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To compensate the drawback of most kinematic hardening laws who exhibit hardening
saturation, a solution is proposed by replacing the accumulated plastic strain rate in
the springback term by a rate related to the kinematic hardening variable itself. The
proposed approach defines a power-law counterpart to the linear (Prager) and exponential
(Armstrong–Frederick) laws.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Pour pallier le défaut de la plupart des lois d’écrouissage cinématique qui présentent
une saturation de l’écrouissage, une solution est proposée en remplaçant le taux de
déformation plastique cumulée ṗ du terme de rappel par un taux relié à la variable
d’écrouissage cinématique elle-même. L’approche proposée définit une loi puissance
pour l’écrouissage cinématique, complétant ainsi le panel des lois linéaire (Prager) et
exponentielle (Armstrong–Frederick) disponibles en plasticité.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Most modern nonlinear kinematic hardening laws in metal plasticity have the generic form

Ẋ = 2

3
C ε̇p − B(X, p,σ )Ṗ

(
X,σ , ε̇p)

(1)

where X is the kinematic hardening, p is the accumulated plastic strain, σ is the stress, ε̇p is the plastic strain rate, C is a
material parameter, and the springback term BṖ is sometimes replaced by a sum

∑
Bk Ṗk . The scalar function Ṗ (as Ṗk)

is a homogeneous function of degree 1 in ε̇p , such as Ṗ (X,σ , λε̇p) = λṖ (X,σ , ε̇p) ∀λ � 0. The tensorial function B has
usually the sign of X and ‖B‖ increases when the loading increases (in norm). This last feature gives back the concave
shape of stress–strain curves for metals.

For instance, this is the form of Armstrong–Frederick law [1],

Ẋ = 2

3
C ε̇p − γ X ṗ (2)
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with a material parameter γ , but also of Burlet–Cailletaud law [2], of Chaboche law [3] and of Ohno–Wang law [4]. The
normal n = ∂ f

∂σ of the yield surface f = 0 is used in some models,1 it is a function of the stress σ and of the kinematic
hardening X , the plastic strain rate reading then ε̇p = ṗn(σ , X).

In uniaxial monotonic tension the generic law (1) simplifies in Ẋ = (C − B)ε̇p , with a positive increasing nonlinear
function B , rate independent. One observes then that a saturation Ẋ = 0, X = X∞ = Const, is reached for all laws ensuring
B → C at high loading.

Different possibilities to avoid such a saturation of the kinematic hardening exist: make γ = γ (p) a decreasing (to zero)
function of the accumulated plastic strain as in [5], make C dependent of the plastic strain amplitude, through an index
function written in the strain space, as in [6]. None recover the power law shape at high plastic strains. One proposes in
present note simple ways to naturally gain the non-saturation of the kinematic hardening, but also to define for kinematic
hardening a power law counterpart to the usual exponential law.

2. A first family of non-saturating kinematic hardening laws

Kinematic hardening X is a thermodynamics force associated with a tensorial internal state variable denoted α, homo-
geneous to a strain. It is often derived from a quadratic thermodynamics potential as [7]

X = 2

3
C(T )α (3)

where C is the hardening parameter previously introduced, temperature dependent. Initially isotropic and plastically incom-
pressible materials are considered next, with then the expression p = ∫

( 2
3 ε̇p : ε̇p)1/2 dt for the accumulated plastic strain

and with the deviatoric plastic strain rate εp = εp ′ . In Prager law of linear hardening the internal variable α is equal to εp .
In case of (anisothermal) Armstrong–Frederick law it is given by the evolution law α̇ = ε̇p − γα ṗ. It is almost equal to the
plastic strain either when γ is small or when the plastic strain remains limited.

Among others, a law avoiding kinematic hardening saturation is the following, valid for anisothermal cases (see Section 4
for thermodynamics considerations):

α̇ = ε̇p − 3Γ

2
Xȧ, ȧ =

√
2

3
α̇ : α̇ (4)

in which the back stress is now governed by von Mises norm ȧ of the rate α̇ and with Γ as material parameter.
In case of isothermal loading, C is constant, and law (4) reads

Ẋ = 2

3
C ε̇p − Γ X ẋ, ẋ =

√
3

2
Ẋ : Ẋ (5)

and leads to a non-vanishing rate Ẋ solution of the separate variables differential equation Ẋ + Γ X ẋ = 2
3 C ε̇p .

In order to recover a power-law like response in monotonic loading, the law (4) can be generalized as

α̇ = ε̇p − 3Γ

2
X M−2

eq Xȧ, Xeq =
√

3

2
X : X (6)

or (isothermal case):

Ẋ = 2

3
C ε̇p − Γ X M−2

eq X ẋ (7)

with an additional parameter M � 2 (already introduced in [3] in another context).
In uniaxial tension–compression (along 1), εp = diag[εp,− 1

2 εp,− 1
2 εp], X = diag[ 2

3 X,− 1
3 X,− 1

3 X] so that Xeq = |X |,
ẋ = | Ẋ|. The proposed law reduces to the scalar expression

Ẋ + Γ |X |M−2 X | Ẋ | = C ε̇p (1D) (8)

– In case of monotonic tension, X and Ẋ are positive and Eq. (8) reduces to (1+Γ X M−1) Ẋ = C ε̇p therefore to the kinematic
hardening solution of

X + 1

M
Γ X M = Cεp (9)

At large plastic strains X is unbounded and behaves in ε
1/M
p

X ≈ Kε
1/M
p , K =

(
MC

Γ

)1/M

(10)

1 Often f = (σ − X)eq − R − σy in von Mises plasticity, with the isotropic hardening R and the yield stress σy .
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Fig. 1. Tensile stress–strain response from proposed non-saturating kinematic hardening law: a) compared to linear Prager law and Armstrong–Frederick
saturating law (C = 20 000 MPa, γ = 50) at given C for different exponents M , b) at given K = (MC/Γ )1/M and M for different values of parameter C
(K = 347 MPa, M = 5).

– In case of symmetric cyclic loading, X ranges between XMax and Xmin = −XMax, the same calculation now with Ẋ > 0 in
tension and Ẋ < 0 in compression ends up to cycle stabilization and to the maximum kinematic hardening solution of

XMax + 1

M
Γ X M

Max = C
�εp

2
(11)

and then to a cyclic hardening law2 �σ
2 = k + XMax linear in plastic strain amplitude at small �εp and asymptotically

a power function at large �εp with then

XMax ≈ K

(
�εp

2

)1/M

(12)

Again it is unbounded and no saturation is reached.

The tensile responses obtained for different sets of parameters are given in Fig. 1. Young’s modulus is taken as E =
200 000 MPa and k = 400 MPa is set. For the comparison with Prager and Armstrong–Frederick laws (Fig. 1a), the same
constant C = 20 000 MPa is used for all models and the chosen value for Γ (M = 2) is 2.5 × 10−3 MPa−1 and corresponds
to the same first dσ

dε and second d2σ
dε2 derivatives at yielding onset than with Armstrong–Frederick law (for which C = 20 000

MPa still and γ = 50). Parameters Γ for other M are chosen such as all the curves meet at point (ε = 0.02, σ = 655 MPa).
Fig. 1b shows a feature specific to the present law: the possibility with large modulus C (106 MPa in the example) to

model very steep stress increase at low plastic strain. In the figure all stress–strain curves are plotted with the same value
for modulus K , i.e. for the same power law limit at large plastic strains.

In cyclic loading a (classical) modeling flaw is encountered if the value of the kinematic hardening obtained in tension

reaches the critical value XMax = Γ
1

1−M . For XMax = Γ
1

1−M , the slope dX
dεp

becomes negative (!) right after load reversal. Such

a flaw has been pointed out and solved in [4] simply by making linear the kinematic hardening after load reversal. The law
proposed next uses this remedy.

3. Proposal of a non-saturating kinematic hardening law

In order to avoid kinematic hardening saturation, one proposes instead of Eq. (6) the following law, this time with no flaw
at large plastic strain amplitudes,⎧⎪⎨

⎪⎩
X = 2

3
Cα

α̇ = ε̇p − 3Γ

2C
X M−2

eq X〈 Ẋeq〉
or (isothermal) Ẋ = 2

3
C ε̇p − Γ X M−2

eq X〈 Ẋeq〉 (13)

2 The constant k = σy + R∞ is the sum of the yield stress and of the (assumed) saturated isotropic hardening R∞ .
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Fig. 2. Cyclic stress–strain responses at given C : a) strain control, stress in MPa, b) stress control – new law (Eq. (13), case M = 2, C = 20 000 MPa,
Γ = 2.5 × 10−3 MPa−1) compared to linear Prager law and Armstrong–Frederick saturating law (γ = 50).

Fig. 3. Cyclic response obtained for increasing stress amplitudes (with k = 400 MPa, C = 5 × 105 MPa, M = 5, Γ = 5 × 10−7 MPa1−M ): a) �ε = 0.05, 0.1,
0.15, 0.2, 0.25, b) �ε = 0.0025, 0.005.

where 〈.〉 stands for positive part, i.e. 〈 Ẋeq〉 = Ẋeq = d
dt (

3
2 X : X)1/2 when positive, 〈 Ẋeq〉 = 0 else. The tensile response is

unchanged compared to previous law. But a linear kinematic hardening is now obtained in the cycle parts at decreasing
(in norm) kinematic hardening, i.e. at re-yielding just after load reversal (note that this feature is encountered in Ohno–
Wang model). This is shown in Fig. 2a, in which a quite low value for C is considered. Both the monotonic and cyclic
features of the new kinematic hardening law (13) are illustrated in Fig. 1 (again with constant isotropic hardening), still
with E = 200 000 MPa and k = 400 MPa.

Cycle stabilization is obtained in case of symmetric (immediate, Fig. 3) and of non-symmetric periodic applied strains
(cyclic softening up to stabilization, Fig. 1b).

Fig. 3 illustrates the main model feature for large values of C : the possibility to represent very steep stress increase
at the onset of plasticity (with no visible elasticity/plasticity slope discontinuity), also then in case of cyclic loading. The
stress-amplitude is increased after each two cycles (first loading case in Fig. 3a starting with �ε = 5 × 10−2, second loading
case in Fig. 3b starting with �ε = 5 × 10−3). Such a smooth shape of cyclic strain–stress curves, very steep just out from
elasticity domain and decreasing rapidly when yielding (but with no saturation), cannot be represented by means of a single
Armstrong–Frederick law. As the value for C is large, the linear part after load reversal is barely noticeable (Fig. 3b). The
monotonic tensile model response is reported in the figures.
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For the case C = 20 000 MPa, the ratcheting behavior with the new law is found at given C intermediate between linear
Prager modeling (no ratcheting at all) and Armstrong–Frederick modeling (which usually overestimates ratcheting). This
is shown in Fig. 2b where 21 cycles are presented. This is only a qualitative illustration of the model ratcheting feature,
and due to quite large plastic strains failure would occur rapidly for the cyclic load considered. The ratchet step – i.e. the
plastic strain increment over an hysteresis loop – for a stress varying cyclically between σmin > −k and σMax > k (with
σMax − σmin > 2k) is gained in a closed form as

δεp = (σMax − k)M − (σmin + k)M

K M
(14)

It is found constant and related to the value of exponent M and modulus K governing the non-saturation of the kinematic
hardening (and to the size of elasticity domain through k). Note that ratcheting is often modeled by the introduction of
several kinematic hardening variables X i , setting X = ∑

X i and taking for k a relatively small value. According to the
corresponding different plasticity mechanisms at the microscopic scale, it seems judicious to consider different laws, i.e.
laws of different nature, of different mathematical expression for each X i , including laws of Armstrong–Frederick type,
including law (13).

Let us end this section by a remark indirectly related to the implementation in a finite element code: the form given by
Eq. (13) is implicit since the rate of α (therefore of X ) depends on the rate of Xeq . Recalling the definition of von Mises
norm gives 〈 Ẋeq〉 = 3

2 〈X : Ẋ〉/Xeq . Altogether with Eq. (13), this allows to show that X : Ẋ is of same sign than X : ε̇p , at
least in the isothermal case. After some algebraic work, the following alternative (nevertheless fully equivalent) expression
for Ẋ to isothermal law (13) is derived,

Ẋ = 2

3
C ε̇p − CΓ X M−3

eq

1 + Γ X M−1
eq

〈
X : ε̇p 〉

X (15)

more classical to implement.

4. Positivity of the intrinsic dissipation

A full plasticity model using the proposed kinematic hardening laws is a non-standard model, the new spring-
back terms not deriving from an evolution potential. One must then prove the positivity of the intrinsic dissipation
D = σ : ε̇p − R ṗ − X : α̇ [7]. Isotropic hardening is introduced as the couple of variables (R, p). The criterion function is the
classical f = (σ − X)eq − R − σy such as f < 0 → elasticity. Also classically, the plastic strain rate is derived by normality:

ε̇p = ṗ 3
2

σ ′−X
(σ−X)eq

. Plasticity is incompressible (tr ε̇p = 0) and kinematic hardening is deviatoric (X = X ′), as announced.

After some algebraic work, the dissipation takes the form

Law (4): D = [
(σ − X)eq − R

]
ṗ + 3Γ

2
X : X ȧ = σy ṗ + Γ X2

eqȧ � 0

Law (6): D = [
(σ − X)eq − R

]
ṗ + 3Γ

2
X M−2

eq X : X ȧ = σy ṗ + Γ X M
eqȧ � 0 (16)

Law (13): D = [
(σ − X)eq − R

]
ṗ + 3Γ

2C
X M−2

eq X : X 〈 Ẋeq〉 = σy ṗ + Γ

C
X M

eq〈 Ẋeq〉 � 0

and is therefore positive for any loading, proportional or not, isothermal or not ( ṗ, ȧ and 〈 Ẋeq〉 are positive by definition).

5. Conclusion

Families of non-saturating kinematic hardening laws have been proposed. In order to gain non-saturation of the kine-
matic hardening, the springback term BṖ in Eq. (1) is not assumed linear in ṗ anymore but in ȧ = ( 2

3 α̇ : α̇)1/2 or, better,
in the positive part 〈 Ẋeq〉, with Xeq the von Mises norm of kinematic hardening X . By use of this replacement, any existing
law Ẋ = 2

3 C ε̇p − B ṗ can then easily gain the non-saturation property by changing it into Ẋ = 2
3 C ε̇p − B〈 Ẋeq〉. Proposed

law (13) is the power-law counterpart for kinematic hardening, fully complementary to Armstrong–Frederick saturating law.
Its properties have been illustrated on qualitative examples.

General plasticity modeling, including ratcheting, often introduces several kinematic hardening variables X i . Considering
laws of different nature for each X i can help to extend the validity domain of the plasticity models, setting for example
X = XAF + XNSat + · · · , with XAF following Armstrong–Frederick law (2), with XNSat following the non-saturating law (13).
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