]d coincide on N , i.e. Theorem 1.9. We also study properties of I[0 ,1]d on N , namely Propositions 1.10
and 1.11.

Theorem 1.9. Under Assumption 1, for all g ∈ N , I [0 ,1]d(g) = I [0 ,1]d(g). We will denote I[0 ,1]d(g) their
common value.

Proposition 1.10. Under Assumption 1, for all g ∈ N ,

(i) I[0 ,1]d(g) = ∞ if and only if g ∈ N \ N ∗ (i.e. ∃x ̸= 0, g(x) = b∥x∥) and ν({b}) = 0.

(ii) I[0 ,1]d(g) = 0 if and only if g ≤ µ, where µ is defined by (1.3).

Proposition 1.11. Under Assumption 1, the restriction of I[0 ,1]d on N ∗ is continuous for the metric d∞
defined by (1.17). If furthermore ν({b}) = 0, then the restriction of I[0 ,1]d on N is continuous.

Section 5 concludes the proof, which essentially amounts to showing that for all D ∈ DX ,

IX(D) ≤
∫
X
I[0 ,1]d(gradD)zdz ≤ IX(D). (1.31)

The general idea is to approximate D by a metric whose gradient is constant on each element of a tile
partition X then use Theorem 1.9 on each tile.

Section 6 is devoted to proving results of Subsection 1.3.

1.5 Open questions and related works

Lower tail large deviations. Theorem 1.5 does not provide a satisfying estimate for P
(
T̃n,X ≃ D

)
for metrics D ∈ DX such that D ≤ µ. Given (1.4), we conjecture that the appropriate speed for the study
of such events is n.

Upper tail large deviations under milder assumptions. Chow and Zhang proved in 2003 [6] that
under a finite exponential moment condition, the probability of the upper tail large deviation event for
the face-face passage time, i.e.

{
T̃n,[0 ,1]d(H1, H

′
1) ≥ ζ

}
with ζ > µ(e1) and the notations of Corollary 1.7,

is of order exp
(
−Θ(nd)

)
and the existence of the rate function. Note that their result is neither a special

case nor an extension of Corollary 1.7 because while the former is valid in a larger framework, the latter
provide the LDP for all directions simultaneously.
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Cranston, Gauthier and Mountford proved in 2009 [9] a criterion for P
(

1
nT(0, ne1) ≥ ζ

)
with ζ > µ(e1)

to be of order exp
(
−Θ(nd)

)
, for a certain family of distributions. On the other hand Cosco and Nakajima

recently showed [7] that if ν([t ,∞[) ≃ exp(−αtr), with α > 0 and 0 < r ≤ d, then

P
( 1
n

T(0, ne1) ≥ ζ

)
=

exp(−Θ(nr)) if 0 < r < d,

exp
(
−Θ

(
nd

(logn)d−1

))
if r = d.

Moreover, they provide a description of the associated rate functions with a variational formula.
In particular, outside the bounded support assumption, for some distributions, the probability of

different upper tail large deviation events may be of different order. Hence, for these distributions, a
single LDP for the random metric as Theorem 1.5 cannot give appropriate estimates for the probability
of all upper tail large deviation behaviours; rather, several LDPs, at different speeds, would be needed.

The subadditivity argument. The main idea of Chow and Zhang [6] to prove the existence of the
limit

lim
n→∞

− 1
nd

logP
(
T̃[0 ,1]d(H1, H

′
1) ≥ ζ

)
,

with ζ > µ(e1), is to assemble kd independent configurations on J0 , nKd satisfying
{

T̃n,[0 ,1]d(H1, H
′
1) ≥ ζ

}
to create a configuration on J0 , knKd satisfying

{
T̃kn,[0 ,1]d(H1, H

′
1) ≥ ζ

}
, leading to

P
(
T̃n,[0 ,1]d(H1, H

′
1) ≥ ζ

)kd

≤ P
(
T̃kn,[0 ,1]d(H1, H

′
1) ≥ ζ

)
,

and the end is standard. However, this simple plan fails because there is no general link between the
crossing times of the small boxes and the crossing time of the large one. The solution proposed by the
authors is to consider a subset Zn of

{
T̃n,[0 ,1]d(H1, H

′
1) ≥ ζ

}
with equivalent log-probability, such that

configurations on J0 , nKd satisfying Zn are compatible, in the sense that assembling them creates no
"shortcuts".

To prove the existence of the limit

lim
n→∞

− 1
nd

logP
( 1
n

T(0, ne1) ≥ ζ

)
,

Basu, Ganguly and Sly [3] adopt a similar approach, with an added subtlety regarding the way con-
figurations on the small boxes are assembled: each small box is fragmented into smaller tiles and the
configuration on the large box is constructed so that, for example, its top left corner is made of the top
left corner tiles of all the small boxes. To ensure that corresponding tiles are compatible, they essentially
proceed as follows:

1. Prove that for a well-chosen (random but within a deterministic range) tile size, most of the tiles
are stable, in the sense that the restriction of the random metric on each tile is similar to some
(random, tile-dependent) norm.

2. Define Zn as a subset of
{

1
nT(0, ne1) ≥ ζ

}
for which the good tile size and the norms on each tile

are prescribed, chosen so that its log-probability is equivalent to P
(

1
nT(0, ne1) ≥ ζ

)
.
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In this article, we adopt a somewhat different approach, as the subadditivity argument is only used
in the proof of Theorem 1.9. The fact that we are, at this step, only interested in uniform environments
makes our version of the argument less sophisticated than the one in [3], as tile compatibility is free. This
enables us to avoid the technical difficulty of proving tile stability properties for the random metric that
are uniform in the realization; this work is done in a rather simpler deterministic setting here.

Streams and maximal flows. The general philosophy of our proof is inspired by the recent work of
Dembin and Théret [10] on large deviations of the streams and the maximal flows: in order to estimate
the probability that there exists an admissible stream resembling a target stream, they first study the
easier case where the target stream is uniform. They then use the estimate in the elementary case as a
building block to get an estimate in the general case.

1.6 Notations

Elements of Rd. We denote by (ei)di=1 the canonical basis of Rd and ⟨·, ·⟩ the standard inner product
on Rd. We denote by ≤ the coordinatewise order on Rd. For all x = (x1, . . . , xd) ∈ Rd, we define

⌊x⌋ := (⌊x1⌋, . . . , ⌊xd⌋) and ⌈x⌉ := (⌈x1⌉, . . . , ⌈xd⌉). (1.32)

A sequence (xn)n≥1 of elements of Rd is said to have monotone coordinates if for all i ∈ J1 , dK, the sequence
(⟨xn, ei⟩)n≥1 is monotone.

Exponents. Whenever several families of edge passage times are considered and distinguished by ex-
ponents, the associated metrics T, T̃n, etc. will be marked with the same exponents. For example, T(1)

is the process defined as (1.13), with τ
(1)
e instead of τe.

Cardinal and volume. We denote by #A the cardinal of the set A. If A is a Borel subset of Rd we
denote by Leb(A) its Lebesgue measure.

Edges. Given an edge e, the sentence "z ∈ e" will mean "z belongs to the segment between endpoints of
e". For all A ⊆ Rd we will denote E(A) the set of all edges e ∈ Ed included in A. We will denote Eext(A)
the set of all edges e ∈ Ed, seen as segments, intersecting A. For all discrete path α = (αj)rj=0, we define

Epath(α) := {(αj , αj+1), j ∈ J0 , r − 1K}, (1.33)

which is consistent with the previous definition of E(·).

Paths. Given a polygonal path γ = (x0, . . . , xr), we will write "x γ
⇝ y" as a shorthand for "x0 = x and

xr = y". We will write "x γ
⇝
X
y" to further indicate that for all 0 ≤ i ≤ r, xi ∈ X. For all 0 ≤ i1 ≤ i2 ≤ r,

we define
γ [i1 ,i2] := (xi)i1≤i≤i2 . (1.34)

We call continuous path a continuous function γ : [0 , T ] → Rd. The length of the segment on which a
continuous path γ is defined will be denoted by Tγ . Given a continuous path γ, we will write "x γ

⇝ y" as a
shorthand for "γ(0) = x and γ(Tγ) = y". We will write "x γ

⇝
X
y" to further indicate that for all t ∈ [0 , Tγ ],

γ(t) ∈ X.
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Tiles. For all v ∈ Zd and k ≥ 1, we define the set

Tile(v, k) := 1
k

(
v + [0 , 1]d

)
. (1.35)

For all k ≥ 1 and X ∈ K, we define

Vint
k (X) :=

{
v ∈ Zd

∣∣∣ Tile(v, k) ⊆ X
}

(1.36)

and Vext
k (X) :=

{
v ∈ Zd

∣∣∣ Tile(v, k) ∩X ̸= ∅
}
. (1.37)

They satisfy (see Lemma B.4)

lim
k→∞

#Vext
k (X)
kd

= lim
k→∞

#Vint
k (X)
kd

= Leb(X). (1.38)

Metrics. Given X ∈ K and D ∈ DX , it will be useful to extend D to Rd by defining

D(x, y) := min
(

min
x′,y′∈X

(
b
∥∥x− x′∥∥ +D(x′, y′) + b

∥∥y − y′∥∥), b∥x− y∥
)
. (1.39)

It is a metric that verifies (1.16). Given X ∈ K ∪
{
Rd
}

, a metric D on X and two subsets A,B ⊆ X, we
define

D(A,B) := inf
x∈A
y∈B

D(x, y). (1.40)

When D is the metric associated with the norm ∥·∥, we denote by d(A,B) this quantity. If γ : [0 , T ] → X
is a continuous path, we define the D-length of γ as

D(γ) := sup
0≤t0<···<tr≤T

r−1∑
i=0

D(γ(ti), γ(ti+1)). (1.41)

By the triangle inequality, for all continuous paths x γ
⇝ y, D(γ) ≥ D(x, y). If D ∈ DX , then for all

x, y ∈ X, any geodesic x σ
⇝ y satisfies D(σ) = D(x, y). Since σ is 1-Lipschitz for D, it is Lipschitz for ∥·∥

by (1.16). Consequently, if D ∈ DX , then for all x, y ∈ X,

D(x, y) = min
{
D(γ)

∣∣∣∣∣ x γ
⇝
X
y, γ Lipschitz

}
. (1.42)

We call diameter of a subset X ⊆ Rd the quantity

diam(X) := sup
x,y∈X

∥x− y∥. (1.43)

Absolutely homogeneous functions. Let CHom
(
Rd,R

)
denote the set of all continuous and absolutely

homogeneous functions f : Rd → R, i.e. satisfying f(λx) = |λ|f(x) for all x ∈ Rd, λ ∈ R. We endow this
space with the norm defined as

∥f∥Hom := sup
u∈S

|f(u)|. (1.44)

We endow CHom
(
Rd,R

)
with the cylinder σ-algebra, which is also its Borel σ-algbera.
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2 The space DX

In this section we work under Assumption 1. We gather deterministic results about metrics in DX used
throughout the article.

2.1 Compactness

This subsection aims to show Proposition 2.1.

Proposition 2.1. For all X ∈ K, the space (DX , d∞) is compact.

We first state a criterion for elements of DX which is a direct application of the Hopf-Rinow theorem
(see e.g. [5, Proposition 3.7]).

Lemma 2.2. Let X ∈ K ∪
{
Rd
}

. Let D be a metric on X that satisfies (1.16). Then D ∈ DX (i.e.
(X,D) is geodesic) if and only if for all x, y ∈ X and ε > 0, there exists z ∈ X such that

max(D(x, z), D(z, y)) ≤ 1
2D(x, y) + ε. (2.1)

Moreover, in this case, for all x, y ∈ X, there exists z ∈ X such that

D(x, z) = D(z, y) = 1
2D(x, y). (2.2)

Proof of Proposition 2.1. We first prove that DX is closed in the space C
(
X2,R

)
of continuous functions

from X2 to R for the uniform convergence. Let (Dn)n≥1 be a sequence of elements of DX converging
to D. It is clear that D is a metric satisfying (1.16). In light of Lemma 2.2, it is therefore sufficient to
prove (2.1). Let x, y ∈ X. For all n ≥ 1, there exists zn ∈ X such that

Dn(x, zn) = Dn(zn, y) = 1
2Dn(x, y).

Hence for all n,

D(x, zn) ≤ Dn(x, zn) + d∞(D,Dn)

= 1
2Dn(x, y) + d∞(D,Dn)

≤ 1
2D(x, y) + 2d∞(D,Dn),

and the same goes for D(zn, y). Thus D satisfies (2.1) so D ∈ DX .
Note that for all D ∈ DX , x, x

′, y, y′ ∈ X,∣∣D(x, y) −D(x′, y′)
∣∣ ≤ D(x, x′) +D(y, y′) ≤ b

(∥∥x′ − x
∥∥ +

∥∥y′ − y
∥∥).

Consequently, DX is a uniformally bounded, closed and equicontinuous subset of C
(
X2,R

)
, therefore it is

compact thanks to the Arzelà-Ascoli theorem.
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2.2 Length of the geodesics

Lemma 2.3 will be of constant use, as it essentially entails that if D ∈ DX and x, y ∈ X, D(x, y) only
depends on a local environment around x, of radius O(∥x− y∥).

Lemma 2.3. Let X ∈ K∪
{
Rd
}

and D ∈ DX . Let σ be a D-geodesic between x and y. Then its ∥·∥-length
satisfies

∥σ∥ ≤ b

a
∥x− y∥. (2.3)

In particular, for all 0 ≤ t ≤ D(x, y),

∥x− σ(t)∥ ≤ b

a
∥x− y∥. (2.4)

Likewise, for all x, y ∈ X the infimums in (1.13) and (1.14) may be restricted to finite sequences included
in B

(
x, ba∥x− y∥

)
only.

Proof. Let 0 = t0 < t1 < . . . tr = D(x, y). By definition of σ, for all 0 ≤ i ≤ r − 1,

D(σ(ti), σ(ti+1)) = ti+1 − ti.

The lower bound in (1.16) implies

a∥σ(ti) − σ(ti+1)∥ ≤ ti+1 − ti.

Summing over i and applying the upper bound in (1.16), we get

a
r−1∑
i=0

∥σ(ti) − σ(ti+1)∥ ≤ D(σ) = D(x, y) ≤ b∥x− y∥,

hence (2.3). The rest is analoguous.

2.3 Properties of the passage time

In this subsection we show that the metric TX belongs to DX (Proposition 2.4), and that it is an extension
of the usual passage time (Proposition 2.5).

Proposition 2.4. For all X ∈ K, TX ∈ DX . For all n ≥ 1, T ∈ DRd.

Proof. Let X ∈ K. Then TX is clearly a metric that satisfies (1.16), so it suffices to prove that it
satisfies (2.1). Let x, y ∈ X and ε > 0. Without loss of generality, we can assume x ̸= y. Let
π = (x = x0, . . . , xr = y) be a finite sequence in X such that

τ(π) ≤ TX(x, y) + ε.

There exists r0 ∈ J0 , r − 1K such that

r0−1∑
j=0

τ(xj , xj+1) ≤ 1
2τ(π) et

r0∑
j=0

τ(xj , xj+1) > 1
2τ(π).
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A straightforward consequence of the definition of τ on Rd×Rd (see (1.12)) is that for all z, z′ ∈ [xr0 , xr0+1],

τ
(
z, z′) ≤ ∥z − z′∥

∥xr0 − xr0+1∥
τ(xr0 , xr0+1);

hence, denoting by z the point on the segment [xr0 , xr0 + 1] such that

r0−1∑
j=0

τ(xj , xj+1) + ∥xr0 − z∥
∥xr0 − xr0+1∥

τ(xr0 , xr0+1) = 1
2τ(π),

we have
r0−1∑
j=0

τ(xj , xj+1) + τ(xr0 , z) ≤ 1
2τ(π) et τ(z, xr0+1) +

r∑
j=r0+1

τ(xj , xj+1) ≤ 1
2τ(π).

Consequently,
max(TX(x, z),TX(z, y)) ≤ 1

2TX(x, y) + 1
2nε,

which concludes the proof of the first part. The second part is analoguous.

Proposition 2.5.
(i) The maps defined by (1.2) and (1.13) coincide on Zd × Zd.

(ii) Assume that X = [t1 , t′1] × · · · × [td , t′d] and x, y ∈ X ∩ Zd. Then the infimum in (1.14) is attained
on a discrete path.

Proof. We first show that the second part implies the first. By Lemma 2.3, for all x, y ∈ Zd,

T(x, y) = inf
{
τ(π)

∣∣∣∣∣ x π
⇝ y, π ⊆ x+

[
− b

a
∥x− y∥ , b

a
∥x− y∥

]d}
= T

x+[− b
a

∥x−y∥ , b
a

∥x−y∥]d(x, y),

thus the discrete path γ given by the second part with X := x+
[
− b
a∥x− y∥ , ba∥x− y∥

]d
satisfies τ(γ) =

T(x, y).
Let us show the second part. The key property of X used here is that for all z1, z2 ∈ X,

any finite sequence of points with monotone coordinates and endpoints z1 and z2 is included in X.
(2.5)

Let γ = (x = x0, x1, . . . , xr = y) be a finite sequence in X. It is sufficient to show that there exists a
discrete path from x to y with passage time at most τ(γ).

Step 1: Removing points outside Ed. For all 1 ≤ j ≤ r − 1 such that xj /∈
⋃
e∈Ed e,

τ(xj−1, xj+1) ≤ b∥xj−1 − xj+1∥
≤ b∥xj−1 − xj∥ + b∥xj − xj+1∥
= τ(xj−1, xj) + τ(xj , xj+1),

thus removing such points from γ can only decrease the passage time. From now on we may therefore
assume that for all 0 ≤ j ≤ r, xj ∈ X ∩ (

⋃
e∈Ed e).
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Step 2: Inserting integer points. Let 0 ≤ j ≤ r−1 such that xj and xj+1 are not both integer points.
Without loss of generality we may assume that xj ≤ xj+1 for coordinate-wise order. All coordinates of
xj except possibly one are integer, so xj and ⌊xj⌋ belong to a common edge. The same goes for xj+1 and
⌈xj+1⌉.

Case 2.1: Assume that ⌈xj⌉ ≤ ⌊xj+1⌋. Property (2.5) implies that ⌈xj⌉, ⌊xj+1⌋ ∈ X ∩ Zd. Moreover
the sequence γj := (xj , ⌈xj⌉, ⌊xj+1⌋, xj+1) satisfies

τ(γj) ≤ b∥xj − xj+1∥ = τ(xj , xj+1).

Case 2.2: Assume that ⌈xj⌉ ≰ ⌊xj+1⌋. Then there exists 1 ≤ i ≤ d and k ∈ Z such that

k < ⟨xj , ei⟩, ⟨xj+1, ei⟩ < k + 1,

and all other coordinates of xj and xj+1 are integers. Thus xj and xj+1 belong to the strip

Ei,k(X) :=
⋃

v=(v1,...,vd)∈X∩Zd

vi=k

[v , v + ei].

Consequently, by inserting the sequence γj between xj and xj+1 for all j satisfying Case 2.1, one constructs
a sequence γ′ := (x = y0, . . . , ys = y) such that for all 0 ≤ j ≤ s−1, at least one of the following assertions
is true:

Both yj and yj+1 are integer points. (2.6)
Both yj and yj+1 belong to a common strip Ei,k(X). (2.7)

Step 3: Deleting non integer points. Let 0 ≤ j1 ≤ j1 + 2 ≤ j2 ≤ s be indices such that yj1 and
yj2 are integer points but for all j1 < j < j2, yj is not. We claim that the subsequence of γ′ between j1
and j2 may be replaced by a sequence of points in X ∩ Zd with a lesser or equal passage time. For all
j1 < j < j2, there exists a unique pair (i(j), k(j)) such that yj ∈ Ei(j),k(j)(X). Hence, (2.7) yields the
existence of a pair (i, k) such that for all j1 ≤ j ≤ j2, yj ∈ Ei,k(X).

Case 3.1: Assume that ⟨yj1 − yj2 , ei⟩ = 0. Then

b∥yj1 − yj2∥ ≤
∑
i′ ̸=i

j2−1∑
j=j1

b|⟨yj − yj+1, ei′⟩|

≤
j2−1∑
j=j1

τ(yj , yj+1),

therefore (yj1 , yj2) is a suitable sequence (see Figure 1, top).
Case 3.2: Assume that ⟨yj1 − yj2 , ei⟩ = ±1. We only treat the subcase ⟨yj1 − yj2 , ei⟩ = 1. The other

one is similar. We have
j2−1∑
j=j1

τ(yj , yj+1) ≥
j2−1∑
j=j1

|⟨yj − yj+1, ei⟩| min
v∈V (j1,j2)

τ(v, v + ei) +
∑
i′ ̸=i

b|⟨yj − yj+1, ei′⟩|

,
where V (j1, j2) := {⌊yj⌋, j1 ≤ j ≤ j2}. Thus, by fixing v0 ∈ arg min

v∈V (j1,j2)
τ(v, v + ei),

j2−1∑
j=j1

τ(yj , yj+1) ≥ b∥yj − v0∥ +

j2−1∑
j=j1

|⟨yj − yj+1, ei⟩|

τ(v0, v0 + ei) + b∥v0 + ei − yj+1∥

≥ b∥yj − v0∥ + τ(v0, v0 + ei) + b∥v0 + ei − yj+1∥.
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yj1 yj2

Ei,k(X)

yj1

yj2

v0

Ei,k(X)

Figure 1: The subsequence of γ′ between yj1 and yj2 (solid line) can be replaced by a quicker sequence
(dotted lines) using only integer points.

Moreover the assumption on X implies that v0 and v0 + ei are elements of X. Thus (yj1 , v0, v0 + ei, yj2)
is a suitable sequence (see Figure 1, bottom). Consequently, by considering every pair of indices (j1, j2)
corresponding to consecutive integer points in γ′, one constructs a sequence γ′′ of points in X ∩ Zd, with
passage time at most τ(γ′), whose endpoints are x and y. Finally, due to property (2.5), γ′′ can be
assumed to be a discrete path.

2.4 Gradient of a metric

In this subsection X ∈ K ∪
{
Rd
}

and D ∈ DX are fixed. We define the gradient of D at a point z ∈ X.
Proposition 2.9 and Proposition 2.10 essentially state that D can be reconstructed from its gradient and
locally approximated by it, respectively. These two propositions are mere applications and reformulations
of well known results around the so-called metric derivative, a tool initially introduced by Kircheim [14]
to extend the area formula to functions taking values in a general metric space.

Lemma 2.6 will be of constant use in this subsection, as well as in Subsection 2.5. It is a consequence
of the fact that absolutely continuous functions satisfy the fundamental theorem of calculus (see e.g. [15,
Theorem 7.18]). The first part is a special case of Rademacher’s theorem (see e.g. [12, Theorem 3.1.6]).

Lemma 2.6. Let γ : [0 , T ] → Rd be a Lipschitz path. Then γ is differentiable almost everywhere and for
all 0 ≤ t1 ≤ t2 ≤ T ,

γ(t2) − γ(t1) =
∫ t2

t1
γ′(t)dt. (2.8)

Definition 2.7. The gradient of D at z ∈ X is defined as the function

(gradD)z : Rd −→ [0 ,∞[

u 7−→ lim
h→0

D(z, z + hu)
|h|

, (2.9)

with D defined by (1.39). If z ∈ X̊, then D can be replaced by D in (2.9).

Proposition 2.8 (Elementary properties of the gradient).
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(i) Let z ∈ X. Then (gradD)z is b-Lipschitz and absolutely homogeneous. In particular it belongs to
the space CHom

(
Rd,R

)
defined in Subsection 1.6.

(ii) Let z ∈ X. Then for all u ∈ Rd,

a∥u∥ ≤ (gradD)z(u) ≤ b∥u∥. (2.10)

(iii) The map

X 7−→ CHom
(
Rd,R

)
z 7−→ (gradD)z

is measurable.

Proof. Notice that for all u1, u2 ∈ Rd, h ̸= 0,

|D(z, z + hu1) −D(z, z + hu2)| ≤ D(z + hu1, z + hu2) ≤ b|h|∥u2 − u1∥.

Hence (gradD)z is b-Lipschitz. The rest is clear.

Proposition 2.9. For any Lipschitz path γ : [0 , T ] → X,

D(γ) =
∫ T

0
(gradD)γ(t)(γ′(t))dt, (2.11)

where D(γ) is defined by (1.41). In particular, for all x, y ∈ X,

D(x, y) = min
{∫ Tγ

0
(gradD)γ(t)(γ′(t))dt

∣∣∣∣∣ x γ
⇝
X
y, γ Lipschitz

}
(2.12)

and any geodesic from x to y attains the minimum.

Proof. Let γ : [0 , T ] −→ X be a Lipschitz path from x to y. Theorem 4.1.6 in [1] implies that the limit

γ̇(t) := lim
h→0

D(γ(t), γ(t+ h))
|h|

exists for almost every 0 ≤ t ≤ T , and

D(γ) =
∫ T

0
γ̇(t)dt. (2.13)

Let 0 ≤ t ≤ T be such that both γ̇(t) and γ′(t) exist. We have∣∣D(γ(t), γ(t+ h)) −D(γ(t), γ(t) + γ′(t)h)
∣∣ ≤ D

(
γ(t+ h), γ(t) + γ′(t)h

)
≤ b

∥∥γ(t+ h) − γ(t) − γ′(t)h
∥∥ = o(h).

Dividing by h and letting h → 0 yields

(gradD)γ(t)(γ′(t)) = γ̇(t). (2.14)

The proposition follows from Equations (2.13) and (2.14).
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Proposition 2.10. For almost every z ∈ X, (gradD)z ∈ N , and there exists a function ε : [0 ,∞[ →
[0 ,∞[ such that ε(0+) = 0, for all x, y ∈ X,

|D(x, y) − (gradD)z(y − x)| ≤ ε(|x− z| + |y − z|) · (|x− z| + |y − z|). (2.15)

Proof. It is a special case of Theorem 2 in [14] for the identity map. However some minor adaptations
need to be made, because their result is stated for maps taking values in a Banach space. The map

ι : (Rd, D) −→ ℓ∞(Rd)
x 7−→ D(x, ·) −D(0, ·)

is an isometry from Rd to the space ℓ∞(Rd) of bounded real functions on Rd endowed with the sup norm
denoted by ∥·∥ℓ∞(Rd), therefore

f : (Rd, ∥·∥) −→ ℓ∞(Rd)
x 7−→ ι(x)

is Lipschitz and takes values in a Banach space. Theorem 2 in [14] hence implies that almost every z ∈ X̊
satisfies the following.

(i) For all u ∈ Rd, the limit

MD(f, z)(u) := lim
h→0
h>0

1
h

∥f(z + hu) − f(z)∥ℓ∞(Rd) (2.16)

exists (the notation MD, for metric derivative is from [14]).

(ii) The function MD(f, z)(·) is a seminorm.

(iii) There exists a function ε : [0 ,∞[ → [0 ,∞[ such that ε(0+) = 0 and for all x, y ∈ X,∣∣∣∥f(x) − f(y)∥ℓ∞(Rd) − MD(f, z)(y − x)
∣∣∣ ≤ ε(|x− z| + |y − z|) · (|x− z| + |y − z|). (2.17)

Let us fix such a z. As MD(f, z)(·) is a seminorm, Equation (2.16) can be rewritten as

MD(f, z)(u) = lim
h→0

1
|h|

∥f(z + hu) − f(z)∥ℓ∞(Rd). (2.18)

Since ι is an isometry,

MD(f, z)(u) = lim
h→0

1
|h|
D(z + hu, z) = lim

h→0

1
|h|
D(z + hu, z) = (gradD)z(u),

and (2.17) can be rewritten as

|D(x, y) − MD(f, z)(y − x)| ≤ ε(|x− z| + |y − z|) · (|x− z| + |y − z|).

Hence (2.15) and (gradD)z is a seminorm. Finally, (gradD)z satisfies (2.10) therefore (gradD)z ∈ N .
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2.5 Building metrics

In this subsection we give some tools to manipulate and build admissible metrics: Lemma 2.11 essentially
states that a metric D ∈ DX can be defined by prescribing its gradient. Lemmas 2.13, 2.14 and 2.16 state
that rescaling, translating or restricting an admissible metric yields an admissible metric. Lemma 2.15
states that stitching admissible metrics on different subsets of Rd yields an admissible metric on their
reunion.

Lemma 2.11 (Prescribing the gradient of a metric). Recall the definition of CHom
(
Rd,R

)
as the space

of absolutely homogeneous functions from Rd to R in Subsection 1.6. Let

g : X −→ CHom
(
Rd,R

)
z 7→ gz

be a measurable map such that for all z ∈ X, a∥·∥ ≤ gz ≤ b∥·∥. Consider

D : X2 −→ [0 ,∞[

(x, y) 7−→ inf
{∫ Tγ

0
gγ(t)(γ′(t))dt

∣∣∣∣∣ x γ
⇝
X
y, γ Lipschitz

}
. (2.19)

Then

(i) D ∈ DX .

(ii) The infimum in (2.19) may be restricted to Lipschitz paths x γ
⇝ y such that ∥γ∥ ≤ b

a∥x− y∥.

(iii) For almost every z ∈ X,
(gradD)z ≤ gz. (2.20)

(iv) If z0 ∈ X̊ is such that gz0 is a norm and z 7→ gz is continuous at z0 for ∥·∥Hom, then gz0 = (gradD)z0.

Proof. The fact that the integral in (2.19) is well-defined is a consequence of the measurability of (z, u) 7→
gz(u), γ and γ′.

Proof of (i). The map D is clearly a metric on X. Let us show (1.16). Let x, y ∈ X. As X is convex,
the affine path defined on [0 , 1] by γ(t) := (1 − t)x+ ty is Lipschitz and takes values in X, thus

D(x, y) ≤
∫ 1

0
gγ(t)(γ′(t))dt ≤

∫ 1

0
b
∥∥γ′(t)

∥∥dt = b∥x− y∥.

For the other inequality, Lemma 2.6 implies that any Lipschitz path x
γ
⇝
X
y satisfies

∫ Tγ

0
gγ(t)(γ′(t))dt ≥

∫ Tγ

0
a
∥∥γ′(t)

∥∥dt ≥ a

∥∥∥∥∥
∫ Tγ

0
γ′(t)dt

∥∥∥∥∥ = a∥x− y∥.

In light of Lemma 2.2, it is sufficient to show that D satisfies (2.1). Let x, y ∈ X and ε > 0. By definition
of D there exists a Lipschitz path x

γ
⇝
X
y such that

∫ Tγ

0
gγ(t)(γ′(t))dt ≤ D(x, y) + ε.
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The intermediate value theorem implies the existence of 0 ≤ t0 ≤ Tγ such that∫ t0

0
gγ(t)(γ′(t))dt ≤ 1

2D(x, y) + ε

2

and
∫ Tγ

t0
gγ(t)(γ′(t))dt ≤ 1

2D(x, y) + ε

2 .

Thus
max(D(x, γ(t0)), D(γ(t0), y)) ≤ 1

2D(x, y) + ε

2 , (2.21)

therefore D ∈ DX .
Proof of (ii). It is a straightforward adaptation of the argument used in the proof of Lemma 2.3.
Proof of (iii). As the gz and the (gradD)z are continuous and absolutely homogeneous, it is sufficient

to prove that for all u in a countable dense subset of S,

for almost every z ∈ X, (gradD)z(u) ≤ gz(u). (2.22)

For the sake of simplicity, we only treat the case u = e1. The proof may be adapted to any u ∈ Rd. The
boundary of X has zero Lebesgue measure (see Lemma B.3), thus it is sufficient to prove (2.22) for almost
every z ∈ X̊. Let z ∈ X̊ and ε > 0 such that z + [0 , ε]d ⊆ X. Fubini’s theorem yields∫

[0 ,ε]d
gz+w(e1)dw =

∫
[0 ,ε]d−1

(∫ ε

0
gz+te1+w2:d(e1)dt

)
d(w2, . . . , wd),

with the notation w2:d :=
∑d
i=2wiei. Moreover, it follows from (2.19) that for all (w2, . . . , wd) ∈ [0 , ε]d−1,∫ ε

0
gz+te1+w2:d(e1)dt ≥ D(z + w2:d, z + εe1 + w2:d),

hence
1
εd

∫
[0 ,ε]d

gz+w(e1)dw ≥ 1
εd−1

∫
[0 ,ε]d−1

1
ε
D(z + w2:d, z + εe1 + w2:d)d(w2, . . . , wd). (2.23)

Lebesgue’s differentiation theorem (see e.g. [15, Theorem 7.10]) implies that as ε → 0, the left-hand side
of (2.23) converges to gz(e1) for almost every z ∈ X̊. Besides, Proposition 2.10 implies that the right-hand
side converges to (gradD)z for almost every z ∈ X̊. This proves (2.22).

Proof of (iv). Let z0 be a point of X as described in item (iv) of the lemma. Then z 7→ gz admits a
modulus of continuity ω at z0, i.e. for all z ∈ X,

∥gz − gz0∥Hom ≤ ω(∥z − z0∥),

and limε→0 ω(ε) = 0. Let u ∈ S, h ̸= 0. Let z0
γ
⇝
X
z0 + hu be a Lipschitz path such that ∥γ∥ ≤ b|h|

a . In
particular, for all 0 ≤ T ≤ Tγ ,

∥γ(T ) − z0∥ ≤ b|h|
a
.

Consequently, ∣∣∣∣∣
∫ Tγ

0
gγ(t)(γ′(t))dt−

∫ Tγ

0
gz0(γ′(t))dt

∣∣∣∣∣ ≤
∫ Tγ

0

∣∣∣gγ(t)(γ′(t)) − gz0(γ′(t))
∣∣∣dt

≤ ω

(
b|h|
a

)∫ Tγ

0

∥∥γ′(t)
∥∥dt

≤ ω

(
b|h|
a

)
· b|h|
a
.
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Hence ∣∣∣∣∣D(z0, z0 + hu) − inf
{∫ Tγ

0
gz0(γ′(t))dt

∣∣∣∣∣ z0
γ
⇝
X
z0 + hu, γ Lipschitz

}∣∣∣∣∣ ≤ ω

(
b|h|
a

)
· b|h|
a
. (2.24)

Besides, gz0 is a norm so Jensen’s inequality yields, for all Lipschitz paths γ,∫ Tγ

0
gz0(γ′(t))dt = Tγ · 1

Tγ

∫ Tγ

0
gz0(γ′(t))dt

≥ Tγ · gz0

(
1
Tγ

∫ Tγ

0
γ′(t)dt

)
.

A final application of Lemma 2.6 yields∫ Tγ

0
gz0(γ′(t))dt ≥ Tγgz0

(
hu

Tγ

)
= |h|gz0(u). (2.25)

Moreover any affine path from z0 to z0 + hu is an equality case in Equation (2.25). Thus Equation (2.24)
may be rewritten ∣∣∣∣D(z0, z0 + hu)

|h|
− gz0(u)

∣∣∣∣ ≤ ω

(
b|h|
a

)
· b
a
, (2.26)

and letting h → 0 concludes the proof.

Remark 2.12. Even in the case where gz is a norm for every z ∈ X, equality in (2.20) needs not to occur
on a positive measure subset: take X := [0 , 1]d and gz := a∥·∥ if at least one coordinate of z is rational,
b∥·∥ otherwise. In this example D = a∥·∥ but gz = b∥·∥ for almost every z ∈ X.

Lemma 2.13 (Scaling a metric). Let D ∈ DX and λ > 0. Consider the metric on λX defined for all
x, y ∈ λX by

Scλ(D)(x, y) := λD

(
x

λ
,
y

λ

)
. (2.27)

Then Scλ(D) ∈ DλX and for all z ∈ λX,

(grad Scλ(D))z = (gradD) z
λ
. (2.28)

Proof. The metric Scλ(D) clearly satisfies (1.16). To show that it is a geodesic metric, consider x, y ∈ λX.
Let x

λ
σ
⇝
X

y
λ a D-geodesic in the sense of Definition 1.3. Define

σ̃ : [0 ,Scλ(D)(x, y)] −→ λX

t 7−→ λσ

(
t

λ

)
.

Then for all 0 ≤ s ≤ t ≤ Scλ(D)(x, y),

Scλ(D)(σ̃(s), σ̃(t)) = λD

(
σ̃(s)
λ

,
σ̃(t)
λ

)
= λD

(
σ

(
s

λ

)
, σ

(
t

λ

))
.
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Since σ is an isometry from
[
0 , D

(
x
λ ,

y
λ

)]
to (X,D),

Scλ(D)(σ̃(s), σ̃(t)) = t− s,

thus σ̃ is an isometry from [0 , Scλ(D)(x, y)] to (λX,Scλ(D)). Moreover, σ̃(0) = x and σ̃(Scλ(D)(x, y)) = y.
In other words, σ̃ is a Scλ(D)-geodesic from x to y, thus Scλ(D) ∈ DλX .

The equality (2.28) comes from the fact that for all z ∈ Rd, u ∈ S and h > 0,

Scλ(D)(z, z + hu)
h

=
D
(
z
λ ,

z
λ + hu

λ

)
h
λ

. (2.29)

Lemma 2.14 (Translating a metric). Let X ∈ K, D ∈ DX and z0 ∈ X. Consider the metric on X + z0
defined for all x, y ∈ X + z0 as

Trz0(D)(x, y) := D(x− z0, y − z0). (2.30)

Then Trz0(D) ∈ DX+z0 and for all z ∈ X + z0,

(grad Trz0(D))z = (gradD)z−z0
. (2.31)

Proof. The metric Trz0(D) clearly satisfies (1.16). Moreover the image of a D-geodesic under x 7→ x+z0 is
a Trz0(D)-geodesic, so Trz0(D) ∈ DX+z0 . The equality (2.31) comes from the fact that for all z ∈ Rd, u ∈ S
and h > 0,

Trz0(D)(z, z + hu)
h

= D(z − z0, z − z0 + hu)
h

. (2.32)

Lemma 2.15 (Stitching metrics). Let (Xv)v∈V be a finite family of subsets in K, each included in X ∈ K.
Let (Dv)v∈V be a family of metrics such that for all v, Dv ∈ DXv . Consider the metric D ∈ DX defined
on X2 by (2.19), with

gz(u) :=

min
v∈V :
z∈Xv

(gradDv)z(u)

 ∨ (b∥u∥).

Then for all z ∈ Xv ∩
(⋃

v′ ̸=vXv′

)c
,

(gradD)z = (gradDv)z. (2.33)

Besides, for all z ∈ X ∩ (
⋃
v∈V Xv)c,

(gradD)z = b∥·∥. (2.34)

Proof. Recall that the infimum in Equation (2.19) can be restricted to paths included in B
(
x, ba∥x− y∥

)
.

In particular, by (2.12), for all v ∈ V and z ∈ Xv ∩
(⋃

v′ ̸=vXv′

)c
, D and Dv coincide on a neighbourhood

of z, hence (2.33). We prove (2.34) similarly.

21



Lemma 2.16 (Restricting a metric). Let Y,X ∈ K be such that Y ⊆ X, and D ∈ DX . Define

D Y (x, y) := inf
{
D(γ)

∣∣∣∣∣ x γ
⇝
Y
y, γ Lipschitz

}
. (2.35)

Then D Y ∈ DY , and it is the minimum of the set of metrics D′ ∈ DY such that for all x, y ∈ Y ,
D′(x, y) ≥ D(x, y). Moreover the gradients of D and D Y coincide on Y̊ . Finally, we have

TX Y = TY . (2.36)

Proof. Indeed, D Y is a metric satisfying (1.16), and a straightforward application of Lemma 2.2 yields
D Y ∈ DY .

Let D′ ∈ DY be such that for all x, y ∈ Y , D′(x, y) ≥ D(x, y). Then for all Lipschitz paths γ included
in Y , D′(γ) ≥ D(γ). Therefore (1.42) applied for the metric D′ implies D′ ≥ D Y .

Let z ∈ Y̊ . Lemma 2.3 implies the existence of a neighbourhood V of z such that for all x ∈ X, the
D-geodesics from z to x are included in Y , therefore D Y (z, x) = D(z, x), hence the equality of gradients.

Equation (2.36) remains to be shown. The inequality

TX Y ≤ TY (2.37)

is clear. Let us prove the converse inequality. Let σ be a TX Y -geodesic. It suffices to show that

TY (σ(0), σ(Tσ)) ≤ TX(σ), (2.38)

since (2.38) implies
TY (σ(0), σ(Tσ)) ≤ TX Y (σ) = TX Y (σ(0), σ(Tσ)).

By Lemma 2.3, for all x, y ∈ σ,

TX(x, y) = TY+B(0, b
a

∥x−y∥)(x, y).

In particular, for all ε > 0,

TX(σ) = TY+B(0,ε)(σ) ≥ TY+B(0,ε)(σ(0), σ(Tσ)). (2.39)

Besides, by continuity from above for the 1-dimensional Hausdorff measure H1,

lim
ε→0

H1
(
Ed ∩

(
(Y + B(0, ε)) \ Y

))
= 0. (2.40)

Let ε > 0 and π = (x0, . . . , xr) be a polygonal path from σ(0) to σ(Tσ) included in Y + B(0, ε). We lower
bound τ(π). Since for all 0 ≤ i ≤ r − 1 and z ∈ [xi , xi+1],

τ(xi, z) + τ(z, xi+1) ≤ τ(xi, xi+1),

we may assume that π is self-avoiding and for all 0 ≤ i ≤ r − 1, ]xi , xi+1[ is included in either Y or
(Y + B(0, ε)) \ Y . Let π̂ denote the path obtained from π by deleting points outside Y , i.e. informally by
replacing excursions outside Y by segments. Then

τ(π̂) ≤ τ(π) + bH1
(
Ed ∩

(
(Y + B(0, ε)) \ Y

))
,

thus

TY (σ(0), σ(Tσ)) ≤ TY+B(0,ε)(σ(0), σ(Tσ)) + bH1
(
Ed ∩

(
(Y + B(0, ε)) \ Y

))
.

Applying (2.40) gives
TY (σ(0), σ(Tσ)) = lim

ε→0
TY+B(0,ε)(σ(0), σ(Tσ)). (2.41)

Combining (2.39) and (2.41) yields (2.38).
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2.6 The corridor lemma

Lemma 2.17 will be our main tool to get lower bounds for T̃n,X . It is an adaptation of ideas used in the
proof of Lemma 4.1 in Basu, Ganguly and Sly [3].

Lemma 2.17. Let X,X1, . . . , XK ∈ K be such that for all 1 ≤ k ≤ K, Xk ⊆ X. Let D,D′ ∈ DX and
X0 := X \

⋃K
k=1Xk. Let 0 < δ1 ≤ diam(X) and δ2 > 0. Let 0 < ε < b

2 . Assume

∀1 ≤ k1 < k2 ≤ K, inf
x∈Xk1
y∈Xk2

∥x− y∥ ≥ δ1, (2.42)

∀k ≥ 1, ∀x, y ∈ Xk, D′
Xk

(x, y) ≥ D(x, y) − δ2, (2.43)
∀γ : ]0 , T [ → X0 Lipschitz, D′(γ) ≥ (b− ε)∥γ∥. (2.44)

Then for all x, y ∈ X,
D′(x, y) ≥ D(x, y) − 3 diam(X)

(
ε+ δ2

δ1

)
. (2.45)

Proof. Let x, y ∈ X and x
σ
⇝ y be a D′-geodesic. The naive lower bound on D′(x, y) obtained by

decomposing σ in subpaths included in only one Xk, 0 ≤ k ≤ K, and plugging in (2.43) or (2.44) to
control each subpath is useless. Indeed, each application of (2.43) results in an additive error δ2, but we
have no bound on the number of subpaths as σ may for example go back and forth between X0 and X1 a
large number of times. However a simple way to circumvent this obstacle is to replace σ with a slightly
longer path that does not have such a pathological behaviour using (2.42) and (2.44).

Step 1: Regularizing σ. We call excursion any interval ]s , s′[ such that 0 ≤ s < s′ ≤ D′(x, y) and

σ(s), σ(s′) ∈
K⋃
k=1

Xk, and σ
(]
s , s′[) ⊆ X0.

We will denote by Ex(σ) the set of all excursions. Note that excursions are pairwise disjoint. We class
them into two types, whether their endpoints belong to the same Xk or not:

Ex1(σ) :=
{]
s , s′[ ∈ Ex(σ)

∣∣∣ ∃k ∈ J1 ,KK, σ(s), σ(s′) ∈ Xk

}
Ex2(σ) := Ex(σ) \ Ex1(σ).

Let us define the Lipschitz path

γ :
[
0 , D′(x, y)

]
−→ X

t 7−→
{
σ(s) + t−s

s′−s(σ(s′) − σ(s)) if s < t < s′ with ]s , s′[ ∈ Ex1(σ),
σ(t) otherwise.

(2.46)

In other words, γ is the path obtained from σ by replacing first-type excursions by segments (see Figure 2,
left).

The path γ satisfies

D′(γ) ≤ b

b− ε
D′(x, y). (2.47)
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Figure 2: Left: in this example, σ has three first-type excursions (blue, dashed lines). The path γ is
obtained by replacing σ by an affine path on each first-type excursion (blue, dotted lines). Right: The
path γ contains only second-type excursions (red, solid lines) and subpaths included in a Xk for k ∈ J1 ,KK
(green, dashed lines).

Indeed, consider a subdivision (0 = t0 < t1 < · · · < tN = D′(x, y)). It is sufficient to show that

N−1∑
n=0

D′(γ(tn), γ(tn+1)) ≤ b

b− ε
D′(x, y). (2.48)

Without loss of generality, one may assume that (tk)Kk=0 can be written(
u0,0 < · · · < u0,i0 = s1 = t1,0 < t1,1 < · · · < t1,j1 = s′

1

= u1,0 < · · · < u1,i1 = s2 < · · · < s′
L

= uL,0 < · · · < uL,iL

)
,

where the uℓ,i don’t belong to any first-type excursion and for all 1 ≤ ℓ ≤ L, ]sℓ , s′
ℓ[ is a first-type

excursion. For all 0 ≤ ℓ ≤ L, 0 ≤ i ≤ iℓ − 1,

D′(γ(uℓ,i), γ(uℓ,i+1)) = D′(σ(uℓ,i), σ(uℓ,i+1)). (2.49)

Besides, for all 1 ≤ ℓ ≤ L, γ [sℓ ,s
′
ℓ] is an affine path, therefore (1.16) and (2.44) imply

jℓ−1∑
j=0

D′(γ(tℓ,j), γ(tℓ,j+1)) ≤ b
∥∥γ(sℓ) − γ

(
s′
ℓ

)∥∥
≤ b

b− ε
D′(γ(sℓ), γ

(
s′
ℓ

))
. (2.50)

Equations (2.49) and (2.50) yield (2.47).
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Moreover γ can be decomposed as

x = x′
0
γext

0⇝ x1
γint

1⇝ x′
1
γext

1⇝ x2
γint

2⇝ . . .
γext

r⇝ xr+1 = y,

where each path γint
i is included in one of the subsets Xk, whereas the paths γext

i do not intersect any of
the Xk except possibly at their endpoints, and for all 1 ≤ i ≤ r − 1, x′

i and xi+1 belong to different Xk

(see Figure 2, right). The paths γext
0 and γext

r may be empty.
Besides, (2.42) and (2.44) imply that for all i ∈ J1 , r − 1K,

(b− ε)δ1 ≤ (b− ε)
∥∥∥γext

i

∥∥∥ ≤ D′
(
γext
i

)
.

Summing over i and applying (1.16), we get

(r − 1)(b− ε)δ1 ≤
r−1∑
i=1

D′
(
γext
i

)
≤ D′(σ) ≤ b∥x− y∥ ≤ bdiam(X).

Consequently,
r ≤ bdiam(X)

(b− ε)δ1
+ 1 ≤ 3 diam(X)

δ1
. (2.51)

Step 2: Lower bounding D′(γ). Hypothesis (2.43) and Inequality (2.51) yield
r∑
i=1

D′
(
γint
i

)
≥

r∑
i=1

D
(
xi, x

′
i+1
)

− rδ2

≥
r∑
i=1

D
(
xi, x

′
i+1
)

− 3 diam(X)δ2
δ1

. (2.52)

Besides, (2.44) and (1.16) yield
r∑
i=0

D′
(
γext
i

)
≥

r∑
i=0

(b− ε)
∥∥x′

i − xi+1
∥∥

≥ b− ε

b

r∑
i=0

D
(
x′
i, xi+1

)
. (2.53)

Inequalities (2.52) and (2.53) imply

D′(γ) ≥ b− ε

b

(
r∑
i=1

D
(
xi, x

′
i+1
)

+
r∑
i=0

D
(
x′
i, xi+1

))
− 3 diam(X)δ2

δ1
.

Thus, by triangle inequality,

D′(γ) ≥ b− ε

b
D(x, y) − 3 diam(X)δ2

δ1
.

Therefore, by (2.47),

D′(x, y) ≥ (b− ε)2

b2 D(x, y) − 3(b− ε) diam(X)δ2
bδ1

,

= D(x, y) + −2εb+ ε2

b2 D(x, y) − 3(b− ε) diam(X)δ2
bδ1

.

≥ D(x, y) − 2ε
b
D(x, y) − 3 diam(X)δ2

δ1
. (2.54)
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It follows by (1.16) that

D′(x, y) ≥ D(x, y) − 2εdiam(X) − 3 diam(X)δ2
δ1

, (2.55)

which concludes the proof.

3 Monotonicity of the lower and upper rate functions

In this section X ∈ K is fixed and ν satisfies Assumption 1. The main result of the section is Proposi-
tion 3.1, which states the monotonicity of IX and IX (see (1.29) and (1.30)). It is proven in Subsections 3.1
and 3.2.

Proposition 3.1. The maps IX and IX are nondecreasing on DX .

A useful consequence of Proposition 3.1 is that LDn(D, ε) may be replaced in (1.29) by

LD+
n,X(D, ε) :=

{
∀x, y ∈ X, T̃n,X(x, y) ≥ D(x, y) − ε

}
. (3.1)

Corollary 3.2. For all D ∈ DX ,

lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(
LD+

n,X(D, ε)
)

= IX(D). (3.2)

Proof of Corollary 3.2. Let D ∈ DX . For all ε > 0 the inclusion LDn(D, ε) ⊆ LD+
n (D, ε) is clear, thus

lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(
LD+

n,X(D, ε)
)

≤ IX(D). (3.3)

Consider the set Kε :=
{
D′ ∈ DX

∣∣ ∀x, y ∈ X,D′(x, y) ≥ D(x, y) − ε
}
. As Kε is compact, Lemma 1.2

implies

lim
n→∞

− 1
nd

logP
(
LD+

n,X(D, ε)
)

= lim
n→∞

− 1
nd

logP
(
T̃n,X ∈ Kε

)
≥ min

D′∈Kε

IX(D′).

For all ε > 0, let D′
ε be a minimizer of IX on Kε. By compactness, there exists a decreasing sequence

(εk), converging to 0, such that D′
εk

converges to a metric D′
0 in DX . Since IX is lower semicontinuous,

letting k → ∞ yields

lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(
LD+

n,X(D, ε)
)

≥ lim
k→∞

IX

(
D′
εk

)
≥ IX(D′

0)
≥ min

D′≥D
IX(D′).

Applying Proposition 3.1 to simplify the right-hand side, we get

lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(
LD+

n,X(D, ε)
)

≥ IX(D). (3.4)
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3.1 The highway method

Let D,D0 ∈ DX be such that D0 ≥ D. Let ((xp, yp))p≥1 be a dense sequence in X2 and, for all p ≥ 1, a
D-geodesic xp

σp
⇝ yp. We consider the sequence of maps Dp : X2 → R+ defined recursively by the relation

Dp+1(x, y) := min
x′,y′∈σp+1

(
Dp(x, x′) +D(x′, y′) +Dp(y′, y)

)
∧Dp(x, y). (3.5)

Informally, Dp is the metric obtained from D0 by adding the network of highways {σ1, . . . , σp}, thus
reducing the passage time. The key arguments in the proof of Proposition 3.1 are:

1. The limiting metric for a large number of highways is D (Lemma 3.3).

2. The cost of adding one highway is negligible (Lemma 3.4).

Lemma 3.3. For all p ≥ 0, Dp ∈ DX . Moreover the sequence (Dp)p≥0 is nonincreasing and converges
to D.

Proof. It is straightforward to see that for all p ≥ 0, b∥·∥ ≥ Dp ≥ Dp+1 ≥ D.
We show by induction that for all p ≥ 0, Dp ∈ DX . Let p ≥ 0. Assume that Dp ∈ DX . Let x, y, z ∈ X.

The hardest case to consider when proving the triangle inequality for Dp+1 between x, y and z is when
there exists x′, y′, y′′, z′′ ∈ σp+1 such that

Dp+1(x, y) = Dp(x, x′) +D(x′, y′) +Dp(y′, y) and Dp+1(y, z) = Dp(y, y′′) +D(y′′, z′′) +Dp(z′′, z). (3.6)

Thanks to the definition of Dp+1, the triangle inequality for D and Dp ≥ D,

Dp+1(x, z) ≤ Dp(x, x′) +D(x′, z′) +Dp(z′, z)
≤ Dp(x, x′) +D(x′, y′) +D(y′, y) +D(y, y′′) +D(y′′, z′) +Dp(z′, z)
≤ Dp(x, x′) +D(x′, y′) +Dp(y′, y) +Dp(y, y′′) +D(y′′, z′) +Dp(z′, z)
= Dp+1(x, y) +Dp+1(y, z).

The other cases are analogous. Hence Dp+1 is a metric. Moreover a direct application of Lemma 2.2
shows that Dp+1 ∈ DX .

As DX is compact (see Proposition 2.1), to prove the convergence, it is sufficient to show that D
is the unique adherence value of (Dp)p≥0. For all k ≥ 1 and p ≥ k, Dp(xk, yk) = D(xk, yk), thus any
adherence value of (Dp)p≥0 must coincide with D on a dense subset of X2, therefore must be equal to D
by continuity.

Lemma 3.4. There exists a constant C1, depending only on a, b and X such that for all p ≥ 0, 0 < δ ≤ 1,
for large enough n,

− 1
nd

logP(LDn,X(Dp+1, C1δ)) ≤ − 1
nd

logP
(
LDn,X(Dp, δ

2)
)

− C1
nd−1 log

(
ν([a , a+ δ])

2

)
. (3.7)

We prove this lemma in Subsection 3.2.

Proof of Proposition 3.1. Let p ≥ 0 and 0 < δ ≤ 1. Taking the inferior limit in n in (3.7), we get

lim
n→∞

− 1
nd

logP(LDn,X(Dp+1, C1δ)) ≤ lim
n→∞

− 1
nd

logP
(
LDn,X(Dp, δ

2)
)
.
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Letting δ → 0 gives

IX(Dp+1) ≤ IX(Dp). (3.8)

Thanks to Lemma 3.3 and the lower semicontinuity of IX , we get

IX(D) = IX

(
lim
p→∞

Dp

)
≤ lim

p→∞
IX(Dp).

Applying (3.8), we obtain

IX(D) ≤ IX(D0). (3.9)

We proceed analogously for IX .

3.2 Proof of Lemma 3.4

Without loss of generality it is sufficient to treat the case p = 0. Let 0 < δ < 1. The idea is to build
a configuration satisfying LDn,X(D1, C1δ) by modifying certain edge passage times in a realization of
LDn,X

(
D0, δ

2) in order to "create" the geodesic σ1. We first prove a technical lemma which essentially
states that an homothety of a geodesic can be well approximated by a discrete path with a linearly upper
bounded number of edges. In the whole subsection, the sentence "for large enough n,Pn" will mean "there
exists n0 ≥ 1, depending on a, b,X and δ such that ∀n ≥ n0,Pn".

Lemma 3.5. For every D ∈ DX , every D-geodesic x σ
⇝ y and every λ > 0, there exists a discrete path

α = (αj)pj=0 and a surjective, nondecreasing, right-continuous map j : [0 , D(x, y)] → J0 , pK such that

∀0 ≤ t ≤ D(x, y),
∥∥∥αj(t) − λσ(t)

∥∥∥ ≤ d+ 1 (3.10)

∀0 ≤ t1 < t2 ≤ D(x, y), j(t2) − j(t1) ≤ λ

∫ t2

t1

∥∥σ′(u)
∥∥du+ d. (3.11)

Lemma 2.6 guarantees that the integral in (3.11) is well-defined. Note that α needs not to be included
in λX. The inequality (3.11), along with (1.16), implies

j(t2) − j(t1) ≤ λ

a
(t2 − t1) + d. (3.12)

In particular,

p ≤ λb

a
diam(X) + d. (3.13)

Proof. For all 0 ≤ t ≤ D(x, y), we write σ(t) := (σ1(t), σ2(t), . . . , σd(t)). The idea of the approximation is
to replace λσi(t) by the last visited integer. On instants t such that several coordinates of σ(t) are integer,
this approximation may have a jump between two non adjacent vertices of Zd. Since we aim to build a
discrete path, the existence of such t causes a minor problem. Applying a small translation neutralizes
this obstacle.

We claim that there exists z ∈ B(0, 1) such that for all 0 ≤ t ≤ D(x, y),

#
{
i ∈ J1 , dK

∣∣∣ λσi(t) + zi ∈ Z
}

≤ 1. (3.14)
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Indeed, let 1 ≤ i1 < i2 ≤ d and v ∈ Z2. Consider

A(i1, i2, v) :=
{
z ∈ B(0, 1)

∣∣∣ ∃0 ≤ t ≤ D(x, y), λσi1(t) + zi1 = v1 and λσi2(t) + zi2 = v2
}

⊆ {v − (λσi1(t), λσi2(t)), 0 ≤ t ≤ D(x, y)}.

Besides, t 7→ (λσi1(t), λσi2(t)) is Lipschitz therefore its image has Lebesgue measure zero (by Lipschitz
property it may be covered by a family of K balls of radius O(1/K)). Hence the set

⋃
2≤i1<i2≤d

v∈Z2

A(i1, i2, v)

of points z ∈ B(0, 1) such that (3.14) fails has measure zero.
Consider the map

σ̂ : [0 , D(x, y)] −→ Zd

t 7−→ (σ̂1(t), . . . , σ̂d(t)),

where

σ̂i(t) =
{

⌊λσi(0) + zi⌋ if (λσi([0 , t]) + zi) ∩ Z = ∅,
λσi(sup{s ∈ [0 , t] | λσi(s) + zi ∈ Z}e) + zi otherwise.

In other words, up to a translation, σ̂i(t) is an approximation of λσ(t) by the last visited integer, except
before the first visit. The map σ̂ := (σ̂1, . . . , σ̂d) is right-continuous. Moreover, (3.14) implies that its
jumps have norm 1. Let p be the total number of jumps of σ̂ and j(t) be the number of jumps before the
instant t. It is straightforward to see that j is nondecreasing, right-continuous and surjective on J0 , pK.
For all j ∈ J0 , pK, define

αj := σ̂(tj),
where tj is any element of j−1(j) (e.g. the instant of the jth jump). The inequality (3.10) is clear.

Let 1 ≤ i ≤ d. For all pairs u1 < u2 of consecutive jump instants of σ̂i, Lemma 2.6 yields

1 = |σ̂i(u1) − σ̂i(u2)|
= λ|σi(u1) − σi(u2)|

= λ

∣∣∣∣∫ u2

u1
σ′
i(u)du

∣∣∣∣
≤ λ

∫ u2

u1

∣∣σ′
i(u)

∣∣du.
Thus, for all 0 < t1 < t2 ≤ D(x, y), by denoting t1 ≤ u1 < . . . ur ≤ t2 the jump instants of σ̂i in [t1 , t2],
we have

#
{
u ∈ [t1 , t2] | σ̂i(u−) ̸= σ̂i(u)

}
= r − 1 + 1

≤ λ

∫ ur

u1

∣∣σ′
i(u)

∣∣du+ 1

≤ λ

∫ t2

t1

∣∣σ′
i(u)

∣∣du+ 1.

Summing over i we obtain (3.11).

Let z0 ∈ X̊, n ≥ 1
δ3 and (α, j) the pair given by Lemma 3.5 with parameters σ = σ1, x = x1, y = y1

and λ = n(1 − δ2). For all 0 ≤ j ≤ p, define

α̂j := αj +
⌊
nδ2z0

⌋
.
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Since α is a discrete path, α̂ is also a discrete path. Lemma B.2 implies the existence a constant C2 > 0,
depending only on X and z0, such that

d
(
(1 − δ2)X + δ2z0,Rd \X

)
≥ C2δ

2,

therefore

d
(
n(1 − δ2)X + nδ2z0,Rd \ nX

)
≥ C2nδ

2.

In particular α̂ ⊆ nX for large enough n. Consider independent random variables τB and τG (B for Box
and G for Geodesic) following the distribution ν⊗Ed , along with a i.i.d. family (Xe)e∈Epath(α̂) of Bernoulli
variables with parameter 1/2. We assume (Xe)e∈Epath(α̂) to be independent of (τB, τG). For all e ∈ Ed,
we define

τe :=
{
Xeτ

G
e + (1 −Xe)τB

e if e ∈ Epath(α̂),
τB
e otherwise.

(3.15)

The family τ = (τe)e∈Ed also follows the distribution ν⊗Ed . The core of the proof is Lemma 3.6.

Lemma 3.6. There exists a constant C3, depending only on a, b and X such that for all large enough n,
there exists a random τB-measurable set Efast ⊆ Epath(α̂) such that

{
τB ∈ LDn,X(D0, δ

2)
}

∩

 ⋂
e∈Epath(α̂)

{Xe = 1Efast(e)}

∩

 ⋂
e∈Epath(α̂)

{
τG
e ≤ a+ δ

} ⊆ {τ ∈ LDn,X(D1, C3δ)}.

(3.16)

Indeed, (3.13) yields

#Epath(α̂) = p ≤ n(1 − δ2)b
a

diam(X) + d

≤ nb

a
diam(X) + d

≤ C4n, (3.17)

where C4 only depends on a, b and diam(X). Consequently,

P

 ⋂
e∈Epath(α̂)

{
τG ≤ a+ δ

} ≥ ν([a , a+ δ])C4n

and a.s, P

 ⋂
e∈Epath(α̂)

{Xe = 1Efast(e)}

∣∣∣∣∣∣ τB

 =
(1

2

)#Epath(α̂)

≥
(1

2

)C4n

.

Thus taking probabilities on both sides of (3.16) leads to

P
(
LDn,X(D0, δ

2)
)

·
(
ν([a , a+ δ])

2

)C4n

≤ P(LDn,X(D1, C3δ)).

As LDn,X(D1, ε) is nondecreasing in ε, we have proven (3.7) with C1 := C3 ∨C4. This concludes the proof
of Lemma 3.4.
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α̂j(t0)

α̂j(t0+δ2)

α̂j(t1)

α̂j(t1+δ2)

α̂j(t2)

α̂j(t2+δ2)

α̂j(t3)
α̂j(t3+δ2)

α̂j(t4)

α̂j(t4+δ2)

α

nX

Figure 3: Edges in Efast are represented by the thick red lines.

Proof of Lemma 3.6 . Let us consider a realization of the event
{
τB ∈ LDn,X(D0, δ

2)
}

. The general idea
behind the construction of Efast is to set the passage time of all edges along α̂ between α̂j(0) to α̂j(δ2) to
a, choose t1 ≥ δ2 adequately, set the passage time of all edges along α̂ between α̂j(t1) to α̂j(t1+δ2) to a and
so on. The tk are chosen as small as possible, but such that the modified random metric never gets too
far below the target time. We will denote by Efast the set of modified edges (see Figure 3).

Preliminary step: α̂ well approaches σ1. There exists a constant C5, depending only on X and z0,
such that for large enough n, for all 0 ≤ t ≤ D(x, y),∥∥∥∥ α̂j(t)

n
− σ1(t)

∥∥∥∥ ≤ C5δ
2. (3.18)

Indeed, for all 0 ≤ t ≤ D(x, y), triangle inequality and (3.10) yield∥∥∥∥ α̂j(t)
n

− σ1(t)
∥∥∥∥ = 1

n

∥∥∥α̂j(t) − nσ1(t)
∥∥∥

≤ 1
n

[∥∥∥α̂j(t) − αj(t)

∥∥∥ +
∥∥∥αj(t) − n(1 − δ2)σ1(t)

∥∥∥ +
∥∥∥n(1 − δ2)σ1(t) − nσ1(t)

∥∥∥]
≤ 1
n

[(
nδ2∥z0∥ + 1

)
+ (d+ 1) + nδ2∥σ1(t)∥

]
.

Thus for large enough n, for all 0 ≤ t ≤ D(x, y),∥∥∥∥ α̂j(t)
n

− σ1(t)
∥∥∥∥ ≤ (2∥z0∥ + diam(X) + 1)δ2,

hence (3.18). We define
C6 := 2bC5 + 2 + b

a
. (3.19)
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Step 1: Building Efast. We claim that there exists a τB-measurable finite sequence (0 = t0 < t1 <
· · · < tK ≤ D(x, y)) such that D(x, y) − tK ≤ C6δ, and

∀1 ≤ k ≤ K, δ2 ≤ tk − tk−1 ≤ C6δ, (3.20)

∀1 ≤ k ≤ K, ∀t ≥ tk, T̃(k)
n,X

(
α̂j(tk−1)

n
,
α̂j(t)
n

)
≥ (t− tk−1)(1 − δ), (3.21)

∀1 ≤ k ≤ K, T̃(k)
n,X

(
α̂j(tk−1)

n
,
α̂j(tk)
n

)
≤ tk − tk−1, (3.22)

where

τ (k)
e :=


a if e ∈

k−1⋃
l=0

Epath
(
α̂ [j(tl) ,j(tl+δ2)]

)
τB
e otherwise.

(3.23)

Indeed let us assume that t0, . . . , tq have already been defined and satisfy (3.20), (3.21) and (3.22) for all
1 ≤ k ≤ q. Notice that if q = 0, we do not assume anything. If D(x, y) − tq ≤ C6δ then the construction
is over with K := q. Otherwise two cases need to be considered: either the latest modification has made
the passage time far below the target time, and we need to skip an appropriate number of edges along
α̂ before the next modification, or the passage time is not far below the target time, and we resume
modifying the edge passage times without any skip.

Case 1: there exists t ≥ tq + δ2 such that

T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(t)
n

)
< (t− tq)(1 − δ). (3.24)

Let

tq+1 := sup
{
t ≥ tq + δ2

∣∣∣∣∣ T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(t)
n

)
< (t− tq)(1 − δ)

}
.

We first show that (3.20) is true for k = q + 1, i.e. tq+1 ≤ tq + C6δ < D(x, y). Indeed let t > tq + C6δ.
Consider a T̃(q+1)

n,X -geodesic α̂j(tq)
n

γ
⇝

α̂j(t)
n . Let z its last point belonging to 1

n

⋃
e∈Epath

(
α̂ [0 ,j(tq)]

) e, with

the convention on edges given in Subsection 1.6 (see Figure 4). There exists 0 ≤ s ≤ tq such that
z ∈

[
α̂j(s)
n ,

α̂j(s)+1
n

]
. Inequality (3.12) implies that for large enough n,

j(tq + δ2) − j(tq) ≤ n(1 − δ2)δ2

a
+ d ≤ nδ2

a
, (3.25)

therefore the subpath of γ whose endpoints are z and α̂j(t)
n use at most nδ2

a edges e such that τB
e ̸= τ

(q+1)
e .

Consequently, for large enough n,

T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(t)
n

)
≥ T̃(q+1)

n,X

(
z,
α̂j(t)
n

)

≥ T̃B
n,X

(
z,
α̂j(t)
n

)
− bδ2

a

≥ T̃B
n,X

(
α̂j(s)
n

,
α̂j(t)
n

)
− b

n
− bδ2

a
. (3.26)
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z

γ

α̂

α̂j(t)

α̂j(tq−2+δ2) α̂j(tq−1) α̂j(tq−1+δ2)α̂j(tq−2)

α̂j(tq) α̂j(tq+δ2)

Figure 4: For the sake of simplicity, the set nX is not represented and α̂ is represented as a straight line.
The newly modified edges are represented by the thick, red, solid line while the other modified edges are
represented by the thick, green, dashed lines. Edges used by the portion of γ (blue curved line) lying
between z and α̂j(t) are either unmodified or newly modified.

Besides, since we work with a realization of
{
τB ∈ LDn,X(D0, δ

2)
}

and D0 ≥ D,

T̃B
n,X

(
α̂j(s)
n

,
α̂j(t)
n

)
≥ D

(
α̂j(s)
n

,
α̂j(t)
n

)
− δ2.

The triangle inequality then yields

T̃B
n,X

(
α̂j(s)
n

,
α̂j(t)
n

)
≥ D(σ1(s), σ1(t)) −D

(
σ1(s),

α̂j(s)
n

)
−D

(
σ1(t),

α̂j(t)
n

)
− δ2.

Applying (3.18) and (1.16) on the second and third terms we obtain

T̃B
n,X

(
α̂j(s)
n

,
α̂j(t)
n

)
≥ D(σ1(s), σ1(t)) − (2bC5 + 1)δ2. (3.27)

Combining (3.26) and (3.27) gives

T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(t)
n

)
≥ D(σ1(s), σ1(t)) − b

n
− bδ2

a
− (2bC5 + 1)δ2

≥ D(σ1(s), σ1(t)) − C6δ
2

for large enough n. Moreover, σ1 is a D-geodesic therefore D(σ1(s), σ1(t)) = t− s. Consequently,

T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(t)
n

)
≥ (t− tq) − C6δ

2.

Hence

T̃(q+1)
n,X

(
α̂j(tp)

n
,
α̂j(t)
n

)
− (t− tq)(1 − δ) ≥ (t− tq) − C6δ

2 − (t− tq)(1 − δ)

≥ δ(t− tq − C6δ) ≥ 0. (3.28)

In other words, for all t ≥ tq + C6δ, inequality (3.24) fails, thus (3.20) holds.
Inequality (3.21) for k = q + 1 is a direct consequence of j’s right-continuity and the fact that for all

t ∈ ]tq+1 , D(x, y)],

T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(t)
n

)
≥ (t− tq)(1 − δ).
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To show inequality (3.22) for k = q + 1, it suffices to notice that

T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(tq+1)

n

)
≤ T̃(q+1)

n,X

(
α̂j(tq)

n
,
α̂j(t−q+1)

n

)
+ b

n

≤ (tq+1 − tq)(1 − δ) + b

n
≤ tq+1 − tq

for large enough n.
Case 2: for all t ≥ tq + δ2, inequality (3.24) fails. We define tq+1 := tq + δ2. Only inequality (3.22) is

non trivial. Edges along α̂[j(tq) , j(tq+1)] have passage time a in the configuration τ (q+1), therefore

T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(tq+1)

n

)
≤ a

n
(j(tq+1) − j(tq)).

Applying (3.12) we get

T̃(q+1)
n,X

(
α̂j(tq)

n
,
α̂j(tq+1)

n

)
≤ a

n
·
(
n(1 − δ2)

a
(tq+1 − tq) + d

)

= (1 − δ2)(tq+1 − tq) + ad

n
≤ tq+1 − tq

for large enough n, thus (3.22) is proved for k = q + 1.
We define

Efast :=
K−1⋃
k=0

Epath
(
α̂ [j(tk) ,j(tk+δ2)]

)
. (3.29)

The integer K is the number of steps in the construction. By the lower bound in (3.20),

K ≤ D(x1, y1)
δ2 < ∞. (3.30)

Step 2: Estimating the passage time between two milestones. We claim that for all 0 ≤ k1 <
k2 ≤ K,

tk2 − tk1 − C7δ ≤ T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
≤ tk2 − tk1 , (3.31)

where C7 is a constant depending only on a, b and X.

Let 0 ≤ k1 < k2 ≤ K. The triangle inequality for T̃(K)
n,X and the inequality T̃(K)

n,X ≤ T̃(k)
n,X for all

0 ≤ k ≤ K yield

T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
≤

k2∑
k=k1+1

T̃(K)
n,X

(
α̂j(tk−1)

n
,
α̂j(tk)
n

)
,

≤
k2∑

k=k1+1
T̃(k)
n,X

(
α̂j(tk−1)

n
,
α̂j(tk)
n

)
.

Applying inequality (3.22) gives the upper bound in (3.31).
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We now turn to the lower bound. Consider a T̃(K)
n,X -geodesic

α̂j(tk1 )

n

γ
⇝

α̂j(tk2 )

n . Let z denote the first
point of γ belonging to

1
n

K−1⋃
l=k1+1

Epath
(
α̂ [j(tl) ,j(tl+δ2)]

)
.

Note that z always exists, since γ takes the value
α̂j(tk2 )

n . There exists tk1+1 ≤ t ≤ D(x1, y1) such that

z ∈
[
α̂j(t)
n

,
α̂j(t)+1
n

]
.

The edges used by γ before reaching z have the same passage time in configurations τ (k1+1) and τ (K),
therefore

T̃(K)
n,X

(
α̂j(tk1 )

n
, z

)
= T̃(k1+1)

n,X

(
α̂j(tk1 )

n
, z

)
.

Since
∥∥∥z − α̂j(t)

n

∥∥∥ ≤ 1
n ,

T̃(K)
n,X

(
α̂j(tk1 )

n
, z

)
≥ T̃(k1+1)

n,X

(
α̂j(tk1 )

n
,
α̂j(t)
n

)
− b

n
.

Applying (3.21), we get

T̃(K)
n,X

(
α̂j(tk1 )

n
, z

)
≥ (t− tk1)(1 − δ) − b

n
. (3.32)

In the easier case where t ≥ tk2 , inequality (3.32) implies

T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
≥ (tk2 − tk1)(1 − δ) − δ3 (3.33)

for large enough n, which is stronger than the desired bound. Otherwise there exists k1 + 1 ≤ k ≤ k2 − 1
such that tk ≤ t ≤ tk + δ2. Every edge along α̂ [j(tk) ,j(t)] has a passage time a in configuration τ (K), thus
inequality (3.12) yields

T̃(K)
n,X

(
α̂j(tk)
n

,
α̂j(t)
n

)
≤ a

n
(j(t) − j(tk))

≤ (1 − δ2)(t− tk) + ad

n
≤ t− tk + δ3 (3.34)

for large enough n. Since γ is a geodesic,

T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
= T̃(K)

n,X

(
α̂j(tk1 )

n
, z

)
+ T̃(K)

n,X

(
z,
α̂j(tk2 )

n

)
. (3.35)

Since
∥∥∥z − α̂j(t)

n

∥∥∥ ≤ 1
n , the triangle inequality yields

T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
≥ T̃(K)

n,X

(
α̂j(tk1 )

n
,
α̂j(t)
n

)
+ T̃(K)

n,X

(
α̂j(t)
n

,
α̂j(tk2 )

n

)
− 2b
n
. (3.36)
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Applying again the triangle inequality yields

T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
≥ T̃(K)

n,X

(
α̂j(tk1 )

n
,
α̂j(t)
n

)
+ T̃(K)

n,X

(
α̂j(tk)
n

,
α̂j(tk2 )

n

)

− T̃(K)
n,X

(
α̂j(tk)
n

,
α̂j(t)
n

)
− 2b
n
.

(3.37)

In the right-hand side of (3.37), lower bounding the first term with (3.21) and the third with (3.34) gives

T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
≥ (1 − δ)(t− tk1) + T̃(K)

n,X

(
α̂j(tk)
n

,
α̂j(tk2 )

n

)
+ (tk − t) − δ3 − 2b

n

= T̃(K)
n,X

(
α̂j(tk)
n

,
α̂j(tk2 )

n

)
+ (1 − δ)(tk − tk1) − δ(t− tk) − δ3 − 2b

n
.

As t− tk ≤ δ2, for large enough n,

T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
≥ T̃(K)

n,X

(
α̂j(tk)
n

,
α̂j(tk2 )

n

)
+ (1 − δ)(tk − tk1) − 3δ3. (3.38)

It remains to get a lower bound on T̃(K)
n,X

(
α̂j(tk)
n ,

α̂j(tk2 )

n

)
. Using recursively the same arguments one gets

a lower bound analogous to (3.38) or (in at most K steps) finally analogous to (3.33). This leads to

T̃(K)
n,X

(
α̂j(tk1 )

n
,
α̂j(tk2 )

n

)
≥ (1 − δ)(tk2 − tk1) − 3Kδ3.

Applying (3.30) and tk2 − tk1 ≤ D(x1, y1), hence the lower bound in (3.31) is proven.

Step 3: Extending (3.31) beyond milestones. We show that for all z1, z2 ∈ X,

D1(z1, z2) − C8δ ≤ T̃(K)
n,X(z1, z2) ≤ D1(z1, z2) + C8δ, (3.39)

where C8 may only depend on a, b and X.

Let z1, z2 ∈ X. We start with the lower bound. Let z1
γ
⇝ z2 be a T̃(K)

n,X -geodesic. If γ does not
intersect 1

nEfast, then as τB ∈ LDn,X(D0, δ
2),

T̃(K)
n,X(γ) = T̃B

n,X(γ) ≥ D0(z1, z2) − δ2 ≥ D1(z1, z2) − δ2,

thus the lower bound in (3.39) is proven. Otherwise γ can be decomposed as

z1
γL⇝ zL

γM⇝ zR
γR⇝ z2,

where zL and zR are respectively the first and last visit of γ in 1
nEfast. We have

T̃(K)
n,X(γ) = T̃(K)

n,X(γL) + T̃(K)
n,X(γM) + T̃(K)

n,X(γR)

= T̃B
n,X(γL) + T̃(K)

n,X(γM) + T̃B
n,X(γR),

thus

T̃(K)
n,X(γ) = T̃B

n,X(z1, zL) + T̃(K)
n,X(zL, zR) + T̃B

n,X(zR, z2). (3.40)
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As τB ∈ LDn,x(D0, δ
2),

T̃B
n,X(z1, zL) ≥ D0(z1, zL) − δ2 ≥ D1(z1, zL) − δ2 (3.41)

and
T̃B
n,X(zR, z2) ≥ D0(zR, z2) − δ2 ≥ D1(zR, z2) − δ2. (3.42)

By definition of zL there exists tL ∈ {tk, 1 ≤ k ≤ K − 1} and tL ≤ sL ≤ tL + δ2 such that zL ∈[
α̂j(sL)
n ,

α̂j(sL)+1
n

]
. Therefore (3.12) yields∥∥∥∥zL −

α̂j(tL)
n

∥∥∥∥ ≤
(1
a

+ 1
)
δ2. (3.43)

Applying (3.18) gives

∥zL − σ1(tL)∥ ≤
(
C5 + 1

a
+ 1

)
δ2. (3.44)

We define tR similarly and zR satisfies analogous inequalities. Triangle inequality, (3.43) and (1.16) yield

T̃(K)
n,X(zL, zR) ≥ T̃(K)

n,X

(
α̂j(tL)
n

,
α̂j(tR)
n

)
− 2b

(1
a

+ 1
)
δ2.

Applying (3.31), we get

T̃(K)
n,X(zL, zR) ≥ |tL − tR| − 2b

(1
a

+ 1
)
δ2 − C7δ. (3.45)

Besides, the triangle inequality, (3.44) and (1.16) yield

D1(zL, zR) ≤ D1(σ1(tL), σ1(tR)) + 2b
(
C5 + 1

a
+ 1

)
δ2.

By definition of D1 (see (3.5)), D1(σ1(tL), σ1(tR)) = D(σ1(tL), σ1(tR)). Moreover, σ1 is a D-geodesic,
therefore

D1(zL, zR) ≤ |tL − tR| + 2b
(
C5 + 1

a
+ 1

)
δ2. (3.46)

Combining (3.45) and (3.46), we get

T̃(K)
n,X(zL, zR) ≥ D1(zL, zR) − 2b

(
C5 + 2

a
+ 2

)
δ2 − C7δ. (3.47)

Inequalities (3.41), (3.42) and (3.47) give a lower bound for each term in (3.40), leading to the lower
bound in (3.39).

We now turn to the upper bound in (3.39). Recall the definition of D1 given in (3.5). If D1(z1, z2) =
D0(z1, z2) then

T̃(K)
n,X(z1, z2) ≤ T̃B

n,X(z1, z2) ≤ D0(z1, z2) + δ2 = D1(z1, z2) + δ2. (3.48)
Otherwise, there exists zL, zR ∈ σ1 such that D1(z1, z2) = D0(z1, zL) +D(zL, zR) +D0(zR, z2), therefore

T̃(K)
n,X(z1, z2) ≤ T̃(K)

n,X(z1, zL) + T̃(K)
n,X(zL, zR) + T̃(K)

n,X(zR, z2)

≤ T̃B
n,X(z1, zL) + T̃(K)

n,X(zL, zR) + T̃B
n,X(zR, z2)

≤ D0(z1, zL) + T̃(K)
n,X(zL, zR) +D0(zR, z2) + 2δ2. (3.49)

Besides, there exist 0 ≤ sL, sR ≤ D(x1, y1) such that zL = σ1(sL) and zR = σ1(sR). The upper bound
in (3.20), along with D(x1, y1) − tK ≤ C6δ, imply the existence of tL, tR ∈ {tk, k ∈ J1 ,KK} such that
|tL − sL|, |tR − sR| ≤ C6δ. Proceeding as for (3.47), we show that the second term in (3.49) is upper
bounded by D(zL, zR) + O(δ) = D1(zL, zR) + O(δ), hence the upper bound in (3.39) is proven.
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Step 4: Conclusion. On the event

{
τB ∈ LDn,X(D0, δ

2)
}

∩

 ⋂
e∈Epath(α̂)

{Xe = 1Efast(e)}

 ∩

 ⋂
e∈Epath(α̂)

{
τG ≤ a+ δ

},
configuration τ and τ (K) agree on all edges except those in Efast where they may differ up to δ. Conse-
quently, for large enough n,

d∞
(
T̃(K)
n,X , T̃n,X

)
≤ δ#Efast

n
.

Moreover, #Efast is bounded by #α̂, thus by (3.13), for large enough n,

#Efast ≤ n(1 − δ2)b
a

diam(X) + d ≤ nb

a
diam(X).

Consequently, for large enough n,

d∞
(
T̃(K)
n,X , T̃n,X

)
≤ bδ

a
diam(X). (3.50)

Combining inequalities (3.39) and (3.50) concludes the proof.

4 The elementary rate function

In this section we prove Theorem 1.9, Proposition 1.10 and Proposition 1.11. We work under Assump-
tion 1.

4.1 Existence

In this subsection we fix g ∈ N and prove Theorem 1.9, which is a consequence of Lemma 4.1.

Lemma 4.1. There exists a constant C9 > 0, depending only on a, b and d, such that for all ε > 0 and
0 < δ ≤ 1, for large enough n, for large enough m,

− 1
md

logP
(
LDm,[0 ,1]d(g, C9(ε+ δ))

)
≤ − 1

nd
logP

(
LDn,[0 ,1]d(g, δ2)

)
− C9δ log ν([b− ε , b]). (4.1)

Proof of Theorem 1.9. Let ε > 0 and 0 < δ ≤ ε ∧ 1. For all m ≥ 1, LDm,[0 ,1]d(g, C9(ε+ δ)) ⊆
LDm,[0 ,1]d(g, 2C9ε). Hence (4.1) implies that for large enough n, for large enough m,

− 1
md

logP
(
LDm,[0 ,1]d(g, 2C9ε)

)
≤ − 1

nd
logP

(
LDn,[0 ,1]d(g, δ2)

)
− C9δ log ν([b− ε , b]).

Considering the superior limit in m then the inferior limit in n, we get

lim
m→∞

− 1
md

logP
(
LDm,[0 ,1]d(g, 2C9ε)

)
≤ lim

n→∞
− 1
nd

logP
(
LDn,[0 ,1]d(g, δ2)

)
− C9δ log ν([b− ε , b]). (4.2)

Letting δ → 0 then ε → 0 gives I [0 ,1]d(g) ≤ I [0 ,1]d(g). This concludes the proof.
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1 ≃ δ

Tile∗
n(0,3) Tile∗

n(1,3) Tile∗
n(2,3) Tile∗

n(3,3)
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n(0,2) Tile∗

n(1,2) Tile∗
n(2,2) Tile∗

n(3,2)

Tile∗
n(0,1) Tile∗

n(1,1)

Tile∗
n(0,0)

Tile∗
n(2,1)

Tile∗
n(1,0) Tile∗

n(2,0)

Tile∗
n(3,1)

Tile∗
n(3,0)

m

n

Figure 5: Illustration of the tiles defined by (4.3) in the case d = 2, k = 4.

Proof of Lemma 4.1. Fix ε > 0 and 0 < δ ≤ 1. Let n,m ≥ 1 and k be the only integer such that
nk(1 + δ) < m ≤ n(k + 1)(1 + δ). We will build an event included in LDm,[0 ,1]d(g, C9(ε+ δ)) from kd

independent realizations of LDn,[0 ,1]d(g, δ2).

For all v ∈ J0 , k − 1Kd, let

Tile∗
n(v) := [0 , 1]d + ⌊n(1 + δ)⌋

n
v (4.3)

(see Figure 5). The set nTile∗
n(v) is an integer translation of [0 , n]d therefore by stationarity of (τe)e∈Ed ,

P
(
LDn,Tile∗

n(v)(g, δ2)
)

= P
(
LDn,[0 ,1]d(g, δ2)

)
. (4.4)

Moreover, for large enough n, the variables
(
Tn,Tile∗

n(v)
)
v∈J0 ,k−1Kd

live on pairwise disjoint subsets of

Ed therefore are independent. Let Corridor denote the set of edges included in [0 ,m]d but not in any
nTile∗

n(v). This set satisfies

# Corridor = #E
(
J0 ,mKd

)
− kd#E

(
J0 , nKd

)
≤ d(m+ 1)d − dkd(n− 1)d. (4.5)

We define the favorable event

Fav∗ :=

 ⋂
v∈J0 ,k−1Kd

LDn,Tile∗
n(v)(g, δ2)

 ∩

 ⋂
e∈Corridor

{τe ≥ b− ε}

. (4.6)

Applying (4.4) and (4.5) gives

− 1
md

logP(Fav∗) ≤ −
(
k

m

)d
logP

(
LDn,[0 ,1]d(g, δ2)

)
− d(m+ 1)d − dkd(n− 1)d

md
log ν([b− ε , b])

≤ − 1
nd

logP
(
LDn,[0 ,1]d(g, δ2)

)
− C10δ log ν([b− ε , b]), (4.7)
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for large enough n, large enough m, where C10 only depends on d.
From now on we assume that Fav∗ occurs. We first lower bound T̃m,[0 ,1]d using Lemma 2.17. For all

v1 ̸= v2,
inf

x∈nTile∗
n(v1)

y∈nTile∗
n(v2)

∥x− y∥ ≥ nδ − d. (4.8)

Equation (2.36) in Lemma 2.16 implies that on the event LDn,Tile∗
n(v)(g, δ2), for all v ∈ J0 , k − 1Kd,

x, y ∈ nTile∗
n(v),

T[0 ,m]d nTile∗
n(v)

(x, y) = TnTile∗
n(v)(x, y)

≥ g(x− y) − nδ2. (4.9)

On the event
⋂
e∈Corridor{τe ≥ b− ε} for all Lipschitz paths γ included in [0 ,m]d \

⋃
v∈J0 ,k−1Kd nTile∗

n(v),

T[0 ,m]d(γ) ≥ (b− ε)∥γ∥. (4.10)

Thanks to Lemma 2.17 with δ1 := δn− d and δ2 := nδ2, we get, for all x, y ∈ [0 ,m]d,

T[0 ,m]d(x, y) ≥ g(x− y) − 3 diam
(
[0 ,m]d

)(
ε+ nδ2

nδ − d

)
≥ g(x− y) − 4dm(ε+ δ)

for large enough n, with fixed δ > 0. Thus for all x, y ∈ [0 , 1]d,

T̃m,[0 ,1]d(x, y) ≥ g(x− y) − 4d(ε+ δ). (4.11)

We now turn to the upper bound. For all v ∈ J0 , k − 1Kd, for all z, z′ ∈ nTile∗
n(v), on the event

LDn,Tile∗
n(v)(g, δ2),

T[0 ,m]d(z, z′) ≤ TnTile∗
n(v)(z, z′) ≤ g(z − z′) + δ2n. (4.12)

Let x, y ∈ [0 ,m]d and x̂, ŷ their respective projections on
⋃
v∈J0 ,k−1Kd nTile∗

n(v) (in case of non-unicity
the choice does not matter). Consider the map

f :
⋃
v

nTile∗
n(v) −→ [0 , nk]d

z 7−→ z − (⌊n(1 + δ)⌋ − n)v if z ∈ Tile∗
n(v),

which translates nTile∗
n(v) onto nTile(v, 1), defined by (1.35). We claim that with fixed n and δ, for

large enough m,
∥x− f(x̂)∥ ≤ 2dk(nδ + 1). (4.13)

Indeed,

∥x− x̂∥ ≤ d[m− n− (k − 1)⌊n(1 + δ)⌋]
≤ d[m− n− (k − 1)n(1 + δ) + (k − 1)]
≤ d[n(1 + 2δ) + (k − 1)],
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x0 = f(x̂)
x1

x2

x3

x4

x5

x6 = f(ŷ)

z0 = x̂

z′
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z1
z′

1

z2

z′
2

z3

z′
3

z4

z′
4

z5

z′
5 = ŷ

f

Figure 6: Construction of the points (zi)0≤i≤r and (z′
i)0≤i≤r−1 in the case d = 2, k = 4.

and

∥x̂− f(x̂)∥ ≤ (⌊n(1 + δ)⌋ − n)(k − 1)d
≤ nδ(k − 1)d, (4.14)

therefore by triangle inequality,

∥x− f(x̂)∥ ≤ d[n(1 + 2δ) + (k − 1) + nδ(k − 1)],

thus (4.13) for large enough m.
The segment from f(x̂) to f(ŷ) can be decomposed as

[f(x̂) , f(ŷ)] = [x0 , x1] ∪ [x1 , x2] ∪ · · · ∪ [xr−1 , xr],

where each segment [xi , xi+1] is included in a tile nTile(vi, 1), and the (vi)0≤i≤r−1 are pairwise distinct.
Moreover the sequence (vi)0≤i≤r−1 may be chosen so that it has monotone coordinates. In particular,
r ≤ kd. For all 0 ≤ i ≤ r − 1, let [zi , z′

i] denote the unique segment included in nTile∗
n(vi) whose image

under f is [xi , xi+1] (see Figure 6). The triangle inequality yields

T[0 ,m]d(x̂, ŷ) ≤
r∑
i=0

T[0 ,m]d(zi, z′
i) +

r−1∑
i=0

T[0 ,m]d(z′
i, zi+1). (4.15)

Inequality (4.12) gives
r∑
i=0

T[0 ,m]d(zi, z′
i) ≤

r∑
i=0

(
g(zi − z′

i) + δ2n
)

=
r∑
i=0

g(zi − z′
i) + (r + 1)δ2n

=
r∑
i=0

g(xi − xi+1) + (r + 1)δ2n,
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thus
r∑
i=0

T[0 ,m]d(zi, z′
i) ≤ g(f(x̂) − f(ŷ)) + (r + 1)δ2n. (4.16)

Consequently, using the triangle inequality, (4.13) and g ≤ b∥·∥ in (4.16), we get

r∑
i=0

T[0 ,m]d(zi, z′
i) ≤ g(x− y) + 4bdk(nδ + 1) + (r + 1)δ2n. (4.17)

Besides, for all 0 ≤ i ≤ r − 1,

T[0 ,m]d(z′
i, zi+1) ≤ b

∥∥z′
i − zi+1

∥∥ ≤ bd(δn+ 1),

thus
r−1∑
i=0

T[0 ,m]d(z′
i, zi+1) ≤ rbd(δn+ 1). (4.18)

Combining (4.15), (4.17) and (4.18), we obtain

T[0 ,m]d(x̂, ŷ) ≤ g(x− y) + 4bdk(nδ + 1) + (r + 1)δ2n+ rbd(δn+ 1).

Applying r ≤ kd, we get

T[0 ,m]d(x̂, ŷ) ≤ g(x− y) + 4bdk(nδ + 1) + (kd+ 1)δ2n+ kbd2(δn+ 1),

thus a final use of the triangle inequality and (4.14) leads to

T[0 ,m]d(x, y) ≤ g(x− y) + 2bdnδ(k − 1) + 4bdk(nδ + 1) + (kd+ 1)δ2n+ kbd2(δn+ 1)

≤ g(x− y) + 6bdk(nδ + 1) + (kd+ 1)δ2n+ kbd2(δn+ 1)

for large enoughm. Consequently, for all δ > 0, for large enough n, for large enoughm, for all x, y ∈ [0 , 1]d,

T̃m,[0 ,1]d(x, y) ≤ g(x− y) + 2d(6b+ bd+ δ)δ. (4.19)

The lemma is a consequence of (4.7), (4.11) and (4.19).

4.2 Characterizing the cases I[0 ,1]d(g) < ∞ and I[0 ,1]d(g) = 0 : proof of Proposition 1.10

Thanks to Proposition 3.1, it is sufficient to prove Lemmas 4.2 and 4.3.

Lemma 4.2.
(i) For all a ≤ ζ ≤ b,

I[0 ,1]d(ζ∥·∥) ≤ −d log ν([ζ , b]). (4.20)

(ii) If g ∈ N satisfies ∥g∥Hom ≥ b− η, then

I[0 ,1]d(g) ≥ − log 2 − 1
2 log ν([b− 4η , b]). (4.21)
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Proof. Proof of (i). Let a ≤ ζ ≤ b. Note the inclusion⋂
e∈E(J0 ,nKd)

{τe ≥ ζ} ⊆
{

T̃n,[0 ,1]d ≥ ζ∥·∥
}
.

Consequently, Corollary 3.2 yields (4.20).
Proof of (ii). Assume that ∥g∥Hom ≥ b − η. Then there exists u ∈ S such that g(u) ≥ b − η. By

convexity and symmetry there exists ei such that g(ei) ≥ b − η; without loss of generality we assume
i = 1. The argument consists in proving that on a large deviation event around g, a volumic number of
edges must have a passage time close to b. For all v ∈ J0 , nKd−1, let πv denote the segment from (v, 0) to
(v, n). Since LDn(g, η) ⊆

⋂
v{τ(πv) ≥ n(b− 2η)} and the (τ(πv))v are i.i.d.,

P(LDn(g, η)) ≤ P(τ(π0) ≥ n(b− 2η))n
d−1

.

Besides, if at least n/2 indices i ∈ J0 , n− 1K are such that τ(ie1, (i+ 1)e1) < b− 4η, then

τ(π0) < n

2 (b− 4η) + nb

2 = n(b− 2η).

Consequently,

P(τ(π0) ≥ n(b− 2η)) ≤ P

 ⋃
A⊆J0 ,n−1K
#A=⌊n/2⌋

⋂
i∈A

{τ(ie1, (i+ 1)e1) ≥ b− 4η}


≤ 2nν([b− 4η , b])⌊n/2⌋, (4.22)

therefore
I[0 ,1]d(g) ≥ lim

n→∞
− 1
nd

logP(LDn(g, η)) ≥ − log 2 − 1
2 log ν([b− 4η , b]). (4.23)

Lemma 4.3.
(i) I[0 ,1]d(µ) = 0.

(ii) Let g ∈ N . If there exists u ∈ Rd such that g(u) > µ(u), then I[0 ,1]d(g) > 0.

Proof. Proof of (i). Let x, y ∈ [0 , 1]d and ε > 0. By triangle inequality and (1.16),

T̃n(x, y) ≥ T̃n

(⌊nx⌋
n

,
⌊ny⌋
n

)
− 2bd

n
.

Consequently, by definition of µ (see (1.3)),

P
(
T̃n(x, y) ≥ µ(x− y) − ε

)
−−−→
n→∞

1. (4.24)

Besides, for large enough k, for all n ≥ 1,⋂
x,y∈ 1

k
J0 ,kKd

{
T̃n(x, y) ≥ µ(x− y) − ε

}
⊆ LD+

n,[0 ,1]d
(µ, 2ε). (4.25)
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By (4.24), with fixed k, the probability of the left hand-side of (4.25) converges to 1 as n → ∞. We
conclude with Corollary 3.2.

Proof of (ii). We adapt the arguments used by Kesten to prove a bound on the probability of the
upper tail large deviation event for the point-point passage time, in the direction e1 [13, Equation (5.13)].
Assume that there exists u ∈ Rd such that g(u) > µ(u). By homogeneity we can assume u ∈ S. For all
n, k ≥ 1, define the tilted box

Box(n, k) :=
{
tu+ x, x ∈ B(0, n) ∩ u⊥, t ∈ [0 , nk]

}
,

where u⊥ the orthogonal complement of u. As in [13, bottom of page 198], one shows that there exists
n ≥ 1 such that for all k ≥ 1,

E
[
TBox(n,k)(0, nku)

]
nk

< g(u).

Consequently, by Talagrand’s inequality (see e.g. [2, Theorem 3.13]), there exists ε > 0 such that

lim
k→∞

− 1
nk

logP
(

TBox(n,k)(0, nku)
nk

≥ g(u) − 2ε
)
> 0 (4.26)

Moreover, there exists C11 > 0 such that for all k ≥ 1, there exists v1, . . . , v⌊C11kd−1⌋ ∈ Zd, such that
the boxes (Box(n, k) + vi)1≤i≤⌊C11kd−1⌋ are pairwise disjoint and included in [0 , 2nk]d. This implies the
inclusion

LD2nk,[0 ,1]d(g, ε) ⊆
⌊C11kd−1⌋⋂

i=1

{
Tvi+Box(n,k)(vi, vi + nku)

nk
≥ g(u) − 2ε

}
,

and the terms of the intersection are independent. Consequently, by stationarity,

− 1
nkd

logP
(
LD2nk,[0 ,1]d(g, ε)

)
≥ −

⌊
C11k

d−1
⌋

nkd
logP

(
TBox(n,k)(0, nku)

nk
≥ g(u) − 2ε

)
.

Letting k → ∞ and applying (4.26), we get I[0 ,1]d(g) > 0.

4.3 Continuity of the rate function on N ∗ : proof of Proposition 1.11

We already know by Lemma 1.2 (i) that the restriction of I[0 ,1]d on N ∗ is lower semicontinuous, thus it
is sufficient for the first part of the proposition to show that this function is upper semicontinuous. This
follows from Lemma 4.4.

Lemma 4.4. Let g ∈ N ∗ and 0 < η ≤ b−∥g∥Hom
2 . Then there exists a constant C12 > 0, depending only

on d, such that for all p ≥ 1,

I[0 ,1]d

(
g + η

p
∥·∥
)

≤ I[0 ,1]d(g) − C12
p

log ν([b− η , b]). (4.27)

Indeed, let (gn) be a sequence of norms in N ∗ converging to g ∈ N ∗ and η as in Lemma 4.4. Let
p ≥ 1. For large enough n,

gn ≤ g + η

p
∥·∥,
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therefore by (4.27) and Proposition 3.1,

lim
n→∞

I[0 ,1]d(gn) ≤ I[0 ,1]d(g) − C12
p

log ν([b− η , b]).

Letting p → ∞, we get

lim
n→∞

I[0 ,1]d(gn) ≤ I[0 ,1]d(g), (4.28)

i.e. the restriction of I[0 ,1]d on N ∗ is upper semicontinuous.

To prove the second part of Proposition 1.11, note that by Proposition 1.10, if ν({b}) = 0 and
g ∈ N \ N ∗ then I[0 ,1]d(g) = ∞, thus upper semicontinuity at g is straightforward.

Proof of Lemma 4.4. Let p, k ≥ 2. For all v ∈ Zd, v is said to be hard if at least one of its coordinates is
a multiple of p, and soft otherwise. Recall the definition of Tile(·, ·) given by (1.35). Let

S(k, p) :=
⋃

v∈J0 ,kp−1Kd

v soft

Tile(v, kp) and H(k, p) := [0 , 1]d \ S(k, p). (4.29)

The choice of notations S and H refers to soft and hard respectively. Note that

#
{
v ∈ J0 , kp− 1Kd

∣∣∣ v hard
}

= kd
(
pd − (p− 1)d

)
. (4.30)

We define the metric D(p)
k by prescribing its gradient as in Lemma 2.11, Equation (2.19) with X = [0 , 1]d

and

gz :=
{
g if z ∈ S(k, p),
(b− η)∥·∥ if z ∈ H(k, p).

(4.31)

We first show that
I [0 ,1]d

(
D

(p)
k

)
≤ I[0 ,1]d(g) − C12

p
ν([b− η , b]), (4.32)

where C12 > 0 only depends on d. Our construction is similar to the one performed in the proof of
Lemma 4.1, except for the soft/hard distinction and the fixed number of tiles involved. Let 0 < ε, δ < 1

4
and n ≥ 1. Let m := nkp. For all v ∈ J0 , kp− 1Kd, we define the tile

Tile†
n(v) := v +

[⌊nδ⌋
n

,
⌈n(1 − δ)⌉

n

]d
. (4.33)

Note that it is not equal to the tile Tile∗
n(v) we defined as in (4.3). For large enough n, the variables(

T
n,Tile†

n(v)

)
v∈J0 ,kp−1Kd

live on pairwise disjoint subsets of Ed so they are independent. Let Corridor

denote the set of edges included in [0 ,m]d but not in any nTile†
n(v). This set satisfies

# Corridor = #E
(
J0 ,mKd

)
− kdpd#E

(
nTile†

n(0)
)

≤ d(m+ 1)d − dkdpd(n(1 − 2δ) − 2)d. (4.34)

We define the event

Fav† :=

 ⋂
v∈J0 ,kp−1Kd

v soft

LD
n,Tile†

n(v)(g, δ
2)

 ∩

 ⋂
v∈J0 ,kp−1Kd

v hard

⋂
e∈E

(
nTile†

n(v)
){τe ≥ b− η}


∩

 ⋂
e∈Corridor

{τe ≥ b− ε}

.
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By stationarity, for all v ∈ J0 , kp− 1Kd,

P
(
LD

n,Tile†
n(v)(g, δ

2)
)

= P
(

LD
n,
[
0 , ⌈n(1−δ)⌉

n
− ⌊nδ⌋

n

]d(g, δ2)
)

= P
(

LD⌈n(1−δ)⌉−⌊nδ⌋,[0 ,1]d

(
g,

nδ2

⌈n(1 − δ)⌉ − ⌊nδ⌋

))
.

Consequently, for large enough n,

P
(
LD

n,Tile†
n(v)(g, δ

2)
)

≥ P
(
LD⌈n(1−δ)⌉−⌊nδ⌋,[0 ,1]d

(
g, δ2

))
. (4.35)

By independence, stationarity, (4.30) and (4.34), for large enough n,

P
(
Fav†

)
≥ P

(
LD⌈n(1−δ)⌉−⌊nδ⌋,[0 ,1]d(g, δ2)

)(pk)d

· ν([b− η , b])dk
d(pd−(p−1)d)(n+1)d

· ν([b− ε , b])d((m+1)d−kdpd(n(1−2δ)−2)d).
(4.36)

Thanks to Lemma 2.17 with X = [0 , 1]d, D = D
(p)
k , D′ = T̃m,[0 ,1]d , δ1 = nδ

m and δ2 = nδ2

m , on the event
Fav†, for all x, y ∈ [0 , 1]d,

T̃m,[0 ,1]d(x, y) ≥ D
(p)
k (x, y) − 3

(
ε+ nδ2

m
· m
nδ

)
= D

(p)
k (x, y) − 3(ε+ δ),

i.e. Fav† ⊆ LD+
m

(
D

(p)
k , 3(ε+ δ)

)
. Taking the log in (4.36), multiplying by − 1

md and letting n → ∞, we
therefore get

lim
m→∞

− 1
md

logP
(
LD+

m

(
D

(p)
k , 3(ε+ δ)

))
≤ (1 − 2δ)dI[0 ,1]d(g) − C12

p
log ν([b− η , b])

− C13δ log ν([b− ε , b]),
(4.37)

where C12 and C13 only depends on d. Choosing ε small enough then δ small enough and applying
Corollary 3.2, we obtain (4.32).

Let D(p) be an adherence value of
(
D

(p)
k

)
k≥2

and x, y ∈ [0 , 1]d. We claim that

D(p)(x, y) ≥ g(x− y) + η

p
∥x− y∥. (4.38)

Indeed, let x γ
⇝

[0 ,1]d
y be a Lipschitz path. In order to lower bound D(p)(x, y), we bound the integral

in (2.19). We have∫ Tγ

0
gγ(t)

(
γ′(t)

)
dt =

∫ Tγ

0

(
1H(k,p)(γ(t))(b− η)

∥∥γ′(t)
∥∥ + 1S(k,p)(γ(t))g

(
γ′(t)

))
dt

=
∫ Tγ

0
g
(
γ′(t)

)
dt+

∫ Tγ

0
1H(k,p)(γ(t))

[
(b− η)

∥∥γ′(t)
∥∥ − g

(
γ′(t)

)]
dt.

Applying Jensen’s inequality on the first term and ∥g∥Hom ≤ b− 2η on the second gives∫ Tγ

0
gγ(t)

(
γ′(t)

)
dt ≥ g(x− y) + η

∫ Tγ

0
1H(k,p)(γ(t))

∥∥γ′(t)
∥∥dt. (4.39)
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Using the notations x = (x1, . . . , xd), y = (y1, . . . , yd), γ(t) = (γ1(t), . . . , γd(t)), standard integral manip-
ulations give

∫ Tγ

0
1H(k,p)(γ(t))

∥∥γ′(t)
∥∥dt =

d∑
i=1

∫ Tγ

0
1H(k,p)(γ(t))

∣∣γ′
i(t)

∣∣dt
≥

d∑
i=1

∫ Tγ

0
1pZ(⌊kpγi(t)⌋)

∣∣γ′
i(t)

∣∣dt
≥

d∑
i=1

∣∣∣∣∣
∫ Tγ

0
1pZ(⌊kpγi(t)⌋)γ′

i(t)
∣∣∣∣∣dt

=
d∑
i=1

∣∣∣∣∫ yi

xi

1pZ(⌊kps⌋)
∣∣∣∣ds

=
d∑
i=1

Leb

[xi , yi] ∩

k−1⋃
j=0

[
j

k
,
jp+ 1
kp

[,
thus ∫ Tγ

0
1H(k,p)(γ(t))

∥∥γ′(t)
∥∥dt ≥

d∑
i=1

⌊k|xi − yi|⌋
pk

≥ ∥x− y∥
p

− d

pk
.

Combining this inequality with (4.39), we get∫ Tγ

0
gγ(t)

(
γ′(t)

)
dt ≥ g(x− y) + η∥x− y∥

p
− ηd

pk
.

Taking the infimum with respect to γ then letting k → ∞ yields (4.38).

5 Proof of the main result

In this section X ∈ K is fixed and ν satisfies Assumption 1. We prove Theorem 1.5. Thanks to Lemma 1.2,
the remark following it and the compactness of DX , it is sufficient to show that the upper and lower rate
functions defined in (1.30) and (1.29) are respectively upper bounded and lower bounded by the integral
in (1.20), i.e. Propositions 5.1 and 5.3. Note that for every D ∈ DX , the integrand in (1.20) is well-defined
almost everywhere, since the gradient of D at almost every point belongs to N (Proposition 2.10) and
the lower and upper rate functions agree on N (Theorem 1.9). Besides I [0 ,1]d is measurable as a limit of
measurable functions, and z 7→ (gradD)z is also measurable (see Proposition 2.8), therefore the integrand
in (1.20) is measurable. Recall the definitions (1.36) and (1.37).

5.1 Upper bounding the upper rate function

Proposition 5.1. Let D ∈ DX and (gz)z∈X = ((gradD)z)z∈X its gradient. Then

IX(D) ≤
∫
X
I[0 ,1]d(gz)dz. (5.1)
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The general idea is to "build" the metric D by assembling together tiles on which the rescaled passage
time resembles gz. We actually use this procedure only in the case where D has a constant gradient on
each tile at a certain scale then use the properties of the rate function to extend the result to any metric.
We first need Lemma 5.2 to account for the case where X is not of the form

∏d
i=1[ti , t′i].

Lemma 5.2. Assume X ⊆ [0 , λ]d. Then for all g ∈ N ,

IX(g) ≤ λdI[0 ,1]d(g). (5.2)

Proof. Let g ∈ N , n ≥ 1, δ > 0. Consider the convex, compact set

X−δ :=
{
z ∈ X

∣∣∣ d(z,Xc) ≥ δ
}
. (5.3)

Lemma B.5 states that
max
z∈X

d(z,X−δ) −−−→
δ→0

0. (5.4)

From now on δ is chosen small enough so that X−δ is not empty.
Assume that the event LD⌈nλ⌉,[0 ,1]d(g, δ2) occurs. Let x, y ∈ nX. We have

TnX(x, y) ≥ T[0 ,⌈nλ⌉]d(x, y) ≥ g(x− y) − ⌈nλ⌉δ2. (5.5)

Let x̂ and ŷ be the projections of x and y on nX−δ. For all 0 ≤ i ≤
⌈
bddiam(X)

aδ

⌉
=: r, let xi := x̂+i(ŷ−x̂)/r.

By convexity all the xi belong to nX−δ. Lemma 2.3 implies that for all 0 ≤ i ≤ r − 1, any T[0 ,⌈nλ⌉]d-
geodesic from xi to xi+1 is included in B(xi, nδ) ⊆ nX. Consequently,

TnX(xi, xi+1) = T[0 ,⌈nλ⌉]d(xi, xi+1) ≤ g(x̂− ŷ)
r

+ ⌈nλ⌉δ2.

The triangle inequality then yields

TnX(x̂, ŷ) ≤ g(x̂− ŷ) + r⌈nλ⌉δ2,

hence, by (1.16),

TnX(x, y) ≤ g(x− y) + 4bnmax
z∈X

d(z,X−δ) + r⌈nλ⌉δ2. (5.6)

Inequalities (5.5) and (5.6), along with (5.4) imply that for all ε > 0 there exists δ > 0 such that for large
enough n,

P(LDn,X(g, ε)) ≥ P
(
LD⌈nλ⌉,[0 ,1]d(g, δ2)

)
, (5.7)

thus (5.2).

Proof of Proposition 5.1. We first prove the bound (5.1) for three particular cases with extra regularity
on D.
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Case 1: Constant, noncritical gradient on each tile. Assume that there exists k ≥ 1 and a
family (gv)v∈Vext

k
(X) of elements of N ∗ such that D is the metric defined like in Lemma (2.15), with

Xv = Tile(v, k) ∩X and Dv = gv. Let 0 < δ, ε ≤ 1 and n ≥ 1. For all v ∈ J0 , k − 1Kd, we define

Tile‡(v, k) := (Tile(v, k) ∩X)−δ, (5.8)

with the notation defined in (5.3). We assume that δ is small enough for all the tiles Tile‡(v, k), with
v ∈ J0 , k − 1Kd, to be non empty. Consider the set

Corridor := Eext(nX) \

 ⋃
v∈Vext

k
(X)

E
(
nTile‡(v, k)

),
where Eext(nX) is defined in Subsection 1.6. It satisfies

# Corridor ≤ #
(
Vext
k (X)

)[(n
k

+ 2
)d

−
(
n

k
− 2nδ − 2

)d]
. (5.9)

Consider the event

Fav‡ :=

 ⋂
v∈Vext

k
(X)

LDn,Tile‡(v,k)(g
v, δ2)

 ∩

 ⋂
e∈Corridor

{τe ≥ b− ε}

. (5.10)

By independence and (5.9),

P
(
Fav‡

)
≥

 ∏
v∈Vext

k
(X)

P
(
LDn,Tile‡(v,k)(g

v, δ2)
) · ν([b− ε , b])

#Vext
k (X)

[
( n

k
+2)d−( n

k
−2nδ−2)d

]
. (5.11)

We follow the same strategy as in Lemma 4.1. Assume that the event Fav‡ occurs. Lemma 2.17
implies that for all x, y ∈ X,

T̃n,X(x, y) ≥ D(x, y) − 3 diam(X)(ε+ δ). (5.12)

We define
η = η(δ) := max

v∈Vext
k

(X)
max
x∈X

d
(
x,Tile‡(v, k)

)
. (5.13)

By Lemma B.5,
lim
δ→0

η(δ) = 0. (5.14)

Let (xℓ)1≤ℓ≤L be a finite family of points in X such that the balls B(xℓ, ε) cover X. By definition of D and
convexity of the (gv)v∈Vext

k
(X), for all 1 ≤ ℓ, ℓ′ ≤ L, there exist sequences (xℓ = y0(ℓ, ℓ′), . . . , yr(ℓ,ℓ′)(ℓ, ℓ′) =

xℓ′) ∈ Xr(ℓ,ℓ′)+1 and (v0(ℓ, ℓ′), . . . , vr(ℓ,ℓ′)−1(ℓ, ℓ′)) ∈ Vext
k (X)r(ℓ,ℓ

′) such that for all 0 ≤ j ≤ r(ℓ, ℓ′) − 1,
both yj(ℓ, ℓ′) and yj+1(ℓ, ℓ′) belong to Tile(vj(ℓ, ℓ′), k), and

D(xℓ, xℓ′) ≥
r(ℓ,ℓ′)−1∑
j=0

gvj(ℓ,ℓ′)(yj(ℓ, ℓ′) − yj+1(ℓ, ℓ′)
)

− ε. (5.15)
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Let r := max1≤ℓ,ℓ′≤L r(ℓ, ℓ′) and fix 1 ≤ ℓ, ℓ′ ≤ L. We claim that

T̃n,X(xℓ, xℓ′) ≤ D(xℓ, xℓ′) + ε+ (r + 1)
[
δ2 + 4bη(δ)

]
. (5.16)

The arguments are similar to the ones used in the proof of (4.19). To lighten the notations we omit the
dependancy in (ℓ, ℓ′) in the proof of this claim. For all 0 ≤ j ≤ r, let pj denote the projection onto
Tile‡(vj , k). By triangle inequality,

T̃n,X(xℓ, xℓ′) ≤ T̃n,X(xℓ, p0(xℓ)) +
r∑
j=0

T̃n,X(pj(yj), pj(yj+1))

+
r−1∑
j=0

T̃n,X(pj(yj+1), pj+1(yj+1)) + T̃n,X(pr(xℓ′), xℓ′).
(5.17)

By definition of Fav‡, the second term in the right-hand side of (5.17) satisfies
r∑
j=0

T̃n,X(pj(yj), pj(yj+1)) ≤
r∑
j=0

[
gvj (pj(yj) − pj(yj+1)) + δ2

]
.

Applying the definition of η and (1.16), we obtain
r∑
j=0

T̃n,X(pj(yj), pj(yj+1)) ≤
r∑
j=0

[
gvj (yj − yj+1) + δ2 + 2bη

]
,

thus, by (5.15),
r∑
j=0

T̃n,X(pj(yj), pj(yj+1)) ≤
r∑
j=0

gvj (yj − yj+1) + (r + 1)(δ2 + 2bη)

≤ D(xℓ, xℓ′) + ε+ (r + 1)(δ2 + 2bη). (5.18)

Applying the definition of η and (1.16) to the three other terms in the right-hand side of (5.17), we get

T̃n,X(xℓ, xℓ′) ≤ D(xℓ, xℓ′) + ε+ (r + 1)(δ2 + 2bη) + 2bη + 2brη, (5.19)

hence (5.16). Equations (5.12) and (5.16), alongside with the fact that the balls B(xℓ, ε) cover X and the
limit (5.14) imply that for all ε > 0, for small enough δ > 0, for all n ≥ 1,

Fav‡ ⊆ LDn,X(D,C14ε), (5.20)

where C14 only depends on diam(X).
From (5.11) and (5.20) we deduce

lim
n→∞

− 1
nd

logP(LDn,X(D,C14ε))

≤
∑

v∈Vext
k

(X)
ITile‡(v,k)(g

v) − #Vext
k (X)
kd

(
1 − (1 − 2kδ)d

)
log ν([b− ε , b]).

By stationarity and (5.2), we get

lim
n→∞

− 1
nd

logP(LDn,X(D,C14ε))

≤ 1
kd

∑
v∈Vext

k
(X)

I[0 ,1]d(gv) − #Vext
k (X)
kd

(
1 − (1 − 2kδ)d

)
log ν([b− ε , b]).
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Letting δ → 0 then ε → 0 yields

IX(D) ≤ 1
kd

∑
v∈Vext

k
(X)

I[0 ,1]d(gv).

Lemma 2.15 implies that for all z in the interior of Tile(v, k) ∩X, gz = gv, hence

IX(D) ≤
∫
X
I[0 ,1]d(gz)dz + Leb


 ⋃
v∈Vext

k
(X)

Tile(v, k)

 \X

 max
v∈Vext

k
(X)

I[0 ,1]d(gv). (5.21)

Let K be a multiple of k. Then D may be seen as a metric built from uniform tiles of size 1/K rather
than 1/k, thus inequality (5.21) may be enhanced to

IX(D) ≤
∫
X
I[0 ,1]d(gz)dz + Leb


 ⋃
v∈Vext

K (X)
Tile(v, k)

 \X

 max
v∈Vext

k
(X)

I[0 ,1]d(gv).

Note that the maximum in the second term is considered over Vext
k (X) rather than Vext

K (X). It is finite
thanks to Proposition 1.10. Letting K → ∞ and applying (1.38) yield (5.1).

Case 2: Continuous, non critical gradient. Assume that there exists a continuous map

X −→ N
z 7−→ ĝz

such that b′ := supz∈X∥ĝz∥Hom < b and D satisfies (2.19) with (ĝz)z∈X . In this case, by Lemma 2.11 (iv),
for all z ∈ X̊, ĝz = gz, thus (5.1) is equivalent to

IX(D) ≤
∫
X
I[0 ,1]d(ĝz)dz. (5.22)

For all k ≥ 1, we consider the metric Dk ∈ DX defined as in Lemma 2.15, with Xv = Tile(v, k) ∩X and
Dv = g

(k)
v := ĝz, with z being any fixed point in Tile(v, k) ∩X, for all v ∈ Vext

k (X). Then Dk falls under
Case 1, therefore

IX(Dk) ≤
∫
X
I[0 ,1]d

(
g

(k)
1
k

⌊kz⌋

)
dz. (5.23)

Besides g(k)
1
k

⌊kz⌋ converges to ĝz in CHom
(
Rd,R

)
as k → ∞, uniformly on X. Since the restriction of I[0 ,1]d

on the compact {g ∈ N | a∥·∥ ≤ g ≤ b′∥·∥} is continuous and bounded (see Propositions 1.10 and 1.11),∫
X
I[0 ,1]d

(
g

(k)
1
k

⌊kz⌋

)
dz −−−→

k→∞

∫
X
I[0 ,1]d(ĝz)dz. (5.24)

Moreover, the convergence of g(k)
1
k

⌊kz⌋ to ĝz and Lemma 2.11 (ii) imply the convergence of Dk to D. Thus
by lower semicontinuity of IX , letting k → ∞ in (5.23) yields (5.22).
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Case 3: Non critical gradient. Assume that b′ := supz∈X∥gz∥Hom < b. We use a routine convolution
argument (see e.g. [4, Theorem 4.22]) to regularize z 7→ gz. Let (ξn) be a sequence of test functions from
Rd to [0 ,∞], of integral 1, such that the support of ξn is included in B(0, 1/n) . For all z ∈ X and u ∈ Rd,
we consider the convolution

gnz (u) :=
∫
Rd
gz−s(u)ξn(s)ds ≤ b′∥u∥, (5.25)

with the convention gz−s = b′∥·∥ if z − s /∈ X. For all u ∈ Rd, as n → ∞, gn· (u) converges to g·(u) in
L1(X,R), thus almost everywhere on X along a subsequence. By a standard diagonal argument, this
convergence is still true for all u ∈ Qd almost everywhere on X. As the gz and gnz are b-Lipschitz, there
exists an extraction φ such that for almost every z ∈ X,

gφ(n)
z

∥·∥Hom−−−−→
n→∞

gz. (5.26)

Let Dφ(n) denote the metric defined by (2.19) with the function z 7→ g
φ(n)
z . Since DX is compact (see

Proposition 2.1) there exists an extraction ψ such that Dφ◦ψ(n) converges to some D′ ∈ DX . We claim
that D′ ≥ D. Indeed, for all x, y ∈ X and Lipschitz paths x γ

⇝
X
y, Fubini’s theorem yields

∫ Tγ

0
g
φ◦ψ(n)
γ(t) (γ′(t))dt =

∫ Tγ

0

(∫
Rd
gγ(t)−s

(
γ′(t)

)
ξφ◦ψ(n)(s)ds

)
dt

=
∫
Rd

(∫ Tγ

0
gγ(t)−s

(
γ′(t)

)
dt
)
ξφ◦ψ(n)(s)ds.

Applying (2.12), we get∫ Tγ

0
g
φ◦ψ(n)
γ(t) (γ′(t))dt ≥

∫
Rd
D(x− s, y − s)ξφ◦ψ(n)(s)ds,

thus

Dϕ◦ψ(n)(x, y) ≥
∫
Rd
D(x− s, y − s)ξφ◦ψ(n)(s)ds. (5.27)

By a standard regularization argument (see [4, Proposition 4.21]) the right-hand side of (5.27) converges
to D(x, y) as n → ∞, thus D′(x, y) ≥ D(x, y).

Besides, for all n ≥ 1, z 7→ g
φ◦ψ(n)
z is continuous on X and supz∈X

∥∥∥gφ◦ψ(n)
z

∥∥∥
Hom

< b by (5.25), therefore
by (5.22) (see Case 2),

IX(Dφ◦ψ(n)) ≤
∫
X
I[0 ,1]d(gφ◦ψ(n)

z )dz.

The restriction of I[0 ,1]d on {g ∈ N | a∥·∥ ≤ g ≤ b′∥·∥} is continuous and bounded (see Proposition 1.11),
therefore by (5.26),

lim
n→∞

IX(Dφ◦ψ(n)) ≤
∫
X
I[0 ,1]d(gz)dz.

Applying lower semicontinuity and Proposition 3.1, we obtain

IX(D) ≤ IX(D′) ≤
∫
X
I[0 ,1]d(gz)dz. (5.28)
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General case. Let Dn denote the metric defined by (2.19) with

gnz := n− 1
n

gz + a

n
∥·∥. (5.29)

Equation (2.12) implies that for all Lipschitz paths x γ
⇝
X
y,

∫ Tγ

0
gnγ(t)

(
γ′(t)

)
dt = n− 1

n

∫ Tγ

0
gγ(t)

(
γ′(t)

)
dt+ a

n

∫ Tγ

0

∥∥γ′(t)
∥∥dt

≥ n− 1
n

D(x, y) + a

n
∥x− y∥. (5.30)

Consequently, for all z ∈ X, (gradDn)z ≥ gnz . Besides, Lemma 2.11 implies the converse inequality,
therefore (gradDn)z = gnz . The metric Dn falls under Case 3, thus

IX(Dn) ≤
∫
X
I[0 ,1]d(gnz )dz.

Letting n → ∞ gives (5.1) by lower semicontinuity and monotone convergence.

5.2 Lower bounding the lower rate function

Proposition 5.3. Let D ∈ DX and (gz)z∈X its gradient. Then

IX(D) ≥
∫
X
I[0 ,1]d(gz)dz. (5.31)

Lemma 5.4 provides a link between the lower rate function evaluated on a metric and on a rescaled,
translated version of it, as defined by (2.27) and (2.30).

Lemma 5.4. Let k ≥ 1, v ∈ Zd and D ∈ DTile(v,k). Then

ITile(v,k)(D) ≥ 1
kd
I [0 ,1]d(Tr−v(Sck(D))). (5.32)

Proof. Let ε > 0, m ≥ 1 and n be the unique integer such that nk ≤ m < (n + 1)k. Note that for all
x ∈ nkTile(v, k), ∥∥∥∥mnk · x− x

∥∥∥∥ ≤ ∥x∥
n

≤ ∥v∥ + d. (5.33)

In particular,
nkTile(v, k) ⊆ mTile(v, k) + B(0, ∥v∥ + d). (5.34)

Consider the event

Fav∗∗ := LDm,Tile(v,k)(D, ε) ∩

 ⋂
e∈Eext(mTile(v,k)+B(0,∥v∥+d))\Eext(mTile(v,k))

{τe ≥ b− ε}

.
One easily checks that

lim
m→∞

− 1
md

logP(Fav∗∗) = lim
m→∞

− 1
md

logP
(
LDm,Tile(v,k)(D, ε)

)
. (5.35)
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Assume that the event Fav∗∗ occurs. Let x, y ∈ nkTile(v, k). By (5.34),

TnkTile(v,k)(x, y) ≥ TmTile(v,k)+B(0,∥v∥+d)(x, y).

Triangle inequality and (1.16) yield

TnkTile(v,k)(x, y) ≥ TmTile(v,k)+B(0,∥v∥+d)
(
mx

nk
,
my

nk

)
− 2b(∥v∥ + d). (5.36)

Let mx
nk

σ
⇝ my

nk be a TmTile(v,k)+B(0,∥v∥+d)-geodesic and γ the path obtained by replacing excursions

of σ outside mTile(v, k) by segments, as in (2.46). Since edges in Eext
(
mTile(v, k) + B(0, ∥v∥ + d)

)
\

Eext(mTile(v, k)) have a passage time greater than b− ε,

TmTile(v,k)+B(0,∥v∥+d)
(
mx

nk
,
my

nk

)
= TX(σ) ≥ b− ε

b
TX(γ) ≥ b− ε

b
TmTile(v,k)

(
mx

nk
,
my

nk

)
, (5.37)

with the definition (2.35). Combining (5.36) and (5.37), we get

TnkTile(v,k)(x, y) ≥ b− ε

b
TmTile(v,k)

(
mx

nk
,
my

nk

)
− 2b(∥v∥ + d)

≥ m(b− ε)
b

[
D

(
x

nk
,
y

nk

)
− ε

]
− 2b(∥v∥ + d),

thus for small enough ε > 0 and large enough m (thus large n), for all x, y ∈ Tile(v, k),

T̃nk,Tile(v,k)(x, y) ≥ b− ε

b
[D(x, y) − ε] − 2b

nk
(∥v∥ + d)

≥ D(x, y) − ε

b
diam(Tile(v, k)) − ε−

(
1 + 1

n

)
· 2b
m

(∥v∥ + d),

therefore

Fav∗∗ ⊆ LD+
nk,Tile(v,k)

(
D,C15

(
ε+ ∥v∥ + d

m

))
= LD+

n,Tile(v,1)

(
Sck(D), kC15

(
ε+ ∥v∥ + d

m

))
, (5.38)

where C15 only depends on b and LD+ is defined in (3.1). Equations (5.35) and (5.38) lead to

ITile(v,k)(D) ≥ 1
kd
ITile(v,1)(Sck(D)). (5.39)

We conclude by stationarity.

Proof of Proposition 5.3. Let k ≥ 1, ε > 0. Define

Xk :=
⋃

v∈Vint
k

(X)
Tile(v, k). (5.40)

Note that for all z ∈ X̊, z ∈ Xk for large enough k. The idea is to show that a large deviation event
around D is included in an intersection of large deviation events around restrictions of D (see (2.35))
on tiles of the type Tile(v, k). We first need to make minor adjustments on the boundary of tiles to
ensure independence. For all v ∈ Vint

k (X), let Ebd(nTile(v, k)) denote the set of edges belonging to
Eext(nTile(v, k)), but not included in the interior of nTile(v, k). Consider a family of #

(
Vint
k (X)

)
+ 1
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independent configurations
(
τ,
(
τ (v)

)
v∈Vint

k
(X)

)
, each with distribution ν⊗Ed . For all v ∈ Vint

k (X), e ∈ Ed,
define

τ [v]
e :=

{
τ

(v)
e if e ∈ Ebd(nTile(v, k)),
τe otherwise.

(5.41)

Note that
((
τ

[v]
e

)
e∈Eext(nTile(v,k))

, v ∈ Vint
k (X)

)
are independent. Consider the event

Fav†† :=
{
τ ∈ LD+

n,X(D, ε)
}

∩

 ⋂
v∈Vint

k
(X)

⋂
e∈Ebd(nTile(v,k))

{
τ (v)
e ≥ b− ε

}.
By independence,

P
(
Fav††

)
≥ P

(
LD+

n,X(D, ε)
)

· ν([b− ε , b])#(Vint
k (X))·#(Ebd(nTile(0,k))). (5.42)

Let v ∈ Vint
k (X) and n ≥ 1. Equation (2.3) implies that any T̃n,X -geodesic or T̃[v]

n,X -geodesic σ has length
at most b diam(X)

a . Besides, for all e ∈ Ed,
τ [v]
e ≥ τe − ε,

thus

Fav†† ⊆
{
τ [v] ∈ LD+

n,Tile(v,k)

(
D Tile(v,k),

(
bdiam(X)

a
+ 1

)
ε

)}
.

Consequently,

Fav†† ⊆
⋂

v∈Vint
k

(X)

{
τ [v] ∈ LD+

n,Tile(v,k)

(
D Tile(v,k),

(
bdiam(X)

a
+ 1

)
ε

)}
. (5.43)

The events in the intersection are independent. Applying (5.42), we get

− 1
nd

logP
(
LD+

n,X(D, ε)
)
−#

(
Vint
k (X)

)
· #(Ebd(nTile(0, k)))

nd
log ν([b− ε , b])

≥
∑

v∈Vint
k

(X)
− 1
nd

logP
(

LD+
n,Tile(v,k)

(
D Tile(v,k),

(
bdiam(X)

a
+ 1

)
ε

))
.

Thanks to Corollary 3.2, letting n → ∞ then ε → 0, we obtain

IX(D) ≥
∑

v∈Vint
k

(X)
ITile(v,k)

(
D Tile(v,k)

)
.

Applying Lemma 5.4 yields

IX(D) ≥ 1
kd

∑
v∈Vint

k
(X)

I [0 ,1]d
(
Tr−v

(
Sck

(
D Tile(v,1)

)))

≥
∫
Xk

I [0 ,1]d
(
Tr−vk(z)

(
Sck

(
D Tile(vk(z),1)

)))
dz, (5.44)
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where vk(z) is such that z ∈ Tile(vk(z), k), chosen in a measurable way in case of non-unicity. Proposi-
tion 2.10 implies that for almost every z ∈ X, for all ε > 0, for large enough k, for all x, y ∈ [0 , 1]d,

Tr−vk(z)(Sck(D))(x, y) = kD

(
x+ vk(z)

k
,
y + vk(z)

k

)
≥ k

[
gz

(
x

k
− y

k

)
−
(∥∥∥∥x+ vk(z)

k
− z

∥∥∥∥ +
∥∥∥∥y + vk(z)

k
− z

∥∥∥∥)ε]
≥ gz(x− y) − 2εd.

Consequently, for almost every z ∈ X, for all ε > 0, for large enough k,

I [0 ,1]d
(
Tr−vk(z)

(
Sck

(
D Tile(vk(z),1)

)))
≥ lim

n→∞
− 1
nd

logP
(

LD+
n,[0 ,1]d

(gz, 3dε)
)
.

Letting k → ∞ then ε → 0 and applying Corollary 3.2 again, we get, for almost every z ∈ X,

lim
k→∞

I [0 ,1]d
(
Tr−vk(z)

(
Sck

(
D Tile(vk(z),1)

)))
≥ I[0 ,1]d(gz). (5.45)

We conclude the proof by applying Fatou’s lemma to (5.44) and using (5.45).

6 Proof of the corollaries

Lemma 6.1 gives a LDP for any process that is the image of (T̃n,X)n≥1 through a continuous map. We
recall that it is a special case of the contraction principle (see e.g. [11, Theorem 4.2.1]).
Lemma 6.1. Let X ∈ K. Under Assumption 1, for every Hausdorff topological space Y and continuous
map f : DX → Y, the process

(
f(T̃n,X)

)
n≥1

satisfies the large deviation principle with the good rate
function

Y −→ [0 ,∞]

y 7−→ min
D∈DX :
f(D)=y

IX(D) = min
D∈DX :
f(D)=y

∫
X
I[0 ,1]d(gradD)zdz. (6.1)

However, as Corollaries 1.6 and 1.7 are stated with assumptions on ν milder than Assumption 1, we
need extra work consisting in taking the limit as α → 0 of the model constructed with the passage times

τ (α)
e := τe ∨ α. (6.2)

Let ν(α) denote their distribution. Let D(α)
X denote the space defined as in Definition 1.3, with α > 0

instead of a. The set N (α) is defined likewise. Let SN denote the set of seminorms g such that g ≤ b∥·∥
and SN ∗ the set of seminorms g such that g ≤ (b − η)∥·∥, for some η > 0. Both are endowed with the
topology induced by ∥·∥Hom (see (1.44)). For every rate function introduced in this section we will mark
with the exponent ·(α) the corresponding function when ν is replaced by ν(α).

6.1 Preliminaries: limit of the elementary rate function

For all g ∈ SN , we introduce

I
+
[0 ,1]d(g) := lim

ε→0
↑ lim
n→∞

− 1
nd

logP
(
LD+

n,X(g, ε)
)

(6.3)

and I+
[0 ,1]d

(g) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(
LD+

n,X(g, ε)
)
, (6.4)
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with the definition (3.1). The functions I+
[0 ,1]d and I+

[0 ,1]d
are lower semicontinuous for the norm ∥·∥Hom.

In this subsection we show that they are equal and have a simple expression using the elementary rate
function under the distribution ν(α).

Lemma 6.2. For all g ∈ SN and α > 0,

I
+,(α)
[0 ,1]d(g) = I

+,(α)
[0 ,1]d

(g) = I
(α)
[0 ,1]d

([α∥·∥] ∨ g). (6.5)

We denote by I+,(α)
[0 ,1]d

(g) this number.

Proof. Let g ∈ SN and ε > 0. Theorem 1.5 with X = [0 , 1]d and the distribution ν(α), applied to the

compact set Aε :=
{
D ∈ D(α)

[0 ,1]d

∣∣∣∣ ∀x, y ∈ [0 , 1]d, D(x, y) ≥ g(x− y) − ε

}
gives

min
D∈Aε

I
(α)
[0 ,1]d

(D) ≤ lim
n→∞

− 1
nd

logP
(

T̃(α)
n,[0 ,1]d

∈ Aε

)
≤ lim

n→∞
− 1
nd

logP
(

T̃(α)
n,[0 ,1]d

∈ Aε

)
≤ inf

D∈Åε

I
(α)
[0 ,1]d

(D).

(6.6)
The norm [α∥·∥] ∨ g is in Åε, therefore the upper bound in (6.6) implies

lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(

T̃(α)
n,[0 ,1]d

∈ Aε

)
≤ I

(α)
[0 ,1]d

([α∥·∥] ∨ g). (6.7)

Besides, by the lower bound in (6.6), there exists Dε ∈ Aε such that

lim
n→∞

− 1
nd

logP
(

T̃(α)
n,[0 ,1]d

∈ Aε

)
≥ I

(α)
[0 ,1]d

(Dε).

By compactness of D(α)
[0 ,1]d

, (Dε)ε>0 has an adherence value D as ε → 0, thus by lower semicontinuity of

I
(α)
[0 ,1]d

,

lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(

T̃(α)
n,[0 ,1]d

∈ Aε

)
≥ I

(α)
[0 ,1]d

(D).

Since D ≥ [α∥·∥] ∨ g and I
(α)
[0 ,1]d

is nondecreasing, we have

lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(

T̃(α)
n,[0 ,1]d

∈ Aε

)
≥ I

(α)
[0 ,1]d

([α∥·∥] ∨ g). (6.8)

The lemma is a consequence of (6.7) and (6.8).

Lemma 6.3. For all g ∈ SN ,

I
+
[0 ,1]d(g) = I+

[0 ,1]d
(g) = lim

α→0
↑I+,(α)

[0 ,1]d
(g), (6.9)

with uniform convergence on the compact subsets of SN ∗. We denote by I+
[0 ,1]d

(g) this number. Moreover,
the restriction of I+

[0 ,1]d
on SN ∗ is continuous.
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Proof. Let g ≤ b∥·∥ be a seminorm. For all 0 < α1 < α2, the inclusions{
τ ∈ LD+

n (g, ε)
}

⊆
{
τ (α1) ∈ LD+

n (g, ε)
}

⊆
{
τ (α2) ∈ LD+

n (g, ε)
}
,

hold, thus by Lemma 6.2,
I+

[0 ,1]d
(g) ≥ lim

α→0
↑I+,(α)

[0 ,1]d
(g). (6.10)

Let us show the converse inequality. Let p ≥ 1. Consider the event

Fav‡‡ :=
{
τ (α) ∈ LD+

n,[0 ,1]d
(g, ε)

}
∩

 ⋂
e∈E([0 ,n]d)

e hard

{
τ (α) ≥ b

2

},
where for all v = (v1, . . . , vd) ∈ Zd and i ∈ J1 , dK, the edge e = (v, v + ei) is called hard if vi ∈ pZ. By the
FKG inequality, there exists a constant C16, depending only on d, such that

lim
n→∞

− 1
nd

logP
(
Fav‡‡

)
≤ lim

n→∞
− 1
nd

logP
(
τ (α) ∈ LD+

n,[0 ,1]d
(g, ε)

)
− C16

p
log ν

([
b

2 , b
])
. (6.11)

Assume that Fav‡‡ occurs. Let x, y ∈ J0 , nKd and x
γ
⇝ y be a discrete T[0 ,n]d-geodesic. Since γ is

self-avoiding, it uses at least
⌊

∥γ∥
pd

⌋
hard edges. Consequently,

b

2 ·
⌊∥γ∥
pd

⌋
≤ T[0 ,n]d(γ) ≤ b∥x− y∥,

thus
∥γ∥ ≤ 2(∥x− y∥ + 1)pd ≤ 2(nd+ 1)pd.

Since for all edges e, τ (α)
e and τe differ by at most α,

T[0 ,n]d(γ) ≥ T(α)
[0 ,n]d

(γ) − 2α(nd+ 1)pd,

thus for all x, y ∈ J0 , nKd,

T[0 ,n]d(x, y) ≥ T(α)
[0 ,n]d

(x, y) − 2α(nd+ 1)pd.

This bound can be extended to all x, y ∈ [0 , n]d, up to a bounded additive error term thanks to (1.16).
Consequently, for large enough n,

Fav‡‡ ⊆
{
τ ∈ LD+

n,[0 ,1]d
(
g, 2ε+ 2αdpd

)}
. (6.12)

Combining (6.11) and (6.12), we get

lim
n→∞

− 1
nd

logP
(

LD+
n,[0 ,1]d

(
g, 2ε+ 2αdpd

))
≤ lim

n→∞
− 1
nd

logP
(
τ (α) ∈ LD+

n (g, ε)
)

− C16
p

log ν
([
b

2 , b
])
.

Thus, by definition of I+,(α)
[0 ,1]d(g) and by (6.5),

lim
n→∞

− 1
nd

logP
(

LD+
n,[0 ,1]d

(
g, 2ε+ 2αdpd

))
≤ I

+,(α)
[0 ,1]d

(g) − C16
p

log ν
([
b

2 , b
])
.
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For small enough α, 2αdpd ≤ ε, thus

lim
n→∞

− 1
nd

logP
(

LD+
n,[0 ,1]d

(g, 3ε)
)

≤ lim
α→0

↑I+,(α)
[0 ,1]d

(g) − C16
p

log ν
([
b

2 , b
])
.

Letting p → ∞ and ε → 0, we obtain

I
+
[0 ,1]d(g) ≤ lim

α→0
↑I+,(α)

[0 ,1]d
(g). (6.13)

This concludes the proof of (6.9).
Let η > 0. Lemma 4.4 and the monotonicity of the rate function imply that for all α > 0, for all

norms α∥·∥ ≤ g1, g2 ≤ (b− 2η)∥·∥ such that ∥g1 − g2∥Hom ≤ η
p ,

I
(α)
[0 ,1]d

(g1) ≤ I
(α)
[0 ,1]d

(
g2 + η

p
∥·∥
)

≤ I
(α)
[0 ,1]d

(g2) − C12
p

log ν(α)([b− η , b]).

Since the roles of g1 and g2 are symmetric, this gives∣∣∣∣I(α)
[0 ,1]d

(g1) − I
(α)
[0 ,1]d

(g2)
∣∣∣∣ ≤ −C12

p
log ν(α)([b− η , b]) ≤ −C12

p
log ν([b− η , b]).

Moreover, for all g1, g2 ∈ SN ,∥∥∥∥[α∥·∥] ∨ g1 − [α∥·∥] ∨ g2

∥∥∥∥
Hom

≤ ∥g1 − g2∥Hom.

Applying (6.5), we deduce that on the set of seminorms g such that g ≤ (b − 2η)∥·∥, the functions(
I

+,(α)
[0 ,1]d

)
α>0

form an equicontinuous family, hence we obtain the announced uniform convergence and
continuity.

For all X ∈ K and D ∈ D(α)
X , we define

I+
X(D) := lim

α′→0
↑I(α′)

X (D) = lim
α′→0

↑
∫
X
I

(α′)
[0 ,1]d

((gradD)z)dz =
∫
X
I+

[0 ,1]d
((gradD)z)dz. (6.14)

6.2 Point-point passage time: proof of Corollary 1.6

Fix x ∈ Rd \ {0}. In this subsection, we assume that 0 ≤ a < b < ∞, with ν({0}) < pc(Zd). In particular,

α0 := 1
2 inf
u∈S

µ(u) > 0. (6.15)

Let C17 := b∥x∥
α0

and X := [−C17 , C17]d. The Cox-Durrett shape theorem (see [8, Theorem 3] for the case
d = 2 and [13, Theorem 1.7] for the general case) implies that

lim
n→∞

P
(
T̃n,X(0, ∂X) ≥ b∥x∥

)
= 1. (6.16)

Corollary 1.6 is a consequence of Lemmas 6.4 and 6.5.
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Lemma 6.4. The process
(

T(0,nx)
n

)
satisfies the LDP at speed nd with the good rate function

Ipp(x) : [a∥x∥ , b∥x∥] −→ [0 ,∞]
ζ 7−→ min

D∈D(α0)
X :

D(0,x)≥ζ

I+
X(D). (6.17)

Lemma 6.5. The function Ipp(x) is continuous on [a∥x∥ , b∥x∥].

Proof of Lemma 6.4. For all a∥x∥ ≤ ζ ≤ b∥x∥, we define

I
+
pp(x)(ζ) := lim

ε→0
↑ lim
n→∞

− 1
nd

logP
(
T̃n,X(0, x) ≥ ζ − ε

)
and I+

pp(x)(ζ) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(
T̃n,X(0, x) ≥ ζ − ε

)
.

We claim that for all 0 < α ≤ α0 and a∥x∥ ≤ ζ ≤ b∥x∥,

I
+,(α)
pp(x) (ζ) := I

+,(α)
pp(x)(ζ) = I

+,(α)
pp(x)(ζ) = min

D∈D(α0)
X :

D(0,x)≥ζ

I
(α)
X (D). (6.18)

Indeed let ε > 0 and
Aε :=

{
D ∈ D(α0)

X | D(0, x) ≥ ζ − ε
}
.

Since T̃(α)
n,X satisfies the LDP with the rate function I

(α)
X ,

min
D∈Aε

I
(α)
X (D) ≤ lim

n→∞
− 1
nd

logP
(
T̃(α)
n,X ∈ Aε

)
≤ lim

n→∞
− 1
nd

logP
(
T̃(α)
n,X ∈ Aε

)
≤ inf

D∈Åε

I
(α)
X (D).

Besides, by the FKG inequality and the definition of α0,

P
(
T̃(α)
n,X ∈ Aε

)
∼

n→∞
P
(
T̃(α)
n,X(0, x) ≥ ζ − ε

)
,

thus

min
D∈Aε

I
(α)
X (D) ≤ lim

n→∞
− 1
nd

logP
(
T̃(α)
n,X(0, x) ≥ ζ − ε

)
≤ lim

n→∞
− 1
nd

logP
(
T̃(α)
n,X(0, x) ≥ ζ − ε

)
≤ inf

D∈Åε

I
(α)
X (D).

Thanks to the lower semicontinuity of I(α)
X , the same arguments as the onesused for the proof of (6.7)

and (6.8) give (6.18).
The same arguments as the ones used in the proof of Lemma 6.3 lead to

I+
pp(x)(ζ) := I

+
pp(x)(ζ) = I+

pp(x)(ζ) = lim
α→0

↑I+,(α)
pp(x) (ζ).

We claim that
lim
α→0

↑I+,(α)
pp(x) (ζ) = min

D∈D(α0)
X :

D(0,x)≥ζ

I+
X(D) =: Ipp(x)(ζ). (6.19)
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Indeed, the inequality
lim
α→0

↑I+,(α)
pp(x) (ζ) ≤ min

D∈D(α0)
X :

D(0,x)≥ζ

I+
X(D)

is a direct consequence of I(α)
X ≤ I+

X and (6.18). Let us prove the converse inequality. For all α > 0, the
set

Kα :=
{
D ∈ D(α0)

X

∣∣∣∣ D(0, x) ≥ ζ, I
(α)
X (D) ≤ lim

α′→0
↑I+,(α′)

pp(x) (ζ)
}

is compact. Moreover if α1 < α2 then I
(α1)
X ≥ I

(α2)
X , thus Kα1 ⊆ Kα2 . Hence the intersection K0 of all

the Kα contains at least one element D. We have

I+
X(D) = lim

α→0
↑I(α)

X (D) ≤ lim
α→0

↑I+,(α)
pp(x) (ζ), (6.20)

thus (6.19).
For all a∥x∥ ≤ ζ ≤ b∥x∥, define

Ipp(x)(ζ) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(∣∣∣T̃n(0, x) − ζ

∣∣∣ ≤ ε
)

and Ipp(x)(ζ) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(∣∣∣T̃n(0, x) − ζ

∣∣∣ ≤ ε
)
.

Thanks to Lemma 1.2, it remains to show that

Ipp(x)(ζ) = Ipp(x)(ζ) = I+
pp(x)(ζ). (6.21)

The inequality
Ipp(x)(ζ) ≥ I+

pp(x)(ζ) (6.22)

is a direct consequence of the inclusion{∣∣∣T̃n(0, x) − ζ
∣∣∣ ≤ ε

}
⊆
{

T̃n,X(0, x) ≥ ζ − ε
}
.

To prove the converse inequality, first note that by the FKG inequality and (6.16),

P
(
T̃n,X(0, x) ≥ ζ − ε

)
∼

n→∞
P
(
T̃n(0, x) ≥ ζ − ε

)
,

thus
lim
n→∞

− 1
nd

logP
(
T̃n,X(0, x) ≥ ζ − ε

)
= lim

n→∞
− 1
nd

logP
(
T̃n(0, x) ≥ ζ − ε

)
. (6.23)

Let n ≥ 1 be an integer large enough so that

1
n

(a∥⌊nx⌋∥ + bd) ≤ ζ + ε and b

n
≤ ε.

Let γ =
(
0 = y0, y1, . . . , y∥⌊nx⌋∥ = ⌊nx⌋

)
be a discrete path from 0 to ⌊nx⌋ with minimal number of edges.

For all R ∈ J0 , ∥⌊nx⌋∥K, we define the configuration τ [R] by

τ [R]
e :=

a if e ∈ Epath
(
γ [0 ,R]

)
,

τe otherwise.
(6.24)
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On the event
{

T̃n(0, x) ≥ ζ − ε
}

, for large enough n,

T̃[0]
n (0, x) = T̃n(0, x) ≥ ζ − ε

and T̃[∥⌊nx⌋∥]
n (0, x) ≤ 1

n
(a∥⌊nx⌋∥ + bd) ≤ ζ + ε.

Moreover, for all R ∈ J0 , ∥⌊nx⌋∥ − 1K,

0 ≤ T̃[R]
n (0, x) − T̃[R+1]

n (0, x) ≤ b

n
≤ ε,

hence there exists a τ-measurable random integer R0 such that∣∣∣T̃[R0]
n (0, x) − ζ

∣∣∣ ≤ ε,

take for example the smallest R such that T̃[R]
n (0, x) ≤ ζ + ε. Consider a configuration τ ′ with the same

distribution as τ, and (Xr)1≤r≤∥⌊nx⌋∥ a family of independent Bernoulli variables with parameter 1/2, and
assume the τ , τ ′ and (Xr) are independent. The configuration defined by

τ∗
e :=

{
Xrτ

′
e + (1 −Xr)τe if e = (yr−1, yr), with 1 ≤ r ≤ ∥⌊nx⌋∥,

τe otherwise,
(6.25)

has the same distribution as τ. Reasoning as in Step 4 of the proof of Lemma 3.6, on the event

{
T̃n(0, x) ≥ ζ − ε

}
∩

∥⌊nx⌋∥⋂
r=1

{
Xr = 1J1 ,R0K(r)

} ∩

∥⌊nx⌋∥⋂
r=1

{
τ ′

(yr−1,yr) ≤ a+ ε
},

the configurations τ∗ and τ [R0] agree on all edges except R0 of them, where they may differ up to ε.
Consequently,

lim
n→∞

− 1
nd

logP
(
T̃n(0, x) ≥ ζ − ε

)
≥ lim

n→∞
− 1
nd

logP
(∣∣∣T̃n(0, x) − ζ

∣∣∣ ≤
(

1 + R0
n

)
ε

)
≥ lim

n→∞
− 1
nd

logP
(∣∣∣T̃n(0, x) − ζ

∣∣∣ ≤
(

1 + ∥⌊nx⌋∥
n

)
ε

)
. (6.26)

Combining (6.23) and (6.26) and letting ε → 0, we get

Ipp(x)(ζ) ≤ I+
pp(x)(ζ). (6.27)

Consequently, (6.21) holds. This concludes the proof of the lemma.

Proof of Lemma 6.5. Since Ipp(x) is nondecreasing and lower semicontinuous, it is sufficient to prove the
right-continuity. Let a∥x∥ ≤ ζ < b∥x∥. By (6.17) there exists D ∈ D(α0)

X such that D(0, x) ≥ ζ and

Ipp(x)(ζ) = I+
X(D). (6.28)

The idea is to build another metric D̂ whose cost is slightly larger, such that D̂(0, x) > ζ, leading to

Ipp(x)(ζ+) ≤ Ipp(x)(ζ). (6.29)

The details of the construction of D̂ differ whether ν has an atom at b or not.
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Case 1: ν({b}) > 0. Without loss of generality we assume that xi ≥ 0 for all i ∈ J1 , dK. For all
A ⊆ J1 , dK, we define the sets

XA :=
{
y ∈ X

∣∣∣∣∣ ∀i ∈ A, yi ≥ xi
2 and ∀i ∈ J1 , dK \A, yi ≤ xi

2

}

and

X ′
A := XA + ε

∑
i∈A

xiei.

We define D′
A as the metric on X ′

A defined by translating D XA
by zA := ε

∑
i∈A xiei, i.e. D′

A :=
TrzA(D XA

) (see Lemmas 2.14 and 2.16). We define D′ as the metric on (1 + ε)X constructed as in
Lemma 2.15, with the family of subsets (X ′

A)A and the family of metrics (D′
A)A. Finally, we define

D̂ := Sc 1
1+ε

(D′) (see Lemma 2.13). Thanks to the equality of gradients provided by these four lemmas,

I+
X(D̂) =

I+
(1+ε)X(D′)
(1 + ε)d

= 1
(1 + ε)d

 ∑
A⊆J1 ,dK

I+
X′

A

(
D′
A

)
+ Leb

(1 + ε)X \
⋃

A⊆J1 ,dK
X ′
A

I+
[0 ,1]d

(b∥·∥)


= 1

(1 + ε)d
[
I+
X(D) +

(
(1 + ε)d − 1

)
Leb(X)I+

[0 ,1]d
(b∥·∥)

]
. (6.30)

We claim that
D̂(0, x) ≥ ζ + εb∥x∥

1 + ε
> ζ. (6.31)

Indeed let 0 γ
⇝ (1+ε)x be a D′-geodesic. Since the gradient of D′ is b∥·∥ outside the tiles X ′

A (see (2.34)),
D′(γ) does not increase when replacing every excursion of γ outside the tiles by the concatenation of d
(possibly degenerate) segments, such that the ith one is colinear to ei. In particular we may assume that
γ is of the form

0
γint

1⇝ y(1)
γext

1⇝ z(1)
γint

2⇝ y(2)
γext

2⇝ . . .
γext

r⇝ z(r)
γint

r+1
⇝ x, (6.32)

where

(i) Every γint
j is included in some tile X ′

A(j).

(ii) For all j ∈ J1 , rK, γext
j = [y(j) , z(j)].

(iii) For all j ∈ J1 , rK, y(j) − z(j) is colinear to some ei(j) and ]y(j) , z(j)[ ⊆ [(1 + ε)X] \
(⋃

A⊆J1 ,dKX
′
A

)
.

The concatenation of the translated paths
(
γint
j − zA(j)

)
j∈J1 ,r+1K

is a path from 0 to x (see Figure 7),
thus

r+1∑
j=1

D′
(
γint
j

)
≥ D(0, x) ≥ ζ. (6.33)

63



X{1}

x

X{1,2}X{2}

0

X∅X ′
{1}

(1 + ε)x

X ′
{1,2}X ′

{2}

0

X ′
∅

γint
1

γint
2 γint

3

γint
4

γint
5

γext
1

γext
2

γext
3γext

4

(1 + ε)X

Figure 7: Up to translations, the paths γint
j may be concatenated into a path from 0 to x.

Moreover,
r∑
j=1

D′
(
γext
j

)
=

r∑
j=1

b∥y(j) − z(j)∥

= bε
r∑
j=1

xi(j).

Since (1 + ε)x ∈ X ′
J1 ,dK, every coordinate of x appear at least once in the sum above, hence

r∑
j=1

D′
(
γext
j

)
≥ bε∥x∥. (6.34)

Inequalities (6.33) and (6.34) give

D′(0, (1 + ε)x) ≥ ζ + bε∥x∥,

i.e. (6.31). By (6.17), (6.30), and (6.31),

Ipp(x)

(
ζ + εb∥x∥

1 + ε

)
≤ 1

(1 + ε)d
[
I+
X(D) +

(
(1 + ε)d − 1

)
Leb(X)I+

[0 ,1]d
(b∥·∥)

]
.

Besides, (4.20) and (6.9) imply I+
[0 ,1]d

(b∥·∥) < ∞. Letting ε → 0, we obtain (6.29).

Case 2: ν({b}) = 0. For all z ∈ X, we write gz := (gradD)z. We follow the proof of Proposition 1.4
in Basu, Ganguly and Sly [3], in a deterministic setting: rather than slightly increasing every edge
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passage times in an configuration satisfying
{

T̃n(0, x) ≥ ζ
}

, we slightly increase gz to build D̂. Let

0 < ε ≤ δ ≤ b∥x∥−ζ
10∥x∥ . Let ωδ be a modulus of continuity for the restriction of I+

[0 ,1]d
on the set of norms g

such that α0∥·∥ ≤ g ≤ (b− δ)∥·∥, which is compact (see Lemma 6.3). Define the sets

X1(δ) :=
{
z ∈ X

∣∣∣ ∥gz∥Hom ≤ (b− 2δ)
}

and X2(δ) := X \X1(δ). (6.35)

For all z ∈ X, define

ĝz :=
{
gz + ε∥·∥ if z ∈ X1(δ),
[(b− 8δ)∥·∥] ∨ gz if z ∈ X2(δ).

Let D̂ denote the metric defined by (2.19), with the family (ĝz)z∈X . Note that by (2.20), for all z ∈ X,
(grad D̂)z ≤ ĝz. Consequently,

I+
X(D̂) ≤

∫
X1(δ)

I+
[0 ,1]d

(gz + ε∥·∥)dz +
∫
X2(δ)

I+
[0 ,1]d

([(b− 8δ)∥·∥] ∨ gz)dz. (6.36)

The first term is upper bounded by∫
X1(δ)

I+
[0 ,1]d

(gz + ε∥·∥)dz ≤
∫
X1(δ)

I+
[0 ,1]d

(gz)dz + Leb(X1(δ))ωδ(ε) ≤ I+
X(D) + Leb(X)ωδ(ε). (6.37)

Let us bound the second. Let z ∈ X2(δ). First, note that for all α > 0, by (4.20) and (4.21),

I
(α)
[0 ,1]d

((b− 8δ)∥·∥) ≤ −d log ν(α)([b− 8δ , b])

≤ 2dI(α)
[0 ,1]d

(gz) + 2d log 2.

Letting α → 0, we get

I+
[0 ,1]d

((b− 8δ)∥·∥) ≤ 2dI+
[0 ,1]d

(gz) + 2d log 2. (6.38)

Moreover, by the FKG inequality,

I+
[0 ,1]d

([(b− 8δ)∥·∥] ∨ gz) ≤ I+
[0 ,1]d

((b− 8δ)∥·∥) + I+
[0 ,1]d

(gz)

≤ (2d+ 1)I+
[0 ,1]d

(gz) + 2d log 2.

This implies∫
X2(δ)

I+
[0 ,1]d

([(b− 8δ)∥·∥] ∨ gz)dz ≤ (2d+ 1)
∫
X2(δ)

I+
[0 ,1]d

(gz)dz + 2dLeb(X2(δ)) log 2. (6.39)

Combining (6.37) and (6.39), we obtain

I+
X(D̂) ≤ I+

X(D) + Leb(X)ωδ(ε) + (2d+ 1)
∫
X2(δ)

I+
[0 ,1]d

(gz)dz + 2dLeb(X2(δ)) log 2. (6.40)

We claim that D̂(0, x) > ζ. Let 0 γ
⇝
X
x be a Lipschitz path. If

∫ Tγ

0

∥∥γ′(t)
∥∥1X2(δ)(γ(t))dt ≥ ζ + δ∥x∥

b− 8δ ,
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then ∫ Tγ

0
ĝγ(t)

(
γ′(t)

)
dt ≥ (b− 8δ)

∫ Tγ

0

∥∥γ′(t)
∥∥1X2(δ)(γ(t))dt

≥ ζ + δ∥x∥. (6.41)

Otherwise, ∫ Tγ

0

∥∥γ′(t)
∥∥1X1(δ)(γ(t))dt =

∫ Tγ

0

∥∥γ′(t)
∥∥dt−

∫ Tγ

0

∥∥γ′(t)
∥∥1X2(δ)(γ(t))dt

≥ ∥x∥ − ζ + δ∥x∥
b− 8δ

= b∥x∥ − ζ − 9δ∥x∥
b− 8δ

≥ δ∥x∥
b− 8δ .

Consequently,∫ Tγ

0
ĝγ(t)

(
γ′(t)

)
dt ≥

∫ Tγ

0
gγ(t)

(
γ′(t)

)
dt+

∫ Tγ

0

(
ĝγ(t)

(
γ′(t)

)
− gγ(t)

(
γ′(t)

))
1X1(δ)(γ(t))dt

≥ D(γ) + ε

∫ Tγ

0

∥∥γ′(t)
∥∥1X1(δ)(γ(t))dt

≥ ζ + εδ

b− 8δ∥x∥. (6.42)

Combining inequalities (6.41) and (6.42) with the definition of D̂, we get D̂(0, x) > ζ. Thus, by (6.28)
and (6.40),

Ipp(x)(ζ+) ≤ Ipp(x)(ζ) + Leb(X)ωδ(ε) + (2d+ 1)
∫
X2(δ)

I+
[0 ,1]d

(gz)dz + 2dLeb(X2(δ)) log 2. (6.43)

Besides, since ζ < b∥x∥, I+
X(D) = Ipp(x)(ζ) ≤ I+

X

(
ζ∥·∥
∥x∥

)
< ∞, therefore by (6.38), Leb(X2(δ)) converges

to 0 as δ → 0. Thus, letting ε → 0 then δ → 0 in (6.43), we get (6.29).

6.3 Crossing time: proof of Corollary 1.7

In this subsection, we only assume that ν has a bounded support, i.e. 0 ≤ a < b < ∞, and X = [0 , 1]d.
For all α > 0, Lemma 6.1 implies that

(
T̃(α)

cross(n)
)
n≥1

satisfies the LDP at speed nd with the rate function

I(α)
cross : [α , b]d −→ [0 ,∞]

ζ −→ min
D∈D(α)

[0 ,1]d
:

∀i,D(Hi,H
′
i)=ζi

I
(α)
[0 ,1]d

(D) (6.44)

Corollary 1.7 is a consequence of Lemmas 6.6, 6.7 and 6.8.

Lemma 6.6. For all α > 0, ζ ∈ [α , b]d,

I(α)
cross(ζ) = I

+,(α)
[0 ,1]d

(
gζ
)
. (6.45)
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Lemma 6.7. The process
(
T̃cross(n)

)
n≥1

satisfies the LDP at speed nd with the rate function

Icross(ζ) := lim
α→0

↑I(α)
cross(ζ) = I+

[0 ,1]d
(gζ). (6.46)

Lemma 6.8.
(i) Icross is continuous on [a , b]d.

(ii) Icross is nondecreasing on [a , b]d for the componentwise order, i.e. for all ζ = (ζ1, . . . , ζd) and
ζ ′ = (ζ ′

1, . . . , ζ
′
d) in [a , b]d, if ζi ≤ ζ ′

i for all i, then Icross(ζ) ≤ Icross(ζ ′).

(iii) Icross is separately convex on [a , b]d, i.e. for all 1 ≤ i ≤ d and ζ1, . . . , ζi−1, ζi+1, . . . , ζd ∈ [a , b], the
function

t 7→ Icross(ζ1, . . . , ζi−1, t, ζi+1, . . . , ζd)

is convex on [a , b].

(iv) Icross(b, . . . , b) < ∞ if and only if ν({b}) > 0.

Proof of Lemma 6.6 . Fix α > 0 and ζ ∈ [α , b]d. The inequality

I(α)
cross(ζ) ≤ I

(α)
[0 ,1]d

(
gζ ∨ [α∥·∥]

)
= I

+,(α)
[0 ,1]d

(
gζ
)

(6.47)

is straightforward. Let us prove the converse inequality.
For all A ⊆ J1 , dK, let

hA :
[
0 , 1

2

]d
+ 1

2
∑
i∈A

ei −→
[
0 , 1

2

]d
z 7−→ z +

∑
i∈A

(1 − 2zi)ei (6.48)

denote the orthogonal symmetry with respect to the affine subspace
{
z ∈ Rd

∣∣ ∀i ∈ J1 , dK, zi = 1/2
}

. For

all D ∈ D(α)
X , let s(D) denote the metric on [0 , 1]d defined as in Lemma 2.15 with the family of sets([

0 , 1
2

]d
+ 1

2
∑
i∈A ei

)
A⊆J1 ,dK

and the family of metrics (DA)A⊆J1 ,dK defined by

DA(x, y) := Sc1/2(D)(hA(x), hA(y)),

(see (2.27) and Figure 8). We postpone the proof of Claims 6.9 and 6.10 to the end of the subsection.

Claim 6.9. Let D ∈ D(α)
[0 ,1]d

. For all 1 ≤ i ≤ d,

s(D)(Hi, H
′
i) = D(Hi, H

′
i). (6.49)

Moreover,

I
(α)
[0 ,1]d

(s(D)) = I
(α)
[0 ,1]d

(D). (6.50)

Claim 6.10. Let D ∈ D(α)
[0 ,1]d

and n ≥ 1. For all x, y ∈ [0 , 1]d and z ∈ 2−n+1Zd such that x+ z, y + z ∈

[0 , 1]d,
sn(D)(x, y) = sn(D)(x+ z, y + z). (6.51)
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D s(D) s2(D)

Figure 8: Illustration of the first two iterations of s in the case d = 2.

Let K denote the set of minimizers in (6.44). Let D ∈ K. A straightforward induction argument
using Claim 6.9 implies that for all n ≥ 1, sn(D) ∈ K. Moreover I(α)

[0 ,1]d
is lower semicontinuous, therefore

K is compact, therefore (sn(D))n≥1 has an adherence value D′ in K. Letting n → ∞ in (6.51), we obtain
that for all x, y ∈ [0 , 1]d and z ∈ Rd with dyadic coordinates such that x+ z, y + z ∈ [0 , 1]d,

D′(x, y) = D′(x+ z, y + z).

Since D′ is continuous, this equality is true for any z. Consequently, z 7→ (gradD′)z is constant on
]0 , 1[d. Proposition 2.10 further implies that for all z ∈ ]0 , 1[d, (gradD′)z is equal to a norm g ∈ N (α).
Consequently,

I(α)
cross(ζ) = I

(α)
[0 ,1]d

(g). (6.52)

Moreover, g is invariant by orthogonal reflexions with respect to the hyperplanes
{
x ∈ Rd

∣∣ xi = 0
}

, and
for all 1 ≤ i ≤ d, g(ei) ≥ ζi.

Let x = (x1, . . . , xd) ∈ Rd and 1 ≤ i ≤ d. We have

xiei = 2−d+1 ∑
λ∈{−1,1}d

λi=1

d∑
j=1

λjxjej ,

thus

|xi|g(ei) ≤ 2−d+1 ∑
λ∈{−1,1}d:

λi=1

g

 d∑
j=1

λjxjej

.

Besides, since g is invariant by orthogonal reflexions with respect to the hyperplanes
{
x ∈ Rd

∣∣ xj = 0
}

,
every term the right-hand side is equal to g(x). Applying g(ei) ≥ ζi leads to

ζi|xi| ≤ g(x),

hence g ≥ gζ . Proposition 3.1 and Equation (6.52) yield (6.45).
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Proof of Lemma 6.7. For all ζ ∈ [a , b]d, we define

Icross(ζ) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(∥∥∥T̃cross(n) − ζ

∥∥∥
∞

≤ ε
)
, (6.53)

Icross(ζ) := lim
ε→0

↑ lim
n→∞

− 1
nd

logP
(∥∥∥T̃cross(n) − ζ

∥∥∥
∞

≤ ε
)
, (6.54)

I
+
cross(ζ) := lim

ε→0
↑ lim
n→∞

− 1
nd

logP
(

d⋂
i=1

{
T̃n,[0 ,1]d(Hi, H

′
i) ≥ ζi − ε

})
, (6.55)

I+
cross(ζ) := lim

ε→0
↑ lim
n→∞

− 1
nd

logP
(

d⋂
i=1

{
T̃n,[0 ,1]d(Hi, H

′
i) ≥ ζi − ε

})
. (6.56)

The same arguments as the ones used in the proof of Lemmas 6.2 and 6.3 lead to

I+,(α)
cross (ζ) := I

+,(α)
cross (ζ) = I+,(α)

cross (ζ) = I
+,(α)
[0 ,1]d

(
gζ
)
, (6.57)

and
I+

cross(ζ) := I
+
cross(ζ) = I+

cross(ζ) = lim
α→0

↑I+,(α)
cross (ζ) = I+

[0 ,1]d
(
gζ
)
. (6.58)

Following the proof of (6.21), we now show by a modification argument that

Icross(ζ) := Icross(ζ) = Icross(ζ) = I+
cross(ζ). (6.59)

The inequality
Icross(ζ) ≥ I+

cross(ζ) (6.60)

is straightforward. Let us prove the converse inequality. Consider a configuration τ ′ with the same
distribution as τ, and (Xe) a family of independent Bernoulli variables with parameter 1/2, indexed by⋃d
i=1{(rei, (r + 1)ei), 0 ≤ r ≤ n− 1}. We assume τ, τ ′ and (Xe) to be independent. The configuration

defined by

τ∗
e :=

{
Xeτ

′
e + (1 −Xe)τe if e ∈

⋃d
i=1{(rei, (r + 1)ei), 0 ≤ r ≤ n− 1},

τe otherwise,
(6.61)

has the same distribution as τ. As for Lemma 3.6 and (6.21), the idea is to construct an event Fav⋄ whose
probability has the same order as P

(⋂d
i=1

{
T̃n,[0 ,1]d(Hi, H

′
i) ≥ ζi − ε

})
, such that

Fav⋄ ⊆
{∥∥∥T̃∗

cross(n) − ζ
∥∥∥

∞
≤ ε

}
. (6.62)

Let n ≥ 1 and 1 ≤ i ≤ d. For all 0 ≤ R ≤ n, consider the modified configuration defined by

τ [i,R]
e :=

{
a if e ∈ {(rei, (r + 1)ei), 0 ≤ r ≤ R− 1}
τe otherwise.

Define the random variable

Ri := min
{

0 ≤ R ≤ n

∣∣∣∣∣ T̃[i,R]
n,[0 ,1]d

(Hi, H
′
i) ≤ ζi

}
.

It is clear that T̃[i,n]
n,[0 ,1]d

(Hi, H
′
i) = a ≤ ζi, thus Ri is well-defined. Note that

ζi − b

n
≤ T̃[i,Ri]

n,[0 ,1]d
(Hi, H

′
i) ≤ ζi. (6.63)
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Let

Efast :=
d⋃
i=1

{(rei, (r + 1)ei), 0 ≤ r ≤ Ri − 1}. (6.64)

We can now define Fav⋄ as

Fav⋄ :=
(

d⋂
i=1

{
T̃n,[0 ,1]d(Hi, H

′
i) ≥ ζi − ε

})
∩
(

d⋂
i=1

n−1⋂
r=0

{
X(rei,(r+1)ei) = 1Efast(e)

})

∩
(

d⋂
i=1

n−1⋂
r=0

{
τ ′(rei, (r + 1)ei) ≤ a+ ε

})
.

(6.65)

By independence of τ, τ ′ and (Xe),

P(Fav⋄) = P
(

d⋂
i=1

{
T̃n,[0 ,1]d(Hi, H

′
i) ≥ ζi − ε

})
·
(1

2

)nd
· ν([a , a+ ε])nd. (6.66)

For all 1 ≤ i ≤ d, there exists a T[0 ,n]d-geodesic nHi
γ
⇝ nH ′

i which does not use any edge in nHi, therefore
T̃∗
n,[0 ,1]d(Hi, H

′
i) = T̃[i,Ri]

n,[0 ,1]d
(Hi, H

′
i). Consequently, applying (6.63), we get (6.62) for large enough n. The

inequality (6.66) then implies

− 1
nd

logP
(∥∥∥T̃cross(n) − ζ

∥∥∥
∞

≤ ε
)

≤ − 1
nd

logP
(

d⋂
i=1

{
T̃n,[0 ,1]d(Hi, H

′
i) ≥ ζi − ε

})
− d

nd−1 log
(
ν([a , a+ ε])

2

)
.

Taking the superior limit as n → ∞ then ε → 0,

Icross(ζ) ≤ I+
cross(ζ), (6.67)

thus (6.59). Consequently, by Lemma 1.2 and the remark below it, (T̃cross(n))n≥1 satisfies the LDP with
the rate function Icross. Besides, by (6.9) and (6.58),

Icross(ζ) = I+
[0 ,1]d

(gζ).

Proof of Lemma 6.8. We prove the different parts in order of difficulty.
Item (ii) is a consequence of Lemma 6.7 and the monotonicity of I+

[0 ,1]d
.

Item (iv) is a consequence of Lemma 4.2.

To prove Item (iii), it is sufficient by Lemma 6.7 to prove that for all α > 0, I(α)
cross is separately

convex on [α , b]d. Let α > 0. Without loss of generality, we only prove that, given α ≤ ζ2, . . . , ζd ≤ b,
I

(α)
cross(·, ζ2, . . . , ζd) is convex. Let 0 ≤ θ ≤ 1 and α ≤ ζ1, ζ

′
1 ≤ b. Consider the metric D defined on [0 , 1]d

by prescribing its gradient, as in Lemma 2.11, (2.19), with

gz :=
{
g(ζ1,ζ2,...,ζd) ∨ α∥·∥ if 0 ≤ z1 ≤ θ,

g(ζ′
1,ζ2,...,ζd) ∨ α∥·∥ if θ ≤ z1 ≤ 1.
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Then

D(H1, H
′
1) = θζ1 + (1 − θ)ζ ′

1

and for all 2 ≤ i ≤ d,

D(Hi, H
′
i) = ζi.

Moreover, by (1.20),

I[0 ,1]d(D) = θI
(α)
[0 ,1]d

(
g(ζ1,ζ2,...,ζd) ∨ α∥·∥

)
+ (1 − θ)I(α)

[0 ,1]d
(
g(ζ′

1,ζ2,...,ζd) ∨ α∥·∥
)
.

Equations (6.44) and (6.45) yield

I(α)
cross

(
θζ1 + (1 − θ)ζ ′

1, ζ2, . . . , ζd
)

≤ θI(α)
cross(ζ1, ζ2, . . . , ζd) + (1 − θ)I(α)

cross
(
ζ ′

1, ζ2, . . . , ζd
)
, (6.68)

thus Item (iii) is proven.
To prove Item (i), we proceed differently whether ν has an atom at b or not.
Case 1: ν({b}) > 0. Let ζ ∈ [a , b]d, ε > 0 and α > 0. Consider the metric D on [0 , 1]d defined by

prescribing its gradient, as in Lemma 2.11, (2.19), with

gz :=
{
gζ ∨ α∥·∥ if z ∈ [0 , 1 − ε]d,
b∥·∥ otherwise.

Then for all 1 ≤ i ≤ d,
D(Hi, H

′
i) ≥ εb+ (1 − ε)ζi =: ζ ′

i.

Note that U :=
{
ζ̂ ∈ [a , b]d

∣∣ ∀1 ≤ i ≤ d, ζ̂i ≤ ζ ′
i

}
is a neighbourhood of ζ in [a , b]d, regardless of whether

ζi = b for some i or not. Besides,

I
(α)
[0 ,1]d

(D) = (1 − ε)dI+,(α)
[0 ,1]d

(
gζ
)

+
[
1 − (1 − ε)d

]
I

+,(α)
[0 ,1]d

(b∥·∥),

therefore
I+,(α)

cross (ζ ′) ≤ (1 − ε)dI+,(α)
[0 ,1]d

(
gζ
)

+
[
1 − (1 − ε)d

]
I

+,(α)
[0 ,1]d

(b∥·∥).

Letting α → 0, applying (6.46) and Item (ii), we deduce that for all ζ̂ ∈ U ,

Icross(ζ̂) ≤ (1 − ε)dI+
[0 ,1]d

(
gζ
)

+
[
1 − (1 − ε)d

]
I+

[0 ,1]d
(b∥·∥)

≤ I+
[0 ,1]d

(
gζ
)

+
[
1 − (1 − ε)d

]
I+

[0 ,1]d
(b∥·∥)

= Icross(ζ) +
[
1 − (1 − ε)d

]
I+

[0 ,1]d
(b∥·∥)

therefore Icross is upper semicontinuous on [a , b]d. Since Icross is lower semicontinuous, it is continuous on
[a , b]d.

Case 2: ν({b}) = 0. Lemma 6.3 and Equation (6.46) imply that Icross is continuous on [a , b[d. By
Proposition 1.10, Icross(ζ) = ∞ if ζi = b for some 1 ≤ i ≤ d. Since Icross is lower semicontinuous, it is
continuous at such ζ, thus (i).

This concludes the proof of Corollary 1.7, up to the proof of Claims 6.9 and 6.10.
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Proof of Claim 6.9. Let α > 0 and D as in the lemma. Without loss of generality, we only prove (6.49)
for i = 1. By rescaling and concatenating a D-geodesic between H1 and H ′

1 with its symmetric, one shows
the inequality

s(D)(H1, H
′
1) ≤ D(H1, H

′
1).

For all z ∈ [0 , 1]d and u ∈ Rd, let

gz(u) := min
{

(gradDA)z(u), A ⊆ J1 , dK s.t. z ∈
[
0 , 1

2

]d
+ 1

2
∑
i∈A

ei

}

be the map involved in the definition of s(D) (see Lemma 2.15). Note that if z belongs the interior of
[0 , 1/2]d + 1/2

∑
i∈A ei for some A ⊆ J1 , dK, then A in the definition of gz(u) is unique. Moreover, for all

pairs (A1, A2), hA1 and hA2 agree on the intersection[0 , 1
2

]d
+ 1

2
∑
i∈A1

ei

 ∩

[0 , 1
2

]d
+ 1

2
∑
i∈A2

ei

.
We can thus define without amibiguity

h : [0 , 1]d −→
[
0 , 1

2

]d
z 7−→ hA(z) if z ∈

[
0 , 1

2

]d
+ 1

2
∑
i∈A

ei. (6.69)

It is straightforward to check for all z ∈
[
0 , 1

2

]d
+ 1

2
∑
i∈A ei,

(gradDA)z = (gradD)2hA(z) ◦ fA, (6.70)

where fA denote the orthogonal symmetry with respect to {∀i ∈ A, zi = 0}. In particular, for all z ∈[
0 , 1

2

]d
+ 1

2
∑
i∈A ei and u ∈ Rd such that z + εu ∈

[
0 , 1

2

]d
+ 1

2
∑
i∈A ei for small enough ε > 0,

gz(u) = (gradD)2hA(z) ◦ fA(u). (6.71)

Let x ∈ H1, y ∈ H ′
1 and x

γ
⇝

[0 ,1]d
y a Lispchitz path. For all t, let A(t) denote a subset A ⊆ J1 , dK such

that γ(t) ∈ [0 , 1/2]d + 1/2
∑
i∈A ei, chosen in a measurable way. By (6.71),∫ Tγ

0
gγ(t)

(
γ′(t)

)
dt =

∫ Tγ

0
(gradD)2h◦γ(t) ◦ fA(t)

(
γ′(t)

)
dt

=
∫ Tγ

0
(gradD)2h◦γ(t)

(
(h ◦ γ)′(t)

)
dt

= 1
2

∫ Tγ

0
(gradD)2h◦γ(t)

(
(2h ◦ γ)′(t)

)
dt. (6.72)

Moreover, 2h ◦ γ is a Lipschitz path going from H1 to H ′
1, then going back to H1, therefore∫ Tγ

0
gγ(t)

(
γ′(t)

)
dt ≥ D(H1, H

′
1).
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Consequently,

s(D)(H1, H
′
1) ≥ D(H1, H

′
1). (6.73)

This concludes the proof of (6.49).
By (2.33) and (6.71),

I
(α)
[0 ,1]d

(s(D)) =
∫

[0 ,1]d
I

(α)
[0 ,1]d

((grad s(D))z)dz

=
∑

A⊆J1 ,dK

∫
[0 , 1

2 ]d+ 1
2
∑

i∈A
ei

I
(α)
[0 ,1]d

(
(gradD)2hA(z) ◦ fA

)
dz.

Since the model is invariant in distribution with respect to the orthogonal transformations of Zd,

I
(α)
[0 ,1]d

(s(D)) =
∑

A⊆J1 ,dK

∫
[0 , 1

2 ]d+ 1
2
∑

i∈A
ei

I
(α)
[0 ,1]d

(
(gradD)2hA(z)

)
dz.

Equation (6.50) follows.

Proof of Claim 6.10. Recall definition (1.35). Let x, y, z as in the lemma. We assume that x ≤ y, the
other cases being similar. Let vx := ⌊2nx⌋ and vy := ⌈2ny⌉. For all v, w ∈ J0 , 2n − 1Kd such that
v−w ∈ 2Zd, the restriction of sn(D) on the tiles Tile(v, 2n) and Tile(w, 2n) are equal up to a translation
(see Figure 8, right). It is thus sufficient to show that there exists a sn(D)-geodesic x γ

⇝ y included in
the box B :=

{
z′ ∈ Rd

∣∣ vx
2n ≤ z′ ≤ vy

2n

}
.

We claim that for all 0 ≤ k ≤ ⟨vx, e1⟩, there exists a sn(D)-geodesic x γ
⇝ y included in

Bk :=
{
z′ ∈ Rd

∣∣∣∣∣ k2n ≤ z′
1 ≤ 1

}
.

For k = 0, there is nothing to prove. Let 0 ≤ k < ⟨vx, e1⟩ such that the statement is true. There exists a
sn(D)-geodesic x γ

⇝ y included in Bk. Applying to the points of γ∩ (Bk \Bk+1) the orthogonal symmetry
with respect to {

z′ ∈ Rd
∣∣∣∣∣ z′

1 = k + 1
2n

}
,

we obtain a geodesic included in Bk+1 (see Figure 9). The claim follows by induction on k.
Applying a similar construction on the other side, we obtain a geodesic included in{

z′ ∈ Rd
∣∣∣∣∣ ⟨vx, e1⟩

2n ≤ z′
1 ≤ ⟨vx, e1⟩

2n

}
.

Finally, repeating the procedure along other coordinates concludes the proof.

6.4 Rescaled random ball: proof of Corollary 1.8

Let K denote the set of compact subsets of Rd et X :=
[
− 1
a ,

1
a

]d
. Define the map

Φ : DX −→ K

D 7−→
{
x ∈ X

∣∣ D(0, x) ≤ 1
}
. (6.74)
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x

y

γ

1

B

Figure 9: The symmetry argument used in Lemma 6.10, with d = 2, n = 3, k = 1. The set B1 \ B2
is represented by the shaded strip. The path γ (solid line) may be transformed into a path of same
sn(D)-length, included in B2.

The lower bound in (1.16) implies that for all n ≥ 1, B̃(n) = Φ(T̃n,X). By Lemma 6.1, it is thus sufficient
to show that Φ is continuous for the Hausdorff distance. We actually prove that it is 1

a -Lipchitz. Let
D1, D2 ∈ DX and x ∈ Φ(D1). By definition of d∞,

D2(0, x) ≤ D1(0, x) + d∞(D1, D2) ≤ 1 + d∞(D1, D2).

Let 0 σ
⇝ x be a D2-geodesic and y := σ([D2(0, x) − d∞(D1, D2)] ∧ 0). Then y ∈ Φ(D2) and

∥x− y∥ ≤ 1
a
D2(x, y) ≤ 1

a
d∞(D1, D2).

Consequently,

Φ(D1) ⊆ Φ(D2) + B
(

0, 1
a
d∞(D1, D2)

)
.

Transposing D1 and D2 leads to

Φ(D2) ⊆ Φ(D1) + B
(

0, 1
a
d∞(D1, D2)

)
.

Hence Φ is 1
a -Lipschitz.

A Large deviations tools: proof of Lemma 1.2

Let X , (Xn), I and I as in the lemma. We denote by BX (x, r) the closed ball of center x and radius r in
(X , dX ).
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Proof of (i). Let (xk)k≥1 a sequence converging to x when k → ∞ in X and ε > 0. Then for all n ≥ 1,

{dX (xk, Xn) ≤ ε} ⊆ {dX (x,Xn) ≤ ε+ dX (x, xk)},

thus

− 1
nd

logP(dX (xk, Xn) ≤ ε) ≥ − 1
nd

logP(dX (x,Xn) ≤ ε+ dX (x, xk)).

Letting n → ∞, we get, for any ε > 0,

I(xk) ≥ lim
n→∞

− 1
nd

logP(dX (x,Xn) ≤ ε+ dX (x, xk)).

In particular, for large enough k,

I(xk) ≥ lim
n→∞

− 1
nd

logP(dX (x,Xn) ≤ 2ε),

therefore

lim
k→∞

I(xk) ≥ lim
n→∞

− 1
nd

logP(dX (x,Xn) ≤ 2ε).

Letting ε → 0 yields

lim
k→∞

I(xk) ≥ I(x),

i.e. I is rate function. Likewise I is a rate function.
Proof of (ii). Let U ⊆ X be an open set and x ∈ U . There exists ε > 0 such that BX (x, ε) ⊆ U . In

particular, for all n ≥ 1,
{dX (x,Xn) ≤ ε} ⊆ {Xn ∈ U},

thus
lim
n→∞

− 1
nd

logP(Xn ∈ U) ≤ lim
n→∞

− 1
nd

logP(dX (x,Xn) ≤ ε) ≤ I(x).

Taking the infimum over x ∈ U , we get (1.8).
Proof of (iii). Let K ⊆ X a compact set and ε > 0. There exists a finite family (xp)Pp=1 of elements

of K such that

K ⊆
P⋃
p=1

BX (xp, ε).

Consequently by union bound, for all n ≥ 1,

P(Xn ∈ K) ≤
P∑
p=1

P(dX (xp, Xn) ≤ ε)

≤ P max
1≤p≤P

P(dX (xp, Xn) ≤ ε).

Taking the log, dividing by −nd and letting n → ∞, we get

lim
n→∞

− 1
nd

logP(Xn ∈ K) ≥ lim
n→∞

− 1
nd

log
(

max
1≤p≤P

P(dX (xp, Xn) ≤ ε)
)

= lim
n→∞

min
1≤p≤P

(
− 1
nd

logP(dX (xp, Xn) ≤ ε)
)

= min
1≤p≤P

lim
n→∞

− 1
nd

logP(dX (xp, Xn) ≤ ε). (A.1)
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Let us denote by x̂(ε) an element xp on which the minimum is attained. By compactness there exist a
sequence (εk)k≥1 converging to 0, such that (x̂(εk))k≥1 converges in K. We write x̂ its limit. Then for all
k ≥ 1,

lim
n→∞

− 1
nd

logP(Xn ∈ K) ≥ lim
n→∞

− 1
nd

logP(dX (x̂(εk), Xn) ≤ εk)

≥ lim
n→∞

− 1
nd

logP(dX (x̂, Xn) ≤ εk + dX (x̂, x̂(εk))).

Letting k → ∞ gives

lim
n→∞

− 1
nd

logP(Xn ∈ K) ≥ I(x̂),

thus (1.9).
Remark A.1. The permutation of lim and min in Equation (A.1) is false in general with lim instead of
lim, thus this proof may not be adapted to show

lim
n→∞

− 1
nd

logP(Xn ∈ K) ≥ min
x∈K

I(x).

As a consequence we have no straightforward proof of the analogue of Corollary 3.2 with IX instead of
IX .

B Properties of compact, convex sets with nonempty interior

In this section X ∈ K is fixed. Let z ∈ X̊. We define the function

Φz,X : Rd −→ [0 ,∞]

x 7−→ inf
{
t > 0

∣∣∣∣∣ x− z

t
+ z ∈ X

}
. (B.1)

Lemma B.1. For all x ∈ Rd and λ > 0,

Φz,X(λx+ z) = λΦz,X(x+ z). (B.2)

Moreover, Φz,X is convex and for all x ∈ X,

x ∈ X ⇐⇒ Φz,X(x) ≤ 1. (B.3)

Proof. Equation (B.2) is straightforward.
Let x1, x2 ∈ Rd and θ1, θ2 ∈ [0 , 1] such that θ1 + θ2 = 1. Let t1, t2 > 0 such that

x1 − z

t1
+ z ∈ X and x2 − z

t2
+ z ∈ X.

Then
θ1x1 + θ2x2 − z

θ1t1 + θ2t2
= θ1t1
θ1t1 + θ2t2

· x1 − z

t1
+ θ2t2
θ1t1 + θ2t2

· x2 − z

t2
.
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By convexity of X,
θ1x1 + θ2x2 − z

θ1t1 + θ2t2
∈ X.

Consequently,

Φz,X(θ1x1 + θ2x2) ≤ θ1t1 + θ2t2.

Taking the infimum over t1 and t2, we get

Φz,X(θ1x1 + θ2x2) ≤ θ1Φz,X(x1) + θ2Φz,X(x2),

thus Φz,X is convex.
We now turn to the proof of (B.3). The part =⇒ is clear. Let x ∈ Rd such that Φz,X(x) ≤ 1. Then

for all n ≥ 1,
x− z

1 + 1
n

+ z ∈ X,

thus by compactness,
x = x− z

1 + z ∈ X.

Lemma B.2. For all 0 < δ ≤ 1,

d
(
(1 − δ)X + δz,Rd \X

)
≥ δ

maxu∈S Φz,X(u) (B.4)

and

d
(
X,Rd \ ((1 + δ)X − δz)

)
≥ δ

maxu∈S Φz,X(u) . (B.5)

Proof. Let 0 < δ ≤ 1 and x ∈ (1 − δ)X + δz. By Lemma B.1,

Φz,X(x) ≤ 1 − δ.

Consequently, for all y ∈ B
(
0, δ

maxu∈S Φz,X(u)

)
, since by Lemma B.1, Φz,X(· + z) is convex and positively

homogeneous,

Φz,X(x+ y) = Φz,X(x− z + y + z)

= 2 · Φz,X

(
x− z

2 + y

2 + z

)
≤ 2 · 1

2 · [Φz,X(x− z + z) + Φz,X(y + z)]

= Φz,X(x) + Φz,X(y + z)
≤ 1 − δ + ∥y∥ max

u∈S
Φz,X(u+ z)

≤ 1,

i.e. x+ y ∈ X. This concludes the proof of (B.4). Inequality (B.5) is proven analogously.

Lemma B.3. The boundary of X is Lebesgue-negligible.
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Proof. Let δ > 0. By Lemma (B.2),

(1 − δ)X + δz ⊆ ∂X ⊆ (1 + δ)X − δz,

thus
Leb(∂X) ≤

[
(1 + δ)d − (1 − δ)d

]
Leb(X).

Letting δ → 0, we get Leb(∂X) = 0, which concludes the proof.

Lemma B.4. Recall definitions (1.36) and (1.37). These sets satisfy

lim
k→∞

#Vext
k (X)
kd

= lim
k→∞

#Vint
k (X)
kd

= Leb(X). (B.6)

Proof. Let δ > 0. By Lemma B.2, for large enough k,

(1 − δ)X + δz ⊆
⋃

v∈Vint
k

(X)
Tile(v, k) ⊆

⋃
v∈Vext

k
(X)

Tile(v, k) ⊆ (1 + δ)X − δz, (B.7)

thus by taking the Lebesgue measure,

(1 − δ)d Leb(X) ≤ #Vint
k (X)
kd

≤ #Vext
k (X)
kd

≤ (1 + δ)d Leb(X).

Consequently,

(1 − δ)d Leb(X) ≤ lim
k→∞

#Vint
k (X)
kd

≤ lim
k→∞

#Vext
k (X)
kd

≤ (1 + δ)d Leb(X).

Letting δ → 0 concludes the proof.

Lemma B.5. The set X−δ defined by (5.3) satisfies

lim
δ→0

max
x∈X

d
(
x,X−δ

)
= 0. (B.8)

Proof. The inequality (B.4) implies that for all δ > 0,(
1 − δmax

u∈S
Φz,X(u)

)
X + δmax

u∈S
(Φz,X(u))z ⊆ X−δ.

Consequently, for all x ∈ X,(
1 − δmax

u∈S
Φz,X(u)

)
x+ δmax

u∈S
(Φz,X(u))z ∈ X−δ,

thus

d
(
x,X−δ

)
≤
∥∥∥∥x−

(
1 − δmax

u∈S
Φz,X(u)

)
x− δmax

u∈S
(Φz,X(u))z

∥∥∥∥
= δmax

u∈S
(Φz,X(u))∥x− z∥

≤ δmax
u∈S

(Φz,X(u)) diam(X).

This concludes the proof.
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