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SIZE EFFECT IN FIBER OR BAR PULLOUT WITH 
INTERFACE S O F T E N I N G  S L I P  

By Zden/~k P. Ba~ant, 1 Fellow, ASCE, and Rodrigue Desmorat 2 

ABSTRACT: The paper analyzes the size effect, which is an inevitable consequence 
of softening in the relation of interface shear stress and slip displacement between 
a fiber or reinforcing bar and the surrounding matrix. The problem is simplified 
as one-dimensional. Closed-form solutions of pull-pull and push-pull failures are 
obtained for a linear softening stress-slip law with residual strength, and for an 
exponential law without residual strength. The postpeak softening is shown to lead 
to localization of slip and interface shear fracture with a process zone of finite 
length. This zone propagates along the interface during the loading process, causing 
the distribution of interface shear stress to become strongly nonuniform. The larger 
the bar or fiber size, the stronger the nonuniformity. The size effect in geometrically 
similar pullout tests of different sizes is found to represent a smooth transition 
between two simple asymptotic cases: (1) The case of no size effect, which occurs 
for very small sizes and is characteristic of plastic failure; and (2) the case of a size 
effect of the same type as in linear elastic fracture mechanics, in which the difference 
of the pullout stress from its residual value is proportional to the inverse square 
root of the fiber or bar diameter. An analytical expression for the transitional size 
effect is obtained. This expression is found to approximately agree with the gen- 
eralized form of the size effect law proposed by Ba~ant. The shape of the size effect 
curve is shown to be related to the shape of the softening stress-slip law for the 
interface. Finally, it is shown how measurements of the size effect can be used for 
identifying the interface properties, and a numerical example is given. 

INTRODUCTION 

The shear  stress in the  in ter face  b e t w e e n  fibers and  matr ix  in composi tes  
or be tween  steel bars and  concre te  is re la ted  to the slip d i sp lacement  in the 
interface. This re la t ion  is k n o w n  to exhibi t  a pos tpeak  softening.  W h e n  
softening occurs,  analysis  of  the  fa i lure  load according to plastici ty becomes  
invalid. O n e  mus t  take  in to  account  local izat ion of  sof ten ing  damage  a long 
the interface and  cons ider  f rac ture  mechanics  aspects  of the  p rob lem.  By 
analogy with studies of s t ra in-sof ten ing  damage ,  one  mus t  also expect  a size 
effect on the nomina l  s t rength  of  geometr ica l ly  s imilar  s t ructures  of  d i f ferent  
sizes, which represen ts  the most  i m p o r t a n t  pract ical  consequence  of the  
localization of sof ten ing  damage .  Th e  objec t ive  of this pape r  is to analyze  
this size effect. 

The p rob l em of pu l lou t  of  fibers or  bars  f rom the  su r round ing  matr ix  has 
received cons iderab le  a t t en t ion  in recen t  years  and  m a n y  im por t an t  results  
have been  achieved;  see, e .g. ,  Lawrence  (1972); F r e u n d  (1992); Ful le r  
et al. (1990); G a o  et al. (1988); L e u n g  and  Li (1990a, b) ;  Li et al. (1991); 
Shah and  O u y a n g  (1991); S tang et al. (1990); Steif  and  H o y s a n  (1986); 
Wang  et al. (1988); B e a u m o n d  and  Aleszka  (1978); Bowl ing  and  Groves  
(1979); and  Gray  (1984a, 1984b). A n  excel lent  review of  the pu l lou t  test  
analysis has recent ly  b e e n  p re sen t ed  by Shah and  O u y a n g  (1991). F u r t h e r  

1Walter P. Murphy Prof. of Civ. Engrg., Northwestern Univ., Evanston, IL 60208. 
~Visiting Res. Asst., Northwestern Univ., Evanston, IL. 
Note. Discussion open until February 1, 1995. To extend the closing date one 

month, a written request must be filed with the ASCE Manager of Journals. The 
manuscript for this paper was submitted for review and possible publication on April 
28, 1993. This paper is part of the Journal of Engineering Mechanics, Vol. 120, No. 
9, September, 1994. �9 ISSN 0733-9399/94/0009-1945/$2.00 + $.25 per page. 
Paper No. 6017. 

1945 



light on the interface slip has been shed by studies of slip at interfaces of 
other types, including relative slip of rough crack surfaces [e.g., Ba~ant and 
Gambarova (1980), Divakar et al. (1987), and Feenstra et al, (1991)]. 

Most interface models consider the shear stress at the interface to be a 
function of the slip displacement [e.g., Ba~ant and Gambarova (1980) or 
Divakar et al. (1987)]. To make analytical solutions feasible, many previous 
authors have simplified the complex three-dimensional behavior at interface 
as one-dimensional [e.g., Gao et al. (1988) or Freund (1992)]. In the one- 
dimensional solution, the influence of the normal pressure across the in- 
terface can be taken into account as long as this pressure is known. But if 
this pressure is unknown, a more general solution that takes into account 
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FIG. 1. Various Assumptions about Interface Properties Characterized in Terms 
of Interface Shear Stress and Relative Displacement 
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FIG. 2. Geometry of Fiber or Bar Pullout Tests: (a) Pull-Pull; and (b) Pull-Push 
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the interface dilatancy, i.e., the normal relative displacement across the 
crack, is required. In the simplified one-dimensional analysis, the interface 
dilatancy can be approximately taken into account by adjusting the values 
of the parameters in the functional relationship ,r(v) linking the interface 
shear stress ~ to the relative slip displacement v; see, e.g., Lawrence et al. 
(1972), Bowling and Groves (1979), and Hutchinson and Jensen (1990). 
Stang et al. (1990) considered the stress-slip relation to consist of an elastic 
part followed by a sudden stress drop and a residual constant friction [Fig. 
l(a)]. However, it is no doubt more realistic to consider a gradual softening 
as shown in Fig. l(b) and (c) (for a sufficiently large fiber size, the sudden 
stress drop with an increased strength limit but the same area under the 
curve giving the fracture energy must nevertheless give approximately equiv- 
alent results). As for the rising initial linear stress-displacement relation 
shown in Fig. 2(a), it cannot be an interface property but must refer to the 
deformation in the layers of the matrix adjacent to the interface. For this 
reason, we will omit the rising linear part. As for the postpeak softening, 
we will consider it to be linear [Fig. 1(c)], in order to make a simple analytical 
solution feasible, although the real behavior is no doubt a smooth curve. 

The size effect in the problem of fiber or bar pullout has apparently not 
yet been studied theoretically. However, its existence has already been 
demonstrated experimentally for the case of bar pullout from concrete (Ba- 
~ant and Sener 1988). In this paper, we will focus on the analysis of the size 
effect, considering a situation with a two-way debonding similar to that of 
Leung and Li (1990). We will deduce closed-form analytical formulas for 
the size effect, consider the asymptotic cases, and finally show how knowl- 
edge of the size effect can be exploited for determining the interfacial ma- 
terial properties solely from measurements of the maximum pullout forces. 

Because we will simplify the problem as one-dimensional, we will be 
unable to make a distinction between fibers in composites and reinforcing 
bars in concrete, except in terms of the effective values of material param- 
eters (such as the bond strength or the residual bond stress). Fibers and 
bars differ in fracture patterns, dilatancy, and pressure sensitivity. But 
these phenomena can be specifically described only in a three-dimensional 
analysis. 

IDEALIZATION OF PROBLEM AND ASSUMPTIONS 

For the sake of simplicity, our analysis will be one-dimensional. A cylin- 
drical fiber or bar of diameter d is assumed to be embedded in an outer 
cylinder of diameter D representing the matrix of a composite material (Fig. 
2). The cross sections of the fiber or bar and of the outer cylinder are 
assumed to remain planar, but relative slip at the interface is possible. The 
stresses within the fiber as well as the matrix are uniform in each cross 
section. The interfacial debonding is characterized by the diagram of inter- 
face (bond) shear stress $ versus relative stress displacement v shown in Fig. 
l(c), where % = initial bond strength (initial cohesion), ~d = residual bond 
stress at sliding interface, and Vo = critical slip determining the slope of the 
T(v) diagram, which is assumed to be linear. The fiber and matrix are elastic, 
characterized by Young's elastic moduli Ey and E,~. Although in reality % 
and Ca are pressure-dependent, in a one-dimensional model they must be 
assumed to be constant. The interface shear stress at the softening portion 
is 

1947 



The cross-hatched area in Fig. 1(c) represents the bond fracture energy, 
which is expressed as 

1 'r a 
G i =  ~%Vo 1 - (2) 

Let z be the longitudinal coordinate. The fiber has a free end at z = - l .  
We will study two types of test: (1) Pull-pull, in which the cylinder repre- 
senting the matrix has a free end at z -= 0 and is supported at the opposite 
end [Fig. 2(a)]; and (2) pull-push, in which the matrix cylinder is supported 
at z = 0 [Fig. 2(b)]. First we consider the pull-pull test and leave consid- 
eration of the pull-push test to the end. 

Equilibrium of a small element of the fiber, of length gz, requires that 
&r(~rd2/4) = "~(rrd)gz, which yields 

d~ 4~ 
- (3) 

dz  d 

where 0- = normal stress in the fiber. Equilibrium in the cross sections of 
fiber and matrix requires that irA s + 0-mAre = o-~Ay, which yields 

Em 
0-m = -~t +(0-`` - 0-) (4) 

where % = applied pull-out stress (ca = P / A  I where P is the pullout load), 
0-,. = normal stress in the matrix cylinder, do = AIEI/A,, ,E,, , ,  A I = "rrd 2, 
and Am = ~r(D 2 - d2). 

Noting that the difference between the strains in the fiber and the matrix 
is dv/dz ,  we have dv /dz  = 0-/Er - 0-,,,/E.. which yields 

dv l + d o  do Ei (5) 

The displacement at the end of embedment  (Fig. 2), z = 0, is 

v(0) + dov(-L) do oL 
v ( - L )  + 

L-E1dZ = 1 + d o + (1 + do)El (6) 

For the ease of softening slip, the differential equation for the fiber stresses 
ensues by differentiating (5) and substituting (3) and (1) 

d~cr + 
- -  -~" 0 1 2 0  - = -  (.020-a (7) 
dz  2 l + d o  

in which 

r176 2 _ 4(1 + +)% (8) 
Efvod 

At the cross sections with no interface slip (no shear crack), the strains 
in the fiber and the matrix cylinder are equal, i .e . ,  (r/E i = r this yields 
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+ 
1 + + ~" (9) 

ANALYSIS OF PULL-PULL TEST 

In the pull-pull case, two interface cracks grow from both ends of the 
fiber until they join. At  that moment  the maximum applied stress tr, = crN, 
representing the nominal strength, is reached. If  the load is controlled, 
failure occurs at that moment .  The postpeak softening is observable only 
when the fiber displacement at the end is controlled, except when the re- 
sponse diagram exhibits a snapback. The snapback, as we will see, occurs 
for sufficiently large sizes. 

Because of  the discontinuities at the beginning of  slip and at the attain- 
ment of residual bond shear strength, several stages must be distinguished 
in the solution. The number  of  states to consider is reduced in the case that 
~b = 1 (Fig. 3). Therefore we restrict attention to this case, although the 
general conclusions and implications for the size effect are the same for any 
4- For ~b = 1, we have to 2 = 8%/Eivod. The stages we must distinguish are 
as follows: 

1. The initial stage, in which there are two separate cracks emanating 
from the ends of  the fiber and the shear stress is everywhere larger than 
the residual strength "r d, 

2. The final stage, in which the two cracks have joined into one and the 
residual strength "rd has been reached at both ends. 

3. The intermediate stage, in which one must distinguish two cases: (1) 
The two cracks join before -r reaches "rd at the ends; or (2) the shear stress 
�9 d is reached before the cracks join. 

Initial Stage 
In the middle portion of  the fiber there is no slip and the shear stress 

= 0. The maximum -r occurs at the fracture tips z = - l i ,  at which a- = "rs; 
i = 1, 2 refer to the right and left parts. From (7), for parts 1 and II 

Ti = q's COS O)(Z ~- li) 

From (1), the interface slip is 

(10) 

v : Vo[1 - co s  ~o(z + / , ) ]  (11)  

The slip increases from the crack tip to the end of  the crack. The distances 
li of the tips from the right end of  the fiber (z --- 0) are ll = a and la = L 
- a, where a = length of  each crack 

a = - arcsin ~a (12) 
~0 

Between the cracks, the stress in the fiber is tr = trJ2. From the crack tips 
to the crack ends, the stress in the fiber increases as 

~[ sinoo(z+li)] (13) 
cri = ~-  1 +  -: 

sin coa 
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The displacement of the end increases with %, and the diagram of O'a(g) is 
given, in the first stage, by 

L~ra [ ~/ {w{Yad) 2 ] (14) 
8 , - ~ - ~ 7 + v 0  1 -  1 -  \ 8.rs j _] 

The diagram of ~r. versus 8 has a negative curvature. The transition to 
the intermediate stage occurs when % reaches a critical value that is the 
smaller of the following two values: 

8% 8% jl -d 
~r.* = ~-~ sin -~-; ~r** = to-d __  "r 2 (15a,b) 

The critical value is or* if mL is small enough and (rs if ~0L is large enough. 

I n t e r m e d i a t e  S t a g e  
Case 1 of the intermediate stage, already defined [Fig. 3(b)], occurs if 

coL < 2 arccos (ra/%). Otherwise case 2 occurs. 
In case 1, the cracks have already joined and the interface shear stress 

is everywhere smaller than %, but slightly larger than re. According to (1) 

"r = % L (16) 
8 s i n  ~o - 

2 

The stress in the fiber (Fig. 2) increases from the left end (z = - L )  to the 
right end (z = 0) and is 

( 
~ = ~ -  1 +  L 

sin o~ 

(17) 

The displacement 8 of the end of the fiber is, for the first case of the 
intermediate stage 

821 = V 0 q- ~ f  1 -- ~ co t  (18) 

The stress in the fiber varies from cra to 

r = 8Ta ~L  -dtan - 09) 

for which the residual interface shear stress Td is reached at the end. Because 
coL < 2 arccos(~d/%), ~1 is always smaller than ~*, and so the failure occurs 

* The equilibrium path of the structure exhibits snapback a t  % = cr N = ~ r . .  

if L is sufficiently large or ~d is sufficiently small. Precisely, the condition 
of snapback is 
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Td 
2Xo < coL < 2 arccos - -  (20) 

% 

in which Xo = the root ofxo tan x0 = 1, i.e., Xo = 0.8603. 
In case 2 of the intermediate stage, i.e., for toL > 2 arccos (r J%),  there 

are two cracks [Fig. 3(b)]. The interface fracture process zone exhibits linear 
softening and its length is c I. The fracture process zone of length ca is at 
constant residual interface shear stress T = ~a 

1 "rd d 
cr = -co arccos --;T~ ca = ~ ( % -  (r**) (21a,b) 

and a = l~ = L - lz = c s + ca. With G I defined by (2) and (o by (8), the 
fracture process zone is c s = KiV~-d0d in which K1 = (rr/4) E I V ' E ~  and lo = 
E , , G J ' r  2 when "ra = 0. In the general case, K 1 depends on both the fiber 
proportion in the matrix and the elastic moduli 

f (22) K1 = 2 ~/2(i + qb)E m 

The expression for the normal stress in the portion of the fiber that has a 
linearly varying interface shear stress is the same as for the initial stage. For  
the portion of the fiber that has a constant interface shear stress, the normal 
stress is linear in z if "ra = 0, and otherwise it is constant. The end displace- 
ment g increases with %, and the diagram of % versus g has a positive 
curvature 

- - - -  (r 2 - or; .2) (23) 8z2 + Vo 1 + 16raEj ( . 

Failure occurs when % = crN = O'~ ~, which is always larger than ~r a 

~ra = era + ~-d oJL - 2a rceos  (24) 

Final Stage 
The softening zone is now localized in the middle of the specimen [Fig. 

3(c)]. Its length AL gradually decreases to 0. The length of  the fracture 
zone, in which T = re, is cd = ( L  - A L ) / 2 .  For a given applied stress era, 
AL is the solution of 

4ra [ 2 ~AL'~ 
~a ~ ~L A L + - -  = - ~ tan ---~-)  

Displacement g at the end of the fiber is 

(25) 

~3 =-~-~s + v  o 1 - ~  + cd ~ E----~-] (26) 

Note that d % / d ( A L )  is always positive, and d ( A L )  = - - 2 d C d  is always 
negative. Therefore, dcr, is negative, and the equilibrium path decreases 
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with the applied stress. Therefore, failure occurs in this case before the final 
stage is reached. 

The condition of snapback is 

o~(L + 2ca) o A L  
t a n - - -  1 > 0  (27) 

2 2 

At L/d = constant, ~oL ~ V-d when 0 -< o~AL/2 <-- arccos('rd/Ts), and so 
snapback must occur for sufficiently large sizes. 

SIZE EFFECT 

The scaling law is the most important attribute of any physical theory. 
In the classical theories of elasticity or plasticity, the problem of scaling law 
has not received much attention, because the law is very s imple- - the  nom- 
inal strength is independent of structure size. In the mechanics of damage 
and nonlinear fracture mechanics, the problem of scaling or size effect has 
received major attention in recent years, principally because there is a strong 
effect of size on the nominal strength and the scaling law is more complex, 
representing a transition from elasticity (or plasticity) to linear elastic frac- 
ture mechanics, in which the nominal strength is inversely proportional to 
the square root of the structure size (Ba~ant 1984, 1992; Ba~ant and Cedolin 
1991). 

The size effect can be defined only for structures with similar geometries 
and similar cracks. Therefore, we consider the ratios D/d and L/d  to be 
constant and choose the fiber diameter d to play the role of characteristic 
dimension of the structure. We note that, in this case, o~d and coL are both 
proportional to X/-d. The applied pullout stress % at maximum load may  
be employed as the nominal strength ~/~. The value of tru can be calculated 
from (15) if ~0L < 2 arccos "rd/%, and otherwise from (24). 

For numerical examples, we consider the material properties % = 31 
MPa, "ca = 3 MPa, v0 = 0.021 mm, and E I = 200 GPa, and run the 
calculations for sizes d = 1, 2.9, 6.4, and 12.7 mm at constant ratio L/d = 
4. The results are plotted in Fig. 4. It is apparent that the maximum pullout 
stress decreases with increasing size. Furthermore, the type of the load- 
displacement diagram changes; for the smallest size we have a gradual post- 
peak softening, for the next size we have a nearly vertical stress drop, and 
for the largest two sizes we have snapback instability right after the peak. 
This behavior is typical of the size effect in all structures exhibiting damage 
localization or nonlinear fracture. The size effect is caused by increasing 
localization of the softening regions along the fiber length as d increases. 
The softening region at maximum load, which represents the fracture process 
zone and is characterized by stress values between % and "rd (Fig. 1), extends 
in small specimens over a large portion of the fiber length and in large 
specimens over a small portion of the fiber length. This behavior is similar 
to all other failures due to damage growth or nonlinear fracture. 

The size effect obtained for our example is shown in Fig. 5 by the diagram 
of log(~N - ~o) versus log d, where e~0 = the residual fiber strength cor- 
responding to the residual interface bond stress Ta. 

Let us now examine the asymptotic behavior. In the limit of small sizes, 
d - 9  0, we obtain 

L 
( J ' N  = O ' a  ~ ---- 4%-~ = constant (28) 
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FIG. 4. Diagrams of Pullout Stress versus Displacement for Tests of Similar Ge- 

Td ~d ) arccos-- (29) 
Ts ~s 

ometry and Different Sizes 

In the limit of the large sizes, d --> o% we obtain 

in which % = the residual pullout stress of the fiber when the interface is 
completely debonded and softened to Td 

L 
% = 4"rd -~ (30) 

According to (29), the basic form of the size effect for the large sizes is 

1 
O" N -- O" 00C V ~  (31) 
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(Eq.34, mr2) 

q Theoretical size effect law (Eq. 45, 
pullout with nonlinear softening 
interface law) 

~:~,,, Theoretical size effect law 36- (Eq. 
"Qx~k 37, pullout with linear softening 

w) 

I 

I= 
10 100 

Size d (ram) 

FIG. 5. (a) Size Effect Law Proposed by Ba~.ant (1984); and (b) Comparison of 
Calculated Size Effect to General Forms of Size Effect Law for Quasibrittle Fracture 

Except for the presence of %, this represents the size effect characteristic 
of linear elastic fracture mechanics. In the plot of Fig. 5, it corresponds to 
the inclined straight-line asymptote of slope - 1/2. 

The size effect obtained by the present analysis and shown in Fig. 5 agrees 
with the general size effect of damage mechanics or nonlinear fracture. 
Under the hypothesis that the energy dissipated at failure is a smooth func- 
tion of both the specimen (or structure) size and the fracture process zone 
size, with the latter being a material property, it was shown (Ba~ant 1985) 
by dimensional analysis and similitude arguments that, in general 

~rN = Bf;[~(1 + ~-1 + A , ~ - 2  + A2~-3 + ...)]-l/2m; = ( a / a o )  m 

(32a,b) 

Here f~ = the tensile strength of the material, introduced strictly for con- 
venience, and m, B, do, A1, A2 . . . .  are positive empirical coefficients. Eq. 
(32) represents an asymptotic series expansion with respect to an infinitely 
large specimen. It was further shown (Ba~ant 1987) that for size ranges up 
to about 1:20, the asymptotic series can be truncated after the linear term 
and that, for most applications to concrete and rock, one can take m = 1. 
Thus (32) reduces to the size effect law (Ba~ant 1984) 
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8f; d 
o" N = ~ ;  13 = ~ (33a,b) 

For materials with a residual strength, represented here by re, ate must 
be replaced in the foregoing equations with aN -- % where % is the residual 
nominal strength. Thus,  truncation of (32) after the linear term yields the 
law 

aN -- ao = By;(1 + ~m)-l/2m (34) 

and the simple size effect law (m = 1) in (33) is generalized as 

Bf; (35) a N -  % -  ~/1 + [3 

It is obvious that, for d > >  do, (33)-(35)  reduce to aN -- % ~ d -I/z,  which 
is the form of size effect exhibited by every formula of linear elastic fracture 
mechanics. For d < <  do, (33) or (35) reduces to aN = constant (no size 
effect), which is characteristic of  elasticity or plasticity. For the intermediate 
values of size d, (33) or (35) describes a gradual transition between these 
two asymptotic cases. 

Matching the asymptotes  to those calculated for fiber pullout, the simple 
size effect law in (33) gives in Fig. 5 the plot shown by the solid curve 
(Bfl  = 500 MPa, do = 4.2 mm).  

The presently calculated size effect law may be rewritten for ~r 0 = rd = 
0 as follows: 

Bf[  "IT 2 
aN = - ~ s i n  ~ if ~ <- T 

,.~2 
Bf[ if [3 > - -  

(36) 

(37) 

These results are exact for the pull-push problem for any 6,  as we will see 
in the next section. 

Eq. (35) is not identical to (36)-(37) ,  but it can be made nearly identical 
for a certain value of m. This value can be est imated by requiring (34) and 
(36) to coincide for d = do or [3 = 1. This yields 

In 2 
m = = 2.009 -~ 2 (38) 

2 In(sin 1) 

For m = 2, the agreement  of (36) and (37) with (35) becomes virtually 
perfect. 

For tensile fracture, the value of exponent  m is known to be related to 
the shape of the strain-softening diagram (Ba~ant 1985). Striving for the 
simplest analytical solution possible, we have assumed this diagram to be  
linear [Fig. l(c)]. For tensile fracture,  it was shown that a softening diagram 
with a progressively decreasing slope and a long tail yields a more  gradual 
transition in the size effect plot. It may be expected that if Fig. l(c) were 
replaced by such a softening diagram, the calculated size effect could be 
made to match the dashed curve in Fig. 5, corresponding to the simple size 
effect law in (35). It remains to be  seen whether  the actual behavior  of 
interfaces corresponds to the simple case m = 1 (as it approximately does 
for tensile fracture of concrete),  or an m-value very different from 1 needs 
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to be used. To illuminate this question, the simple nonlinear softening law 
~" = "rs exp ( - b v )  [Fig. l(d)] will be considered next. 

SIZE EFFECT LAW FOR NONLINEAR SOFTENING 
INTERFACE BEHAVIOR 

The pullout equations (3) and (5), complemented by the general nonlinear 
law �9 = "r(v), lead to the general nonlinear differential equation for v(z) 

d2---V-V = k'r(v), with k - 4(1 + 6)  (39) 
dz 2 Eid 

which is valid for both the pull-pull and pull-push tests. The axial stress in 
the fiber is given by a(z)  = Ey(1 + do)-lv'(z) + do(1 + do)-la a for the 
pull-pull test and by a(z)  = ES(1 + do)-lv '(z) for the pull-push test. The 
boundary conditions are v' = 0 at the tip of  interface crack (v = 0), cr = 
% at z = 0, and a = 0 at z = - L .  For  simplicity, as before, the pull-pull 
case will be studied for do = 1, and the pull-push case for any do. 

The general solution of  (39) is 

dv - ('V~)z (40) f g~(v)dv 
To make integration easy, we will consider 

�9 (v) = % e x p ( - b v )  (41) 

The residual shear stress ~d is here taken equal to zero, and b is related to 
the fracture energy Gy by b = "rs/G I. From (40) 

v = ~ In cosh 2 

The axial stress for the pull-pull case (do = 1) is 

EI 2v~k-G-I [ 2v~-k-cb(z +li)] +__aa (43) 
a - 2 tanh 2 2 

and for the pull-push case 

Es2X/2"-kGs[ b(z+l)]  (44) 
a -  1 + do tanh ~ 2 

The stress at failure is reached when the interface is debonded along all of 
its length. 

The size-effect law for pullout with exponential softening and no residual 
stress may now be written as ([3 = d/do) 

Bf; aN = ~ tanh ~ (45) 

where Bf, = 4%L/d, do = 16EIGJ(Bf'~) 2 for the pull-pull test with do = 1, 
and do = 8EsGI(1 + do)-1/(Bf~)a for the pull-push test. 

Again, to match (34) closely to (45), we require them to coincide for 13 
= l (d  = do). This condition yields 
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In 2 
m = -~ 1.25 (46) 

2 ln(tanh 1) 
As might have been expected, m is now found to be much closer to 1 

than for the linear softening. This confirms the dependence of m on the 
shape of the interface stress-slip law. The corresponding size effect curves 
are plotted in Fig. 5(b). We see the theoretical curve agrees almost perfectly 
with the size effect law with additional parameter (34) and is quite close to 
the simple size effect law (35). 

The foregoing analysis with a softening exponential stress-slip law does 
not take in account the residual strength O-o of the interface. For its effect 
one must refer to our solution for linear softening. 

The general conclusion of our nonlinear analysis is that the influence of 
the shape of the shear stress-slip curve on the size effect is appreciable only 
for the transitional sizes. For a softening stress-slip law of declining slope, 
the size effect is closer to the simple formula (33) than for a stress-slip linear 
law. The asymptotes of the size effect curve in a log-log plot remain the 
same; the interface strength "~s governs the failure for very small sizes, and 
the interface fracture energy G I the failure for very large sizes. 

According to (40), closed-form analytical solutions could be obtained also 
for stress-slip laws other than (1) or (41). 

IDENTIFICATION OF INTERFACE PROPERTIES FROM SIZE EFFECT 
MEASURED IN PUSH-PULL TESTS 

In the mechanics of tensile fracture, the measured size effect can be 
exploited to determine the material fracture characteristics (Ba~ant 1987; 
Ba~ant and Pfeiffer 1987; Ba~ant and Kazemi 1990). The same must be 
possible for fiber pullout. 

Indeed, after calculating the asymptotes of the size effect plot, the size 
effect parameters for linear softening can be identified by matching these 
asymptote with (28) and (29). This yields 

L 
Bf: = 4(% - ~d)-~ (47) 

8~,givo ~5 ~ "rd 
do = (Bf~)2 1 "r~2 T, arccos (48) 

When the size effect law is to be matched to experimental data on ~u, 
parameters of (33) can be easily identified by linear regression Y = A X  + 
C, where X = d, Y = 1/(~N - %)2, Bf~ = 1/X/-C, and do = C/A. A similar 
linear regression is possible for (34). 

As an example, we will use the test data of Ba~ant and Sener (1988) (the 
circled points in Fig. 5). These data are for pullout of reinforcing bars from 
concrete cubes. We use these data only to illustrate the procedure while 
being fully aware that the failure mode observed in these tests did not fit 
the assumptions of the present analysis. The failure started by radial splitting 
cracks emanating from the bar. These cracks, which were caused mainly by 
lugs on the reinforcing bars, cannot be described by a one-dimensional 
model. Had smooth rather than deformed bars been used, the failure would 
have been due only to interface slip, and then the present example would 
represent the reality rather than just a mere illustration of the procedure. 

Deformed reinforcing bars of yield strength 414 MPa and diameters 2.9, 
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6.4, and 12.7 mm were used. In each cube, there was one bar parallel to 
one edge of the cube and sticking out at the center of one face. The embed- 
ment length of the bar was L = 4d. The size effect law parameters,  identified 
previously (Ba~ant and Sener 1988) were Bf; = 500 MPa, do = 2.1 ram, 
and ~0 = 0. 

For  the purpose  of  analyzing these  data ,  the  solut ion for  the  pul l -push 
test has also been  de r ived  

for  coL -< arccos  Td : 4% . O" N -~- ~ S l n  coL (49) 
% 

f o r o L > a r c c o s - - :  oN = % + ~-~ % % q's 2 a r c c o s  (50) 

in which o is given by (8) and % = 4"talL~d, + = A jE /A ,nEm.  Knowing 
the exponent m, which is here taken as m = 1 [same as Ba~ant and Sener 
(1988)], we can use the aforement ioned linear regression plot Y = A X  

3 
10 
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Oq 
LIa r 10 2 
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FIG. 6. Test Data for Bar Pullout (Circular Points), Used as Illustrative Example, 
and Comparisons with Present Solution (Solid Curves) and with Simple Form of 
Size Effect Law (Dashed Curve) 
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+ C to determine the size effect law parameters Bf~ and do. Matching the 
asymptotes, we get the following expressions for the interface properties: 

d 
% = - ~  8f;  + ~ (51) 

1 + ~b (B f ; )  2 v2a "rd % 
Vo = 4 %E I do 1 Ts2 % arccos (52) 

Then, using the size-effect law parameters obtained by Bar, ant and Sener 
(1988), we get from (51) and (52) the following interface properties: 

% = 31 MPa; vo = 2.1 10 -2 ram; G r = 325 J/m 2 (53a,b,c)  

The value of xa has been neglected in these calculations. The optimum fit 
by the size effect law given by (33) is shown by the dashed curve in Fig. 
6(a), and the fit based on (49) and (50) with the values in (53) is given by 
the solid curve. Assuming progressively increasing values "r~ = 0, 1, 2, or 
3 MPa, one obtains from (49) and (50) the solid curves shown in Fig. 6(b)-  
(d). Unfortunately, the scatter of the data is insufficient to decide which of 
these curves is more correct. To avoid such ambiguity and obtain better 
estimates of interface properties, tests of a broader size range (1:10) would 
be necessary. The required breadth of range is generally proportional to 
the coefficient variation of the statistical scatter. 

It is planned to carry out size effect tests of pullout in which the failure 
occurs by slip alone (without radial cracks). Then it will be possible to give 
an example that is more than just an illustration of the procedure. 

CONCLUSIONS 

1. The one-dimensional simplification of the fiber (or bar) pullout prob- 
lems allows a simple analytical solution yielding closed form expressions for 
the stress-displacement diagram as well as the size effect. 

2. The solution shows that, for geometrically similar situations: (1) The 
maximum pullout stress decreases with increasing size (characterized for 
example by the fiber diameter); (2) the postpeak slope of the load-deflection 
diagram becomes steeper as the size increases; and (3) for a sufficiently 
large size, snapback failure is obtained. 

3. An inevitable consequence of softening in the relation of interfacial 
shear stress versus slip displacement is localization of the fracture process 
zone along the interface, with a gradual approach to interface shear fracture. 
Due to localization, the distribution of the interface shear stress along the 
fiber or bar becomes strongly nonuniform, and the nonuniformity gets stronger 
as the size increases. The localization is the cause of size effect. 

4. The solution confirms that the size effect is transitional between the 
case of elasticity or plasticity, for which there is no size effect, and the case 
of linear elastic fracture mechanics, for which the difference of the interface 
strength and the residual stress is inversely proportional to the square root 
of the size. This transitional size effect can be described by the approximate 
size effect law proposed by Ba~ant (1984) or its subsequent generalization 
with parameter rn controlling the shape of the size effect curve. 

5. The transitional size effect is shown to depend on the shape of the 
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interface stress-slip law. A declining slope of the stress-slip law leads to a 
more gradual and more extended transition in the size-effect plot. 

6. Measurements of  the size effect in fiber pullout can be exploited for 
determining the interface properties. 
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