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ABSTRACT

Superthermal energetic particles may alter the kinetic and resonant nature of zonal flows by leading to new types of instabilities. Here, we
study the effects induced by superthermal energetic ions on trapped-ion modes (TIM) by using a reduced Hamiltonian gyrokinetic model,
where both fast scales (cyclotron and bounce or transit motions) are gyro-averaged. In particular, we analyze the enhancement of resonant
processes induced by energetic ions associated with nonlinear phase synchronization, in an extended version of the TIM model including cir-
culating ions. Once an energetic particle mode is driven unstable, a rich nonlinear dynamics is observed, which encompasses a frequency
chirping associated with a synchronization process driven by TIM and a transition scenario. An equivalence with the classic Kuramoto
model—the paradigm describing the synchronization of a system of coupled oscillators—explains much of this phenomenology.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0082393

I. INTRODUCTION
The important role played by zonal flows (ZFs) in regulating

turbulence and transport in tokamaks is now broadly accepted (see
Ref. 1). Two main classes of ZFs can be identified: zero-frequency
ZFs that can be described by means of fluid models of turbulence
and ZFs oscillating at high frequencies, which are named geodesic
acoustic modes (GAM).2,3 The former, in a fluid framework, can
be shown to be related to the Reynold stress tensor, or better, to
the competition between the Reynolds and Maxwell tensors;20 the
latter are oscillating modes induced by the coupling of poloidal
density fluctuations with the curvature drift related to the geodesic
curvature of magnetic field lines in a tokamak. Zero-frequency ZFs
and GAMs exhibit different relaxation processes: while zero-
frequency ZFs can be damped by collisions, GAMs have their own
collisionless relaxation mechanism, sensitive to the Landau reso-
nance condition.

It is nowadays well known that also energetic particles may
change the intrinsic nature of GAMs. Plasma oscillations that reso-
nantly interact with the characteristic frequencies of fast particles (for
example, the transit-bounce or precession frequencies) can be driven
unstable. Energetic particles, via the free energy associated with the
velocity space gradient in their phase-space distribution, can thus
excite a new GAM-like mode, the so called energetic-particle-induced
GAM or “EGAM.”4–6 Its characteristic oscillation frequency is half
of xGAM.

In a similar way, the zero-frequency component of ZFs may also
be modified by three-wave parametric processes. Plasma turbulence
differs in many ways from fluid turbulence, and in tokamaks, it is
mostly driven by the free energy, which is the source of many micro-
instabilities that are mostly related to the gradients of density and
temperature. In the core of the tokamak plasma, the dominant micro-
instability driving turbulence is the “ion-temperature-gradient” (ITG)
mode, which concerns circulating ions. However, when the frequency
of ITG mode falls below the ion bounce frequency xbi, the dynamics
of ions trapped in the so called “banana orbits” becomes more impor-
tant and one names “trapped ion modes” (TIMs) the corresponding
unstable modes. In Refs. 7 and 8, the lower frequency range of these
modes has been studied and it has been shown the existence, as a
result of a parametric-like process, of a ZF oscillating at the ion preces-
sion frequency, which is well below the characteristic frequency of
both GAM and EGAM.

This change in the nature of the ZF is similar to a synchronization
mechanism where a phase lock appears induced by a resonance with a
TIM mode. The principle of synchronization of various particle modes
(here TIM and/or ZF) is not new and has already been mentioned in
order to interpret some experimental results. For example, the effects of
synchronization of GAMs by magnetic fluctuations were reported in
Ref. 9. This observation suggests that locking between GAMs and mag-
netic fluctuations can take place when their phases are shifted via a non-
linear interaction that occurs when energetic particles are injected.
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Here, we will approach the problem of the oscillating behavior
of low-frequency ZF from the perspective of phase synchronization
dynamics, by considering how the nonlinear dynamics of ZFs is
modified by a small population of energetic ions. In this article,
which constitutes the first of two companion articles, we show how
the model of trapped particle modes, initially developed to study
ITG instabilities in the very low-frequency regime,7,8,10,12 can be
used to develop a model of ZF-mode coupling, which is based on the
synchronization mechanism. To this purpose, we introduce two new
“particle mode” components—the co-circulating and the counter-
circulating ion populations. While in the high-frequency regime
synchronization processes of GAMs can be, for instance, driven by
magnetic fluctuations, the situation is somewhat different in the
low-frequency regime, where it is the low-frequency ZF component
that can be strongly affected by synchronization processes driven by
TIMs. Thus, in the low-frequency regime of ITG instabilities,
another type of synchronization takes place, which is induced by
trapped particle modes. The underlying physical mechanism of
phase synchronization in the low frequency regime of ITG instabil-
ities can be identified to occur through the synchronization of TIM
with fast circulating ions via nonlinear, resonant wave–particle inter-
actions. We are here going to show how this mechanism is analo-
gous to the synchronization of weakly coupled oscillators in the
Kuramoto model (see Refs. 13 and 14). Review papers on the latter
can be found in Refs. 15 and 16.

The remainder of this paper is organized as follows. In Sec. II,
building on previous works of Refs. 7 and 8, we cast wave–particle
interactions in a Hamiltonian form. We so determine the Vlasov
equation for each species in action-angle coordinates, by taking into
account the complex precessional motion of circulating (trapped)
ion populations, gyro-averaged over fast scales which correspond to
the cyclotron and transit (bounce) motions. We also include trapped
electrons modes (TEMs) and a small population of energetic ions:
this constitutes the model of particle modes, i.e., TIMs, TEMs, and
co-passing and counter-passing ion modes. Note that this provides
the first inclusion of energetic ions, which lead to the accounting of
co-passing and counter-passing ion modes, in the action-angle
model,10 which somewhere else has been named “TERESA,” with
reference to one of its parallel implementation.11 We present in Sec.
III the main properties of the reduced Hamiltonian model in terms
of the linear analysis for ITG-driven instabilities. Section IV introdu-
ces the basic concepts of synchronization in connection with particle
modes, the main difference with respect to the Kuramoto model
being in the fact that the discrete and finite number of oscillators in
the latter is here replaced by a spectrum of modes in the phase space,
a priori. In Sec. V, we discuss a numerical simulation where synchro-
nization effects have been enhanced by the introduction of a small
population of fast ions, by showing how coupling with fluid-type
Kelvin–Helmholtz modes can take part in the process, too. Note that
in this numerical result we focus on what we could name a “partial”
synchronization process, in which only a fraction of the particle
modes synchronizes via the energetic ions. We will discuss in Paper
II how the transition from a “partial” to a “global” synchronization,
in which all particle modes lock to the same frequency close to the
ion precession frequency, can occur if the energy density of the cir-
culating ions trespasses some threshold value. Finally, conclusions
are drawn in Sec. VI.

II. THE MODEL OF TRAPPED AND CIRCULATING
PARTICLE MODES
A. Hamiltonian formalism in action-angle coordinates

The Vlasov equation describing the evolution of the distribution
function fs of particles of a given species s can be written in the follow-
ing form:

@fs
@t
þ @

@a
_afsð Þ þ

@

@J
_J fs
! "

¼ @fs
@t
þ _a

@fs
@a
þ _J

@fs
@J
¼ 0; (1)

where the Hamiltonian of the system Hs ¼ HsðJ; a; tÞ relates the
action variable J and its conjugated angle variable a through Hamilton
equations as follows:

@Hs

@a
¼ % _J and

@Hs

@J
¼ _a: (2)

Then, assuming that the Hamiltonian at equilibrium is a function of
the variables J only, i.e., Hs ¼ Hs;0ðJÞ, the laws of motion can be cast
in a Hamilton–Jacobi form as follows:

_J ¼ 0 and _a ¼ @Hs;0 Jð Þ
@J

¼ X Jð Þ: (3)

Even in a gyrokinetic modeling, which is based on an average over the
fast cyclotron scale, it is difficult to simulate low-frequency phenomena,
such as micro-turbulence for time intervals as large as the confinement
time. To avoid a direct treatment of a multiple hierarchy of spatial and
temporal scales, a nonlinear gyrokinetic model, referred in Ref. 10 as the
trapped-particle model, has been developed by making a double average
over the cyclotron phase a1 and the bounce phase a2 (the so-called
“banana” orbit for trapped particles). This makes it possible to rule out
high-frequency phenomena, so that only the precession motion is
retained. This phase-angle average leads to the following system:

@Hs

@Jk
¼ dak

dt
for k ¼ 1; 2; 3

with

dJk
dt

# $

k¼1;2
¼ 0

and
dJ3
dt
6¼ 0; (4)

thanks to the fact that each adiabatic invariant reduces the dimension-
ality by a factor 2. In this reduced modeling, the two important varia-
bles are the toroidal canonical momentum associated with J3 and the
precession phase which we can write a3 ¼ u% q0h by assuming in
first approximation that û ¼ 0 and J3 ¼ ew. For the sake of notation,
hereafter we will name a & u% q0h. Here, w is the poloidal flux nor-
malized to 2p; u is the toroidal angle, h the poloidal angle, and qðwÞ
the safety factor.

B. Dynamics of trapped particles
We now specialize the approach detailed above to identical clas-

ses of solutions of trapped particles. The approach is the same for both
ions and electrons, provided that 0 ' j < 1. For trapped particles of
species s (with s 2 i; ef g), the Hamiltonian takes the following form:

H ¼ xds j;Esð Þwþ JðtÞ0s /; (5)
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where JðtÞ0s is a specific operator applied for trapped particle popula-
tions, which transforms the fluctuating potential term into its global
gyro-average, and where xdsðj;EsÞ is the precession frequency. Its
value is given by18

xds j;Esð Þ ¼ 6
Ts

T0
xd0 !xðtÞd jð ÞEs; s ¼ i; e; (6)

where xd0 ¼ q0T0
eir0R0B0

is the ion precession frequency (at a given tem-
perature T0). Here, the label “(t)” refers to trapped particles. In Eq. (5),
the quantity Es is normalized to the temperature Ts of the species s.
The corresponding distribution function fs ¼ !f Es;jðw; a; tÞ obeys the
reduced gyrokinetic Vlasov equation, which is given by

@fs
@t
þ xds j;Esð Þ

@fs
@a
þ JðtÞ0s /; fs
h i

¼ @w DðwÞ@wfs
% &

; (7)

where at the right-hand side, we have added a collision-related diffu-
sion term, with the diffusion coefficient DðwÞ, which goes beyond
Vlasov collisionless modeling, but which will be used solely for numer-
ical applications that we will discuss later. Here, ½:; :) denotes the stan-
dard Poisson bracket defined by

JðtÞ0s /; fs
h i

¼
@ JðtÞ0s /
% &

@w
@fs
@a
%
@ JðtÞ0s /
% &

@a
@fs
@w

: (8)

In Eq. (6), the sign 6 corresponds to the sign of the charge (positive
for ions and negative for electrons) and the normalized quantity
!xðtÞd ðjÞ is given by (A4) of Appendix A. Using Pad"e’s approximates,
we express the JðtÞ0s operator as follows:

JðtÞ0s ’ 1þ Es
4

d2bs@
2
w

# $
1þ Es

4
q2
cs

r20
@2a

 !

; (9)

where qcs
r0
¼ q*

ffiffiffiffiffiffiffi
Tsms
Timi

q
and q* ¼ qci

r0
. The banana scale dbs, introduced

by the operator JðtÞ0s , corresponds to the width of the particle’s trajec-
tory in the w direction, while the gyro-phase average on the Larmor
radius qcs is performed along the direction of the precession angle a.

C. Dynamics of circulating ions
We now consider processes involving a population of co-

circulating (here denoted fi
þ
) and counter-circulating ions (denoted

fi
%
, respectively). These can be included in the trapped particle mode

via the following reduced Vlasov equation, gyro-averaged over fast
cyclotron plus transit scales and including the diffusive term used for
numerical applications, which reads

@fi
6

@t
þ xds Ei; jð Þ

@fi
6

@a
þ JðcÞ0s /; fi

6
h i

¼ @w D wð Þ@wfi
6

% &
; (10)

where

xds Ei; jð Þ ¼
Ti

T0
xd0 !xðcÞd jð ÞEi þ rk

!xðcÞt jð Þ
ffiffiffiffi
Ei
p

q20q*

 !

; s ¼ rk ¼ 6: (11)

Here rk ¼ 6, where the sign þ (% respectively) refers to co-
circulating ions (counter-circulating ions, respectively) and the apex

“c” refers to circulating ions. In (11), the quantities Ti
T0

xd0 !xðcÞd ðjÞEi

andxti ¼ Ti
T0

xd0rk
!xðcÞt ðjÞ

ffiffiffi
Ei
p

q20q
* represent, respectively, the precession fre-

quency and the transit frequency of the population of co-passing (or

counter-passing) ions. The expression of the quantity !xðcÞt ðjÞ is given
by Eq. (A7).

Finally, the gyro-average operator for circulating ions reads

JðcÞ0c ’ 1þ Ei
4

1þ q*2@2a þ d2ci@
2
w

% &
: (12)

The operator JðcÞ0i corresponds to the gyro-average operator, acting on
circulating ions: it, therefore, accounts for both the gyration and transit
motion. The orbit of a circulating ion is a closed circle, and the center
of this circle deviates from the center of the magnetic surface by the
amount dci ¼

ffiffi
e
p

dbi.

D. Quasi-neutrality condition
Reduced gyrokinetic Vlasov equations for trapped ions and elec-

trons and for circulating ions can been coupled together in a self-
consistent way by using the electron neutrality condition dne ’ dni
and assuming an adiabatic response for passing electrons. Hereafter,
the index s will therefore run among the symbols fe; i;þ;%g, with
evident meaning. By introducing the fraction of trapped particles

fp ¼ 2
ffiffiffi
2e
p

p , the quasi-neutrality condition reads

Ce 1% fp
! "

/% h/ia
! "

þPol:Terms¼
X

s¼ e;i;6f g
sgnðesÞns ;

Pol:Terms¼%fpCiDi
ðtÞ

/% fpCeDe
ðtÞ

/% 1% fp
! "

CiDi
ðcÞ

/;

and
X

s¼ e;i;þ;%f g
sgnðesÞ!ns¼ fpni ðtÞ % fpne ðtÞ

þ
1% fp
2

X

rk¼61

ni; ðcÞrk
% 1% fp
! "

; (13)

where Ce ¼ e
Te

and Ci ¼ e
Ti
. In Eq. (13), polarization effects are

described by polarization terms (“Pol. Terms” in the equation). This

consists of the contribution of the operator Ds
ðtÞ

for the trapped particle

population of species s ¼ e; i, and of the operatorDi
ðcÞ

for the treatment
of energetic or thermal circulating ions. Their explicit expressions here

are Ds
ðtÞ ’ msTs

miTi
ðq*2@2a þ d2bs@

2
wÞ and Di

ðcÞ ’ q*2@2a þ d2ci@
2
w. The elec-

tric potential / defined by Eq. (13) makes it possible to couple Vlasov
equation (7) for the description of ITG -driven instabilities for both clas-
ses of trapped particle modes (i.e., TIMs and TEMs) and its correspond-
ing Eq. (10) for co-circulating and counter-circulating ion modes. In Eq.
(13), the smoothed densities ns ðtÞ and

P
rk¼61 ni;

ðcÞ
rk

are determined via

integration of the corresponding distribution functions. Thus, for
trapped and circulating particle populations, we, respectively, find

ns ðtÞ ¼
2ffiffiffi
p
p
ðþ1

0
dEs

ffiffiffiffiffi
Es
p ð1

0
djjK jð Þ JðtÞ0s fs;j;Es w; a; tð Þ; (14)

and
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X

rk¼61

ni; ðcÞrk
¼ 2ffiffiffi

p
p
ðþ1

0
dEi

ffiffiffiffi
Ei
p ðþ1

1
djCK j%1ð Þ JðcÞ0i fi

þ þ fi
%

h i
;

(15)

where the normalization constant C grants the total circulating ion
density to be equal to 1.

III. LINEAR ANALYSIS FOR THERMAL-ENERGETIC
CIRCULATING ION MODES

We now address the extension of TIM theory to circulating ion
modes. We consider kinetic effects induced by two populations: ther-
mal trapped ions and a population of fast ions of temperature Thot,
which can be both co- and counter-propagating. As we will see, ener-
getic particles may have a strong influence on the global behavior of
the plasma, for instance, by modifying the nature of the interaction
between TIM and the circulating ion populations. We expand the dis-
tribution functions in Fourier series in a,

fi
6

w; a; tð Þ ¼ F6
0 wð Þ þ

X

n

df6
n wð Þei na%xtð Þ; (16)

and we keep for the initial circulating distribution F6
0 ðwÞ an expres-

sion similar to that given by (B3), just by substituting the trapped pre-
cession frequency xd

ðtÞðjÞ with its circulating counterpart xd
ðcÞðjÞ.

Writing the precession frequency (11) in the form

x6
d j;Eið Þ ¼

Thot

T0
xd0 !xðcÞd jð ÞEi 6

!xðcÞt jð Þ
ffiffiffiffi
Ei
p

q20q*

 !

; (17)

we may determine the perturbed distribution functions df6
n as follows:

df6
n ¼ %ne

%EiDs

xd0
Thot

T0
xd
ðcÞ jð Þ Ei %

3
2

# $
6

xt jð Þ
ffiffiffiffi
Ei
p

q20q*

" #

x% nx6
d j;Eið Þ

JðcÞ0i d/n:

(18)
Here, we do not take into account polarization terms and trapped elec-
trons modes (circulating electrons being adiabatic). Introducing the
average operator h+itrapped ions ¼

Ðþ1
0 dEi

ffiffiffiffi
Ei
p Ð 1

0 djjKðjÞ for trapped
ions and the operator h+ipassing ions ¼ 2ffiffi

p
p
Ðþ1
0 dEi

ffiffiffiffi
Ei
p Ðþ1

1 djCKðj%1Þ
for passing ions, we obtain

Ced/n ¼ fphDse%Ei

3
2
% Ei

# $

x

nxd0 eTixd
ðtÞ jð Þ

% Ei
JðtÞ0i

% &2
d/ni

trapped ions

þ 1% fp
! "hDse%Ei

3
2
% Ei

# $
x

nxd0gThotxd
ðcÞ jð Þ

% Ei
# $

% A2

x

nxd0gThotxd
ðcÞ jð Þ

% Ei
# $2

% A2
JðcÞ0i

% &2
d/ni

passing ions

; (19)

where A ¼ xt ðjÞ
ffiffiffi
Ei
p

q20q
*xd

ðcÞðjÞ
and Ei is normalized to the temperature of the

species with respect to which the ensemble average expressed by the
angular brackets is performed (Ti for trapped ions and Thot for passing
ions). In Eq. (19), temperatures eT i andgThot are normalized to T0. It is
then possible to use the analytic continuation (see Appendix B for
more details) to determine the marginal solution by choosing

x
nxd0eThot xd

ðcÞðjÞ
, 3

2 for the total circulating ion modes. Thus, the mean

frequencies of fast ions are given by

xCIM ¼
3
2
nxd0

Thot

T0
xd
ðcÞ jð Þ; (20)

while the high drift frequencies, initially taken into account in the
model are given by (11). We may consider that the linear modes, for
both TIM/TEM and circulating ions, are given by Eqs. (6) and (11),
respectively, while xCIM ¼ nxd0

Thot
T0

xd
ðcÞðjÞEi corresponds to the

local low-frequency value (for a given value of the energy) of circulat-
ing ion modes.

An example of the toroidal precession frequency

xdðj;EiÞ ¼ xd0 !xðtÞd ðjÞEi, corresponding to trapped ions, is plotted
on the top panel in Fig. 1, while the middle panel shows the low-
frequency value of the contribution of co-passing ions, i.e.,

xdðj;EiÞ ¼ xd0 !xðcÞd ðjÞEi (at temperature Thot , Ti). Finally on the
bottom panel, the function xþd ðj;EiÞ is represented for co-moving
population of circulating ions. Grouping the separate contributions,
for example, in energy Ei and pitch-angle-like variable j, one can eval-
uate the frequency domain of the mode or classes of solution of inter-
est. An interaction can result from the structural link through which
information is exchanged between “oscillators” (here, oscillating parti-
cle modes) of the system, each oscillator being defined by a set of phys-
ical parameters in j and Ei.

It must be pointed out that the frequency given by (20) exhibits a
similar expression to that obtained in (B5) for trapped ion modes, by
replacing the quantity xd

ðtÞðjÞ for trapped particles with xd
ðcÞðjÞ.

Resonant processes between TIMs and energetic co-circulating ion
modes (EIM) take place when the frequencies of the two types of
modes are close, i.e., when
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Thot

T0
, Ti

T0

xd
ðtÞ jð Þ

xd
ðcÞ jð Þ

: (21)

Such a result suggests that, when resonant processes between fast pass-
ing ions and TIMs take place, low-frequency zonal flows can undergo

a frequency shift which is similar to a synchronization between
eigenmodes of oscillating particles modes.

At this step, we can highlight three points on which the following
discussion will focus:

• Trapped ion turbulence develops on a length scale of the order of
the particle banana width dbs and on a time scale of the order of
x%1d0 , and it can lead to generation of zero-frequency ZFs.
Although trapped ion modes have been predicted by Kadomtsev
and Pogutse 50 years ago in Ref. 18 and are well known to be
subject to interchange-type instabilities, new non-trivial features
can be evidenced when their hybrid fluid-kinetic nature is taken
into account. Their linear frequency spectrum is then given by
(B5), which differs from the quantity xI ’ 5

2 nxd0xd ðjÞ of the
(purely fluid) interchange mode.

• We note the possibility to modify the nature of zero-frequency
ZFs by resonant processes which allow ZFs to oscillate at a finite
frequency close to the ion precession frequency xd0, as previ-
ously shown in Refs. 7 and 8. An analogy of the latter phenome-
non with synchronization processes can be established. The null
frequency of the zonal mode induced by the Reynold’ stress ten-
sor associated with trapped ion turbulence is modified and
becomes non-zero: this can be interpreted as due to a phase-
locking mechanism, which leads to a synchronization of the ZF
at the ion precession frequency xd0 via resonance induced by the
TIMs. This is a point on which we will focus in Sec. IV.

• The frequency shift induced by phase-locking can be also inter-
preted in the framework of a class of fishbone-type instabilities,
also called by Chen and Zonca19,31,32 the “fishbone paradigm”:
this is characterized by the occurrence of possible resonances of
the trapped particles with their precession motion. We will see,
in Paper II,30 that the synchronization phenomenon involving
ZFs can lead to a coupling with the toroidal mode n¼ 1. This is
similar to the mode-coupling observed in fishbone instabilities
involving an ideal kink mode.

IV. SYNCHRONIZATION THROUGH RESONANT
AMPLIFICATION
A. Basic concepts of mode synchronization
and comparison with Kuramoto’s model

Research on synchronization phenomena in tokamak turbulence
typically focuses on ascertaining the main mechanisms responsible for
collective synchronous behavior among the actors playing a role in the
formation or enhancement of ZFs in the low-frequency regime. The
study of the behavior of an ensemble of nonlinear oscillators weakly
interacting is another scenario in which synchronization effects have
been studied extensively. A simple model of such systems is the
Kuramoto model (see Ref. 15): it consists of a population of N coupled
phase oscillators bnðtÞ having natural frequencies xn distributed with
a given probability gðxÞ and whose dynamics is governed by

_bn ¼ xn þ
C
N

XN

j¼1
sin bj % bn
! "

for n ¼ 1;…;N: (22)

When the coupling is sufficiently weak, the oscillators run indepen-
dently at their own frequencies xn. The coupling tends instead to syn-
chronize a given oscillator to the others. In order to make a

FIG. 1. Representation of the toroidal precession frequency distribution xdsðEs; jÞ
¼ Esxd

ðtÞðjÞ in the Es % j plane for trapped particles (on top panel), the corre-
sponding (partial) precession frequency distribution xdiðEi ;jÞ ¼ Eixd

ðtÞðjÞ for co-
circulating ions (on middle panel), and finally of the total precession frequency distribution
xþdi ðEi ;jÞ ¼ xd

ðcÞðjÞEi þ xt ðjÞ
ffiffiffi
Ei
p

q 20q
* for co-circulating ions (on bottom panel). In the

Kumamoto model, the role of the oscillator distribution in frequency, i.e., the function
g ðxÞ used in Eq. (33), is played here by the repartition of the “frequency distribution”
xþdi ðEi ;jÞ along the adiabatic invariants j and Ei.
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connection with the Kuramoto model, let us now consider the Vlasov
equation for a population of fast ions. Using (17), the Vlasov equation
(10), with no diffusion (D¼ 0), reads

@fi
6

@t
þ x6

d j; Eið Þ
@fi

6

@a
¼ % JðcÞ0i /; fi

6
h i

: (23)

Grouping the separate contributions, for example, with respect to
energy Ei and to the pitch- angle-like variable j, one can evaluate the
frequency domain of the mode groups or identify solution classes of
interest. An interaction between these classes of solutions can result
from the coupling between the associated oscillators (or oscillating
particle modes) of the system, each oscillator being defined by a set of
physical parameters that correspond to the values of j and Ei. An
intriguing feature is that these mutual interactions can change the
qualitative state of the system and can lead to a kind of mode transi-
tion via a synchronization process. Such an aspect will be presented
and studied in detail in Paper II.30

Expressing the distribution functions in the form

fi
6

w; a; tð Þ ¼
X

n

f6
n w; tð Þeina;

and introducing a complex order parameter,

K6 w; a; tð Þ ¼
X

n

K6
n e

ina ¼ % JðcÞ0i /; fi
6

h i
; (24)

Eq. (23) can be written in the Fourier space as follows:

@f6
n

@t
þ inx6

d j; Eið Þf6
n ¼ jK

6
n je

iH6
n ; (25)

where jK6
n ðw; tÞj and H6

n ðw; tÞ are, respectively, the amplitude and
the phase of the n%Fourier component of the complex order parame-
ter. Therefore, the Fourier component f6

n of the distribution function
can be described by its (real) amplitude jf6

n j and by its phase
b6
n ðw; tÞ, whose evolution satisfies the following equations:

@jf6
n j
@t
þ i

@b6
n

@t
jf6
n jþ inx6

d j; Eið Þjf6
n j ¼ jK

6
n je

i H6
n %b6

nð Þ; (26)

or, equivalently, by separating the real and the imaginary parts,

@jf6
n j
@t
¼ jK6

n j cos H6
n % b6

n

! "
; (27)

@b6
n

@t
¼ %nx6

d j; Eið Þ þ
jK6

n j
jf6
n j

sin H6
n % b6

n

! "
: (28)

Equations (27) and (28) describe the system in the form of a
Kuramoto model, i.e., in terms of a population of an infinite number
(n ¼ 1;…;N ! þ1) of coupled oscillating particle modes b6

n ðw; tÞ
(which play the role of oscillators) having natural frequency
xn ¼ %nx6

d ðj; EiÞ and whose dynamics is governed by

_bn ¼ xn þ Ck sin !b % bn

! "
: (29)

In (29), !b plays the role of an average phase, C is a function defining
the coupling strength and k is a real parameter varying between
zero and one, which measures the coherence of the system formed of
N ! þ1 oscillators. Note that in Eq. (29) there is not any label 6,

which in principle could be omitted also in Eqs. (27) and (28), pro-
vided the appropriate values of xn are considered. More, in general,
we can even extend the analysis to any type of trapped particle modes
if we replace f6

n with the population of the considered trapped particle
species and the eigenfrequencies xn with the associated precession fre-
quencies given by Eq. (6).

Equation (29) describes a Kuramoto model in which C and k are
constant and a mean-field is responsible of the coupling among phase
oscillators. Here, the level of synchronization is conveniently measured
by the order parameter kei!b ¼ 1

N

PN
n¼1 e

ibn , where the amplitude van-
ishes (k! 0) when the oscillators are out of synchrony which corre-
sponds to incoherence and is k¼ 1 in a (globally) synchronized state.
Therefore, this Kuramoto-like model takes into account a partial syn-
chronization, described by an order parameter of amplitude
0 < k < 1, and a transition from incoherence (k¼ 0) to global syn-
chronization (k¼ 1).

Direct comparison of Eqs. (28) and (29) shows that the phase
bnðw; tÞ of the Fourier component fnðw; tÞ of the distribution function
corresponds to the phase bnðtÞ in the Kuramoto model. The order
parameter Knðw; tÞ ¼ jKnðw; tÞjeiHnðw;tÞ, which corresponds to kei!b

in Kuramoto’s model, is determined by the Fourier component of the
nonlinear Poisson bracket %½J0/;!f )n. This last quantity defines the
nonlinear contribution to the toroidal number n from particle modes,
including TIMs, and passing particle eigenmodes.

We can then define eC ¼ jK6
n j=jf6

n j in Eq. (28) which replaces
Ck of Eq. (29) and accounts for both the coupling strength and the
level of coherence. In the N ! þ1 limit, it is thus possible to intro-
duce a critical coupling parameter eCc, with respect to which to mea-
sure the transition from incoherence to synchronization that in the
original Kuramoto’s model only depends on k. In the case of trapped
particle turbulence, such a transition manifests as a bifurcation occur-
ring when the critical value eCc is attained: the “incoherence” state
defined by the condition eC < eCc is stable because energy cannot be
transferred between modes and electrostatic disturbances can just
decay as in the standard Landau damping scenario. When eC > eCc,
instead, only one positive eigenmode emerges from the spectrum as a
consequence of synchronization, and such a bifurcation follows from
the natural resonance between eigenmodes that are allowed by the sys-
tem through condition (21).

B. Stability properties of synchronized solutions

1. Infinite-N limit of the Kuramoto model

With the purpose of later applying them to the analysis devel-
oped so far, let us recall the linear stability properties of the mean-field
limit of the Kuramoto model. The main idea in Kuramoto’s model is
to introduce, for each frequency x, a density of oscillators qðb; x; tÞ,
which also depends on the angle b and on the time t, and which in the
limit of an infinite number of oscillators verifies the condition as
follows:

@q
@t
þ @

@b
qvð Þ ¼ 0: (30)

This expresses the conservation of oscillators of frequency x when the
velocity vðb; x; tÞ is given by
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v ¼ v b; x; tð Þ ¼ xþ C
ð2p

0
d#
ðþ1

%1
dx sin #% bð Þq #; x; tð Þg xð Þ:

(31)

One can imagine each oscillator as a “particle” moving around a circle,
the population of N oscillators being uniformly distributed on a circle of
radius equal to 1 (i.e., with an initial probability of q ¼ 1

2p). A large clus-
ter of synchronized oscillators appears and, with further increase in the
coupling coefficient C, additional oscillators become synchronized while
the population behavior remains fully incoherent for sufficiently small
interaction strength. A regime of (partial) synchronization, in which all
oscillators with sufficiently small frequency are locked together, takes
place when C increases beyond some threshold value Cc. By assuming a
Taylor expansion in the form qð#; x; tÞ ¼ 1

2pþ dq, the order parame-

ter defined by kei!b ¼
Ð 2p
0 d#

Ðþ1
%1 dxgðxÞqð#; x; tÞ reads

kei
!b ¼

ð2p

0
d#
ðþ1

%1
dxg xð Þei#

1
2p
þ dq x; tð Þei# þ c:c:

* +
; (32)

and its amplitude is given by jkj ¼ 2pj
Ðþ1
%1 dxgðxÞdqðw; tÞj. The

continuity equation (30) reads

@dq
@t
¼ %ixdqþ C

2

ðþ1

%1
dq x; tð Þg xð Þdx; (33)

when gðxÞ is a unimodal natural frequency distribution. Strogatz
et al., in Ref. 22, have shown that the incoherent solution is neutrally
stable for C < Cc ¼ 2

pgð0Þ, with a linearized order parameter that
decays with time. This partially synchronized state bifurcates from
incoherence at C ¼ Cc. In the limit of strong coupling, C! þ1 (at
resonance), the oscillators become synchronized to their average phase
with k! 1.

An analogy exists between the distribution q ¼ qðb; x; tÞ over
natural frequencies in the Kuramoto model and the distribution func-
tion f ¼ f ðx; v; tÞ over velocities v and space x in the one-dimensional
electrostatic Vlasov model (see Appendix C). Such an analogy also exists
between synchronization between oscillators (and their respective
damping) and the Landau damping process in the Vlasov–Poisson sys-
tem of equations. This analogy between synchronization process and
Landau damping has already been introduced by Strogatz et al. in Ref.
22 and more recently by Xu et al. in Ref. 23.

Similarly to the Landau damping picture, oscillators, in the
Kuramoto model, can spread out around a circle, i.e., with an angular
distribution having equal probability in the interval ½0; 2p) and run, in
an incoherent way, along the circle. They become well mixed by the
difference in their frequencies, so that the order parameter decays to
zero. Thus the damping is due to some phase mixing phenomenon,
although modified by a self-consistent decaying field. This formulation
can help us to understand how the stabilization is achieved in the
Hamiltonian trapped/passing particle mode model. In the case of the
trapped particle model, when the coupling among Kuramoto-like
oscillators is strong enough, a fraction of them can synchronize to a
common frequency close to x ¼ 3

2 nxd0
Thot
T0

xd
ðcÞðjÞ (usually with

n¼ 1), and such a synchronization process can be understood as a
nonlinear threshold process.

In conclusion, there are a few elements about the comparison
between the Kuramoto and the trapped particle model that deserve to
be put in evidence:

• In the Kuramoto model, the synchronization is realized just by
phase coupling, whereas in the reduced Vlasov approach, the sit-
uation is somewhat more complex, since phases in Eq. (28) and
amplitudes in Eq. (27) are strongly coupled together. Therefore,
resonant wave–particle interaction may force the synchroniza-
tion process, a mechanism which we will study in detail in Paper
II30 through numerical experiments.

• Within the Kuramoto-like picture of the trapped particle model,
one should intuitively imagine each oscillator (or “eigenmode”)
as a particle moving around a circle. Several resonant mecha-
nisms among the different eigenmodes allowed by the system can
be chosen: as we have done here, modes can be taken among
TIMs, TEMs, low-frequency ZFs, circulating ion modes, counter-
circulating ion modes or even energetic ion modes, but also
hydrodynamical modes, such as Kelvin–Helmholtz (KH) insta-
bilities, developing in the presence of a sheared flow can be in
principle considered.

2. The analogy between the Kuramoto model
and energetic particle modes

We focus on the study of energetic particle modes. Disregarding
the diffusion term (D! 0) and in the absence of polarization effects,
the basic equations of the model are

@fi
6

@t
þ x6

d j; Eið Þ
@fi

6

@a
þ JðcÞ0i /; fi

6
h i

¼ 0; (34)

Ce 1% fp
! "

/% h/ia
! "

¼
1% fp
2

X

rk¼61

ni; ðcÞrk
% 1% fp
! "

; (35)

wherex6
d ðj;EiÞ is defined by Eq. (17). Let us consider the distribution

function of passing ions in the form fi
6ðw; a; tÞ ¼ F0ðwÞ

þ
P

n df6
n ðw; tÞeina and /ðw; a; tÞ ¼ h/ia þ

P
n d/nðw; tÞeina. A

linear analysis leads to

@df6
n

@t
þ inx6

d j;Eið Þdf6
n % ind/n w; tð Þ dF0

dw
¼ 0; (36)

Ce 1% fp
! "

d/n ¼
1% fp
2
hdf þn þ df %n ipassing ions; (37)

or, equivalently, by replacing the expression of d/n given by Eq. (37)
into (36), we obtain

@df6
n

@t
¼ %inx6

d j; Eið Þdf6
n þ

in
2Ce

dF0
dw

2ffiffiffi
p
p
ðþ1

0
dEi

ffiffiffiffi
Ei
p

-
ðþ1

1
djCK j%1ð Þ df þn þ df %n

! "
: (38)

Comparison between Eqs. (33) and (38) shows that the role of gðxÞ is
played by the way the oscillators are distributed among the adiabatic
invariants j and Ei.

V. NUMERICAL SIMULATION
We now discuss some numerical results, obtained with a semi-

Lagrangian technique26,27 that integrates the reduced Vlasov equations
along their characteristics. We thus provide a quantitative example of
synchronization related to the coupling between TIM and a
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population of fast circulating ions in the presence of a sheared flow,
which in turn allows the onset of a Kelvin–Helmholtz instability that
takes part in the nonlinear coupling. Details on the numerical scheme
may be found in Refs. 10 and 12.

A. Initial distribution function
We consider the reduced Hamiltonian model given by Eqs. (7)

and (10) coupled in a self-consistent and nonlinear way with the
quasi-neutrality condition (13) initiated in a normalized equilibrium
state given by

fs w; a; t ¼ 0ð Þ ¼ F0s Esð Þ
*
1þ xds Es;jð Þ

,,,,Es %
3
2

,,,,DsG wð Þ

þdtp

,,,,Es %
5
2

,,,,/max sin 2pw
+
; (39)

with a perturbation given by

dfs ¼ F0s Esð Þd/pert sin pwð Þcos 10að Þ: (40)

Note that here we have used the symbol Es for s ¼ e; i; b;6, where we
explicitly include the contributions also of the energetic ions (label b00,
for “beam”). The equilibrium distribution corresponds to F0s ¼ e%Es
except for the co-passing ion population for which F0;þ
¼ e%Eið1% nbÞ þ nbe%ð

ffiffiffi
Ei
p
%
ffiffiffiffi
Eb
p
Þ2 . This takes into account a small

population of fast co-circulating ions with density nb, the ion beam
having average energy Eb. Here, dtp ¼ 1 for trapped particles and
dtp ¼ 0 for passing ions. In the numerical simulations, we choose

GðwÞ ¼ wþ dtp
sin 4pw
8p % w

2

% &
in Eq. (39). The reason for introducing

the function GðwÞ and the term /max sin pw on the right-hand side of
(39) is to take into account an initial shear flow in the dynamics. This
shear flow gives rise to a Kelvin–Helmholtz instability. It must be
pointed out that all eigenmodes introduced in simulation exhibit the
same eigenfunction of the form , sinpw. This perturbation is com-
patible with a number of modes and instabilities that can develop in
the system: ITG modes for circulating ions, beam-plasma instabilities
with the introduction of a beam of fast ions, TIMs and TEMs when
trapped species are included, but also shear modes driven by the
Kelvin–Helmholtz instability (see Refs. 7 and 8 for more details).

In numerical simulations, the time is normalized to the inverse
drift frequency x%1d0 ¼

eB0r0R0
q0T0

and the poloidal flux w is given in

Dw ¼ r0R0B0
q0

units. The electric potential /, together with the constants
Ce and Ci, are expressed in xd0Dw units. The toroidal precession fre-
quencies, denoted here by xdsðEs; jÞ, are defined by Eqs. (6) and (11),
where s ¼ i; e;6 for trapped ions, trapped electrons, co-passing ions
(þ), and counter-passing ions (–), respectively. In order to provide an
efficient dissipation mechanism for the turbulence cascade, in numeri-
cal simulations we have chosen the coefficient D at right-hand side of
Eq. (10) to be different from zero in the vicinity of the boundary con-
ditions of the w interval. In particular, we take D ’ 0:001 close to
w¼ 0 and to w¼ 1, in a domain extension which is less than 5% of
the whole interval, whereas it is strictly to zero everywhere else. We
have run a simulation with a normalized temperature gradient of
Ds ¼ Dw

Ti

dTi
dw ¼ 0:70, chosen well above the different thresholds of ITG

instabilities, which are close to Dsthreshold , Ce ¼ 0:40. Temperature

gradients have been included for both ion and electrons and for
s ¼ i; e;6. Each species has identical banana width, dbs ¼ 0:10 (in
Dw units). This corresponds to dci ¼ 0:10 for passing ions, to a
Larmor radius of qcs ¼ 0:01 (in Dw units) for each species, and to a

magnetic shear of s0 ¼ r0
q0

dq
dr

% &

r0
¼ 0:8. The perturbation d/pert of Eq.

(40) is chosen to have an amplitude 0.025 on the mode n¼ 5.
Preliminary results, reported in Refs. 7 and 8, have shown the

possibility to separately excite:

• The KH instability, by introducing in the initial equilibrium the
quantity Feq ¼ e%Eið1þ jEi % 5

2 jCi2p/0ðwÞd2biÞ. This allows us to
define in a self-consistent way the initial density neqðwÞ ¼ sin 2pw

(or equivalently an initial velocity shear /0ðwÞ ¼
/max
2p sin2pw) and

an ion pressure P0ðwÞ ¼ n0T0 ¼ const at equilibrium.
• The ITG-driven TIM instability by considering the distribution
function Feq ¼ e%Eið1þ jEi % 5

2 jxd
ðtÞðjÞDswÞ (with the associ-

ated potential /0ðwÞ ¼ 3
2w).

The simulation has been initialized: by choosing Ti ¼ Te ¼ T0

for both ion and electron temperatures; by selecting a beam of
fast ions only for the co-passing population, for which we choose
Eb ¼ 5T0 and nb ¼ 15% of the total density; and by fixing Ci ’ 0:60
for the polarization term, so that a strong coupling with the shear flow
could be excited when the amplitude /max differs from zero. To this
purpose, we have taken /max ¼ 0:50 in xd0Dw units. We have used a
time step Dtxd0 ¼ 0:005 and a phase-space sampling of NaNw

¼ 1025 - 257 for NjNE ¼ 16 - 120 different Vlasov equations,
which are coupled together by the quasi-neutrality condition.

B. Synchronous states driven by trapped ion modes
We can then address the problem of the nonlinear interaction of

turbulence induced by TIMs with energetic co-passing ions, in the
framework of a (partial) synchronization process. The interaction
results from the coupling provided by the electric potential through
the quasi-neutrality condition, by means of which information is
exchanged between TIMs and the other particle modes. Here, the syn-
chronization consists in an adjustment of the phase-space dynamics of
oscillator-like particle modes, which is caused by their resonant
interaction.

We note that the phase-space dynamics related to the synchroni-
zation process we are interested in can be investigated and quantified
in terms of the variation of the L2-norm: in a recent paper,29 we have
indeed shown that the net momentum transfer that can take place
between coherent structures in the phase-space during, e.g., the non-
linear dynamics of some instability, can be related to an “entropy” pro-
duction rate.

We can thus investigate the effects induced by the ITG turbu-
lence due to trapped modes on other “particles modes,” for instance,
co-circulating and counter-circulating ion modes, by examining the
diagnostics presented in Fig. 2, which presents the time evolution of
the L2-norm (sometimes called the “phasestrophy” in Ref. 28) for the
different modes. Although the entropy S ¼ hf ln f i and the L2-norm,
defined as S2 ¼ hf 2i, are exact invariants in the Vlasov formalism,
their invariance is only guaranteed in the sense of the weak conver-
gence, and it is well known that physical coarse-graining or numerical
effects due to the introduction of an elementary numerical cell of finite
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size may lead to small variations of these quantities. Because the
concept of phasestrophy is directly connected to the production
and to the transfer of momentum in plasmas (see Refs. 28 and 29
for more details), its variation is usually associated with the genera-
tion and growth of coherent structures, such as clump-hole pair in
phase space.

Figure 2 shows the quantities: S2 ¼ hf 2s i vs time, where the aver-
age h+i is made over the phase a (i.e.,

Ð 2p
0

da
2p.); the poloidal flux w

(
Ð 1
0 dw.); the pitch angle j (depending on the type of particles, trapped

or circulating); and energy Es ( 2ffiffi
p
p
Ðþ1
0 dEi

ffiffiffiffi
Ei
p

:). The phasestrophy of

trapped ions is plotted on the top panel, while the middle and bottom
panels correspond to the co-circulating and counter-circulating ion
distributions, respectively. While the circulating ion modes exhibits a
slow increase in time (linked to a good numerical conservation of S2
within 2%), the dynamics of the trapped ion mode is characterized by
the emergence of strong bursts, associated with the generation of a
large vorticity in the phase space (as can be seen in Fig. 4 in Sec. VC).
The relative variation of S2ðftrappedÞ is close to DS2 ¼ ðS2ðtÞ % S2ð0Þ=
S2ð0Þ ¼ ð1:1–0:4Þ=0:4 , 175% for trapped ions and of DS2
¼ ð0:000 332% 0:000 325Þ=0:000 325 , 2:15% for co-passing ions
(and of 1.15% for counter-passing ions). This clearly indicates that in
this scenario the TIM drives the turbulence and acts as a “pump”
mode. The overall result can be interpreted as a synchronization pro-
cess in which only a fraction of the particle modes has locked to the
frequency x ¼ 3

2xd0xd
ðcÞðjÞ. The fact that only a fraction of particle

modes has undergone synchronization is visible from Fig. 5 (see
below), where a downward shift in frequency is observed.

Because of this reason, we call it “partial synchronization,” in
contrast with the condition of “global” synchronization, which we will
speak of, and give proof of, in Paper II.30 Here, we want to put empha-
sis on and provide a proof of concept of the synchronization mecha-
nism itself, in which, as discussed before (second “bullet point” in Sec.
IVB1), also further modes like KH-type modes can take part. In order
to better characterize this process as a Kuramoto-like synchronization,
we also underline that the chirped frequency, close to x , 0:5xd0; is
observed well below the values expected from linear theory (shown in
Fig. 1), which indeed are 400 times higher (bottom panel in Fig. 1).

Previous analysis has shown that it is the term Ksðw; a; tÞ
¼ %½JðcÞ0i /; fs ) that plays the role of the order parameter k in the
Kuramoto model. Even without explicitly evaluating the Poisson
bracket, it is possible to obtain information on how the synchroniza-
tion process is realized by looking at the dominant term in the Poisson
bracket of Eq. (24), that is, the contribution of h@J0s/@w fsi, the average
being made over all variables j; Es, w and a. The frequency spectrum
of h@J0s/@w fsi for trapped and co-passing ions is plotted in Fig. 3 on the
top and bottom panels, respectively. The zoom of the spectrum on the
top panel clearly indicates that the turbulence is produced in a very
low-frequency regime, close to x , 0:90xd0. The frequency locking is
another important evidence to prove the synchronization of (thermal
plus fast) co-passing ions: it can be seen on the bottom panel in Fig. 3,
which exhibits a similar dominant peak to that of the top panel.

C. Phase-space dynamics
The whole picture of the plasma dynamics, given in Figs. 2 and 3,

is completed by analyzing the behavior of the trapped ion distribution
shown in Fig. 4 at four different times. The first burst in the phasestro-
phy S2 at time txd0 ’ 70–80 (shown in Fig. 2 on the top panel) is
accompanied by the emergence of four trapping structures driven by
the TIM turbulence in the w% a phase plane, which are shown on the
top left panel of Fig. 5. A major role in the interaction is played by the

FIG. 2. Time evolution of the L2-norm S2 ¼ hf 2ia;w;j;Es for trapped-ion modes
(TIM) (on top panel), for co-circulating ion mode (on middle panel) and finally of the
counter-circulating ion mode (on bottom panel). The concept of “phasestrophy” is
usually associated with the momentum transfer in plasma, in link with the formation
and displacement of vortex structures, such as the clump-hole pair creation pre-
dicted in the Berk–Breizman model, for instance. We observe that only TIM on top
panel exhibits a bursting behavior with strong peaks associated with the emergence
of coherent structures in phase space, which indicates that TIM is the “pump” parti-
cle mode, while the other modes are indeed synchronized states, which shows a
very well conservation of the phasestrophy.
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KH-driven shear flow at time txd0 , 120 (top right panel in Fig. 4), this
burst in activity being linked to the emergence of the second peak in the
dynamics of S2 for trapped ions (shown in the top panel in Fig. 2).

The increase in the turbulent energy is linked to the formation
and growth of vortices in the trapped ion distribution function, corre-
sponding to the toroidal mode number n¼ 4 at time txd0 ¼ 80, fol-
lowed by a re-organization of the plasma that corresponds to the
emergence of a sine-type perturbation in density on the toroidal mode
n¼ 2 at time txd0 ¼ 120; the latter is driven by the KH instability.
Such a sine-type structure differs from the usual hole clump pair

creation,33–35 usually observed in the so-called “bump-on-tail” para-
digm, which is in turn typically associated with strong frequency
sweeping.

Figure 5 shows the frequency spectrum of the quantity

hEi @J0i/@a
@fi
@wi, the first moment with respect to the ion energy Ei of the

@J0i/
@a

@fi
@w; again, the average h+i is performed with respect to all variables

j; Es, w, and a. This function gives an estimation of the order parame-
ter hKsðw; a; tÞiw;a in the synchronization mechanism induced by the
pump driver term (the trapped ion population, shown on the top
panel) and another particle mode (the co-circulating ion population
shown in the bottom panel in Fig. 5). On the top panel, we have plot-
ted the spectrum in frequency of this quantity for TIM: we observe
that the spectrum lies in the range from 0 to 12xd0, corresponding to
a large frequency spread of TIMs driven by the coupling with the shear
flow and energetic ions. During the saturation of the KH instability,
nonlinear sine-type vorticities are formed and such structures are pro-
duced by strong density fluctuations that can lead to the destabiliza-
tion of TIMs by modifying nonlinearly the gradients in density and
temperature. The frequencies corresponding to the toroidal numbers
n¼ 4 and n¼ 2, which are visible in Fig. 4, are evidenced by arrows in
the figure. We see that a TIM-like hole structure tends to lower its own
energy due to the presence of shear flows (dominant, in the standard
fluid model, in the regime where Ei , 0) and because of the energy
dependence of the toroidal precession frequency of banana orbits,
x , nxd0xd ðjÞEi, its frequency must decrease. As a consequence, one
measures a downward chirping of the frequency of TIMs (evidenced in
the figure by the word “chirped”), similar to the behavior of fishbone
modes in tokamaks.

The frequency spectrum shown in the bottom panel of Fig. 5 for
the co-passing ion distribution can be interpreted as a synchronization
between the co-passing ion mode and the chirped resonance
frequency of the n¼ 1 TIM. The latter had an initial frequency
x , 3

2xd0xd ðjÞ Ti
T0
, which decreases to a value of x , 0:5xd0, well

below the value h32xd0xd0xd ðjÞij , 2:5xd0 (for Ti ¼ T0). This
mode is connected to the coupling between KH and the interchange-
type ITG instability, where wave–particle energy exchange can be
enhanced by resonant frequency sweeping.

In conclusion, the energetic or thermal particle modes described by
Vlasov equations of type (23) can be seen as a fundamental paradigm for
the study of collective behaviors (synchrony) in a system formed by par-
ticles modes behaving as oscillators, whose frequencies are expressed in
terms of pitch angles j and energies Ei. When electrostatic fluctuations
maintain wave–particle resonance by “phase-locking,” a significant fre-
quency chirping is observed. Here, it is the TIM that plays the role of the
“particle mode pump,” allowing other modes, in the presence of shear
flow and energetic beam ions, to become locked on the chirped TIM fre-
quency close tox , 0:5xd0, by a partial synchronization mechanism. It
should be noted that a concept of particle mode pump has been initially
introduced by White et al. in Ref. 36, but here this term is borrowed by
analogy and extension: the notion of particle mode pump of those
authors is indeed akin to the notion of “global synchronization” we will
speak of in the companion article.

VI. CONCLUSION
In this work, we have studied the effects of a small population of

energetic ions on ion-temperature-gradient modes that destabilize a

FIG. 3. The spectrum of h@J0s/@w fs iðxÞ in frequency for trapped ions is plotted on
top panel while the corresponding spectrum for copassing ions is plotted on bottom
panel. A zoom, illustrating the behavior of the spectrum in the range of small fre-
quencies has been added on top panel. The synchronization mechanism or fre-
quency entrainment is clearly observed for (thermal plus fast) copassing ions,
driven by the “pump” particle mode (TIM), shown on top panel.
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population of charged particles (ions and electrons) trapped in the
tokamak’s banana orbits. To this purpose, co-circulating and counter-
circulating ion distributions have been both first implemented in the
theoretical model (Sec. II). Interactions between energetic particle
modes, trapped particle modes (as TIM, TEM,…,), and fluid modes,
such as zonal flows and KH-induced perturbations, have been so
investigated both theoretically (Sec. III) and numerically (Sec. V): to
this purpose, the equivalence between the trapped particle model,
extended to include circulating energetic ions, and a Kuramoto syn-
chronization model has been discussed (Sec. IV), in the limit in which
the synchronization of particle modes can be dubbed as “partial,” since
it involves only a fraction of modes. In Paper II,30 we will show how
this scenario can transit to a “global” synchronization state if the
energy density of the circulating ion is large enough.

The results we have presented can be relevant to the physics of
GAMs, too. As an example, synchronization of GAMs and (meso-
scopic) magnetic fluctuations has been recently identified in the edge

physics in tokamak experiments9 about electron-cyclotron-resonance
heating (electron-CRH). The observations reported in Ref. 9 suggest
that the phase shifts between GAMs and magnetic fluctuations can be
locked via nonlinear interactions with fast ions during electron-CRH
heating. In this experiment, it was suggested that a different synchroni-
zation mechanism can be also responsible of the formation of low-
frequency ZF and, thus, of the reduction of the turbulence level. The
analytical model presented in this article could perfectly describe these
experimental observations for the low-frequency ZF mode.
Furthermore, more recently, Ref. 24 showed the impact of energetic
ions (due to ion-CRH in an ASDEX-Upgrade discharge) on plasma
turbulence associated with the formation of internal transport barriers
(ITB). A similar interpretation has been proposed for experimental
observations in stellarators in.25 An energy redistribution was observed
between fast ions and plasma turbulence when the magnetic drift fre-
quency was close to the frequency of the underlying ITG micro-
instabilities. These observations suggest that energetic particles play a

FIG. 4. Representation of the trapped ion distribution in the w% a phase space at four different times. The first burst in the phasestrophy S2 at time txd0 ’ 70–80 (shown in
Fig. 2 on top panel) is accompanied by the emergence of a four-trapping structures in the w% a phase driven by the TIM turbulence (on the top left panel). A reorganization
takes place associated with the emergence, at time txd0 , 120 (on top right panel), of a sine-type vortex structure, on the toroidal number n ¼ 2; driven by the shear flow.
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key role in the synchronization process. Again, our model can also be
applied to the study of turbulence suppression in the presence of ener-
getic ions, and preliminary results should soon be published.

We conclude by noting that it is of general importance to be able
to describe and understand the mechanisms through which interac-
tions among modes involved in tokamak turbulence occur, especially
in connection with the analogy with the generation of “fishbone”
modes. As discussed in Sec. VC phase synchronization processes, in
which also fast ions intervene, are opening up new perspectives on the
modeling of these interactions. We expect that in the future, these sub-
jects will catalyze increasing interest from the research community,
especially for what concerns transition or bifurcation aspects and their
implications on turbulence suppression associated with the generation
of internal transport barriers.
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APPENDIX A: DERIVATION OF FREQUENCIES
IN BOUNCE-AVERAGING FORMALISM

We here provide details about the inclusion of passing particles
in the bounce-averaged model. To this purpose, some elements of
the trapped particle model are also recalled. Assuming an equilib-
rium magnetic field of the form

B ¼ I wð Þruþru - rw ¼ r u% q wð Þhð Þ - rw; (A1)

the trajectory of a particle can be written in the following form (see
Garbet et al.17):

ewG ¼ J3 þ eŵ J; a2ð Þ;

hG ¼ !ca2 þ ĥ J; a2ð Þ;

uG ¼ a3 þ q J3ð Þĥ J; a2ð Þ þ û J; a2ð Þ:

(A2)

In the equations above, the different contributions of the compo-
nents of a ¼ ða1; a2; a3Þ appear explicitly: a1 is the cyclotron phase,
a2 is the bounce or transit angle (depending on whether the particle
is trapped of circulating), and a3 is related to the precession motion.
In (A2), !c ¼ 1 (0, respectively) for passing (trapped, respectively)
particles. The angle variables are, therefore, respectively, related to
the cyclotron frequency by _a1 ¼ X1 ¼ xc; to the bounce frequency
for trapped particles xbs of species s by _a2 ¼ X2 ¼ xbs, or to the
transit frequency xti for passing ions by _a2 ¼ X2 ¼ xti; and to the
precession frequency by _a3 ¼ X3 ¼ xds. In Eq. (A2), ĥðJ; a2Þ and
ûðJ; a2Þ are periodic functions with respect to a2: they represent the
bounce (or transit) motion and the deviation from the regular pre-
cession motion, respectively. Here, for each species s, ms is the
mass, ls the magnetic moment, and vs;Gk the guiding center veloc-
ity. The label G indicates the guiding center: expressing the position
xG in polar coordinates (r, h), the magnetic moment reads

ls ¼
msv2s;G
2BðxGÞ. The invariant J2, therefore, corresponds to the total

energy, Es ¼ 1
2msv2s;Gk þ lsBðxs;GÞ.

In agreement with the experimental conditions, we consider
low beta values and a poloidal field Bh much smaller than the toroi-
dal magnetic field Bu (strong guide field approximation). In this
limit, the modulus of the poloidal magnetic field is given as usual by
Bhðr; hÞ ¼ B0bðhÞ ¼ B0ð1þ e sin2 h

2Þ, where B0 is the minimal value
of the magnetic field amplitude Bh at h¼ 0; R ¼ R0 is the major
radius and r ¼ r0 the minor radius of the tokamak; and e ¼ r0

R0
is

the tokamak inverse aspect ratio. In this configuration, the poloidal
flux is linked to the poloidal field by dw ¼ %BhR0dr and Bh

B ¼
e

qðrÞ.

FIG. 5. Illustration of the spectrum of the quantity hEi @J0i/@a
@fi
@wi, the first moment in

ion energy Ei of
@J0i/
@a

@fi
@w, the average operator h+i being made on all variables j;

Es, w, and a. This function gives an estimation of the order parameter
hKsðw; a; tÞiw;a in the synchronization mechanism induced by the “pump” driver
term (the trapped ion mode, on top panel) and another particle mode (the co-
circulating ion mode in bottom panel). The different frequencies corresponding to
coherent structures occurring in Fig. 4 are represented by arrows in the frequency
spectrum.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 042506 (2022); doi: 10.1063/5.0082393 29, 042506-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


Rather than working with the adiabatic invariant ls, a more conve-
nient approach consists in introducing the pitch angle variable js

defined by the relation j2
s ¼ sin2 h0

2

% &
¼ 1%1sð1%eÞ

2e1s
where 1s ¼

lsB0
Es
.

In order to simplify the notation, hereafter we omit the label s
in js: particles are passing (or circulating) if 1 < j < þ1 or
trapped if 0 ' j < 1. The parallel velocity then takes the following
form:

vGks ¼ !kvs
2e

2eþ 1% eð Þj%2

# $1
2

1% j%2 sin2
h
2

# $1
2

; (A3)

where vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Es=ms

p
and !k is the sign of the parallel velocity.

1. Trapped particles
For trapped particles, in particular, for which j ¼ sin h0

2 , it is
better to introduce the change sin h0 ¼ j%1 sin h

2 where the new var-
iable h0 spans the interval ½0; p2).

In Eq. (6) in Sec. II B, the frequency xdsðj;EsÞ
¼ 6 Ts

T0
xd0 !xðtÞd ðjÞEs represents the ion precession frequency where

the normalized frequency !xðtÞd ðjÞ reads

!xðtÞd jð Þ ¼
1

1% eþ 2ej2

2E jð Þ
K jð Þ

% 1þ 4s0
E jð Þ
K jð Þ

þ j2 % 1
# $* +

;

(A4)

while the bounce frequency is given by

xbs ¼
ffiffiffiffiffiffiffi
2Es
ms

r
1

q0R0
!xðtÞb jð Þ with !xðtÞb jð Þ ’

p
ffiffi
e
p

2
ffiffiffi
2
p

K jð Þ
; (A5)

where s0 ¼ r0
q0

dq
dr

% &

r0
is the magnetic shear. KðjÞ and EðjÞ are the

complete elliptic integrals of the first and second kind, respectively.

2. Passing ions
For passing particles, by exploiting the up-down symmetry,

the integrals over h run over the interval ½0;p). It is also convenient
to introduce the change h0 ¼ h

2, so as to express Eq. (A3) in terms of
Elliptic functions. The variable a3 is approximated to

a3 ¼ uG % q J3ð Þĥ J; a2ð Þ % û J; a2ð Þ ¼ uG % q0 wð Þ hG % a2ð Þ ’ a:

(A6)

Finally, by making the double gyro-average over fast scales (cyclo-
tron plus bounce or transit motion), the two main variables are the
poloidal flux w and the precession phase a ¼ u% q0h, once we
have neglected the deviation from the regular precession motion
and the dependence on a2, after performing the gyro-average over
the transit motion. To complete the analysis of the orbits, we must
determine the frequencies with which the fast ion performs their
periodic motion in h and u. These correspond to the toroidal pre-
cession frequency and the ion transit frequency. Using the pitch-
angle parameter j (with j > 1, here), in the large aspect ratio limit
we thus write as follows:

!xðcÞd jð Þ ¼
1

1% eþ 2ej2 1þ 2j2 E j%1ð Þ
K j%1ð Þ % 1

 !

þ 4s0
E j%1ð Þ
K j%1ð Þ

" #

;

(A7)

for the precession frequency and

!xðcÞb jð Þ ’
pj

ffiffi
e
p

K j%1ð Þ (A8)

for the transit frequency.

APPENDIX B: LINEAR ANALYSIS OF TRAPPED ION
MODES

Here, we recall the main features of TIM turbulence (i.e., with-
out passing ions or trapped electrons), already cited in Ref. 10. By
linearizing the Vlasov equation (7) and by assuming an adiabatic
response of electrons and passing ions, the trapped ion distribution
function and the electric potential can be written in the following
form:

fi w; a; tð Þ ¼ FðtÞ0 wð Þ þ
X

n

dfn wð Þei na%xtð Þ; (B1)

/ w; a; tð Þ ¼
X

n

d/n wð Þei na%xtð Þ; (B2)

where the initial condition for the trapped ion distribution reads

FðtÞ0 wð Þ ¼ e%Ei 1þ Dsxd0xd
ðtÞ jð Þ Ei %

3
2

# $
w

* +
; (B3)

and where Ds ¼ 1
Ti

dTi
dw is the ion temperature gradient. It is possible,

for collisionless TIMs, to determine the marginal solution for the
electric potential fluctuations. Combining reduced Vlasov equation
(7) with the quasi-neutrality condition (13) and with an adiabatic
response for other species, we can write as follows:

Ced/n ¼
2ffiffiffi
p
p
ðþ1

0
dEi

ffiffiffiffi
Ei
p ð1

0
djjK jð Þ

Dse%Ei Ei%
3
2

# $

Ei%
x

nxd0
Ti

T0
xd
ðtÞ jð Þ

JðtÞ20i d/n;

(B4)

with the usual Landau prescription on the imaginary part of x. In
the linear regime, the imaginary part of (B4) must cancel exactly for
the marginal solution, so it is possible to determine the eigenfre-
quencies of TIMs in the following form:

xTIM ¼
3
2
nxd0

Ti

T0
xd
ðtÞ jð Þ; (B5)

for a population characterized by the pitch angle variable j. It must
be recalled that, in deriving the basic form of the dispersion relation
(B4) for trapped ion modes, Tang et al. in Ref. 21 retained up to
x%3 terms in the asymptotic expansion of the solution of Eq. (B4).
This leads to x ¼ dxþ 5

2 nxd0xd ðjÞ having assumed Ti , T0 so to
simplify the calculations), whence we recognize an interchange
mode with frequency xI ’ 5

2 nxd0xd ðjÞ. To deal with a kinetic
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version of the interchange mode, the integral of (B4) must be ana-
lytically continued, thus generating additional terms leading to
xTIM ¼ xI þ dx ¼ 5

2 nxdðjÞ þ 2exe*
2ð1þsÞ ’

3
2 nxdðjÞ, where xe* is the

electron diamagnetic frequency and s ¼ Te
Ti
. Here, the correction in

frequency brought by dx is negative. Equation (B4) reduces to

d/n %
Ds
Ce

2ffiffiffi
p
p
ðþ1

0
dEi

ffiffiffiffi
Ei
p ð1

0
djjK jð Þe%Ei JðtÞ0i

% &2
d/n ¼ 0: (B6)

Thus, for zero boundary conditions in w, the eigenfunctions are
given by d/nðwÞ ¼ sin ðlpwÞ with l ¼ 0; 1; 2;…;. The knowledge of
this marginal solution allows us to determine the threshold of the
ITG-type instability, for instance, for l¼ 1 and qci ¼ 0, we have
Dss ¼ Ce

n where n ¼ 1% 3
4 d2bi % 15

64 d
4
bi is close to one.

APPENDIX C: KURAMOTO SYNCHRONIZATION VS
LANDAU DAMPING

A strong correspondence can be established between the
Kuramoto synchronization approach and the electrostatic limit of
the Vlasov equation.

Starting from the one-dimensional slab model in the x–v phase
space, the Vlasov equation is written as follows:

@f
@t
þ v

@f
@x
þ eE

m
@f
@v
¼ 0; (C1)

and is coupled nonlinearly with the Poisson equation,

@E
@x
¼ e
!0

ðþ1

%1
fdv% en0

!0
: (C2)

Thus, by linearizing the Vlasov equation (C1) around an homoge-
neous equilibrium F0ðvÞ, i.e., f ¼ F0ðvÞ þ df ðk; v; tÞeikx , the set of
Eqs. (C1) and (C2) leads to the following:

@df
@t
þ ikvdf k; v; tð Þ þ edE k; tð Þ

m
dF0
dv
¼ 0; (C3)

and

ikdE k; tð Þ ¼ e
!0

ðþ1

%1
df k; vtð Þdv: (C4)

Finally, eliminating dE yields

@df
@t
¼ %ikvdf k; v; tð Þ %

ix2
p

kn0

dF0
dv

ðþ1

%1
df k; vtð Þdv; (C5)

which is similar to Eq. (33). Equations (33) and (C5) are nonlinear
integro-partial-differential equations for dq and df, respectively.
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