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Abstract
We investigate the suppression of the turbulent transport associated to the emergence of
spontaneous internal transport barriers, due to the combined collective effects played by trapped
electrons and energetic passing ions. Numerical experiments performed with a ‘particle mode’
model based on a double gyro-average over the fast cyclotron phase and over the bounce (or
transit) phases are used to show the role played by energetic particles in the suppression of the
ion-temperature-gradient driven turbulence. We show this occur via phase locking in a
Kuramoto-type synchronization process.

Keywords: plasma physics, vlasov equation, gyrokinetic modelling, transport barrier,
phase synchronization

(Some figures may appear in colour only in the online journal)

1. Introduction

The important role of zonal flows (ZFs) in regulating tur-
bulence and transport in tokamaks is now broadly accepted.
However the impact of fast particles in the ZF amplifica-
tion and in the associated turbulence suppression is an open
question. Instabilities driven by energetic particles have been
observed in many tokamaks and helical devices. In the Large
Helical Device (LHD), the resistive interchange mode can be
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destabilized by the neutral beam injection. A new mode is
this way generated and referred to as the ‘energetic ion driven
resistive interchange mode’ [1–4]. This mode is characterized
by a global structure on the poloidal and toroidal numbers,
m and n, respectively, which here satisfy m/n= 1/1. One of
the distinguished features of this mode is the down-chirping
of its frequency during the intermittent burst which character-
izes its temporal dynamics. Furthermore, the mode is determ-
ined by the precession frequency of the energetic particles.
The energetic ion driven interchange mode can be therefore
included in the family of the energetic particles modes [5],
similarly to the oscillating fishbones observed in tokamaks. In
the latter, different physical mechanisms leading to the sup-
pression of turbulence involving the dynamics of ZFs have
been reported. A first scenario, recently proposed in [6–8],
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is the possibility to generate a new type of internal transport
barrier (ITB), induced by fast ions driven by ion-cyclotron
resonance heating when the ion magnetic drift frequency is
close to the frequency of underlying ion temperature gradi-
ent (ITG) instabilities. This seems to be a necessary condi-
tion for the suppression of turbulence. Modes driven by ener-
getic particles can be thus excited nonlinearly, depleting this
way the turbulent energy by enhancing the energy transfer to
ZFs [9] (which remain the dominant saturation channel of tur-
bulence). The high frequency component of ZFs, generally
attributed to the presence of geodesic acoustic modes (GAMs),
can be this way affected by the energetic particles. This leads
to the emergence of energetic GAM modes, named EGAM
[10], at a frequency typically comprised between 0.40ωGAM

and 2ωGAM (see [11–13]). In this frequency interval the ITG
frequency may resonate with the ion precession frequency
[14]. However, the role of the low-frequency component of the
zonal flow (LFZF) remains little studied. From global gyrokin-
etic simulations of toroidal ITG-driven turbulence, another
physical mechanism has been predicted in [15], which takes
place when the unstable region width is larger than the ITG
correlation length, and phase synchronization leads to a modi-
fication of the turbulent transport (displaying a gyro-Bohm
scaling) on a large spatial scale. Furthermore, the synchroniza-
tion of GAMswithmagnetic fluctuations has been identified in
the edge plasmas of the HL2A tokamak [16]. The experiments
presented in [16] were conducted in a deuterium plasma heated
via electron-cyclotron resonance. This suggests that energetic
electrons have an impact on the low-frequency zonal flow
(LFZF) component. While a mechanism of synchronization
of GAMs with magnetic fluctuations has been clearly demon-
strated, the amplification of the LFZF mode by synchroniza-
tion effects remains an open question, since it involves fluctu-
ations of electrostatic nature at much lower frequencies.

Recently, in [17, 18] we have extended the trapped particle
model, initially developed to study the impact of ITG-type
instabilities on trapped particle modes, so to include circulat-
ing and counter-circulating ions. All these classes of particles
are described by a separate distribution function in an action-
angle formulation of the corresponding Vlasov equation, and
are coupled one each other via the Poisson equation. In this
context we name here ‘particle mode’ each of these classes
of particles, depending on the general form of their preces-
sion frequency, and regardless of the stable or unstable nature
of the linear modes which can be associated to them (see
section 2, below). The resulting interaction between all these
particle modes can lead to an amplification of the LFZF com-
ponent by synchronization with the interchange type modes,
which can exhibit a hybrid fluid-kinetic character in the pres-
ence of low-frequency ITG instabilities, that is, trapped ion
modes (TIM) and trapped electron modes (TEM).While in the
high-frequency regime the synchronization process of GAMs
can be driven by magnetic fluctuations, the situation can be
somewhat different in the low-frequency regime, where it is
the low frequency of the ZF that can be affected by trapped
particles modes having frequencies close to the magnetic drift
frequency.

In this letter, we show that a population of fast particles
and a synchronization mechanism mediated by phase locking
can affect the ITG-driven turbulence in the very low-frequency
regime, in which the LFZF can be affected. Its amplitude can
be thus enhanced up to a critical value, leading to the sup-
pression of turbulence: synchronization of LFZFs with low-
frequency trapped particles modes thus provides a new funda-
mental process in the suppression of ITG turbulence.

2. Physical model

The description of particle modes is based on a Hamiltonian-
Jacobi formalism, where each class of particles is represen-
ted by a distribution function fs = fs,Es,κ (ψ,α, t) in the ψ−α
phase space plane, where ψ is the poloidal flux and α= φ−
q0θ its corresponding phase.

In the Hamilton–Jacobi formalism, and for each particle
‘species’, namely ions, electrons and classes of trapped
particles, one introduces a set of action-angle variables
(J,α), where J= (J1,J2,J3) andα= (α1,α2,α3), the particle
motion being integrable and quasi-periodic. The pair (J1,α1)
is related to the cyclotron motion of frequency ωcs where
α1 ∼ ωcs (J) t stands for the gyrophase and J1 is propor-
tional to the magnetic moment µs. The pair (J2,α2), where
α2 ∼ ωbs (J) t is the bounce phase and J2 depends on the
energy Es, is related to the poloidal motion. Finally, the
pair (J3,α3) corresponds to the toroidal motion, where J3 ≡
Pφ s = msRvφ s+ esψ is the toroidal kinetic momentum, vφ s
is the toroidal velocity and α3 ∼ ωds (J) t is the preces-
sion phase. Assuming an equilibrium magnetic field of the
form B= I(ψ)∇φ+∇φ×∇θ =∇(φ− q(ψ)θ)×∇ψ, the
trajectory of a particle can be written in terms of (see [19,
20]) eψG = J3 + eψ̂ (J,α2), θG = ϵcα2 + θ̂ (J,α2) and φG =

α3 + q(J3) θ̂ (J,α2)+ φ̂(J,α2). The parameter εc is taken
to be one (zero, respectively) for passing (trapped, respect-
ively) particles. The functions θ̂ (J,α2) and φ̂(J,α2) are peri-
odic with respect to α2 and describe the bounce (or transit)
motion and the deviation from the regular precession motion,
respectively. The low-frequency response for a given particle
class s is obtained by gyroaveraging the Vlasov equation,
since ω2,ω3 ≪ ω1; J1 thus becomes an adiabatic invariant.
Furthermore, for trapped (or circulating) particles, we have
ω3 ≪ ω2 and also the bounce (or transit) motion can be gyro-
averaged. So, also J2 becomes an adiabatic invariant (also
known ad the bounce—transit action) with respect to the
bounce period, even if the guiding center deviates from the
magnetic field line −see [21]. It is thanks to this reduction
that, for the sake of notation, we could denote with the symbol
α the only surviving variable α3 in the model. Such hamilto-
nian formalism was used in [22, 23] to recover the expres-
sion for the Rosenbluth-Hinton residual ZF [24] in axisym-
metric tokamaks. Formulas for trapped-particle and passing
particle guiding-center orbits were obtained in terms of the
Jacobi elliptic functions in [25] or were generalized for finite
inverse aspect ration in [26]. In general, such a scale separ-
ation is not always valid for the transit motion (e.g. in the
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case of GAMs) but it remains valid if we look at the very low
frequency phenomena close to the ion precession frequency,
which, can affect the LFZF. This model therefore excludes the
study of GAMs. It can be used to describe the dynamics of
low-frequency TIM modes induced by ITG-type instabilities,
as well as TEM modes or interchange-type instabilities which
may have a hybrid fluid-kinetic character. However, it does
not allow us to study the dynamics of ‘high-frequency’ ITG-
related modes.

The model consists of four classes of populations of
particles and allows the description of the associated modes.
Each population s ∈ {i,e,±} verifies NκNE Vlasov equations,
each cluster being obtained after a ‘double gyro-average’,
i.e. by performing a time average over fast scales correspond-
ing to the cyclotron plus bounce motion for trapped elec-
tron (s= e) and ion (s= i) populations, and to the cyclotron
plus transit motion for circulating ions (s=+) and counter-
circulating ions (s=−). The model of the particle modes is
based on the solution of N gyrokinetic-type Vlasov equations,

∂fs
∂t

+ωds (Es,κ)
∂fs
∂α

+ [J0sϕ, fs] = 0, (1)

nonlinearly coupled by the quasi-neutrality condition:

Ce(1−Rp)(ϕ−⟨ϕ⟩α)+ (Pol. terms) =
∑
s

sgn(es)ns. (2)

Here es is the species charge,
∑

s sgn(es)ns =Rp(n
(t)
i −

n(t)e )+
1−Rp

2 (
∑

c=±1 n
(c)
i )−(1−Rp), where the apex c=±1

stands for circulating and counter-circulating ions and Rp =
2
√
2ε
π is the fraction of trapped particles (taken identical for

both electrons and ions). The polarization terms (‘(Pol. terms)’
in equation (1)) take into account the Laplacian of each species

in the form −RpCi△
(t)
i ϕ−RpCe△

(t)
e ϕ− (1−Rp)Ci△

(c)
i ϕ,

where Ce = ee/Te = e/Te and Ci = ei/Ti. In equation (1),
[. . . , . . .] denotes the standard Poisson brackets defined by
[A, B]≡ ∂A

∂ψ
∂B
∂α − ∂A

∂α
∂B
∂ψ . The gyrokinetic operator J0s in the

Poisson bracket of equation (1) can be quantified as usual
using Pade approximates, which makes it depend on the pop-
ulation energy Es, on the ‘banana’ orbit width and on the
Larmor radius of the population, ρs, which, once normalized
to the reference radius of the magnetic surface r0, we write as
ρ∗ ≡ ρs/r0 (cf e.g. [17, 27, 28]).

Each distribution function fs (ψ,α, t;κ,Es) also depends on
the two adiabatic invariants κ and Es which play the role of
two parameters. Since a precession frequency of the typeωds =
ωds (k)Es is associated to each of these classes of particles, it is
possible to characterize each of them as an eigenmode of the
Hamiltonian. It is in this sense that here (and in [17, 18]) we
call each class of particles so defined a ‘particle mode’.

As an illustrative example, let us consider the simplest
situation, say of a class of TIMs, with a population of adia-
batic electrons. Without loss of generality, it is possible to
find a marginal solution of the Vlasov- Poisson system (1)
and (2), for which the Hamiltonian writes H= ωd (κ)Eiψ+
J0iϕ. Looking for stationary solutions of the form f =

Fκ,Ei (ψ,α−ωt) and ϕ = ϕ(ψ,α−ωt), equation (1) reads
[(ωd (κ)Ei−ω)ψ+ J0iϕ,Fκ,Ei ] = 0 and ω ≡ ωTIM = 3

2nωd (κ)
defines the class of (collisionless, interchange-type [20, 29])
TIM eigenmodes, at the threshold of the ion-temperature-
gradient (ITG) instability. Like for ITG modes, these TIMs
are subject to an interchange instability driven by the mag-
netic curvature. The ‘marginal solution’ is defined by Fκ,Es =

T−3/2
i exp(−Ei)

(
1+△τωd (κ)

(
Ei− 3

2

))
where the quantity

Ei is normalized to the ion temperature T i. Performing a
linear Landau-type analysis of the Vlasov-Poisson system
by considering a perturbation on the distribution function
and the electric potential in the form δfn (ψ)exp i(nα−ωt)
and δϕn (ψ)exp i(nα−ωt), around the marginal equilibrium
Fκ,Es , one obtains

Ceδϕn =

〈
n△τ exp(−Ei)

Ei− 3
2

Ei− ω
nωd(κ)

J20iδϕn

〉
κ,Ei

(3)

where ⟨.⟩κ,Ei =
2√
π

´ +∞
0 dE

√
E
´ 1
0 dκκK(κ), and with the

usual Landau prescription on the imaginary part. Equation (3)
allows us to define the threshold of the ITG-instability,
together with the dispersion relation of collisionless (kinetic)
TIM mode in the form ω ≡ ωTIM = 3

2nωd (κ) as previously
obtained from the research of the marginal solution. Such an
linear analysis can be extended to other classes of eigenmodes,
namely TEM, co- (or counter) circulating modes. However,
these trapped-ion modes differ from those discovered by
Kadomtsev and Pogutse [30], the dissipative (or collisional)
trapped ion modes (DTIM). It is however found that for suffi-
ciently large ion temperature gradients (i.e. above the critical
threshold), the usual picture of dissipative modes is modified,
and a transition fromDTIMs to collisionless TIMs takes place,
when the curvature drift effects dominate.

3. Hamiltonian phase synchronization aspects

By following the same kind of analysis recently developed
in references [27, 28, 31] for the Vlasov-Poisson system, we
can identifyΛs (ψ,α, t)≡− [J0sϕ, fs], as a complex order para-
meter. Equation (1), which thus reads

∂fs
∂t

+ωds (Es,κ)
∂fs
∂α

= Λs (ψ,α, t) , (4)

can be written using the Fourier representation of fs (ψ,α, t) =∑
n fs,n (ψ, t)e

inα . Thus, by introducing fs,n = | fs,n|eiφs,n and
Λs,n = |Λs,n|eiΘs,n , and by separating the real and imaginary
parts, equation (4) becomes

∂ |fs,n|
∂t

= |Λs,n|cos(Θs,n−φs,n) (5)

∂φs,n
∂t

=−nωds (Es,κ)+
|Λs,n|
| fs,n|

sin(Θs,n−φs,n) . (6)

Equations (5) and (6) describe the system in the form of a
Kuramotomodel, in which each ‘particlemode’ (i.e. the quant-
ities labeled with s) plays the role of an oscillator of phase
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φn = φs,n, of frequency ωn =−nωds (Es,κ), whose dynamics
is governed by a Kuramoto-type equation:

φ̇n = ωn+
N∑
j=1

K
N
sin(φj−φn) . (7)

In the standard Kuramoto model [32–35], which describes the
weak interaction ofN<∞ oscillators, the coupling termK is a
constant and ωn is a random frequency chosen from a distribu-
tion with a probability density function g(ω). In the mean field
Kuramoto approach, which corresponds to theN→+∞ coup-
ling limit, the collective behavior of an ensemble of oscillators
is quantified by the order parameter r= (1/N)

∑N
n=1 e

iφn (fol-
lowing the notation of [21]) and undergoes a phase transition
from incoherence (described by the r= 0 state) to synchron-
ization (r∼ 1) as the coupling coefficient K trespasses a crit-
ical value Kc. Most of the research on the Kuramoto model
focused on the case where the distribution g(ω) is unimodal
(see [5]). Specifically, g is usually assumed to be symmet-
ric about a maximum value at a given frequency ω0 and to
decrease monotonically to zero outside of ω ∼ ω0. In that case,
it was found in [34, 35] that the transition in the continuum
limit (whereN→+∞) takes the form of a bifurcation towards
a discretemode emerging out from a continuum spectrum [36].
However, a natural question arises at this stage: what is the
impact of a more general frequency distribution on the bifurc-
ation mechanism, and, more precisely, what does it happen
when we take into account several classes of particle modes,
which are characterized by very different frequency distribu-
tions ωd,s (Es,κ). To explore the impact of several particles
modes on the incoherence- synchronization transition, we
first solve numerically the discrete Kuramoto equation (7) for
N<∞.

4. Numerical results for the Kuramoto model

Let us first discuss some numerical results obtained by integ-
rating equations (5) and (6) for a finite number N of oscil-
lators represented by particle modes. In a first simulation,
whose results are shown in figure 1, we consider the case of
two clusters of trapped particles oscillating as TIM and TEM.
Each cluster is made of NκNEs = 222 modes, which corres-
ponds to an ensemble of 968 ‘oscillators’. The electron and
ion temperatures are both equal to a reference temperature T0.
For trapped particle populations s ∈ {e, i}, the precession fre-
quency is ωds (Es,κ) =±Tsωd (κ)Es, where

ωd(κ) = B(κ)

[
2E(κ)
K(κ)

− 1+ 4sm

(
E(κ)
K(κ)

+κ2 − 1

)]
. (8)

Here B(κ) = 1
1−ε+2εκ2 , κ being the pitch angle satisfying

0⩽ κ < 1 for trapped particles; sm = r0
q0

(
dq
dr

)
r0

is the mag-

netic shear, assumed to be a constant in this model; K(κ)

and E(κ) are the complete elliptic integral of the first and
second kind, respectively. A characteristic drift frequency
ωd0 = q0T0/(eB0r0R0); T0 can be defined, T0, B0 and R0 being

Figure 1. The discrete Kuramoto equation (7) is first solved
numerically, for two clusters of TEMs and TIMs. In the upper
frame, the order parameter r=

∑
n e

iφn is shown versus the
coupling parameter K. As expected, a transition from incoherence
(r∼ 0) to synchronization (r∼ 1) takes places when we increase K.
In the lower frame: the case of four clusters of particle modes:
TIM/TEM (with κ< 1 and with temperature of Ti = T0 and
Te = 2.5T0) but now including also the two clusters of circulating
(σ∥ = 1, κ> 1 and Ti = 0.5T0) and counter-circulating (σ∥ =−1,
κ> 1, and Ti = 0.5T0). The introduction of two new clusters of
passing ions of smaller ion temperature, together with a TEM of
higher temperature can affect the bifurcation (lower frame).

a reference temperature, magnetic field amplitude and radius
values, respectively.

At the top of figure 1. The value of the order parameter r is
shown as a function of K in the upper frame: the expected fast
transition to a full synchronization, similar to a bifurcation,
occurs for Kc ∼ 2

π g(0) =
2×968
π×44 ≃ 14.

In the lower frame, in figure 1, we display a similar dia-
gnostics for a simulation initialized with four clusters of
particlemodes, TIM and TEM (havingκ< 1), and two clusters
of circulating (σ∥ = 1; κ> 1) and counter-circulating (σ∥ =
−1 and κ> 1) ions. This time NκNE = 152 and N+N− = 22,
for a total of N= 900 modes. The physical parameters are
Ti = T0, Te = 2.5T0, T± = 0.5T0, q0 = 2 and ρ∗ = 0.10. To
show the role of energetic particles, we consider the following
repartition in frequency for passing particles with σ∥ =±1:

ωdi(E,κ) =
Tcirc
T0

(
ωd(κ)Ei+σ∥

ωt(κ)

q20ρ
∗

√
Ei

)
. (9)

4
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We thus find that the synchronization degree is highly depend-
ent on the chosen distribution in frequency, but that for large K
the transition is robust and the dynamics leads to a bifurcation.
Moreover, the simultaneous inclusion of both passing ions and
hot electrons breaks the symmetry of the distribution g(ω) in
frequency (not shown here), in contrast with the previous case
without energetic particles. The transition begins at a lower
critical value Kc, here found to be close to 2×900

π×g(ω0)
∼ 8.81 for

a value of g(ω0)≃ 65. However the larger domain in the K-
space (see bottom panel of figure 1), facilitates the transition
to a global phase synchronization.

5. Gyrokinetic numerical experiments

We now discuss a set of numerical results obtained with a self-
consistent integration of equations (1) and (2) by means of an
extended version of the TERESA code [17, 18]. This uses a
semi-Lagrangian scheme [, 28, 37, 38] to integrate equation (1)
for each class of solutions defined by the set of adiabatic invari-
ants (κ,Es). We use normalized quantities: time is normal-
ized to ω−1

d0 ; ψ is given in ∆ψ units. The electric potential ϕ,
together with the constants Ce and Ci, are expressed in ωd0∆ψ
units. The initial distribution function is

fκ,Es(ψ,α, t= 0) = (1+ h1(ψ)+ h2(ψ))F0s(Es). (10)

Here the function h1 =∆τωd

(
Es
Ts
− 3

2

)
ψ, with ωd =

ωd (κ)ωd0, allows us to start an ITG instability from
the initial temperature gradient ∆τ , provided the latter
is chosen larger than the critical threshold ∆τth = Ce/ξ
where ξ = 1− 3

4

〈
δ2bs

〉
κ
+ 15

64

〈
δ4bs

〉
κ
. The function h2 =

2πCiδ2b

∣∣∣EsTs − 5
2

∣∣∣ϕmax sin(2πψ), instead, allows us to excite a

shear flow by introducing a potential perturbation of amplitude
ϕmax. If the species s does not include an energetic population,
the function F0s = e−Es/Ts is usually a Maxwellian distribu-
tion. In presence of a fast ion beam of average energy Eb and
density nb, the standard Maxwellian is replaced by

F0s = (1− nb)e
− Es

Ts + nbe
−
(√

Es
Ts
−
√

Eb
Ts

)2

. (11)

In [39, 40], it was shown that it is possible to decompose
the total particle energy of each species s into three dif-
ferent contributions involved in the energy transfer in ITG
-type instabilities: the kinetic energy ϵkin,s = ⟨ϖkin⟩α,ψ, the
energy ϵturb = ⟨ϖturb⟩α,ψ contributing to turbulence and
the energy ϵZF = ⟨ϖZF⟩α,ψ associated to ZFs. The energy
densities are ϖkin = Tsψ ⟨ωd(κ)Es⟩κ,E, ϖturb = Aδϕ2 +∑

sBs
∣∣∇sϕ

∣∣2 and ϖZF =
∑

sDs (∂ ⟨ϕ⟩α /∂ψ), respectively.

Here ⟨.⟩α,ψ = 1
4π

´ 2π
0 dα

´ 1
0 dψ introduces an average over

the phase space variables and the average ⟨.⟩κ,E is per-
formed over the pitch angle κ and over the energy, depend-
ing on the type of particle mode: for trapped particles
⟨.⟩κ,E =

2√
π

´ +∞
0 dE

√
E
´ 1
0 dκκK(κ); for circulating particles

⟨.⟩κ,E =
2√
π

´ +∞
0 dE

√
E
´ +∞
1 dκCκK(κ−1), where Cκ is a

constant that grants the integral to be equal to one and

Figure 2. Results of numerical simulations of the reduced
Hamiltonian model (equations (1) and (2)). On top, an initial
population of energetic co-circulating ions is taken into account, the
other species being described by a Maxwellian. At the bottom, the
initial energetic ion beam is in the population of counter-circulating
ions. The same physical parameters were used in both simulations.

K is the elliptic function of the first kind. The other con-
stants are defined as A= Ce (1−Rp), Bs =RpCs for trapped
particle modes and Bσ∥ =

1−Rp

2 Ci for circulating or counter-
circulating ion modes; Ds =

∑
sBsδ

2
s and δs ∈

{
δbe, δbi, δcσ∥

}
where the subscript b denotes the banana width and c the
transit particle width. To define ϖturb we have introduced
the normalized gradient in the ψ−α phase space in the form
∇s = ρ∗∂αeα+ δs

∆ψ∂ψeψ. It should be noted that the presence
of an important ZF energy component does not necessarily
imply turbulence suppression, which can occur instead only
in presence of a sheared ZF (see numerical results below).

Numerical simulations have been performed using a phase
space sampling of NαNψ = 1025× 257 grid points, a time
step of ∆tωd0 = 0.005 for more than NκNE = 16× 120 adia-
batic invariants in the pitch angle (κ) and energy (Es) direc-
tions. All numerical simulations were performed for the same
set of physical parameters, namely for a magnetic shear of
sm = 0.80, a maximum shear flow amplitude ϕmax/(ωd0∆ψ)
of 2.50, an ion temperature of Ti = T0, an electron temperat-
ure of Te = 10T0, Ce = 0.40 and a polarization term Ci = 0.60
in normalized units. Note that in the LHD experiments [1–4],
the electron temperature varies from T i to ∼10Ti.

Figure 2 shows the temporal evolution of the energies EZF

and Eturb, which correspond to the contributions of the zonal
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Figure 3. Top frame: Results similar to those shown in figure 2, but in absence of a shear flow (i.e. with ϕmax = 0). Bottom frame: a zoom
of the turbulence energy versus time.

flow (including a sheared component) and of the ITG- turbu-
lence respectively, in the presence of a population of energetic
passing particles. In figure 2, on top, the energetic ion popula-
tion introduced in the simulation corresponds to a passing ion
distribution with Eb = 10T0 and with a density of nb/n0 of 5%.
At times smaller than 5ω−1

d0 we clearly observe a strong amp-
lification of the turbulence, of more than a 3/0.0006≃ 5000
factor with respect to the initial phase of the dynamics. This
corresponds to the achievement of a self-organized turbulence
state. At later times, however, a complete suppression of tur-
bulence, visible at times tωd0 ⩾ 5 and tωd0 ⩾ 10 in the upper
and lower panel of figures 2, respectively, takes place under
the combined action of energetic ions and of the stabiliza-
tion by a (‘rotational-like’) shear flow. This results in a strong
increase of the zonal flux, which is estimated to be of the order
of 1/0.0005≃ 2000 (compare figures 2 and 4, below).

In the absence of a shear flow (shown in figure 3), we
observe again the strong growth of the LFZF energy compon-
ent (at a slightly higher level than in the case of figure 2) andwe
observe a significant reduction of turbulence, as well, although
the latter this time does not disappear completely.

Finally, in figure 4 we show the results of a simulation per-
formed using the same physical parameters of figure 2, but
now in the absence of energetic ions: no turbulence suppres-
sion is this time observed.

Several points should be stressed:

• The effect discussed above is strongly related to the presence
of the hot electrons, although they, alone, are not sufficient
to completely reduce the level of ionic turbulence shown
in figure 4. Indeed, at a temperature of Te ∼ T0 (not shown
here), the decrease in turbulence is not as much efficient,
and a complete suppression of the latter is not observed.
The top panel in figure 2 corresponds to a synchroniza-
tion process rather than to a resonant process, since the co-
passing particle mode and the TEM propagate in oppos-
ite directions. The energy redistribution occurs between fast
particles and TEM turbulence when the magnetic -drift fre-
quency of fast ions is close to the frequency of the under-
lying TEM instability, i.e. when both propagate in the same
direction and ωd fast ions ∼ q0Tehot/(eB0r0R0).

• The turbulence suppression also occurs if energetic ions are
introduced into the counter-circulating ion population (case
shown at the bottom of figure 2). In this case, a slightly lar-
ger amplitude of the ZF energy is measured. Furthermore,
the dynamics is somewhat faster than that shown in the top
panel of figure 2 but, as a whole, it remains similar. This
regime corresponds to that observed in [6] when a reson-
ance occurs between (counter-passing) energetic ions and
electron-driven TEM turbulence.

6
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Figure 4. Upper frame: results of a numerical simulation without energetic ions. The physical parameters are identical to those used in the
results of figure 2. Although the energy levels are much lower, compared to those in figure 2, the turbulence becomes predominant on long
scales and is associated with interchange—ITG type turbulence (see figure 5). Lower frame: the beginning of the instability is zoomed, by
showing that the ZF is initially excited when turbulence is growing. However, the turbulence level is not high enough to maintain a large
amplitude ZF.

• The ITB associated to the ZF formation is very stable. Once
the turbulence suppression is obtained, the plasma dynam-
ics is quasi-stationary, at least over scales of the order of
tωd0 ∼ 100. Nomechanisms of destabilization of the internal
transport barrier have been observed in this time interval.

• The bifurcation to a synchronous state, which leads to
the suppression of turbulence, is related to the emer-
gence of the global mode n= 1 (see below). This pro-
cess has been observed for a wide range of phys-
ical parameters, for example at lower electron temperat-
ures (Te ∼ Ti) but at a higher beam density nb = 0.1n0
in [18].

Figure 5 show the contour plot of the distribution func-
tion of trapped electrons in the (ψ,α) phase space at three
different times. The case when fast co-passing ions are taken
into account is shown in the left column (the corresponding

plots of Eturb and EZF versus time are shown on top panel of
Figure 2), whereas, for comparison, the corresponding case
with no energetic ions is shown in the right panels (cf figure 4
for the correspondingEturb andEZF). On top left panel, a global
toroidal mode n= 1 emerges as a result of a global transition
from partial to global synchronization. Such an LFZF struc-
ture corresponds to the global E×B flow pattern, sometimes
referred to as a ZF staircase, which is associated to the form-
ation of the internal transport barrier. Here it seems to occur
when the global structure with n= 1 is formed, similarly to
what was previously observed in [29, 41], in the case of a fish-
bone in presence of fast passing ions. An initial mean shear
flow (here provided by the function h2 in equation (10)) is
needed to build-up the staircase solution, although, alone, it
does not suffice for the emergence of the ITB. Nevertheless, it
facilitates the phase locking of ZF and ITG-turbulence at a fre-
quency close to ωd fast ions ∼ q0Tehot/(eB0r0R0). Thus the LFZF

7
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Figure 5. Plot of the electron distribution function in the (ψ,α) phase space: including fast energetic ions (left panels) and without
energetic ions (right panels). While in the right panels the electron distribution clearly shows the emergence of a streamer structure driven
by an interchange- ITG instability, turbulence suppression is observed in presence of fast co- passing ions, in the left panels.

mode characterized by the toroidal number n= 1 is determined
by the precession frequency of the energetic particles. The
fact that this is the same behavior observed for the energetic
interchange mode in the LHD device suggests that this is a
general mechanism. The appearance of fine phase-space fila-
ments in the distribution fTEM during the saturation phase (cf
the middle left panel of figure 5) is reminiscent of the (Landau)
phase-mixing mechanism associated to the suppression of tur-
bulence. By contrast, in the absence of a fast ion beam (right
column of figure 5), the interchange- ITG driven turbulence,
plays a dominant role due to the relative weakness of ZFs.

6. Conclusion

Thanks to the self-consistent integration of gyro-averaged
Vlasov Equations written in action-angle variables, which we
have re-formulated and interpreted in terms of a Kuramoto-
type model, we have shown that a global transition is produced
by a phase synchronization mechanism between TEM modes
and circulating ions. This synchronization is induced by a pop-
ulation of fast ions, which makes the different particle modes
to adopt similar frequencies close to the precession frequency
of the fast ions, even if the modes are initially distributed over

8
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a wide spectrum of eigenfrequencies. An asymmetry is thus
introduced by the fast ion population on the distribution of the
natural frequencies of the mode populations present in the sys-
tem. The LFZF is strongly affected by the strong growth of
the initial interchange instability. This leads to the formation
of a global structure, a ZF staircase of mesoscopic size, char-
acterized by the formation of a global structure on the funda-
mental toroidal number (n= 1), resulting in the formation of
an internal transport barrier. This result is quite general and,
although it depends on the electron-to-ion temperature ratio
and on the ratio between the fast ion beam and the trapped
particle density, is confirmed for different values of these para-
meters: numerical experiments performed with the gyroaver-
aged Vlasov model including circulating ions have shown that
the lower Te is, making Te/Ti close to unity, the larger nb must
be, making nb/n0 close to a decimal fraction of unity.
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