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ABSTRACT

The interplay between kinetic aspects induced by energetic particles on turbulence is analyzed with a simplified model of ion-temperature-
gradient-driven turbulence in magnetically confined plasmas. These topics are presented within an unified Hamiltonian framework in light of a
new approach based on global phase synchronization between trapped particle modes and energetic particle modes. Numerical experiments
have been carried out to elucidate concepts and physical processes of transition to a fishbone-like state triggered by energetic particles.
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I. INTRODUCTION

In a previous paper,1 we have extended a model, which describes
the physics of trapped particle modes in tokamak’s “banana orbits,” so to
include the dynamics of co-passing and counter-passing ion populations.
This extended model, which accounts for the dynamics of both trapped
and circulating particle modes in which gradients of temperature (and/or
density) provide the source of free energy, highlights the crucial role
played by synchronization in the low-frequency regime of poloidal tur-
bulence induced by ion-temperature-gradient (ITG) instabilities or
trapped electron modes (TEM). The description of trapped and circulat-
ing particle modes has been obtained after gyro-averaging particle
dynamics over fast scales, which, depending on the trapped or passing
character of particles, correspond, respectively, to their cyclotron and
bounce (or transit) motions. This task was made easier in the framework
of the Hamiltonian formalism based on the action-angle variables
J3 � a3 (see Refs. 2 and 3), where J3 ¼ ew; a3 ¼ u� q0h � a. Here, w
is the poloidal flux, and a is the angle variable that measures the particle
angular motion along the magnetic field line. We have, thus, addressed
the study of ITG-type instabilities in the low frequency regime from the
perspective of synchronization, a nonlinear phenomenon which is ubiq-
uitous in nature.4,5

From a theoretical point of view, the concept of nonlinear phase
synchronization has been recently introduced in plasmas to study the
formation of edge transport barriers induced by shear-flows6 or to model
the Landau damping mechanism,7,9 or drift- wave zonal-flow turbulence
in Refs. 10 and 11. Furthermore, synchronization phenomena were

experimentally observed in traveling wave tubes8 and in the edge plasma
of the HL-2A tokamak,12 where a synchronization between geodesic
acoustic modes (GAMs) and magnetic fluctuations has been identified.

In Ref. 1, numerical evidence was given by synchronization of
modes intervening in turbulence induced by the ITG instability. It was
there shown, both numerically and theoretically that, if some condi-
tions are met, trapped particle modes can spontaneously lock to a
common frequency, which is close to the toroidal ion precession fre-
quency. This process requires the introduction of a small population
of energetic circulating ions, and it can range from “partial” to “global
synchronization,” i.e., it can involve just a fraction of the particle
modes or all of them, depending on whether the energy of fast circu-
lating ions is, respectively, below or above some threshold value.

Populations of fast ions can be produced in tokamak plasmas by
ion cyclotron resonance heating (ICRH) and neutral beam injection
(NBI), which represent two examples of heating mechanisms for
fusion plasmas. It is also well known that energetic particles can
strongly affect the nonlinear dynamics of the fusion plasma, even
when they constitute a small fraction of the whole particle population.
For example, resonances between waves and drift-orbit frequencies
related to the transit or bounce motion of fast particles play an impor-
tant role in transport: they can modify the structure of GAM by induc-
ing the so-called E-GAM modes, as they have been dubbed in Ref. 29;
they can stabilize the turbulence in both stellarators30 or tokamaks;31,32

and they can even affect the growth of tearing modes, depending on
the toroidal circulating direction of fast ions.33
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Although the theoretical model accounting for the possible tran-
sition has been discussed in Ref. 1, the numerical study therein was
limited to the case of a partial synchronization. In this article, we focus
instead on the transition from a partial to a global synchronization. In
particular, we will show by the aid of numerical simulations that the
introduction of fast passing ions generally modifies the distribution of
the toroidal precession frequencies of trapped particle modes. In this
way, energetic ions can change the nature of the synchronization phe-
nomenon via a transition-like process that goes from a partial to a
global synchronization. Here, we investigate the nonlinear dynamics
of trapped ion modes in the presence of thermal and fast circulating
ions, until the emergence of a transition associated with the global syn-
chronization becomes manifest. The aim of this paper is to provide a
conceptual overview of the transition mechanism together with syn-
chronization aspects and by making comparison with the paradigm of
the fishbone transition discussed in Ref. 13. The article has the follow-
ing structure. A brief overview of the role of the synchronization
model discussed in Ref. 1 and of its relevance to gyrokinetic turbulence
is provided in Sec. II, where the motivations of this article are put in
evidence. The concept of “particle modes,” including both trapped
particle modes and their circulating particle counterpart, is discussed
in Sec. III. This is followed by numerical examples of the partially syn-
chronized plasma state, which is met before the emergence of transi-
tion of the synchronization among modes in a regime referred to as
the “bump-on-tail” paradigm (Sec. IV). Section V puts in evidence the
differences of the partially synchronized state with the new state that
emerges after the transition, as a result of the global synchronization.
Associations between global synchronization aspects and the fishbone
transition are discussed in Sec. VI. Conclusions are finally presented in
Sec. VII.

II. RESONANCE AND KURAMOTO-TYPE
SYNCHRONIZATION IN LOW FREQUENCY
ION MODE TURBULENCE

If, on the one hand, a large amount of works can be found in the
literature, which explore the interaction between ITG modes and TEM
in the context of tokamak turbulence, it is, on the other hand, recog-
nized since long time (see, e.g., Ref. 14) that a major role in the
complex interaction between zonal flows and ITG-driven micro-
turbulence is played also by TIMs. For example, it has been evidenced
since more than two decades that coupling between ITG and TIM
modes strongly affects the properties of ion thermal transport in toka-
mak turbulence.15 More recently, a possible excitation of coherent
structures by the interaction between ITG turbulence and TIMs has
been investigated in Ref. 16 by using a reduced fluid-type model based
on the use of a kinetic wave equation to describe the physics of ITG
modes. Moreover, resonance between ITG-related TIMs and TEMs
can lead to the generation of low frequency zonal flows that act as effi-
cient barriers for turbulent transport.17–20 In Ref. 19, it has also been
shown that the resonance between ITG-related TIM and TEMs can be
triggered by perturbations at the ion scale related to the ion polariza-
tion drift in agreement with previous results discussed in Refs. 21 and
22, where the role of polarization injection was played by a source of
vorticity associated with the polarization drift averaged over a flux
surface. More, in general, we can state that the resonant coupling of
low-frequency modes of different nature with low wave-number
TIMs, which emerge from turbulent fluctuations induced by high

wave-number ITG unstable modes, strongly affects the nonlinear
dynamics of tokamak turbulence.

The oscillatory behavior of the zonal flow at a very low frequency,
close to the ion precession frequency, as it has been observed in Ref.
12, can be interpreted as a process of frequency synchronization
between the zonal flow mode and one of the TIM modes, which can
be typically chosen to have a small toroidal number, n¼ 1. This has
been interpreted in Ref. 1 in light of the Kuramoto synchronization
model, which we recall and discuss below in the remainder of this sec-
tion. We also note that this synchronization process is reminiscent of
the resonant interaction of fishbones generated by trapped ions with
ions’ precessional motion and leads to the emergence of a kink mode
at n¼ 1. Such analogy also suggests the comparison of the phase-lock
mechanism in mode synchronization with the fishbone resonance par-
adigm,13 which we will discuss in Sec. VI.

A. The Kuramoto model for a system of N coupled
oscillators

Research on phase synchronization phenomena traditionally
focuses on ascertaining the main mechanisms responsible for the col-
lective synchronous behavior among types of particles modes. To
attain a global coherent process, interacting oscillatory elements are
required. The simple model of interaction is provided by the
Kuramoto model,23,24 which can take the following form:

_bn ¼ xn þ Ck sin �b � bn

� �
(1)

for n ¼ 1;…;N oscillators. In this formulation, the mean-field char-
acter of the model becomes obvious. To visualize the dynamics of
phases, it is more convenient to consider a swarm of points circulating
around a unit circle in the complex plane in which each oscillator is
represented by a point or “particle.” By defining a complex order

parameter kei
�b ¼ 1

N

PN
n¼1 e

ibn , the radius kðtÞ gives a measurement of
the phase coherence and �bðtÞ is the average phase. Thus, when all the
oscillators move in a single tight clump (see Fig. 1), k is close to one
and the system, through synchronization, acts like a giant oscillator.
Conversely, if the oscillators are scattered around the circle, then k is
close to zero and no synchronous state is produced. This picture, often
introduced from a pedagogical point of view in the phenomenon of
synchronization between oscillators, is reminiscent of a somewhat
similar scheme often used to provide a visual representation of colli-
sionless Landau damping in plasma physics, in particular when it is
interpreted in terms of phase mixing.

The Kuramoto model shows how a synchronized behavior can
appear in a system, when the competitive effects of coupling (i.e., col-
lective aspects), on the one hand, and diversity among the individual
character of modes, on the other hand, are both present. This diversity
in the oscillator model is taken into account by introducing a probabil-
ity distribution gðxÞ for describing the extension of the natural fre-
quency of oscillators. The mean quantities kðtÞ and �bðtÞ are related to
gðxÞ by

kei
�b ¼

ð2p
0
db
ðþ1
�1

dx g xð Þq b; x; tð Þ; (2)

where the evolution of the density q of oscillators with frequency
x and phase b, at time t, is governed by the continuity equation
@q
@t þ @

@b ðqvÞ ¼ 0 in which the instantaneous velocity is defined by
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vðb; x; tÞ � _b satisfying _h ¼ xþ Ck sin ð�b � bÞ, which represents
the continuous limit of Eq. (1).

In the simplest setting, where the natural frequencies xn are
drawn from a unimodal probability distribution gðxÞ, a classical syn-
chronization transition, sometimes referred to as a bifurcation, is
observed: at the increase in C, as it trespass a critical coupling strength
Cc (usually defined in terms of gðxÞ as Cc ¼ 2

pgð0Þ), a stable branch

characterized by a significant number of coherent states appears,
which leads to a partial synchronization. This corresponds to k < 1,
the “partial synchronization” condition being characterized by the per-
sistence of a non-negligible number of modes that are not synchro-
nous, yet. The model described by (1), however, also admits a strongly
coupled limit characterized by bn ¼ �b, which corresponds to k¼ 1
and which physically means that a global synchronization has
occurred in which all oscillators are locked together in phase. More
specifically, the branch of partially synchronized solutions bifurcates
continuously from k¼ 0 at the threshold C ¼ Cc ¼ 2

pgð0Þ. However,

depending on the choice of the distribution of natural frequency gðxÞ,
different synchronization scenarios can occur and k acquires the
asymptotic scaling,

k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 16 C� Ccð Þ

pC4
c g
00 0ð Þ

s
as C! Cc:

Here, g 00 is the second derivative of g. Thus, the partially synchronized
system bifurcates supercritically for C > Cc if g 00ð0Þ < 0 (the generic
case for smooth, unimodal, and even distribution gðxÞ), and can
bifurcate in a subcritical way for C < Cc if g00ð0Þ > 0. Therefore,
besides the usual states typical of the Kuramoto model, the so-called
“incoherent” and “synchronized” states, one can find more complex
dynamical occurrences, according to suitable values of the control
parameter, as for instance, the emergence of many clusters, each of
which contains a group of phase-locked oscillators running at a com-
mon frequency. The global synchronization is recovered as the limit
case in which all these clusters are synchronized. A systematic review
of the critical coupling including bimodal distributions was given in
Ref. 25. As it had been already discussed in Ref. 26, one finds that the
oscillator population generally splits into two groups: on the one hand,
we find the oscillators in the bulk of the distribution gðxÞ, which lock
together at the mean frequency �x and co-rotate with the average
phase �b; on the other hand, we find the oscillators in the tail of the dis-
tribution probability gðxÞ, which “drift” relative to the synchronized
cluster. As the order parameter k increases its value approaching unity,
the number of oscillators in the tail of the distribution reduces until
vanishing at k¼ 1.

It is generally believed that the main results concerning the global
synchronization properties of a Kuramoto-type model are qualitatively
independent of the precise form of the distribution gðxÞ, as long as it
is unimodal and symmetric (usually, a Lorentzian distribution is cho-
sen). Nevertheless, there is also evident that the “drifting” oscillator
population can induce a non-trivial feedback on the evolution of the
synchronization process itself and can, thus, affect the global synchro-
nization of the whole system through a local self-organization or a par-
tial (i.e., local) synchronization process. This occurrence is depicted in
Fig. 1, bottom panel. In particular, it was reported in Refs. 27 and 28
that for certain choices of the distribution gðxÞ that differ from the
classic Lorentzian, unusual types of transition among different syn-
chronization states appear.

B. The Kuramoto model for ITG-driven turbulence and
the role of energetic ions in a global synchronization

The analogy between the Kuramoto model and ITG turbulence
in tokamak plasmas has been presented in Ref. 1, where it has been
shown [cf. Eqs. (28) and (29) therein and related discussion] that the
phase bn of the nth-Fourier component of an oscillating particle mode
satisfies

_bn ¼ �nxdðj; EiÞ þ
jKnj
j fnj

sin Hn � bnð Þ: (3)

Here, xdðj;EiÞ is the precession frequency of the ion population with
adiabatic invariants j and Ei and distribution function f, with
fnðw; tÞeina being its nth Fourier component. The complex quantity
jKnjeiHn is the Euler representation of the n-Fourier component of the

order parameter Kðw; a; tÞ ¼ �½JðcÞoi /; fs � defined in terms of
the Poisson bracket evaluated with respect to a and w, between the

gyro-average operator JðcÞoi / for circulating ions and the distribution

FIG. 1. Geometric interpretation of the order parameter k in the Kuramoto model.
Oscillators are represented by points moving around a unit circle in the complex
plane. On top panel: the oscillator population splits into two groups: the oscillators
in the bulk of the frequency distribution gðxÞ, lock together at the mean frequency
�x, and co-rotate with the average phase �b, while those in the tail of the distribution
gðxÞ “drift” relative to the synchronized cluster. On bottom panel: such “drifting”
oscillator population may considerably input the global synchronization of the full
system through a local self-organization or (local) partial synchronization process.
The introduction of fast ions may change the frequency distribution gðxÞ and cre-
ate a new local cluster (in red) moving at larger velocity.
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function fs . We recall that, for a distribution function
fs ¼

P
n fnsðw; tÞeina, of a species s, the Vlasov equation reads (omit-

ting s so to simplify the notation) as

@fn
@t
þ inxd j; Eð Þfn ¼ jKnjeiHn : (4)

Comparison between Eqs. (1) and (3) is immediate. However, while a
formal correspondence between jKnj of Eq. (3) and k of Eq. (1) can be
easily established, an important difference between the original
Kuramoto model and that for TIM turbulence must be underlined:
while the former (and the theory discussed in Sec. IIA) refers to a
finite number of oscillators (i.e., n ¼ 1;…;N) in the case of trapped
particle modes described by Eq. (3) an infinite number of oscillators
(i.e., n ¼ 1;…;1) must be, in principle, considered. Because of this
and of the fact that j fnj�1 does not only measures the strength of the
coupling but also accounts, somehow, for the number or, better,
“percentage” of oscillators involved in the synchronization process
(information that in the original Kuramoto’s model is related to k and
gðxÞ, instead), it is useful to introduce a coefficient ~C � jKnj=j fnj that
replaces the product Ck and accounts for both the coupling strength
(C in Kuramoto’s model) and the level of coherence (k in Kuramoto’s
model). We recall that, in the original Kuramoto’s model, as the coher-
ence of the oscillators increases, i.e., more and more oscillators become
synchronized, both k and Ck increase. We can, thus, establish the fol-
lowing correspondence between terms in Eqs. (1) and (3):

xn $ � nxdðj;EiÞ; (5)

Ck $ ~C � jKnj
jfnj

; (6)

�b $ Hn: (7)

We then see that, formally speaking, global synchronization in the tur-
bulent plasma is allowed, in first instance, by the introduction of a
population of energetic ions, provided their energies are such that a
threshold value ~Cc of the order parameter ~C is trespassed.

A more specific picture of the mechanism with which energetic
ions can make the transition possible from a partial to a global syn-
chronization can be given by relying on the analogy with the behavior
outlined in Sec. IIA, about the role played by the fraction of synchro-
nized oscillators in modifying over time the distribution of frequencies
gðxÞ.

In the model of particle mode turbulence, the equivalent role of
gðxÞ is played by the repartition of the toroidal precession frequencies
xdsðj; EsÞ in the plane of the adiabatic invariants Es and j. Thus,
although a synchronization between different values of the frequencies
xdsðj; EsÞ is, in principle, possible, such scenario remains, however,
rare. In the absence of synchronization, the system behaves in an inco-
herent way where each “oscillator” (i.e., each particle mode) is running
at its natural frequency. This incoherence persists until a certain level
~Cc is reached, and a first step toward synchronization is obtained (a
partial synchronization).

We can then expect that the introduction of fast ions could create
a new local cluster of “phased-locked oscillators” (the cluster repre-
sented in red on bottom panel of Fig. 1) moving at larger velocity and,
thus, change the “particle model equivalent” of the global frequency
distribution gðxÞ. More importantly, it can be expected that the distri-
bution gðxÞ can further change in time as a consequence of the

interaction of this local cluster with the bulk of the distribution of
oscillators. The transition to a global synchronization can then occur
when a sufficient quantity of energetic ions is injected into the plasma
and the distribution gðxÞ in frequencies is accordingly modified, so
that the population of “oscillators” becomes coherent (condition
equivalent to k increasing its value and tending to 1), the effective cou-
pling increases, and more and more oscillators fall into the synchro-
nized oscillator cluster. In this way, the threshold ~Cc can be crossed
and the system can undergo a transition leading to a global
synchronization.

The main purpose of the present article is to prove this analogy,
that is, to numerically study the influence of fast ions and the effects
induced by a phase synchronization process on the turbulence and the
low frequency component of the zonal flow. It is in light of the consid-
erations above that in this work, we have undertaken an investigation
of the nonlinear dynamics of trapped ion modes in the presence of
thermal and fast circulating ions, in order to verify the emergence of a
transition from a partial to global synchronization: we will show how
the introduction of fast passing ions can modify the distribution of
toroidal precession frequencies xdðj;EÞ and, thus, change the nature
of the partial synchronization phenomenon via a transition-like pro-
cess that leads to a global synchronization.

The Hamiltonian particle model that we consider in this work
consists of four classes of particles: the trapped ion population, the
trapped electrons, and the two circulating ion populations. These
particle populations constitute four different “clusters” of “particle
modes,” each mode being described by a distribution function
fEs;jðw; a; tÞ, which involves the adiabatic invariants Es and j,
treated as fixed parameters. Each mode has a precession frequency
xdðEs; jÞ, which also depends on the energy Es and which repre-
sents, in a way, the distribution of these particle modes in a given
“cluster,” according to the adiabatic invariants. The synchroniza-
tion mechanism implies a process at two levels: a possible synchro-
nization of the modes within the same cluster as well as a
synchronization “extended” to all four clusters. Thus, each cluster
finally has its own critical coupling threshold, represented by KðtÞ,
but the effective threshold ~C ¼ K=f represents a “renormalized”
threshold, thus identical to all the modes. In a partial synchroniza-
tion process, all modes of the same cluster (for example, circulating
ions) are not necessarily accessible. The introduction of a popula-
tion of fast circulating ions makes it possible to make some of these
circulating ion modes more accessible to the synchronization pro-
cess, by considerably increasing the total number of synchronous
modes (for all the clusters).

III. NONLINEAR EQUATIONS OF THE PARTICLE
MODE MODEL

Trapped and passing particle modes have been modeled in Ref. 1
by performing a time average over fast scales corresponding to the
cyclotron plus bounce motion for trapped particles or to the cyclotron
plus transit motion for passing ions. Each population of particles is
described by a distribution function, which we name fs ¼ fj;Es ðw; a; tÞ,
where Es and j are considered as adiabatic invariants: Es is the energy
of species s normalized to its temperature Ts, and j is the pitch angle
parameter, which depends on the nature of the particle mode. In partic-
ular, 0 � j < 1 for trapped particles and j > 1 for passing ions. For a
given particle species s, chosen among i; e;þ;�f g, i.e., for trapped
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ions, trapped electrons, co-circulating ions, and counter-circulating
ions, respectively, the distribution function fs obeys the gyrokinetic
reduced Vlasov equation, where a diffusion term has been added at
right-hand side for numerical applications (see later),

@fs
@t
þ xds Es;jð Þ @fs

@a
þ J0s/; fis
� �

¼ @w D wð Þ@wfs
� �

: (8)

Here, ½:; :� is the usual Poisson bracket defined by ½J0s/; fs �
¼ @ðJ0s/Þ

@w
@fs
@a �

@ðJ0s/Þ
@a

@fs
@w; J0s/ is the gyro-averaged electric potential; and

xdsðEs; jÞ is the toroidal precession frequency of particle species s. As
discussed in Ref. 1, xds depends explicitly on the type of particles, i.e.,
trapping or circulating. For trapped particles, for which a dependence
on the charge sign 6 appears, we write the precession frequency, for
the species s, as

xds j;Esð Þ ¼ 6Tsxd0xds j; Esð Þ ¼ 6Tsxd0 �xðtÞd jð ÞEs; s ¼ i; e;

(9)

while for co-circulating (þ) or counter-circulating (–) ions, we write

xds Ei;jð Þ¼Tixd0xds Ei;jð Þ¼Tixd0 �xðcÞd jð ÞEiþrk
�xðcÞt jð Þ

ffiffiffiffi
Ei
p

q20q�

 !
;

s¼6: (10)

The labels “t” and “c” in the expressions of �xd refer to the type of
particle, trapped, or circulating (i.e., passing), respectively. Here, rk

¼ 6 and the quantities Ti
T0

xd0 �xðcÞd ðjÞEi and xti ¼ Ti
T0

xd0rk
�xðcÞt ðjÞ

ffiffiffi
Ei
p

q20q
�

represent, respectively, the precession frequency and the transit fre-
quency of the population of co-passing (or counter-passing) ions. The
precession frequency (at temperature T0) is xd0 ¼ q0T0

eir0R0B0
, where B0 is

the minimal value of the magnetic poloidal field amplitude Bh at
h¼ 0, R0 is the major radius of the tokamak. In Eqs. (9) and (10), q0 is
the safety factor, the temperature Ts is normalized to T0, while the
energy Es is normalized to Ts. Here, q� � qci=r0, with r0 being the
minor radius of the tokamak. Vlasov equations (8) are self-
consistently coupled via the quasi-neutrality condition,

Ce 1� fp
� �

/� h/ia
� �

þ Pol:Terms ¼
X

s¼ e;i;6f g
sgnðesÞns ; (11)

where

X
s¼ e;i;þ;�f g

sgnðesÞ�ns ¼ fpni
ðtÞ � fpne

ðtÞ þ
1� fp
2

X
rk¼61

ni;
ðcÞ
rk

� 1� fp
� �

: (12)

In Eq. (12), the smoothed densities ns ðtÞ and
P

rk¼61 ni;
ðcÞ
rk

are deter-

mined via the integration of the corresponding distribution functions
given by Eqs. (A8) and (A9) of Appendix, respectively. The left-hand
side of Eq. (12) contains different contributions of density perturba-
tions related to trapped, co-passing, and counter-passing ions (i.e.,
i;þ;�f g, respectively), and at right-hand side, circulating electrons
are assumed to be adiabatic and polarization terms have been included
in the form of

Pol:Terms ¼ �fpCi�i
ðtrapÞ

/� fpCe�e
ðtrapÞ

/� 1� fp
� �

Ci�i
ðcircÞ

/;

(13)

where �s
ðtrapÞ ’ msTs

miTi
ðq�2@2a þ d2bs@

2
wÞ for trapped particles of species

s and �i
ðcircÞ ’ q�2@2a þ d2ci@

2
w for circulating ions; Ce ¼ e

Te
and

Ci ¼ e
Ti
. Here, dbs corresponds to the banana width of species s for

trapped particles and dci is the deviation of the trajectory center of ions
with respect to the center of the magnetic surface.

Each distribution function fs ¼ fs ;Es;jðw; a; tÞ depends on adia-
batic invariants Es and j, as parameters, which allows full paralleliza-
tion along these directions: each distribution is normalized to one and

we introduced the fraction of trapped particles fp ¼ 2
ffiffiffi
2e
p

p to fix the total
density of each class of particle mode.

IV. SCHEME AND INITIALIZATION OF NUMERICAL
EXPERIMENTS

In numerical experiments, we have integrated the model equa-
tions discussed in Sec. III by using normalized quantities: the time
is normalized to the inverse drift frequency x�1d0 and the poloidal

flux w is given in �w units (where xd0 ¼ q0T0

eB0r0R0
is defined at a given

temperature T0 chosen as a reference temperature). The electric
potential /, together with the constants Ce and Ci, are expressed in
xd0�w units.

A semi-Lagrangian scheme34,35 has been used to integrate Eq. (8)
for each class of solutions defined by the adiabatic invariants j and Es,
as first described in Ref. 10. Details of the code are given in Ref. 1.
Simulations have been initialized with equilibrium distributions
[except for circulating ions where Eq. (16) is used],

F0s wð Þ ¼ e�Es 1þ�s�xðsÞd jð Þ Es �
3
2

	 

w

� �
(14)

to which small perturbations of the type

dfs ¼ /perte
�Es sin pwð Þ cos n1aþ cos n2að Þ (15)

have been added. The initial condition allows us to start an inter-
change instability only from an initial temperature gradient �s, pro-
vided that �s > �ss, the density being strictly equal to one since
2ffiffi
p
p
Ðþ1
0 dEsEsF0s ¼ 3

2.

A few, further specifications can be given about the precau-
tions taken for these numerical experiments. In simulations, the
angular perturbation has been specified for the toroidal number
n1 ¼ 10 and its first harmonics n1 ¼ 20. The knowledge of the mar-
ginal solution in sin pw allows us to start the ITG-type instability
with a very small amplitude thanks to the numerical features of the
semi-Lagrangian Vlasov solver, which uses an Eulerian grid: here,
the initial “numerical noise” is given by the roundoff error of
the computer, which is well below the standard noise level met in
particle-in-cell (PIC) codes.

The equilibrium (14) is used for each particle species, including
circulating ions. The aim is to generate a very low frequency turbu-
lence. A population of energetic ions of density nb and energy Eb is
taken into account only for the co-circulating ion population, whose
equilibrium distribution is
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F0þ wð Þ ¼ 1� nbð Þe�Eþ þ nbe
�
ffiffiffiffi
Eþ
p

�
ffiffiffiffi
Eb
pð Þ2

h i
� 1þ�s�xcirc

d jð Þ Eþ �
3
2

	 

w

� �
: (16)

A. ITG-driven turbulence and partial synchronization
( ~C < ~Cc)

Let us first discuss some numerical simulations of ITG-driven
turbulence which we have performed in order to elucidate some of the
key features that are related to the inclusion of energetic ions, in condi-
tions which lead just to a partial synchronization.

It is generally expected that the coupling of toroidal TIMs to
zonal flows reduces the level of turbulence, provided the amplitude of
the zonal flow mode is large enough. However, in order to model the
complicated interaction of zonal flows with TIMs via a synchroniza-
tion process, we have first to clarify the key points of their mutual
interaction from a dynamical point of view. To this purpose, it is illu-
minating to first study in detail the behavior of the system as the beam
energy and the beam density vary.

1. Partial synchronization induced by circulating
particles in the absence of energetic ions

We first consider the limit in which no energetic circulating ions
are present (we only consider thermal circulating ions), that is, we
assume nb¼ 0 in Eq. (16).

A first simulation has been performed by taking equal tempera-
tures for ions and electrons, Ti ¼ Te ¼ T0, and an initial ion tempera-
ture gradient of �s ¼ 1

Ti

dTi
dw ¼ 0:70, for each species of particle. This is

above the threshold value for the onset of the ITG instability, which is
close to �ss ¼ Ce

n ’ 0:4030, where n ¼ 1� 3
4 d

2
s � 15

64 d4s , Ce¼ 0.40,
and ds ¼ dbe ¼ dbi ¼ dci � 0:10. Other parameters are q� ¼ 0:05, a
ratio aspect of e ¼ 0:25, Ci¼ 0.60, a safety factor of q0 ¼ 2, and a

magnetic shear of s0 ¼ r0
q0

dq
dr

� �
r0
¼ 0:8.

We have used NjNE ¼ 16� 120 Vlasov equations coupled
together by means of the quasi-neutrality condition. Each distribution
function has been sampled with NaNw ¼ 1025� 257 grid points, and
the chosen time step is �txd0 ¼ 0:005.

Results of the numerical simulation are presented in Fig. 2. In
order to determine what are the particle modes that drive the turbu-
lence (and act as the “drivers”), we investigate the phasestrophy evolu-
tion for each species s, i.e., the quantity defined by S2 ¼ h f 2s i. We
recall that the concept of phasestrophy has been introduced in Ref. 36
and is more commonly referred to as the L2-norm. As previously men-
tioned in Ref. 1, the phase-space dynamics related to the production of
coherent structures during the synchronization process can be investi-
gated and quantified in terms of the variation of the phasestrophy,
allowing us to differentiate the synchronized modes from those that
force the synchronization (i.e., the “pump particle modes”).

The plots of S2ðtÞ are shown in Fig. 2. We see that the first peak
in the evolution of the phasestrophy S2 takes place as related to the
dynamics of the trapped ion mode, at time txd0 ’ 25 (on bottom left
panel). A resonance between the population of circulating ions and
TIMs occurs later in time at txd0 ’ 68 (the peak corresponding to
resonance is visible for both trapped and circulating populations).

These resonances are related to a nonlinear momentum transfer
between the involved particle species in agreement with what has been
previously discussed in Refs. 36 and 37, where the non-conservation of
both entropy S ¼ h f ln f i and phasestrophy S2 in Vlasov systems has
been shown to be intrinsically related to phenomena such as resonant
particle heating and to the emergence of coherent structures such as
holes, clumps, and vortices in the phase-space. A striking contrast
between electron and ion dynamics is also evident from Fig. 2: no peak
is observed in the phasestrophy of electrons, which is very well con-
served during the whole simulation.

Figure 2 confirms that the TIM modes appear in the system, at
time txd0 ’ 20, in the nonlinear stage of the initial ITG mode but
well before the emergence of a resonance peak, which is observed only
later, at txd0 ’ 68, in the dynamics of both populations of circulating
and counter-circulating “passing” ions. As in the case of ITG modes, it
is the initial ion temperature gradient that provides the free energy
for the growth of TIMs. In the nonlinear saturation phase, we can
observe the emergence of coherent vortex-like structures in the distri-
bution of the trapped ions in phase space (not shown here).

2. Partial synchronization induced by circulating
particles in the presence of a sub-threshold amount
of fast ions

In a second numerical experiment, we have taken into account a
small population of fast ions with a beam density of nb¼ 0.10 (nor-
malized to the background ion density) and an energy Eb ¼ 5T0 [cf.
Eq. (16)]. We can name this simulation case as the “beam-plasma”
case. The other physical and numerical parameters are identical to
those of the simulation presented in Sec. IVA1. Results are shown in
Figs. 3 and 4.

In spite of the inclusion of a fast ion beam, the dynamics in phase
space shown in Fig. 4 is similar to that previously obtained without the
beam injection, that is, the plasma dynamics is quite turbulent. The
main difference with respect to the simulation case discussed in Sec.
IVA1 is in the detail of the time evolution of the phasestrophy S2ðtÞ,
shown in Fig. 3. First, we exactly note that the same modes of the
nb¼ 0 case are excited but the dynamics of S2 exhibits now more
bursts in comparison with Fig. 2.

We compare the phase-space dynamics of Fig. 4 of the beam-
plasma case with that of the case without the beam. The results of the
two simulation cases are consistent and show that, in the beam-
plasma case, the regime of interaction is dominated by the formation
and growth of “clumps” with a small-size scale. This evidences the
local character of the “bump-on-tail paradigm.” More specifically, the
introduction of a small energetic ion contribution is not a sufficient
condition to trigger a transition toward a global synchronization sce-
nario. Here, the phase synchronization process is too weak to give rise
to a global outcome: each particle mode appears to be uncoupled from
the others, although, of course, they are all mutually interacting
through the mean electric potential /ðw; a; tÞ (more specifically
through the operators J0s/).

Assuming the possibility of a global synchronization, these results
support the existence of a threshold in the beam energy amplitude
and/or in the ion beam density for a bifurcation (i.e., transition) to
occur when ~C > Cc.
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V. TRANSITION FROM PARTIAL TO GLOBAL
SYNCHRONIZATION IN ITG-DRIVEN TURBULENCE

In the Kuramoto model, the critical parameter Cc, as well as the
type of bifurcation (supercritical vs subcritical), depends on the nature
of the natural frequency distribution, previously noted as gðxÞ in (2).
In the particle mode model, this role is played by both the frequency
distribution (9) and (10) but also by the distribution function.
Nevertheless, one can also consider an “effective” coupling term
~Cc ¼ ðjKnj=j fnjÞc (i.e., equivalent in Kuramoto’s model to Cck the
product of the coherence by the coupling term), which also contains
“dynamic” features and makes it possible a feedback loop between the
coupling strength and phase coherence. Thus, the introduction of a
small population of circulating ions, of high energy large enough, can,
in principle, modify the repartition in frequency and can lead to a
global synchronization. In order to prove this concept, we have per-
formed a further simulation in which we have increased the mean
energy Eb of the beam, without changing the other physical parameters
of previous simulation. We choose an energy Eb ¼ 10T0, which is

twice that of the case considered in Sec. IVA2. All other parameters
of the simulations are the same of the cases discussed in Sec. IVA,
except the time step that we have reduced by half for numerical stabil-
ity considerations. The chosen parameters allow the nonlinear interac-
tions among unstable modes to span a larger domain in frequencies
than in the cases with nb¼ 0. A transition from partial to global syn-
chronization is now observed to occur on mesoscales. Numerical
results of this simulation are presented in Figs. 5–10.

An overview of the trapped ion density h fiij;Ei in the w� a
phase space plane is shown in Fig. 5. At time txd0 ¼ 7� 8, at the
beginning (on top panels), it is the interchange instability involving
the toroidal modes n ¼ 2� 3, that dominates the dynamics of the
plasma. This leads to the decrease in the amplitude of the zonal flow
(not shown here) and to the growth of turbulence (see Fig. 10, bottom
panel). The middle and bottom panels of Fig. 5 show that the topology
of the trapped ion density changes radically at time txd0 ¼ 15 and a
large-scale kink-type structure corresponding to the toroidal number
n¼ 1 emerges in the phase-space ðw; aÞ. At later times, a seemingly

FIG. 2. Time evolution of the L2-norm (sometimes called the “phasestrophy”) S2 ¼ hf 2i for trapped-ion modes (TIM) (on bottom left panel), for co-circulating ion mode (on top
left panel), the counter-circulating ion mode (on top right panel), and finally for trapped electron mode (on bottom right panel). “Phasestrophy” is associated with the momentum
transfer in plasma together with the formation and displacement of hole or clump structures. The dynamics of the system is first governed by the growth of TIMs associated for
the emergence of the first peak at time txd0 ’ 20 on the bottom left panel. Physical parameters of the simulation are beam density nb¼ 0, ion temperature gradient of
�s ¼ 0:70, and temperatures Te ¼ Ti ¼ T0.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 042507 (2022); doi: 10.1063/5.0082394 29, 042507-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


metastable state is reached, which is characterized by a coherent
phase-space cavity-like structure that drifts at constant velocity over a
long time interval. At the same time, finer and finer filaments develop
inside the cavity-like structure (as it can be seen at time
txd0 ¼ 15� 30), and the distribution of ions inside of it is smeared
out by phase-mixing and coarse-graining in a scenario similar to that
encountered in Landau damping. The coherent structure displayed in
the phase-space in Fig. 5 corresponds to a globally synchronized state,
locked to the phase of the n¼ 1 ion mode. This result is coherent with
the theoretical expectations, and we can, thus, infer that the chosen
numerical parameters correspond to a value ~C � ~Cc.

It is illuminating to compare in detail the behavior of populations
of trapped ions and co-passing ions in the w� a plane, at two differ-
ent values in energy, shown in Fig. 6. First, the energetic particle mode
frequency continuously readjusts to the resonance condition
x � nxdðEs;jÞ. The nonlinear evolution of the system is now domi-
nated by a resonant fast ion mode whose phase is locked with the
TIM wave. This maximizes the wave-fast ion interactions and the
corresponding energy transfer. In Fig. 6, we have plotted, at time

txd0 ¼ 40, the distribution of co-passing ions, for an energy Ei � 6
on top panel. The middle panel represents the dynamics of the corre-
sponding “pump” particle mode (TIM) at the same energy Ei. We
clearly see that a resonant process takes place in the trapped ion distri-
bution, a process driven by fast ions. The plots on top panel show
strong distorsions of both the thermal trapped ion distribution (middle
panel) and of the energetic distribution function (co-circulating distri-
bution). This resembles to the dynamics of trapped ions taken at a
higher value in energy, Ei � 9, plotted on the bottom panel. The trans-
port of co-passing ions seems to occur in avalanches, i.e., as a secular
process, accompanied by a (energetic) particle mode, convectively
amplified, from an energy Ei � 9, toward Ei � 6, i.e., to regions of the
parameter space that correspond to smaller energies but have higher
densities. Thus, an avalanche-type process consists of a wave packet
that is convectively amplified as it moves radially in w (toward regions
of higher densities) by locking the phase with a TIM that acts as a
pump energy source.

Figure 7 illustrates the temporal behavior of the phasestrophy for
different classes of particle modes: as the transition occurs, there is no

FIG. 3. Time evolution of the phasestrophy S2 ¼ hf 2i for trapped-ion modes (TIM) (on bottom left panel) for co-circulating ion mode (on top left panel), the counter-circulating
ion mode (on top right panel), and finally for trapped electron mode (on bottom right panel). Small differences can be observed in the dynamics of S2, which now exhibits more
bursts, in comparison to Fig. 2, without fast ion beam. Physical parameters of the simulation are beam density nb ¼ 0:10n0, ion beam energy of Eb ¼ 5T0, ion temperature
gradient of �s ¼ 0:70, and temperatures Te ¼ Ti ¼ T0.
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local formation of clumps and the phasestrophy exhibits a slow varia-
tion without the generation of peak: S2 evolves in a similar way for dif-
ferent classes of particles except for the co-circulating ion populations
(on top left panel), which includes the fast ion contribution.

An example of the energy variation that we can attribute to the
transition occurring for ~C � ~Cc, is shown in Fig. 8. Here, we have
plotted the time evolution of the kinetic energy Ekin;i of trapped ion on
the top left panel, of the kinetic energy Ekin;þ of the co-passing ions on
the top right panel, of the turbulence energy Eturb, on the bottom left
panel, and finally of the zonal flow EZF on the bottom right panel.
These quantities have been computed by using expressions (A1), for

the kinetic energy [combined with (A4) or (A5) depending on the
nature of particle mode], and (A2) and (A3) for the turbulent and
zonal flow energy, respectively.

The trapped ion mode plays the role of the particle pumping
mode (although the counter-circulating ion mode displays a similar
behavior, but at a weaker level), transferring energy to the turbulence
component Eturb. The latter reaches a quite large amplitude, which is
two thousand times larger in comparison to the amplitude measured
in the absence of the fast ion beam. This occurs together with a strong
decrease in the EZF component, which follows the behavior of the
kinetic energy of trapped ions.

FIG. 4. Phase space representation of
the distribution function of trapped ions.
We clearly observe the emergence of a
strongly turbulent state where coherent
structures similar to the clump-hole
appear in the phase space, which sug-
gests that a regime dominated by the
bump-on-tail paradigm introduced by
Berk and Breizman and Cheng and
Zonka. Physical parameters of the simu-
lation are beam density nb ¼ 0:10n0,
ion beam energy of Eb ¼ 5T0, ion tem-
perature gradient of �s ¼ 0:70, and
temperatures Te ¼ Ti ¼ T0.
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The numerical results presented so far can be interpreted in
terms of the transition from partial to global synchronization, as it is
outlined in Sec. II B. Before the transition, the system is constituted of
two populations: the plasma bulk and a beam of high velocity particles.
In the Hamiltonian representation used here, these populations can be
likened to two clusters of oscillators (Fig. 1, bottom panel), one moving

at low velocity and a second cluster (shown in red in Fig. 1), moving at
higher velocity. The main cluster, formed by trapped particles, is
pushed or accelerated by the second one, which, in turn, undergoes a
deceleration, induced by the first cluster, until both get the same angu-
lar velocity. A global synchronization is then achieved. In the
Hamiltonian ITG-driven turbulence model, the velocity of each cluster

FIG. 5. w� a phase space representation of the trapped ion density hfiij;Ei . At time txd0 ¼ 7� 8, at the beginning (on top panels), it is the interchange instability that domi-
nates the dynamics of the plasma. When the transition takes place the topology is strongly modified leading to the formation of a cavity. Physical parameters of the simulation
are beam density nb ¼ 0:10n0, ion beam energy of Eb ¼ 10T0, ion temperature gradient of �s ¼ 0:70, and temperatures Te ¼ Ti ¼ T0. The time step has been reduced by
half compared to the simulation in Figs. 3 and 4.
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is determined by its frequency xdðj; EiÞ ¼ xd0 �xdðjÞEi. The cluster
constituted by the energetic particles, thus, has a velocity, which is the
higher, the larger is the cluster energy. Based on this argument, one can,
thus, expect a global synchronization to occur for a toroidal number
n¼ 1, when xdðj;EiÞ ¼ xd0 �xdðjÞEi � 3

2T0xd0h�xdðjÞij � 2:5xd0,

using a mean value of h�xdðjÞij ’ 1:66 for the TIM (cf. Fig. 10
below).

In order to evaluate the Fourier components of the correspond-
ing order parameter jKnj [cf. Eq. (4)] and to estimate the synchronized
frequency, in Figs. 9 and 10, we have represented the time evolution of
the dominant term in the Poisson bracket ½�J0/; f �, that is, the quan-
tity h� @J0i/

@a
@fi
@wi, averaged over j, Ei and over the phase space variables

w and a.
In Fig. 9, we have represented, at the top, the evolution of the

quantity KðtÞ ’ h� @J0i/
@a

@fi
@wi as a function of time for two different

values of the shifted energy of the beam Eb ¼ 5T0 (at left) and
Eb ¼ 10T0 (at right). The lower figures show the frequency spectrum
of this quantity for the two simulations considered. We can see that
the K coupling coefficient presents a complex dynamics with the
emergence of turbulence bursts during the time evolution, which cor-
respond mainly to the peaks observed in the dynamics of the phases-
trophy in Fig. 3 (for the left column). In the first simulation, this
coefficient remains bounded and does not exceed a maximum thresh-
old of Kmax ’ 0:001. When the average energy Eb of the beam is
increased, the coupling coefficient attains the larger value
Kmax � 0:008. Based on the previous discussion, we can say that this
value exceeds the critical threshold that leads to the bifurcation
toward total synchronization. The corresponding frequency spectra
(bottom figures) show a synchronization mechanism where only one
frequency (related to the toroidal mode n¼ 1) has emerged resulting
from the global synchronization (on bottom right panel). In contrast,
higher frequencies were observed to persist in the Eb ¼ 5T0 simulation
case.

We can also observe an identical spectrum for all four clusters of
particle modes in Fig. 10. The spectrum KðxÞ exhibits a dominant
peak at the mean, trapped ion frequency xtrapped

d � 3
2T0xd0h�xdðjÞij

� 2:5xd0 in perfect agreement with previous estimates. The same plot
is also visible the contribution of the zonal flow at xZF � 0, which is
driven by the Reynolds stress 1

2 h
@/
@a

@/
@wia. We observe the appearance

of a high frequency close to x ’ 10xd0 associated with the initial
co-passing fast ions � Eb

T0
xd0h�xdðjÞij � 12–15xd0. Notice also the

emergence of the mode n¼ 2 in the spectrum KðxÞ of the trapped
electron population.

Thus, these phase-locked fast ions that play a crucial role in ava-
lanche process, as previously remarked by Chen and Zonca in Ref. 13,
are also responsible of global synchronization aspects observed in sim-
ulations. The synchronization process leads to a spread in the fre-
quency of the pump mode, which is partly due to the trapped particles
(according to an acceleration mechanism of the thermal oscillator
cluster in Fig. 1) and partly to an inverse cascade in energy associated
with an avalanche process (in turn, due to a slowdown of the fast oscil-
lator cluster).

VI. DISCUSSION: SYNCHRONIZATION, ENERGETIC
IONS, AND FISHBONE PARADIGM

We have shown how resonance between energetic particles and a
few, small-wave number particle modes (TIMs), which are present in
a turbulent-like spectrum, can lead to the global synchronization of
the ensemble of modes and to the emergence of time-oscillating zonal
flows. As preliminarily discussed in Ref. 1, where it has been shown
how Kelvin–Helmholtz-type fluid modes can take part to the process,

FIG. 6. Illustration of the behavior in the w� a phase space of trapped ions (on
middle and bottom panels) and co-passing ions (on top panel) at two values in
energy at time txd0 ¼ 40. The dynamics convectively amplified (energetic) particle
mode from an energy Ei � 9, toward Ei � 6, i.e., to regions of smaller energies
but with higher densities. Physical parameters of the simulation are beam density
nb ¼ 0:10n0, ion beam energy of Eb ¼ 10T0, ion temperature gradient of
�s ¼ 0:70, and temperatures Te ¼ Ti ¼ T0. The time step has been reduced by
half compared to the simulation in Figs. 3 and 4.
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too (although, for this case, we have given numerical proof only of a
partial synchronization), the basic mechanism behind this phenome-
non appears to be quite general and shows resemblances with further
models of interaction between energetic particles and other low-
wavenumber modes, like, e.g., the fishbone paradigm.41 In this section,
we clarify this point after having recalled the key features of other
known models of interaction between wave and fast particles in colli-
sionless plasmas.

It is now well known that energetic particles can affect the high
frequency regime of zonal flows, that is, the geodesic acoustic modes
(or GAMs38,39). The theoretical approach developed by Fu in Ref. 29,
based on bothMHD and kinetic aspects induced by energetic particles,
has shown that such an interaction leads to the emergence of a new
mode, the so-called “energetic-particle induced GAM” (EGAM) with
a frequency, which is about half that of a usual GAM. Another impor-
tant theoretical prediction has been made in this context by Chen, in
Ref. 40, who -evidenced the existence of the so-called “energetic-parti-
cle continuummodes” (EPM). These modes can emerge in a variety of
different forms, the best known, and first observed of which, is the

fishbone mode.41 This is an internal kink mode with toroidal number
n¼ 1, which can be excited by the resonance of ions’ toroidal preces-
sion with fast trapped particles. In fact, both fishbones and energetic
particle continuum modes can maintain a high level of interaction
through resonance between waves and fast particles: the phase locking
with resonant particles is maintained via frequency chirping. Such a
kind of phase locking was introduced by White et al. in the fishbone
model so to explain the secular transport mechanism.42

As remarked by Chen and Zonca in their review article,13 the
nonlinear interactions driven by energetic particles in tokamak plas-
mas can be classified according to two main “paradigms”: the “bump-
on-tail approach,” usually met in the one-dimensional Vlasov–Poisson
modeling43,44 and the “fishbone” or “energetic particle continuum
mode approach.”

The bump-on-tail approach is characterized by the formation of
holes and clumps in the phase space. By considering transport on a
local scale, the “clump” concept has been introduced by Dupree in
Refs. 46 and 47, while the notion of phase space hole is related to
a generalized Bernstein–Greene–Kurskal (BGK) equilibrium.48

FIG. 7. Illustration of the temporal behavior of the phasestrophy when the transition takes place. S2 evolves in a similar way for different classes of particles except for
co-circulating ion populations (on the top left panel), which contains the fast ion contribution. Physical parameters of the simulation are beam density nb ¼ 0:10n0, ion
beam energy of Eb ¼ 10T0, ion temperature gradient of �s ¼ 0:70, and temperatures Te ¼ Ti ¼ T0. The time step has been reduced by half compared to the simulation in
Figs. 3 and 4.
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Berk et al. used in Ref. 45 a simplified approach to study these phe-
nomena: they have explored the classic bump-on-tail problem of a dis-
tribution function that excites an electrostatic wave. The insight
brought by their approach is the fact that the presence of a spatial gra-
dient of the canonical toroidal momentum Pu ¼ ew, which drives the
energetic particles instabilities, is analogous to the velocity-gradient
that finally drives the formation of the BGK holes in the standard
beam-plasma53 or two-stream instability.49,50

On the other hand, the approach based on energetic particle con-
tinuum modes grounds on their global and resonant character. The
energetic particle modes, by tapping energy from the regions with
steeper spatial gradients via phase-locking with fast particles, can
undergo a modification of their own structure, which further enhances
the interaction between waves and the fast particles themselves. As
predicted by White et al.,42 energetic particle modes can, thus, adapt
their own frequency and modify the beam-plasma instability so that
the motion of particles becomes secular, as long as a wave-particle
phase-locking is maintained: this process is often referred to as the
“mode-particle pumping” and it has been used to explain the particle
losses due to fishbones.42

This process seems quite general and is also encountered in the
interaction of a high intensity laser wave with a plasma, in particular

in the case of stimulated Raman scattering (SRS). In this scenario, the
electromagnetic wave plays the role of a pump wave that transfers its
energy to a plasma wave. SRS generally involves the parametric inter-
action between the three modes involved: the electromagnetic pump,
the scattered mode (so-called Stokes wave), and a plasma (Langmuir
or Bohm–Gross) wave. A tuning both in the frequency and in the
wave number is then necessary. In the so-called kinetic regime of SRS,
the matching conditions between the wave numbers and the frequen-
cies of various modes can be maintained as the former vary (see Ref.
51), and this can be shown to occur also in the case of laser propaga-
tion in a parabolic plasma:52 one can observe drifts in both the fre-
quencies and the wave vectors, which maintain the matching
conditions and lead to a self-resonance mechanism by phase locking.

The global phase-synchronization, which we have evidenced in
Sec. V, can be then equivalently interpreted as a transition from a local
transport in the “beam-plasma” scenario to the mesoscale transport in
the “fishbone” paradigm. In this light and in spite of the fact that the
model we have developed for ITG turbulence is intrinsically electro-
static, whereas fishbone modes correspond to magnetic perturbations,
when the transition to global synchronization takes place it is possible
to consider the (TIM) particle mode modified by fast ions as an elec-
trostatic analogous of a fishbone mode. Conversely, this suggests that

FIG. 8. Illustration of the energy variation at the transition ~C � ~Cc : the kinetic energy of trapped ions Ekin;i (on top left), of the co-passing ion population Ekin;þ (on top right),
of the turbulent energy Eturb (on bottom left), and of the zonal flow EZF energy (on bottom right) are plot vs time. The trapped ion mode plays the role of the particle pumping
mode, transferring energy to the turbulence Eturb component and to the co-passing ion population. Physical parameters of the simulation are beam density nb ¼ 0:10n0, ion
beam energy of Eb ¼ 10T0, ion temperature gradient of �s ¼ 0:70, and temperatures Te ¼ Ti ¼ T0.
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the fishbone resonance scenario could be interpreted in light of a
Kuramoto-type global synchronization. In this regard, an interesting
aspect of the transition from partial to global synchronization, which
we have evidenced in the simulations of ITG turbulence of Sec. V, is
its dependence on a single physical parameter: the beam energy shift,
Eb, with respect to the energy of the bulk of other circulating ions, Eþ
(we recall that the density of the fast beam, nb, has been kept fixed in
all simulations that we have discussed). Since the progressive increase
in this energy shift leads to a bifurcation scenario, once a threshold
value is trespassed (i.e., the value that makes ~C > ~Cc), it would be
interesting to investigate if an analogous “simple” mechanism could be

behind the transition from a bump-on-tail to a fishbone scenario for
electromagnetic-type modes, which is what the results we have here
discussed for electrostatic ITG turbulence seem to suggest.

VII. CONCLUSION

We have described the dynamics of transition of ITG-driven tur-
bulence from a regime where transport is dominated by incoherence
among modes (i.e., “a strongly turbulent” regime) to a regime where
meso-scale coherent structures appear (i.e., low frequency zonal flows),
which oppose to turbulent transport. The two regimes can be inter-
preted in light of a Kuramoto-type synchronization model, which had

FIG. 9. Plot of KðtÞ ’ h� @J0i/
@a

@fi
@wi vs time, calculated for the population of trapped ions, for two different values of the beam energy: before the transition for Eb ¼ 5T0 (left

column) and Eb ¼ 10T0 (right column) when the system has achieved global synchronization. The lower frames show the frequency spectrum of KðtÞ for the two simulations
considered. On the top left panel, the K coupling coefficient presents a complex dynamics with turbulence bursts during the time evolution, which corresponds mainly to the
peaks observed in the dynamics of the phasestrophy in Fig. 3 (bottom left panel). Before the transition, the spectrum in the frequency is broad with a high-frequency contribu-
tion (TIM modes). On top right panel, K may exceed the critical threshold leading to the bifurcation toward total synchronization. Its spectrum in the frequency (on bottom right)
exhibits a synchronized aspect with only a shifted value toward low frequencies.
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been discussed in Ref. 1. In that work, a new approach was introduced
based on the concept of phase-synchronization between several par-
ticles modes that represent different classes of particles distinguished
by their level of “trapping” in tokamak’s banana orbits. The strongly
turbulent regime corresponds to a partial synchronization between dif-
ferent trapped particle modes (i.e., TIMs) excited by the initial ITG-
instability and circulating ions (cf. Sec. IV). The second regime, domi-
nated by auto-coherent phase-space structures, corresponds to a global
synchronization among different modes involved, which phase-lock
on an n¼ 1 mode that corresponds to a low-frequency zonal flow
that, thus, provides a transport barrier. We have shown that the transi-
tion between the two regimes is induced by the presence of a small
population of energetic particles (Sec. V). Although the analytical
model that we have developed suggests that the transition depends on
both the energetic particle density and energy, the numerical results
that we have shown and discussed prove that the transition to a global
synchronization can be induced by just increasing the energetic ion
beam above a critical threshold value. A more systematic parameter

study is required so to provide a determination of threshold values of
experimental relevance. However, the analysis that we have developed
and the preliminary results that we have shown indicate that for a
given relative density of the energetic ion beam (nb, in this article) with
respect to that of the other circulating ions, the shift of the energy of
the fast beam (Eb) with respect to energy of the bulk of circulating ions
(Eþ) exhibits a threshold, which plays a role equivalent to that of the
coupling strength parameter ~Cc of the Kuramoto-like model.

Albeit based on the simplifying assumption of a double gyroa-
verage over the fast time scales related to the cyclotron and the
bounce or transit particle motion, the model introduced in Ref. 1 and
here further discussed constitutes a complementary tool for first-
principles simulations aimed at understanding the role played by ion-
temperature-gradient instabilities over time scales comparable to
those required for self-sustained, magnetically confined thermonu-
clear fusion experiments. Comparison with other paradigms of inter-
action between energetic particles and plasma modes also suggests
that the synchronization model that we have discussed provides a

FIG. 10. Illustration of the spectrum of the quantity h� @J0i/
@a

@fi
@wi, the average operator h:i being made on all variables j; Es, w, and a. This function gives an estimation of the

order parameter hRsðw; a; tÞiw;a in the synchronization mechanism induced by the “pump” driver term (the trapped ion mode, shown on the bottom panel at left). On top, at
left, the co-passing ion mode contains the population of fast ions. We clearly observe the dominant peak at x � 2:5xd0 corresponding to the ion precession frequency for the
toroidal number n¼ 1. Physical parameters of the simulation are beam density nb ¼ 0:10n0, ion beam energy of Eb ¼ 10T0, ion temperature gradient of �s ¼ 0:70, and
temperatures Te ¼ Ti ¼ T0.
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complementary way to look at other wave-particle interaction models.
In particular, the transition from partial to global synchronization
that we have shown for electrostatic ITG-driven modes seems analo-
gous to the transition from a bump-on-tail to a fishbone scenario for
electromagnetic instabilities (cf. Ref. 13). This invites to consider the
possibility of interpreting also such scenarios in light of a synchroni-
zation model (Sec. VI).

Finally, beside of their general theoretical interest, we believe the
results that we have discussed to be of relevance when investigating
the suppression of tokamak turbulence by emergence of internal trans-
port barriers induced by electron cyclotron resonance heating or by
neutral beam injection (in the presence of TEM now).
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APPENDIX: DERIVATION OF THE ENERGY
CONSERVATION LAW FOR PARTICLE MODES

For the sake of completeness, the derivation of the energy con-
servation law for particle modes is here presented. The Hamiltonian
associated with Vlasov equations (8) is Hs ¼ xdsðEs; jÞwþ J0s/. It
is then possible to decompose the total energy of particles, for a spe-
cies s, into three distinct contributions: the kinetic energy Ekin;s,
which depends on the type of particle modes (trapped or circulat-
ing); the energy of turbulence fluctuations driven by ITG-type insta-
bilities, Eturb; and the zonal flow energy EZF. By writing the electric

potential in the form / ¼ h/ia þ d/, where h:ia ¼
Ð 2p
0

da
2p :

expresses the average with respect to a, and after normalizing to
xd0�w, the kinetic and turbulence energy components read as

Ekin;s ¼ Ts

ð2p
0

da
2p

ð1
0
dwwhxds Es; jð ÞiEs;j; (A1)

Eturb ¼
1
2

ð2p
0

da
2p

ð1
0
dw Ce 1� fp

� �
d/2 þ fpCej �rd/j2

h

þ fpCijrid/j2 þ 1� fp
2

X
rk¼6

Cij �rrkd/j2
#
; (A2)

where �$s ¼ q�@aea þ ds
�w @wew is the normalized gradient in the

w� a plane; ds ¼ dbe; dbif g for trapped particles and ds ¼ dc6
�

ffiffi
e
p

dbi for passing particles. Finally, the energy of the zonal flow
reads

EZF ¼
1
2

fp
X
s¼e;i

Csd
2
bs þ

1� fp
2

X
rk¼6

Cid
2
c6

" # ð2p
0

da
2p

ð1
0
dw

@h/ia
@w

	 
2

:

(A3)

In Eq. (A1), the quantity hxdsðEs; jÞiEs;j is determined by perform-
ing an integration over j and Es for trapped particles, so that

hxdsiEs;j ¼
2ffiffiffi
p
p
ð1
0
dj jK jð Þ

ðþ1
0

dEi
ffiffiffiffi
Ei
p

xds Es;jð Þfs (A4)

while, for circulating ions, we have used

hxd;6iEs ;j ¼
2ffiffiffi
p
p
ðþ1
0

dEi
ffiffiffiffi
Ei
p ðþ1

1
djCK j�1ð Þxd;6 Ei;jð Þf6 ;

(A5)

with C being a constant that grants the distribution function to be
normalized to one. Finally, a little algebra allows us to write the
energy conservation law in the form

d
dt

X
s2 e;i;6f g

Ekin;s þ Eturb þ EZF
	 


¼ = Dð Þ; (A6)

where the right-hand side of the equation = contains the diffusion
terms associated with the diffusion coefficient DðwÞ, introduced for
numerical purposes so to increase the stability of the numerical
scheme in the presence of strong turbulence. We have

= Dð Þ ¼

3
2
fpw

@

@w
D
@

@w
Pi þ Peð Þ

	 


þ 3
2

1� fp
2

w
@

@w
D
@

@w
Pþ þ P�ð Þ

	 


þ fpw
@

@w
D
@

@w
ni þ neð Þ

	 


þ 1� fp
2

w
@

@w
D
@

@w
nþ þ n�ð Þ

	 
�
a;w

; (A7)

where the symbols Pþ and P�, respectively, refer to the pressure of
the co-passing and counter-passing ion population, while Pi and Pe
correspond to the pressure of trapped ions and electrons, respec-
tively. A similar convention is used to represent the densities by ns
for a species s ¼ i; e;þ;�f g.

To conclude, the model of “particle modes” is a gyrokinetic
model based on a double gyro-average on fast scales (both cyclo-
tron plus bounce or transit fast scales), which introduces two clas-
ses of adiabatic invariants: energy Es and pitch angle j. The
model consists of NEsNj Vlasov equations, namely, Eq. (8) for NEs
times Nj values of adiabatic invariants (considered as parame-
ters), coupled in a self-consistent way by the quasi-neutrality
equation (11). The quasi-neutrality condition takes into account
the standard corrections as polarization terms in (13). In Eq. (12),
the trapped and circulating particle populations are defined,
respectively, by

ns
ðtÞ ¼ 2ffiffiffi

p
p
ðþ1
0

dEs
ffiffiffiffiffi
Es
p ð1

0
djjK jð Þ JðtÞ0s fs;j;Es w; a; tð Þ (A8)

and
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X
rk¼61

ni;
ðcÞ
rk
¼ 2ffiffiffi

p
p
ðþ1
0

dEi
ffiffiffiffi
Ei
p ðþ1

1
djCK j�1ð Þ JðcÞ0i fi

þ þ fi
�

h i
;

(A9)

where the normalization constant C grants the total circulating ion
density to be equal to 1. In numerical simulations, the time is nor-
malized to the inverse drift frequency x�1d0 ¼ eB0r0R0

q0T0
and the poloidal

flux w is given in �w ¼ r0R0B0
q0

units, where B0 is the minimal value

of the magnetic field amplitude Bh at h¼ 0; R ¼ R0 is the major
radius and r ¼ r0 the minor radius of the tokamak; and e ¼ r0

R0
is

the tokamak inverse aspect ratio. The electric potential /, together
with the constants Ce and Ci, is expressed in xd0�w units.
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