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Abstract: In the present work, two methods, named “continti@umsl “discrete”, are proposed to
model the fragmentation process in brittle soliisth methods rely on a preliminary analysis of the
existing flaws population in scanned samples witra})X micro-Computed Tomography (microCT).
By converting the size of defects into criticalesges, the density of critical defects versus the
applied stress level is deduced and used as ahaffoth a continuum and a discrete method. To
do so, the concept of critical defects obscuraigsomplemented. Introduced in the DFH (Denoual-
Forquin-Hild) micromechanics model, this conceptsists of describing how cracks propagating
from triggered flaws prevent neighbouring flaws nfrobeing activated. This obscuration
phenomenon is implemented in the present work liyguthe flaws population determined via
microCT analysis as an input. In the continuoushoef the differential equation of the obscuration
probability provided in the DFH model is integratéal the discrete method, a cubic sub-volume of
the scanned volume is considered and the growtbsduration volumes is numerically simulated
considering the real location of each critical defand their stress of activation. Both methods
provide predictions for the material dynamic stténgnd final cracking density according to the
applied strain-rate. These two methods are apptiddree types of brittle materials: an Ultra-High
Performance Concrete (UHPC), a porous polycrystlice and a silicon carbide with spherical
“fuse-flaws”. Finally, the obtained predictions a@mpared to the closed-form solution of the DFH
model, which is based on a Weibull distributiontleé critical flaws identified from bending tests.
Whereas the three approaches match very well atskoain-rates, the continuous and discrete
methods diverge from the DFH closed-form solutiorhigh strain-rates, due to the activation of
smaller and more numerous defects that could natteated in the quasi-static bending tests.
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1. Introduction

Achieving a good understanding and modelling of téwesile behaviour of brittle materials until
failure remains a major challenge for their usemany application areas (Weerheijm, 2013;
Forquin and Hild, 2010; Forquin, 2017). The maias@n for this is the fact that their dynamic
tensile strength and fracturing energy are strosghsitive to the applied loading-rate. For thd pas
two decades, such behaviour have been extensitajed for several types of brittle materials
(ceramics, rocks, concretes and polycrystalling e means of spalling tests conducted using
Hopkinson bar apparatus (Schuler et al, 2006; Wsenhand van Doormaal, 2007; Erzar and
Forquin, 2010, Saletti et al, 2019) and plate-in@aperiments (Murray et al, 1998; Antoun et al,
2002; Grote et al, 2001; Paris et al, 2010, Dandel@04) or high pulsed power current facilities
(Zinszner et al, 2015a) for higher strain-rateseQw large range of strain-rates, two regimes ean b
distinguished as shown on Figure 1a and 1b. A ssti@in-rate sensitivity of the tensile strength to
strain-rate is noted in the quasi-static regimatdow strain-rates, whereas a pronounced increase
of strength with strain-rate is observed abovearsrate threshold value (Erzar and Forquin, 2014;
Weerheijm and Forquin, 2013). The postulate of tagimes interrogates on whether this transition
strain-rate is an intrinsic property of the mateaadepends on size and shape of the considered
sample. Moreover, since (Reinhardt, 1982) manyasathave used to express their experimental
results as an evolution of the DIF (Dynamic Incee&actor), which corresponds to the dynamic
strength to static strength ratio, according toapplied loading-rates. Again, it must be foundibut
this representation (i.e. DIF versus strain-rasg) be considered as an intrinsic material proparty
not.
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Figure 1. Influence of strain-rate on the tensttergyth of brittle solids. (a) Case of dry and wet
microconcrete and common concrete (Erzar and For@@i14; Weerheijm and Forquin, 2013), (b)
Case of two SiC ceramics (Zinszner et al, 2017)P€@st-mortem analysis of dry common concrete



after a spalling test at 120 gErzar and Forquin, 2011), (d) Microscopic view tbe SPS-S
damaged specimen recovered after a test perfort20G0 & (Zinszner et al, 2017).

As first answer, it is well established that, undeasi-static regime, the mean failure strength of
most brittle materials is sensitive to the sizeéhef tested sample, i.e. the larger the sampletiseze
lower the mean failure strength, and to the sthessrogeneities (Weibull, 1951; Freudenthal, 1968;
Hild et al, 1992). This size effect and the scattefailure stress in tension can be related twgla
population (Hild and Marquis, 1992; Alava et al,0B). On the other hand, at high strain-rates
(respectively above 100'sand 1,000 S for concretes and ceramics), the size effect jipesed to
subside. In such high-rate conditions, as concrateisceramics have small tensile failure strains,
their loading times to failure are limited to a fgse and a few tenths of us, respectively (Hildlet a
2003, Forquin and Hild, 2010). Moreover, given lingited crack speed in these materials (about
few km/s according to (Kanninen and Popelar, 198®und, 1990)), such small loading times
imply that damage and failure processes shouldriverdby the simultaneously propagation of a
large number of cracks in a considered centimettanve. Therefore, in relatively large volume
loaded at high strain-rates, what happens in angieation only has an influence on its
neighbourhood, which could explain why the sizee@ffis expected to vanish in dynamic
conditions.

The way the strain-rate transition between botlinteg is expected to evolve, according to tested
sample volume and the strain-rate sensitivity ef ¢bnsidered material, is illustrated on Figure 2.
Assuming a quasi-static tensile strenggfs and a dynamic strengtbyn, provided by Equations (1)

or (2), the DIF and transition strain-rate appeana dependent of the size of the considered volume
Z, which means that, in a such framework, these@os of DIF and transition strain-rate cannot
be considered as intrinsic properties of the lergtlid,
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where (ny,,n,) are the exponents traducing the strain-rate $e@ngitin “quasi-static’ and
“‘dynamic” regimes andg(, &;) are the reference strain-rates defined for eaghme. In addition, it
can be observed from Equations (1) and (2) thatawer the strain-rate sensitivity in the dynamic
regimen,, the higher the sensitivity of the transition streate to the quasi-static strength and

the volume siz&Z. However, the study of brittle materials tensileesgth over a large range of
strain-rates and considering different sample simgsains a difficult task due to the many
measurement bias inherent to dynamic testing. lierreason, the size effect at high strain-rates
stays a topic hardly explored.
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Figure 2. Influence of the volume zone on the fteors strain-rate. Cases with (left) and without
(right) strain-rate sensitivity in the quasi-staggime.

In parallel to the experimental characterizationtltd macroscopic tensile strength provided via
different spalling techniques, extended effortsehbeen developed to study the growth of damage
and final fracturing patterns in various types oktle materials at high-strain-rates. Among the
numerous existing works, one may mention the usheotdge-on impact testing technique applied
to ceramics (Strassburger, 2004), concretes, nsoatadl rocks (Forquin and Hild, 2008; Grange et
al, 2008; Erzar and Forquin, 2011, Saadati etGl42 In ‘open configuration’, an ultra-high speed
camera is used to visualize the growth of damageréal time’ (Riou et al, 1998). In the
sarcophagus configuration, a metallic or polymesgsing is used to hold the fragments in place to
be able to examine the fragmentation patterns gs-mortem observations (Forquin et al, 2003;
Zinszner et al, 2015b) or determine the fragmeizs distribution from X-ray tomography analysis
(Forquin and Ando, 2017). More recently, transparegrcophagi were used to perform both
analyses (ultra-high speed imaging and post-mom@alysis) in one single test (Forquin and
Zinszner, 2017). Ultra-high speed photography aodt-mortem analysis were also applied to
spalling tests performed using Hopkinson pressareapparatus (cf. example in Figure 1c). This
type of analysis is much more difficult for platepact experiments, for which the spalled sample is
more difficult to recover. However, a post-mortemalysis was carried out in spalling tests
performed with the pulse-power technology (cf. eglamin Figure 1d). From these numerous
experimental studies, it can be concluded that dfaeking density increases and the mean
fragments size decreases as the applied strainimateases. Moreover, several studies have
demonstrated the major role played by the microtitire of brittle materials, mainly the flaws
population, on their fragmentation properties (Hldal, 2003; Zhou et al, 2005). For instartbe,
fragmentation process induced in a porous SiC derand in the same ceramic after being filled
with an aluminium alloy though its open porositysaavestigated in (Forquin et al, 2003). It was
concluded that the difference of cracking patteas wue to the effect of the metal infiltration on
the inception stresses of cracks. In (Forquin g2@18), the fragmentation properties of four SiC
grades were compared by means of edge-on impaotahampact tests and fragments size



distribution analysis. The difference of crackingttprns was explained by the differences of
Weibull parameters related to the flaws populabbeach microstructure.

For the last three decades, several analyticahanterical models have been proposed to describe
and simulate the fragmentation process in britilels. Among them, energetic approaches provide
analytical predictions of the fragments size dmttion generated from dynamic loadings (Grady
and Kipp, 1985), from which the spall strengthistirate sensitivity of brittle solids can be deddice
(Grady, 1988). This approach was coupled to assi@dl distribution of fracture in (Grady and
Olsen, 2003) for predicting the dynamic fragmepotatof U6N rings. Based on an irreversible
cohesive law, a cohesive model was proposed by 2hali (2005) to predict the one-dimensional
fragmentation process taking into account for elastave propagation and equally-spaced or
randomly-distributed point defect distributions.iFhpproach allowed predicting the fragment size
distribution in a circular ring that is dynamicakyxpanded Zhou et al (2006). The dynamic fracture
of brittle materials was numerically investigatexhsidering element interfaces, therefore including
parameters related to interfacial strength, fractemergy and crack opening. These approaches
allowed the prediction of fragmentation processes aneso-scale (Camacho and Ortiz 1996,
Espinosa et al, 1998; Maiti et al, 2005) or takingp account for a heterogeneous distribution of
defects (Levy and Molinari, 2010). However, sucprapches present the main limitation of having
prohibitive calculation time, as they simulate agimentation process that implies up to few tens of
thousands of individual cracks generated in thelddasample. In addition, parameters related to
cracks inception (linked to the flaws populatiomydacrack propagation (crack speed) can be
difficult to implement.

In parallel to discrete approaches, continuum da&magdels have been continuously developed to
overcome these difficulties and better capture ghgsics of multiple-fragmentation induced in
brittle materials due to the nucleation, growth andlescence of multiple cracks in mode | (Ravi-
Chandar, 1998) or in the case of sliding crack$onmily distributed in a brittle material subjected
to biaxial compressive loading (Ravichandran anibh@&ah, 1995). Based on a continuum approach,
Lu and Xu (2004) presented an isotropic damage mbdit on the concept of micro-crack
nucleation, growth and coalescence. Even if thiglehas meant to describe micromechanical
behaviours, it requires parameters identified frdynamic testing to properly describe the strain-
rate sensitivity of concrete. However, the rolaro€rostructural parameters remains insufficiently
addressed in the literature. Whereas mesoscopi@lsednstitute a possible way to account for
microstructural properties, they present a numbkrd@wbacks such as calculation costs,
difficulties in parameters identification and valttn procedure. An alternative is the development
and implementation of so-called micromechanics-thasedels that rely on a description of the
physical phenomenon involved in the macroscopichaeical response of the concerned solid, as it
is the case in the Denoual, Forquin and Hild modleis anisotropic damage model is based on the
concepts of obscuration probability (Denoual anttdH2000) and local weakest-link hypothesis
(Forquin and Hild, 2010). Microstructural paramstare introduced through an explicit law of
critical defects and through parameters relatedragk propagation. This model was extensively
used in the last two decades to predict the fragamtien properties of ceramics (Denoual and Hild,
2000; 2002; Forquin et al, 2003; 2018), concrefamdquin and Hild, 2008; Forquin and Erzar,
2011) and rocks (Grange et al, 2008; Saadati &04l5). In the present work, the “standard DFH



model” is presented and applied to predict thenfraigtation properties of three different brittle
materials. However, these model predictions relyh@enWeibull distribution of flaws deduced from
a series of quasi-static bending tests. To overctiradimitations that this implies, the density of
critical defects of each three material is ideatiffrom X-ray tomographic analysis. These data are
used as an input of a modelling based on a conismaaod a discrete method. The new possibilities
offered by both methods, to suitably predict theaiyic strength and final crack density of brittle
materials according to the applied strain-rate tlae¢e discussed.

2. Predictions and limitations of the DFH (Denoual-Forquin-Hild) model
2.1 The obscuration probability concept (Denoud Hiid, 2000; Forquin and Hild, 2010)

The fragmentation process induced in brittle matersubjected to low or high strain-rates tensile
loading corresponds to the initiation and propagabf a unique, a small or a large number of
cracks from volume or surface defects that origynakist in a structur€ of size Z, with Z being a
length, a surface area or a volume. The mateaaldlare assumed to be randomly distributed in
space and activated at random levels of stressad@tnation stress of each defect can be expressed
as function of its size, as considered in (Jayiland Trustrum, 1977). The number of flaws in Z
for which their activation stress is exceeded, raerdical defects, can be represented through a
density function corresponding to the number oficai defects for a given applied stress level
Jt (o). A schematic of a dynamic fragmentation processiaing that the stress level varies linearly
or monotonously with time is presented in Figurd@iBe defects are distributed along the horizontal
axis (spatial scale) and the vertical axis reprsstite time-scale or stress-level scale. As thesstr
level raises £ > 0), the number of activated defects increasesvever, the first cracks that
propagate from the first critical defects lead twe trelaxation of tensile stresses in their
neighbourhoodd < 0). Such local stress release prevents the #otivaf any other critical defect

in an “obscured domain” of siz&(T — 9 centred on the crack, whefe- tcorresponds to the time
interval between the crack inceptibrand currentl times. The growth of obscuration domains
(zones in whicly” < 0) from activated defects is represented byglies (obscuration hyper-cones)
in Figure 3, considering a constant speed for cidpagation. The fragmentation process ends
when the whole domain is obscured.

The fragmentation process can be described by bapilitstic approach, by considering the
condition for a pointM at a timeT not to be obscured. This condition means that riaggered
defect is present in the inverted hyper-cones natHedizon of (M, T)”, the top of which is the
pointM at timeT.
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According to the concept of “local weakest link bypesis” introduced in (Forquin and Hild, 2010),
the probability of non-obscuratidpho is equal to the product of the elementary proli#sl of no-
inception of new cracP';7in each elementary space—time zone§obelonging to the horizon of

this pointM at timeT:
Po(M,T) = |_L P (3)
[horizonof (M, T)0Q]

whereP'is expressed as a function of the density ofaaiitiefectsi; (x, t). If itis considered as a
continuous function betwegrandt+dt, P' can be written as:

0A (x.t)
ot

P! (xt) = exp{— dZdtj . (4)

Otherwise, if the density: (X, t) is discontinuous between and ti+dt (A«(X, t+dt) - A«(X, t) =
[Axt ), the elementary probability of no-inception adwn crack in the space-time ardd x dt
located atX, t) is expressed as:

P (xt) =exd-[A],,,dZ). (5)

Finally, by combining Equations (3), (4) and (%) thon-obscuration probability &i(T) takes the
following general expression:

P,(M,T)=exg - [ MdZolt—Z (Al 92 (6)
(x.t)d[horizonof (M, T)0Q] ot i(x )D[horizonof(M,?)ij]
2.2 Cracking density and dynamic ultimate strength

Given that new cracks are only initiated in the-olbscured part of the domain, the increment of
new cracks can be assumed as proportional to ttrenrent of critical defects weighted by the



fraction of non-obscured zones. By considering th&fction of non-obscured zones is equivalent
to the probability of non-obscuration, the incretnand derivate of the crack density can be
expressed as:

0/

g:leS(M,t) P (M t)_t(M t) [AcracklM,ti :R‘O(M’ti)[/]‘]'\/"ti (7)

If the initial density of cracks at tim& € 0) is assumed to be equal to zero, the crackityeran be
obtained by integrating its derivate or summingntsements:

cracks(M T) J.[ cracks (M t):|dt + Z [/]cracks]M he (8)

In addition, in the situation where the horizonpoint (M, T) does not strongly interact with the
boundaries of the domain (Forquin et Hild, 2010mutiple fragmentation process takes place. In
such case, the probability of obscuration can kexl s a damage variable and the macroscopic
stressx. can be calculated as a function of the microscspesso, such as:

2(7) =1 -Po(T)o(T) (9)

Therefore, the ultimate (maximum) macroscopic gjtiercan be deduced:

dx
2 = MAE (1) = (") with e (t') =0 (10)

Finally, the knowledge of the density of critica¢fdcts appears to be essential to predict the
macroscopic strength and cracking density in krgtlids, when subject to high strain-rate tensile
loadings.

2.3 Influence of the domain volume-size on the typragmentation process.

The way the size of the considered dom@iimfluences the nature of the fragmentation (sirayle
multiple) is illustrated in Figure 4. If the domath is large compared to the mean size of the
obscuration zones, the horizon of a pots Q at atime T, T) is far from interacting with the
domain boundaries. Therefore, other defaults &edylito be triggered, thus leading to a multiple
fragmentation process (Figure 4a). Contrary, ifdbenain size Z is small compared to the size of
obscuration cone, the horizon df,(T) quickly interacts with the domain boundaries, sthu
preventing the triggering of any other defectsslich case, a single fragmentation process occurs
(Figure 4b).

A closed-form solution of the obscuration probapiWwas proposed in (Forquin and Hild, 2010) by
splitting the horizon ofNl, T) above and below the timig which corresponds to the intersection of
the “horizon inverted cone” with the domain bounelsir

Pno(M,T):[ [] P.ij[ [] Pj (12)
Horizon(t>t;) Horizon(t<t; )



In the specific case of a uniform stress field, iba-obscuration probability is described as:

oA (t)[Zn(F t)]dthex{ zj dA (t) J (12)

Multiple fragmentation Single fragmentation

P.,(M,T)=ex

_tz

At low strain-rates, the time approaches the current tinieand a single fragmentation process
occurs. In such conditions, the obscuration prditpl{iP, = 1Pno) converges towards the failure
probability as proposed in the Weibull model (198951):

Praiwre (T) =1~ B (T) =1~ eXF(_ Zi, (T) (13)

At high strain-rates, the tinteis equal to zero or small comparedlitand a multiple fragmentation
process develops. Therefore, the obscuration piitlyal#, = 1-Pno) tends to the damage evolution
law previously proposed in (Denoual and Hild, 2000)

D=1-P_(T)=1- ex;{ ] dA(t) , t)dtJ (14)

0

The analytical expressions of the horizon sig@ — 9 and the density of critical defecls(o) are
given in the next subsection.

Time scale or stress level Time scale or stress level
A A
e 2 )
| |
Obscuration
cones
ot
| |
| |
. | |
Horizon — T " I
| | 1 >
Spatial scale Spatial scale

Figure 4. lllustration of the influence of the itala sizes of the domaif and the obscuration zones
on the type of induced fragmentation. A large domaileads to a multiple fragmentation process
(left) because the horizon of a poiM,(T ) do not interact with the domain boundaries, whera
small domainZ (right) leads to single fragmentation process les tiorizon of i, T) and the
domain boundaries interact rapidly.

2.4 Close-form solution the DFH model in the calsa multiple-fragmentation

In order to be able to express the obscurationgimtiby of Equation 14, two parameters need to be
considered: the density of critical defects anddize of the horizon between tirieandt (Fig. 3).

In the present subsection, the density of crifileaVs is considered to be a power law of the pesiti
(tension) principal stress (Weibull distributionaitical defects):



Ma(T)) = 4o (52

(o

)" (15)

where the constants anda,(1,)~1/™ are respectively the Weibull modulus and scalempater.
The Weibull modulus gives a direct indication om tbcatter in failure stresses. The higher the
Weibull modulus, the lower the scatter of failuteesses with respect to the average value. The
hypothesis are made for each zone of stress refebseuration zone) to be centred on the point of
crack initiation and for all the obscuration zortesbe growing in a self-similar way, with a
diameter proportional to the crack size. Under ¢ assumptions, the size of the obscuration
zone at a tim&, corresponding to a single crack created at timan be expressed as:

Z, [(T-v]=s[ ke(T- )], (16)

whereSis a shape parameter of the obscuration volumaleqwB.74 (Denoual and Hild, 200Z],

is the one-dimensional wave spe&d= \/E_/p) andk is a dimensionless parameter related to the
crack propagation velocity. Based upon the conoépbnservation of energy, it was demonstrated
that when the crack length becomes significanttgda than the initial crack size, the cracking
velocity tends to a limit close to 0.839Broek, 1982; Kanninen & Popelar, 1985). It is tkason
why, the parametdsis kept constant and equal to 0.38 in the presernt. Moreover, by assuming

a constant stress rate the obscuration probability, from Equation (1d4xn be expressed as a
function of the space dimensionthe Weibull modulusn, and the dimensionless timéc:

mn (T
D(T)=PR =1-exp - — ) 17
=8 X’{ (m+n)!@ J .
where the characteristic tinteis given by (Denoual and Hild, 2000):
te:[wom] [aj [snkc] . 18
— — — %,—_/ —_— —

-~
Crack inception Loading rate Crack propagation

For any value om higher than 3 and considering £ 3), it can be observed that the obscuration
probability is less than 5% &I € tc) and greater than 95% at € 2t;). Therefore, the characteristic
time represents the time from which most of thecaketion phenomenon occurs. In addition, a
characteristic stress is defined in the followingyw

ANmra( Ymen [ L\
oc=0 ., UCZEUOAO”‘] [U'J (S“ij : (19)
— 5_\/_—/ —

Crack inception Loading rate Craﬂ propagation
and a characteristic density is defined as follgwin

mn mn mn

_1N\ men m+n 1 “men
j'C:)“t(O-C)'AC:(JOAOmJ (UJ (SnkCJ . (20)

Y . A -~ -
Crack inception Loading rate Crack propagatior



By combining the closed-form solution of the norsclration probability (Eq. 17) and the
Equations (7) and (8), the final crack densityxpressed as a function wf n and the characteristic
density:

m! nl m+ n

%(0 >>0) = (Mjm r (1+ m j (21)

C

Under the assumption that the non-obscuration fmibtyacan be assimilated to the ratio between
the obscured and total volumes, a damage varded a macroscopic stressmay be defined
(Denoual and Hild, 2000):

D(T) = P,(T) and X(T) = (1 —D(T))a(T) (22), (23)

In the same way, by merging the closed-form satutibthe non-obscuration probability (Equation
(17)) and Equations (9) and (10), the ultimate ms@opic strengttit* (maximum value of the
macroscopic stress) and the timeat which this maximal stress is reached can beesspd as
function of the characteristic stress:

1 1

s* = g, (lw)’"_*" and t* = ¢, ((m”‘”’)m_“ (24), (25)

e min! min!

Equations (21), (24) and (25) are used in the segtion to compare the fragmentation properties
of three brittle materials.

3. ldentification of the Weibull parameters and predictions of the DFH model for three brittle
materials

The first material considered in the present stisdgn Ultra-High Performance Concrete (UHPC)
called Ductd?, provided by Lafarge-Holcim Company, characteridgd a high compressive
strength (170 MPa). This type of concrete benéfim a formulation with a reduced size of grains
(0.6 mm), forming an optimal granular skeleton vahpcovides a good homogeneity of the grains
and matrix elastic properties. Such structuraluesst allow decreasing internal stresses (Richard
and Cheyrezy, 1995; Cheyrezy et al, 1995). In @&ditthe small water to cement ratie (.2)
enables to minimize the amount of porosity in tinalfconcrete material (water porosity 5-6 %). In
the considered commercial composition, steel fibreimforce the concrete (length: 13 mm,
diameter: 0.2 mm)This type of UHPC was studied in (Blasone et al21)0to simulate the
penetration of a small calibre projectile againséa mm thick target. The UHPC mechanical
behaviour was investigated using Quasi-Oedometim@ession tests, bending tests and spalling
tests at the Hopkinson bar.

The second studied microstructure is an artifigatous polycrystalline granular ice grown in
Laboratoire IGE (Institut des Géosciences et davitbnnement). The specimens are grown from
isotropic seeds made of crushed ice, having a maximparticle diameter of 2 mm, and surrounded
by water at 0°C. The air trapped between the srmamg during the process leads to the formation
of a highly porous microstructure, with about 7Lt vol.% of porosity. The final microstructure is



characterised by equiaxed grains, an isotropictaitggraphic texture and a mean grain size of
about 1-2 mm (Georges et al, 2019).

The third microstructure, provided by Saint-Gobai,a dense silicon carbide ceramic. This
material corresponds to a grade of Hexoloy®S#ith size-controlled porosity. These relatively
large and spherical pores are discrete, non-imeeced and dispersed in a controlled manner
throughout the body of the material. Their propmrtrepresents less than 2 vol. %, with a maximal
diameter below 100m. This material has a density of about 3.11 d/and is referred to gmrous
SiCin the present work.

24 bending tests were performed for each mateTiae tests on UHPC were carried out with
12x16x100 (Height x width x span) mMructaP beams without fibre reinforcement. A servo-
hydraulic Instron testing machine with 100 kN |laapacity was used for this material. The failure
stress was directly derived from the maximum fofidee strain rate of the bending tests was 5%10
st (Blasone et al, 2021).

The bending tests on porous ice were performed thighsame testing facility than for UHPC
samples (i.e. hydraulic press Instron with a 100lé&ding cell) coupled with a climatic enclosure
supplied with liquid nitrogen to regulate the teminperature (set to -30°C) (Georges, 2020). The
samples cross-section was 40x20 (height x widthj with a support span of 120 mm. The cross-
head speed was set to 4 um/s.

Results of 3-points quasi-static bending testsgperéd on the SiC ceramic were provided by Saint-
Gobain Research Provence (France). The dimensiotieedested specimens were 3x4x45 nm
(height x width x length), with a support span 6fmm. The loading speed was set to 1 pm/s. As
brittle materials are susceptible to crack nucteatit external and internal flaws, each surface of
the specimens was polished and the corners chainfere

The obtained distribution of failure stresses allows building the so-called Weibull (1939)
diagram in whichin[-In(1- Pg)] versusin(og) is interpolated by a linear function, the slope of
which is the Weibull modulus. Next, the effective volume is calculated accogdio the equation

provided by Davies (1973), in order to take inteamt of the stress heterogeneity in the loaded
volume:

Vs = Jo(32) " doo (26)

Omax

where the symbol <.> corresponds to the MacaulagKats, i.e. the positive value. In the case of
three-point bending tests, the effective volumehaf loaded structure is given by the analytical
solution:

bhL

Veff = 2(m+1)>2 ' (27)

whereh is the heightb is the width of the tested beams dnid the bottom span length. Finally, the
Weibull scale parametey,(1,)~/™ is calculated from the following equation:

0w (Vesr) = 0o(Vesrho) ™ (m+1) : (28)

m



whereg,, is the mean bending failure stress &rtie Eulerian function of the second kind. The
parameters of the DFH model for the three brittlgerals are summarised in Table 1.

Table 1. Parameters used in the DFH model fortteetbrittle materials.

Material UHPC Porous ice SiC ceramic
Elastic modulus, density, 1D-wave speed

Young's modulu€ (GPa) 51.27 5.76 390

Density o (Kg/m®) 2460 840 3110

1D-Wave-spee@ (m/s) 4565 2619 11198
Bending tests and Weibull parameters

Number of tests 24 24 24

Heightx width x span (mrd) 12x 16x 100 40x 20x 120 3x 4x 40

Mean tensile failure stress 19.42 1.76 300

(MPa)

Effective volume (mrf) 97.94 1220 0.830

Weibull moduluam 8.9 5.27 16

Other DFH model parameters
ng, & (S1) 0.03, 5x1¢° - -
n, Sk 3,3.74,0.38

A transition volumeZiansion between single and multiple fragmentation processsn also be
defined as a function of the applied strain-ratmsidering the equatiosf (Z . ansition) = =" (£)):

N | e m
Ztransmon =|: em r1 i| r( rTH_lj (29)

Z (m+ n-1)! m

C

The final crack density, the ultimate strength the time corresponding to the ultimate strength
and the single-multiple transition volume, provideg Equations (21), (24), (25) and (29), are
plotted as functions of strain-rate (definectas ¢ /E) for the three materials in Figure 5. To do so,
the input parameters of the DFH model providedabl& 1 were considered. Strong differences are
observed between the three materials, in termseafigted ultimate strength (Figure 5a). However,
it is interesting to remark that the final cracksligy, the time corresponding to the ultimate gjthn
and the single-multiple transition volume are fouade relatively similar when compared at same
strain-rate.

These predictions rely on the Weibull parameteentified from bending tests, which effective
volumes are between the millimetre and centimetedes. As explained in the next sections, these
identification scales may lead to bad predictiormsemthe number of cracks per effective volume
significantly exceeds one.
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Figure 5. DFH model predictions for the evolutidn(@) ultimate strength, (b) time corresponding
to the ultimate strength, (c) final crack densitg dd) single-multiple transition volume of thedbr
brittle materials as function of the strain-ratef{ded as¢ = /E). (Equations (24), (25), (21) and
(29)). In this figure, the influence of strain-rate the inception stresses of pores in UHPC coacret
is not taken into account (see next sections).

4. | dentification of the density of critical defectsin threebrittle materials, based on X-ray
tomography CT-scan

In the present work, the microstructure of eachth&f three studied brittle materials (concrete,
porous ice and ceramic) is examined by X-ray mioroeography, using two different X-ray
devices. This method consists of sending an X-regnb through an object and collecting the
released attenuate beam via a panel detector.&yngl the studied sample on a rotating platform,
the 2D radiography of each slide of the object banstacked to reconstruct a 3D image of the
specimen. The X-ray attenuation level being linkedhe atomic number of the crossed material,
the grey levels of the resulting 3D image are diydinked to the density gradient in the material.
From this, the 3D image is binarized to highlighe tinternal structure of the material, such as
porosity. A post-processing algorithm is used tbelathe identified pores (using the multi-
dimensional image processing python package sapyage) (Weaver, 1985) and evaluate their
volumes (using the label toolkit ¢fie python package SPAM (Software for the Practicallysia

of Materials)). The pore equivalent diameter, dateed from these analyses, corresponds to the
diameter of a sphere having the same volume. Notses the ability to reliably identify pores



smaller than a threshold size. For the SiC cerandtthe UHPC, the lower limit of neighbouring
voxels required to adequately represent a single pas fixed at 5 pixels in diameter and smaller
pores were eliminated from the analysis. This gateis in line with resolution limits presented in
the literature (Gualda and Rivers, 2006; Tammadidkhk et al, 2015). With porous ice the high
scanning resolution (7 um) allowed a charactensatf pores as small as 3 pixels in diameter.
Consequently, this threshold size was chosen fsrrtaterial. Pores are classified in descending
order of size and the cumulative density of posesalculated as the cumulative number of pores
divided by the considered volume and can be plated function of the pore equivalent diameter.
This methodology was applied to analyse the porgsiésent in each of the three studied materials.

Two UHPC cylindrical samples (diameter 29 mm, |&n88 mm) were scanned using the X-ray
micro-CT scanner EASYTOM XL Nanofoyer in the Labmiee SIMaP. The X-ray source
generates a polychromatic cone beam, which is wetedy a flat panel detector of
2084 x 2084pixels, each pixel of the panel detebering a size of 27 um. The X-ray source
operated at 150 kV and 11®. The UHPC sample is scanned in a helical mod@aaimize the
resolution, 4,320 projections are acquired durimge full platform rotations. This configuration
allowed reaching a voxel size of afn. Figure 6a shows a slice of the 3D reconstructeje of
one specimen after thresholding. The isolated ggaafproxels were identified as pores. The pore
size distribution for a volume of 35x40x20 frshown on Figure 6b, was obtained by summing up
paralepidid crop of the two scanned specimens.

The second scan (Figure 6¢) was performed on adndial ice sample (diameter 45 mm, length
120 mm) in a cold room set at -20°C. To do so, tbmography equipment TomoCold
DeskTom130 RX Solutions at the Laboratoire CNRM-CEBentres d’Etudes de la Neige,
Grenoble), specifically adapted to cold temperatuweas used. A current of 238 pA and a voltage
of 60 kV powered the X-ray tube. The detector wamposed of 1920x1536 pixels with a physical
pixel size of 127 um. A ring filter with a 20-vox&krnel was applied in order to remove ring
features, which are artefacts from the acquisitiiter reconstruction, the scans are composed of
approximately 4500 x 1660 x 1660 voxels. After thieeshold step, a binary 3D image is obtained
(slice on Figure 6¢) and can be segmented usingyttien algorithm program in order to identify
each individual pore with a diameter higher tham ¢hosen cut-off value. The corresponding pore
distribution is plotted on Figure 6d.
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Figure 6. X-ray micro-CT scan of a sample of eaxtild material. (a-b) UHPC, (c-d) Porous ice
sample, (e-f) Dense SiC ceramic with size-contblporosity. (a, c, e) Slice of the binary 3D
reconstructed image. (b, d, f) Cumulative flaw dgnglotted as a function of the flaw equivalent
diameteri(Deg) (in log.-log. scale).

A sample of SiC ceramic with controlled porositysssanned using the X-ray scanner EASYTOM
XL Nanofoyer in the Laboratoire SIMaP. A paralldéfeg sample of 20 x 1.5 x 1.5 minwvas

considered to capture the very small sintering dsfef the material (few pm) and include a
volume large enough to properly represent the ratougture (Fig. 6e). The current and voltage of
the polychromatic conical beam (source size ofi31y are respectively set to 26 pA and 100 kV.
The detector is composed of 2084 x 2084 pixels witphysical pixel size of 24 um. The post-



processed 3D image contains 900 x 900 x 900 voaals,results from the reconstruction of 1856
projections acquired during one full rotation oé tepecimen around the vertical axis. Such high-
resolution scan allows reaching a voxel size o8B uBh. Threshold and segmentation procedures
were applied, similarly to both previous materiats,order to identify each individual pore as
shown on Figure 6e. The distribution of pore siz@amed is presented on Figure 6f.

5. Identification of the density of critical defects versus applied stressin threebrittle materials
5.1 Methodology

In order to use the previous X-ray tomographic gsialin a fragmentation model, the cumulative
pores distributiong«(Deq) presented in Figures 6b, 6d and 6f, need to beertet/ into a function
connecting the density of critical defects to theleed microscopic stress. As previously introduced
by several authors (Jayatilaka and Trustrum, 1®¥d, 1992; Forquin et al, 2004), the Linear
Elastic Fracture Mechanics (LEFM) theory can bedugelink the size of a pore to its expected
crack-inception stress. According to this theohg stress intensity factéf, related to a crack of
size Deq = 24a) is given by the following equation:

K, =Yovma , (30)

whereY is a dimensionless correction factor linked to ¢heck geometry, often referred to as the
geometric shape factor. In the case of a straigiakcof length 3, oriented perpendicularly to the
loading direction in an infinite plate subject tauaiform stress field, this correction factor ¥ %

1). In the case of a penny-shaped crack of raaiwsan infinite domain under uniaxial tensien
the geometric shape factor value ¥=2/7). From this, the macroscopic stress to trigger an
unstable crack is given by:

K
Otrigger = —— (31)

Y,[MDeq/2 '

with K, the critical stress intensity factor of the testeaterial.

In the present work, it is proposed to determiree garametel thanks to the Weibull parameters
identified from bending tests. Indeed, accordingetpuation (15), the density of critical flaws is
expressed as a power law of the positive (tengangipal stress, with the Weibull modulus being
the power value. The Weibull modulus is identiffemm the distribution of bending failure stresses.
The Weibull scale parametes(1,)~1/™ and mean bending failure stress are determined fhe
effective volume and Equation (28), respectivellye Weibull linear regression (in a log-log plot)
is reported on the plots of Figure 7a, 7b and 7¢henstress range corresponding to the bending
tests. Moreover, by considering the equivalent ét@mof a flaw to be triggered at a stress level
(o), the previous cumulated flaw density can be esgwéd as a function of )

Deg = 2(B9)" and 2,(Duq) = 1:(Deq (.Y, Kic)) . (32), (33)

whereK,. is the critical stress intensity factor providedTiable (1) and supposed to be constant
whatever the flaw size aritlis the geometric shape factor to be identifiednflmending tests. From
this last equation, it is possible to plot cumutafiews densityl; considering several values of the
parametel’, as shown on Figure 7a, 7b and 7c. Next, the gpjte shape factor is determined



by matching thel, curve from Equation (33) to the Weibull line (Eqoat(15)), for a stress equal
to the mean tensile strengthh measured in bending tests. The calibratiol afso compensates the
uncertainty regarding the critical stress intengigtor reported in Table 2. For each material, the
identified value ofY is reported in Table 2. It is noted that for theee brittle materials this shape
factor value is found to be close to one. In thet sections, this quantity is supposed to be comsta
for a given material and the Equations (32) angd é8 used for both the continuous and discrete
modelling of the fragmentation. In the case of UHf@crete a strain-rate sensitivity in the “quasi-
static” regime needs to be considered (Blasoné, @0a1), so thel; curve varies with the applied
strain rate as the crack-inception stress of thiegimcreases with the applied strain rate:
~\n

Gtrigger(é) = Utriggero (E_i)) ’ ) (34)
where n, corresponds to an exponent traducing the strae-sansitivity in the “quasi-static”
regime and, is a reference strain-rate (Table 1). This equatias already considered in (Forquin
and Erzar, 2010; Erzar and Forquin, 2014) to acctmrrthe strain-rate sensitivity of wet concrete
tensile strength due to the presence of free-w@essi, 1991). According to the identification
proposed in (Blasone et al, 2021), the followingapaeters can be considered & 0.03 andé, =
5.107°). Conversely, no strain rate sensitivity in theudgi-static” regime is considered for the
porous ice and the SiC ceramic.
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Figure 7. Plot superposition of the critical flagensity, provided by the bending tests (Weibull
law, black solid straight line), by tomographic bse for three different values of the paraméter
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(34), (35) and (36)), as a function of the appb&@ss, for (a) concrete, (b) ice and (c) cerairhe
final shape factor valu¥ is defined for each material when both first typégurves provide the



same critical flaws density for a stress equah@rean tensile strength measured from the bending
tests. For concrete, two levels of strain-ratecaresidered (5x106s?, 100 sh).

5.2 Identification of the cumulative flaw densityniction for each brittle material

The DFH model presents the strong hypothesis beattitical flaws density is considered to be a
power law of the positive (tension) principal str€Equation (15)). A piece-wise function matching
the cumulative flaw density expressed as a funobiba obtained from the tomography analysis,
was identified with the aim of suitably includinget full flaw population in the model. The
calibrated interpolation function is given in Talf® for each material.

Table 2. Parameters considered in Equations (38) (88) and interpolation function of the
logarithmic cumulative flaw density versus the Iotienic stress

Material Kic (MPax'm) Y Interpolation function oft = log </1t [;])

(X < Xo = A= fo(X)
_ f[iX)fis1(X)

(f; X)) i+ f; 44 (X)) 1/ 4
kX > X, - A =fn(X)

with i10{0, 1, ... n-1}
filX) = a;(X = X;) +Y;,
and X = log(a[Pa])

{Xi<XSXL'+1—>/1

2\
UHPC 0.627 083 (X, =7172109(£)", ¥ = 5.90, ag = 8, g5 = 15
{ é" -
X, =7.672l0g(;) ", ¥, =853, a; = 1.8
0
(35)
Porous ice 0.0919 0.80 Xo=6.1,Yy,=495ay=75,q9 =50
(leon and Xl = 6.2, Yl = 6.91, al == 5.0, ql = 50
Schulson, 1988 { X, =659, Y, =748, a, =0.7, g, = —45  (36)

X; = 6.72, Y3 = 8.05, a; = 8.0, g5 = 40
\ X, =69,Y, =874, a, = 1.2

SiC ceramic 2.89 0.8Q (Xo =14, ¥y =58, a9 =18, qo =10
Xl == 4’.65, Y1 = 6.4, a, = O, q1 = _10 (37)
Xz == 7.3, Yz - 6.8, a, = 12

In the case of UHPC (Fig. 7a), the critical striegsnsity factor (0.62MPavm) was deduced from
a Single-Edge Notched Bending (SENB) test performe@orquin, 2003) with a notched sample
of UHPC (Ductd?) of dimensions 5x3x20 min(hxwxL, with L the span length). Given the initial
notch lengtha of 1.3 mm ¢ = a/h) andF the peak force reached in the test (24.2 N), theal
stress intensity factdficis deduced according to the following formula (ASTM@5-14, 2014):
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K, = (%) f@), f@)= 15% [1.99 a((11+:0)()(?i1_5a;f:3a+2.7a )]. (38)
Next, a dimensionless parame¥wrery close to 1Y = 0.83) provided the best fit of the Weibull
line for a stress equal to the mean tensile stheothe bending tests (Figure 7a). For stressesecl
to the mean failure stress of bending tesis<19.42 MPa), the slope of the curve, based oa dat
from tomography analysis, matches quite well thepel of the Weibull straight line, which
corresponds to the Weibull modulus € 8.9, Table 1). For concrete, as the inceptioaesses of
pores are supposed to be strain-rate dependentdatgdo Eq. (34), the critical flaws density
versus strain-rate function also depends on tlanstate. The critical flaws density versus applied
stress is plotted in Figure 7a considering twoistrates (the red curved dash-dotted line is
corresponding to 100% The Weibull line of the porous ice, identifietbin bending tests, is
compared to the data extracted from the tomograplayysis in Figure 7b. For this material as well,
a shape parameter very close torE(0.8) provides the best fit in a stress rangsecko the mean
failure stress valued, = 1.76 MPa, Table 1), and the slope of the cusv®und to fit pretty well
with the Weibull modulusr = 5.3, Table 1).

The fracture toughness of the SiC ceramic with flssegs was measured on a SENB specimen, via
a 4-point bending test (crack length 1.6 mm). Tineethsions of tested specimen were 4x3x45°mm
(heightx width x total length). The distances between the inteandl external cylindrical supports
were set to 20 and 40 mm, respectively. The obdairdue, in this configuration, is 2.88Pavm.
Finally, a shape parameter close to¢E(0.8) provides a good match between the tomogrataia
and the Weibull linear regression (Figure 7c) foaage of stresses closed® (300 MPa, Table 1).

In addition, the slope of the curve coincides wegll with the Weibull modulusni = 16, Table 1).
The high Weibull modulus value obtained for thisteni@l is due to the good size homogeneity of
the large pores~(45 um), which correspond to the flaw populatiogdared during quasi-static
bending tests, therefore resulting in a low scatein the flexural strength measurement.

The final interpolation function of the cumulatiilaw density (Equation (33)) expressed as
function of the parameters Table (2) ., Y, X, Y, a;, q,) is plottedaccording to the applied stress

on the Figures 7a, 7b and 7c for each material/écidash-dotted lines).

6. Predictions of the fragmentation properties of three brittle materials based on tomographic
analysis. The continuous method

6.1 Methodology

The obscuration probability of the DFH model, exgsexl in Equation (14), can be rewritten by
using the size of the obscuration zone proposdtgumtion (16) (withn = 3), but without making
any assumption on the density of critical defegts(t)), except it is a continuous and derivable
function.

T

In(1 - Py(T)) = — [ %swca —t))3dt (39)



Considering thatz,(0) =0 (with Z, (T —t) =S(kC(T—t))3), the derivative of the previous
equation with respect to time leads to (cf. appendi

1 dPy(T) _ (T dAe(o(D) 3(7 _ )2
e = Jy =538 (kCYA(T — £)%dt (40)

From the second derivative, the following diffeiahtequation is obtained (Denoual and Hild,
2000):

= (5 20) = 65(C)* u(a(T) (41)

dt2 \1-pP, dt

By applying a triple integration of the equatiori)4the evolution of the obscuration probability
can be determined over time for a given loadingonyso(t). When the obscuration probability is
assimilated to a damage variable (Equation (223)determination provides the evolution of a
macroscopic stress, according to Equation (23)mRtuos, the ultimate macroscopic strength of the
material (i.e. maximum macroscopic stress) candgiced. In addition, the final crack density is
obtained by integrating Equation (7). This methodgl was applied to each brittle material,
assuming a linear increase of the microscopic stess a function of times(T) = ¢.T), and
considering a large range of strain-rates, supppsegortional to the stress-raté =€ ¢/E). The
obtained results are detailed in the next subsectio

6.2 Application of the continuous method to theéhbrittle materials

The damage evolution law of the UHPC material walewated by introducing the density of
critical defects of Equation (35) into Equation Y4The considered values for the parametegs (
&, S k, O are listed in Table 1. The obtained ultimate raacopic strength and final cracking
density are plotted as functions of the strain-iaté&igures 8a and 8b (solid blue lines). These
predictions are compared to the one obtained wsMgibull density of critical defects (power-law
function) (Equations (24) and (21), Figures 5a &od Whereas a good match is obtained at a low
strain-rate, a higher strength level is predicteith whe tomography population of defects at a high
strain-rate compared to the DFH closed-form sotufid/eibull flaws population). This difference
can be explained by the fact that, at the highrstiates, the defects activated are the smallesst.on
As densities of critical defects diverge at thehleigt stress levels (Figure 7a), the predictionsemad
from the tomography data and the Weibull powerdamction diverge. This precisely demonstrates
the interest to consider rather the defects pojmadentified from tomography than the Weibull
one, provided by bending tests.

In terms of ultimate strength, the model predictiaare compared to experimental results from
(Blasone et al, 2021) obtained through spallingeexpents using a Hopkinson bar apparatus. As
shown on the plot of Figure 8a, the tensile stiemy¢en by the DFH model, based on the Weibull
power-law function or on the defects distributiotentified from tomography, are in good
agreement with the experimental data at strairs riatéhe range of 50-200's
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Figure 8. Predictions of the UHPC concrete macnaiscstrength (a) and final crack density (b)
evolution according to the applied strain-rate. @anson between the DFH close-form solution
and the continuous and discrete methods, based/eilaull flaw distribution (Table 1) and a flaw

distribution identified from the tomographic anagyéTable 2), respectively.

The same methodology was applied to the porousniaterial. The predictions for the ultimate
macroscopic strength and final cracking densityligian with respect to the applied strain-rate are
plotted on Figures 9a and 9b. The ultimate streqg#dicted by the tomography analysis and
Weibull-based DFH solution intersect at two différestrain-rates. Below 30'sthe predicted
strength with the continuous method is higher thaith the closed-form solution, which
corresponds to activated defects in the part liglife 7b. In a range of strain-rates from 30
500 st it is observed that the predicted strength pravidg the continuous solution is slightly
lower than the one provided by the closed-form tsmiu(Weibull distribution of flaws). In this
case, the activated defects mainly corresponddsetimighlighted in the part 1l of Figure 7b. Both
predictions are in a relatively good agreementhis strain-rate range in term of crack density
(Figure 9b). At higher strain-rates, namely aboppraximately 400-500% the flaws of the zone
lll start to be subsequently solicited resultingandivergence between the final crack density
predicted by the continuous method and Weibull-basdution as the flaw density predicted by a
Weibull distribution is no longer relevant (Figufb).



Similarly to UHPC, the ultimate tensile strengtlegtictions of the DFH model are compared to

experimental results (red dots in figure 9a) ofllspa tests conducted with a Hopkinson bar

apparatus and reported in (Georges et al., 2021B.ekperiments were performed with porous ice
samples presenting a microstructure identical ® dhe considered in the present work. The
increase of experimental tensile strength withirstrate, over the considered range of strain-rates
(24-120 &Y, is in good agreement with the predictions predithy both approaches (Weibull-based

solution and Tomography approach). In terms of ikerstrength values, one can notice a slight
over-estimation compared to the DFH model but ptexhs remain satisfying. Experimental data at

higher strain rates would be of interest to vakddie model predictions of ice tensile strengthrove

a wider range of strain-rates.
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Figure 9. Predictions of the porous ice macroscgtrength (a) and final crack density (b)
evolution according to the applied strain-rate. @anson between the DFH close-form solution
and the continuous and discrete methods, basedeitaull flaw distribution (Table 1) and a flaw

distribution identified from tomographic analysigaple 2) respectively.



The ultimate macroscopic strength of the SiC cetamith fuse-flaws, is plotted as a function of
the strain-rate on Figure 10a. Two different bebars can be distinguished in the present case,
each one corresponding to different domains offlne density versus critical stress curve plotted
on Figure 7c. For strain-rates below 20,000 the continuous method and the DFH Weibull
solution match well (Part I and Il, Fig. 10a), wiiis due to a good similarity between the critical
flaw density versus stress based on tomographe aiatl the Weibull slope, in the domain | of
Figure 7c. For higher strain-rates, above 20,00Qr® continuous method predicts higher ultimate
strengths compared to the Weibull-based soluti@mt(f, Fig. 10a). This is explained by that fact
that no pores of size between 20 - 50 um are @lailm the material to be activated (plateau
identified as part Il in Figure 7c¢) and the loadimage is not high enough to trigger smaller pores.
So, the cracking density presents a plateau f@laively large range of intermediate strain rates,
between 10,000 and 40,000 @ igure 10b). Therefore, in this range of straites, the volume is
fully damaged by the growth of obscuration zonegaging from the activation of the large size-
controlled pores. At higher strain rates (> 40,68) the growth velocity of the obscuration zones
from the large pores is not sufficient anymore\toid the trigger of smaller flaws, so the cracking
density starts to increase again. Very small paatwated in this high strain-rate domain mainly
correspond to sintering defects or impurities, tdexad as part 11l in Figure 7c. Finally, the grdwt

of obscuration zones from large flaws preventeditiigation of numerous micro-cracks in the
material for loading rates between 10,000 and 40530

One preliminary experimental result on the porou€ $eramic is compared to the model
predictions in Figure 10a. This result was obtaifiech a shockless plate-impact spalling technique
developed to reach a controlled strain rate inf#lere zone. This new experimental technique,
based on wavy-machined flyer-plates, was developediiew of evaluating the strain-rate
sensitivity of ceramic tensile strength (Dargaudl &worquin, 2020, submitted for publication).
According to this preliminary result, the spallestgth of the porous SiC ceramic reaches 410 MPa
for a strain rate of 18,150 + 1,000, swhich is in very good agreement with ultimateestth
predictions given by the DFH model. Providing merperimental data for validation is an ongoing
work. Compared to the spall strength values givefZinszner et al, 2017) for a dense SiC ceramic
Hexoloy SA (608 MPa at 17,000 + 1,008) sthe presence of relatively large size-contropedes

led to a decrease of the material strength, at feastrain-rates lower than 25,000. s
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Figure 10. Predictions of the porous SiC ceramicroscopic strength (a) and final crack density
(b) evolution according to the applied strain-r&emparison between the DFH close-form solution
and the continuous and discrete methods, based/éeilaull flaw distribution (Table 1) and a flaw
distribution identified from tomographic analysigble 2), respectively.

7. Predictions of the fragmentation properties of three brittle materials based on tomographic
analysis. Thediscrete method

7.1 Methodology

Discrete numerical simulations have been develyséty the programming language Python. The
routine is composed of the following steps. Eacteps identified from the tomographic scan using
the Python package SPAM.A cut-off value was considld@o distinguish an effective pore from
potential noise of the tomographic scan. This $ilnit was set to 3 voxels in diameter for the
porous ice and 5 voxels for the SiC ceramic and OlBncrete materials. The coordinates of each



pore are assimilated to the centre of mass positiadeal ellipsoids fitting the pores (lkeda et al
2000). The considered finite volume was obtainedsbsnming up paralepidid crop of the two
scanned specimens for the UHPC. The cubic scanokedne is cropped from a large cylindrical
sample for the ice, and from beam of millimetrizesfor the ceramic. A numerical cube of equal
size meshed with elementary cube elements of honoagesize is then used as a receptacle for the
pores. Detailed parameters for the numerical sitmmand the mesh settings are given in Table 3.
In order to simulate the material behaviour resglfrom a tensile loading, a constant stress-gate |
homogenously applied to the cube. The stress kieepsasing linearly in the whole domain, as
long as none of the pore critical stresses is mghcnce the applied stress reaches the critical
stress of one pore, a spherical obscuration volcenéred on this pore starts to grow with a radius
proportional to the constant spe&f. All the neighbouring pores reached by this grawin
obscuration sphere are obscured, meaning they témenactivated anymore even if the loading
stress happens to exceed their threshold activatress. Thus, it is possible for a given strate ra
to determine how many pores are triggers and homymaeere simply obscured.

In parallel, once the spherical obscuration zonarofactivated pore reach a new mesh element
while growing, the corresponding element is congddo be fully damaged. The elements of the
cube not yet affected by any spherical obscuratmome keep a stress level increasing linearly.
The damage is defined as the number of damagecetsrdivided by the total number of elements.
The macroscopic stress is calculated from the damegpresented in Equation (9). From this, the
macroscopic ultimate strength, which is definedh@&smaximum value of the macroscopic stress, is
deduced. The discrete numerical simulation endsnvihe whole volume is obscured. With this
algorithm, it is also possible to compute the crdeksity defined as the number of activated pores
(for which the stress has reached its critical @ahithout being obscured) during the process
divided by the total volume. Finally, this algonthis applied for a large number of strain-rates in
order to evaluate the sensitivity of the macroscagtimate strength and crack density to the
loading rate. For each brittle material considetbe, input parameters and obtained results are
detailed in the next subsection.

To better analyse the discrete numerical simulati@n chart histograms, presented on Figures 11
(a-c-e), show, for three strain-rates and for emelterial, which are the stresses of the triggered
pores at timeJy, and Tmax Which corresponds to the time for which the udtienstress is reached
and the final time (volume fully damage) of theccddtion, respectively. Histograms corresponding
to low strain rates overlap the one of higher logdiates. Moreover, Figures 11 (b-d-f) present the
evolution of the crack density as function of thgpleed microscopic stress that evolves linearly
with time @(T) = 6.T), considering the same strain-rates. This figlikestrates which is the
population of activated defects involved in the macopic strength and final cracking density
determination, for various loading-rates.

7.2 Application of the discrete method to the thratle materials

First, the discrete method was applied to the UHRaZerial, considering the parameters listed in
Table 3. A 3D volume 35x40x20 nimvas considered. This volume was defined as thgesar
volume provided by the tomographic scans. 15073pmEsize ranging between 100 um and 2.5



mm were placed in the volume according to theircepasition obtained from the X-ray CT scans
(which represents about 2% of the total volume)s Horosity represents the entrapped air during
the casting process. The mesh element size of lhSvas chosen as a compromised to capture the
smallest element size providing a reasonable cioul time. This mesh size is much smaller than
the average distance between the considered gevestrain rates lower than 18,ghe discrete
approach predicts an ultimate strength that depemdis on the weakest defect in the volume
35x40%x20 mr, therefore resulting in a unique crack density aridgher ultimate strength than in
the continuous approach (Figure 8). This phenoménanot captured in the continuous approach as
this approach does not involve the size of the idemed volume. A good match is observed
between the predictions provided by the continuand discrete methods between f0and
1,000 &, in terms of dynamic strength and crack densitgw® strain-rate evolution. Even if the
continuous approach does not consider the exadiqrosf the pores, it leads to results equivalent
to the one obtained with the discrete approach.vAkapproximately 1,000%s it is noted that the
ultimate strength and cracking density predicted coptinuous and discrete methods start to
diverge. This is due to the limited size of the Bash pores (0.1 mm) captured for the discrete
method, whereas for the continuous method the pstibution is extrapolated above this
threshold. Therefore, the continuous approach pi®dn increasing number of cracks, whereas the
discrete approach reaches a plateau. It resuéts gstimation of the ultimate strength subsequently
higher than the ultimate strength predicted bycthretinuous approach.

The same methodology was applied to the porousaterial with the parameters listed in Table 3.
Similarly, to the UHPC material, a 3D cubic volurf81.32x31.32x31.32 mm3) was considered.
25,926 pores were spatially distributed in the wwduat their exact positions, extracted from
microCT data. The corresponding air-content is appnately 6.5 %. A mesh element size of about
0.3 mm was found to be satisfying regarding theemzes and the pore spatial distribution. The
time step was kept constant to 50 ns for everyirstede applied as, with this value, the total
number of time increment was relevant to accuratelscribe the damage growth in the volume.
The low resolution of the microCT scan did not walloeaching higher strain-rates, the ratio
activated pores/total number of pores being closk @bove 1,200% The results from the discrete
method are compared to the ones obtained withdh&nuous method and the analytical solution
of the DFH model (Weibull distribution of defects),terms of ultimate strength and crack density
in Figure 9(a) and 9(b). The ultimate macroscopiength obtained from the discrete method is in
excellent agreement with the continuous solutiohatever the strain-rate in-between2and
1,200 &' Below 2 &', a single fragmentation process occurs in thereiscmethod, whereas the
continuous method leads to the crack density oLHiphe-fragmentation process that would occur
in larger volume. Above 1,200"'sthe discrete method is limited by the resolutitbthe CT scan. A
reasonable good match is observed at intermedit@n-sate (around 503 when the
fragmentation properties provided by both contiraiand discrete methods is compared to the DFH
closed-form solution. Indeed, the flaw density lobhea a Weibull distribution is a relatively good
approximation of the actual flaw density extractemm micro-CT measurements, as long as the
pores of the Zone Il (Figure 7b) are not solicitetbwever, beyond this point, the crack density
computed with the analytical distribution is notesant anymore (especially above 400.slt
results in an estimation of a final crack densipsequently lower than the final crack density
predicted by the DFH closed-form solution. Howeveigan be noted that, even at strain-rate of



200 ¢!, the pores from the Zone lll are not significandlgtivated at the tim&@, and have no
influence on the values of ultimate strength deteech from the continuous and discrete methods.

A series of discrete numerical simulations was cotetl on the SiC ceramic with fuse-flaws
considering the calibration and input parametesgedi in Table 3. About 33,752 pores, with a
minimal diameter of 5 pixels were identified viaama-tomography. The scan volume is cropped
into a cube of size 1.2 minA mesh of 100 elements in each direction is fotmgrovide a
sufficient level of discretisation to evaluate tiiémate strength and crack density. A step time of
10 ns was used for all the strain-rates in orddraiee a fine resolution of the damage growth. The
ultimate strength and cracking density sensitivtitythe strain-rate obtained with the discrete
method are compared to the results of the closed-fwlution based on Weibull parameters and
the continuous method. It can be noticed that ikerete and continuous methods lead to similar
curves on Figure 10, except for strain-rates belg@®0 st and above 300,000'sfor the reasons
detailed hereafter. This first result confirms tlia¢ continuous function, identified in Table 2,
properly describes the flaw population detectedonyography. Even if the continuous method does
not take into account the exact position of theeppit leads to results quasi-equivalent to the one
obtained with the discrete method. For strain rite®r than 1,000 the discrete method predicts
a single fragmentation process in the cube of sizz mn? resulting in a unique crack
(Acrack X Veune= 1) and a higher ultimate strength than in thetiomous method (Part | in Figure
10a), which corresponds to the critical streshefweakest defect in the volume (193.3 MPa). This
single fragmentation process is not captured indbtinuous method as this method does not
involve the size of the considered volume. For istreates between 2,000 and 10,000 s
corresponding to the Part Il in Figure 10a, the twethods provide the same estimation of the
ultimate strength and cracking density than theexleform solution based on a Weibull distribution
of flaws. Indeed, in this range of strain-rateg #ctivated defects are the relatively large pofes
controlled-size during the manufacturing processo adentified through the bending tests. For
higher strain rates, the closed-form solution, base a Weibull distribution of flaws, under-
estimates the ultimate strength and over-estinthtesracking density. This is because the Weibull
distribution of flaws diverges from the intermeéiadand small-size flaws populations mainly
activated at such strain-rates. Therefore, theediderm solution of DFH model based on the
Weibull parameters is no longer valid at such nreddy high strain-rates. The flaw population
“plateau” (Part Il on Figure 7c) is correctly idéieid by both methods relying on the tomography
analysis, thus both methods predict an increagbeoimaterial strength and a reduced number of
crack inceptions for loading rates in the rang@®Q00200,000°$ (Part lIl in Figure 10a). At strain-
rates above 200,000 sthe discrete method is limited by the scan re¢&niyas pores with diameter
lower than 6.6 um (5 pixels) could not be accuyaigéntified for a tomography scan resolution of
1.33 pm/voxel. Therefore, for this range of loadrates, whereas the continuous method predicts
an increasing number of cracks thanks to an exim#po of the pore distribution, the discrete
method reaches a plateau (Part IV in Figure 10a).

To better understand which flaws population isgeiggd according to the applied strain-rate, the
number of activated defects &t (time at which the ultimate strength is reachew) Bnax (time at
which the whole volume is obscured) and the evotutf the crack density are plot as functions of
the microscopic stress of the activated poresgurie 11, for three different loading-rates.



For instance, in the case of UHPC, activated defatt strain-rate of 100' fiave a microscopic
stress below 32 MPa @t and 42 MPa almax The activated defects above 1,000csrrespond to
microscopic stresses up to 100 MPa.

In the same way, in the porous ice, activated defat strain-rates below 50" orrespond to
microscopic stresses less than 2.4 MP& and 4 MPa almax The activated defects at 500 are
characterised by microscopic stresses up to 7 MPaaand 10 MPa almax

In the case of porous SiC, the following strairesaare considered: 2,000, 20,000 and 60,00@ s

is observed that the crack density plateau aro@ctacks/mmresults from the plateau in the
input flaw distribution. For low strain-rate, onlgrge pores are triggered, therefore leading tma |
ultimate strength. For intermediate strain ratesmnfabout 10,000 to 50,000,sa clear increase of
the stress is obtained while maintaining a rel&til@v number of cracks, as the material presents a
limited quantify of intermediate pores (plateaupidable to be triggered. The limited number of
micro-cracks in this range of strain-rates playsoke on the kinetic of the damage variable,
therefore resulting in a great increase of the ras$estrength. For very high strain rates, above
50,000 &, the growth of obscuration volumes surroundinggeied cracks becomes too slow
compared to the loading rate, so a very high nurobemall cracks are simultaneously nucleated
out of these damaged volumes, resulting in a sinarpase of the final crack density.

Table 3. Parameters used for the discrete numesiicailations carried out the three materials

Parametel UHPC Porousice SiC cerami
Cube size (mn 35%x4(0x20 31.32x31.32x31.32 1.2x1.2x1.2
Element size (mn 05 0.313: 0.01-
Number of elemen 22400( 100000( 1C°
Lowest critical stresvalue (MPa | 20.2 (¢ =100 ¢1) 1.1€ 193.c
Average critical stress (MF 73.1(¢ =100 1) 6.9¢ 655.¢
Max. critical stress value (MP 1009 (¢ =100 ¢} 10.7¢ 717.¢
Strain-rates () ; Time 10;1 1; 50 30 points equally
increments (ns) 20;1 10; 50 spaced in log
100;1 50; 50 scale, between
500;1 100; 50 10? and 16 s 10
1000,1 500; 50 ns
2000; 1200; 5(
Strain-rates () ; Ultimate 10;19.18 1;1.17 100; 302.5
macroscopic strength (MPa) 20;20.41 10; 1.41 1000; 314.1
100;27.43 50; 2.13 10000; 403.2
500;43.27 100; 2.63 100000; 878.9
1000,55.05 500; 4.99 1000000;1891.6
2000 71.9¢ 1200; 7.1
Strain-rates () ; Final crack 10;6.30-4 1; 1.30e-4 100; 1.18
density (mnv) 20; 1.33e-3 10; 1.37e-3 1000; 1.76
100; 1.55e-2 50; 1.58e-2 10000; 98.5
500; 0.128 100; 3.38e-2 100000; 5503
1000, 0.281 500; 0.491 1000000; 19852
2000;0.487 1200; 0.74
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Figure 11. Results of discrete numerical calcutetio(a-b) UHPC, (c-d) Porous ice, (e-f) SiC
ceramic with size-controlled porosity. (a, c, e)e@Dapped histograms of the number of activated
flaws at Ty (time at which the ultimate strength is reached) &max (time at which the whole
volume is obscured) for three levels of strain safw, d, f). Evolution of the crack density as
function of the microscopic stress for three levels strain rates. The crack density level
corresponding to the time at which the ultimatersgth is reached is circled for each loading rate.



Finally, the representation given in the graph&iglure 11 provides a better understanding of the
population of flaws (defined as their activatecessies) governing the ultimate strength and final
cracking density in each considered material acngrid the applied strain-rate.

7.3 Discussion: main advantages and drawbackschf mathod

Finally, the main advantages and drawbacks of eaethod (DFH closed-form solution based on
Weibull parameters, the continuous and the disaretthods) are listed in the Table 4. Even if the
continuous and the discrete methods need a tedimmndification of defects from tomographic
analysis, it provides the huge benefit to consamleron-Weibull distribution of flaws. So far, this
last hypothesis has limited the predictions ofdlesed-form solutions of DFH model to a restricted
range of strain-rates, corresponding to the flasupation activated in bending tests.

Table 4. Advantages and drawbacks of the continaadghe discrete methods compared to the
closed-form solution based on Weibull parameteisHDnodel).

Methods Advantages Drawbacks

DFH closed-form -
solution based on
Weibull parameters | _

No need of tomographic analysis and Predictions provided in a small range
LEFM of strain-rate

No assumption on defects shape | - Need to perform bending tests

Closed-form solution

(difficult to perform at small scales)

Common advantage
and drawbacks of
continuous and
discrete methods
compared to DFH
closed-form solution

Identification of defects through X-
ray CT scan provides non-Weibull
distribution of flaws

Predictions valid over a much wider
range of strain-rates

Defects have to be detected throug
X-ray CT scan

Resolution limit in the X-ray
tomography (voxel size, ability to
differentiate features from their
absorption difference, etc.)

Need to identify a constant shape
factor based on LEFM

Continuous method

Differential equation of the
obscuration probability is easy to
program in a spreadsheet

Ease to implement in a FE code
(non-homogeneous stress field)

Possibility to extrapolate the result$

Assumption that the defects are
homogeneously distributed in the
volume

Discrete method

Individual defects are considered at
their exact position
Distribution of defects is not
necessarily spatially homogeneous
Ease to identify which defects
population is involved in the
fragmentation process

No implementation in a FE code

Restricted to the scanned defects
without possible extrapolation

The continuous and discrete methods were adaptibe tstudy of the three present materials as
they all presented a good phase contrast betwediaths and the matrix/grains. The continuous



presents the advantage of being based on the @aiscuprobability differential equation, which

can be easily implemented in a spreadsheet oFinite-Element code. This offers the opportunity
to predict the strength and cracking density enethé case of non-homogeneous stress fields, as it
is the case in edge-on impact tests of spalling fes instance.

Although the discrete method cannot be easily implated in a FE code as the continuous method,
it presents the substantial advantage to condi@eexact location and activation stress of each
individual defect identified through the CT scaralgsis. Predictions of the fragmentation process
in brittle solids including non-homogeneous digitibn of defects (in terms of size and spatial
distribution) could be easily investigated throukis method.

Conclusion

In the present paper, a new methodology is proptsedodel the multiple fragmentation process
induced in brittle solids subject to high-straiteraloadings. This method is built on the
identification of flaws population, provided by nmoetomography analysis. Samples of three
different types of brittle materials, an ultra-higarformance concrete, a porous polycrystalline ice
and a SiC ceramic including size-controlled andtretly large pores have been analysed through
an X-ray tomographic analysis. The pore size distion of each microstructure was extracted
from a post-processing of the 3D reconstructed @sady using the linear fracture mechanics
theory, the density of critical defects is exprelsas a function of the applied stress. Finally, the
density of critical defects, obtained from tomodrgpis used through a continuous and a discrete
method. In the continuous method, the differergigiation of the obscuration probability of the
DFH model is implemented. The calculation of a dgen&ariable provides the evolution of the
final cracking density and ultimate macroscopicersfith according to the applied strain-rate,
without making any assumption on the link betwdss density of critical flaws and the positive
principal stress (power law function according te ¥Weibull model). In the discrete method, the
growth of each spherical obscuration volume centredts critical defect is simulated considering
the exact position and activation stress (sizegaxfh defect identified through the tomographic
analysis. For each considered strain-rate, the asacpic strength is calculated by considering the
average value of stresses of all the elements almn@ing to any obscuration volumes. The
cracking density is obtained by considering the benof triggered defects divided by the total
volume.

Both methods (continuous and discrete) were appbethe three brittle materials. In the UHPC
concrete, new predictions are obtained at highinstedes (above 100 that differ from the results
provided by the DFH closed-form solution, relying the Weibull parameters identified from the
three-point bending test. For the polycrystallice,iwhereas a reasonably good match with the
DFH closed-form solution is observed at intermegliatrain-rate (for which the flaw density
extracted from microCT measurements do not stray fihne Weibull distribution), the predictions
in terms of final crack density strongly divergettag highest strain-rates (especially above 390 s
For the SiC ceramic, the high-resolution micro cated-tomographic analysis enabled to capture
the presence of two main flaws populations of dddtisizes. Again, it is observed that, above a
certain strain-rate, the predictions of the DFHseld-form solution, based on a Weibull distribution



of defects which correspond to the largest porggdred in bending tests, diverge from the
predicted results provided by both the continucu @discrete methods.

In addition, the discrete and continuous approaemgsied to this porous SiC illustrate how the
availability or unavailability of defects may chanthe strain-rate sensitivity of ultimate strength
and crack density. Indeed, these approaches mawndormation on the valuable effect of the size-
controlled fuse flaw in the porous SiC ceramic loa tracking density sensitivity to strain rate, for
strain rate between 10,000 and 40,0803epending on the loading rate, a competition betwthe
spreading of the obscuration zones and the iratiadf new flaws drives the material strength. Such
kinetic-dependant crack nucleation on pre-exisfiaggs explains the high rate-hardening strength,
which is characteristic of brittle materials butgndied for this porous SiC ceramic with well-
controlled pore sizes.

It illustrates how the use of CT scan to identltig flaws population leads to a better understanding
of the effect of flaws population on the resultstgength of the material and its fragmentation, as
function of the applied loading rate. Finally, tteenography technique is demonstrated to be a
powerful tool to accurately take into account teal flaw distribution of the microstructure in orde
to model and predict the dynamic fragmentation @sscinduced in brittle materials over a large
range of strain-rates, as long as the flaws pojuaian be characterised by tomography analysis. It
is also observed that each (continuous and digcne¢¢hod presents complementary advantages.
Indeed, whereas the continuous method is easy ptement and use in a spreadsheet or in a FE
code in which transient dynamic loading can be idmmed (such as impact loading), the discrete
method presents the advantage to consider the lexadtion and activation stress of each individual
defects identified through the CT scan analysisyahg predictions of fragmentation process with
non-homogeneous distribution of defects. Finallythbcontinuous and discrete methods provide a
promising way to better understand and model thextsf of microstructural features, such as flaws
distribution, on the macroscopic behaviour of stn@ite sensitive brittle materials. In particular,
these methods are particularly promising with awte optimizing the microstructure of brittle
materials and their manufacturing process (singeh ceramics, casting of concrete, surface
treatment of glass, 3D printing process...) with e$go their use under high strain-rate dynamic
loading. For each of the three-material studiethepresent work, experimental validations of the
modelling predictions constitute a natural prospect
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Appendix

If ones consider the following function:

I(T) = f, f(uwT)du, (1)

its derivative reads

ATy IT+aT)-I(T) _ fy Y FuT+AT)du~[) f(uT)du

ar ar ar (2a)
ary T FauTar)dut f) (f (wTHdT) - F(uT))du (2b)
ar dr
2D = fr+Z,T+dn) + [] LD, (2¢)

whereZ—’Tr is the partial derivative of the functidmegards tdr. ConsideringdT — 0) Equation (2)
becomes:

dI(T) = F(T.T) +fT af(uT) dt . 3)
Now, if ones consider the foIIowing functidr):
T dA¢(o(t

(M) = f, “CD7,(1 - tydt (@)

Given that(Z,(0) = 0), the first term of Eq. (3) vanishes and the dénresof Eq. (4) reads:

dI(T) _ (T dig(a(t)) dZo(T—t)
dr _fo dt aT dt . ()

When assuming the following expressiorZg{T — t) = S(kC(T — t))™, Eq. (5) becomes:

ai(r) _ (T di(a(t) ner _ pyn-1
- = fO — nS(kC)™(T — )" dt . (6)

Finally, consideringr{ = 3) the Equation (39) is obtained from the défgration of Eq. (38).



