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Abstract

In this work we address some questions concerning the Cauchy problem for a generalized non-
linear heat equations considering as functional framework the variable Lebesgue spaces Lp(·)(Rn).
More precisely, by mixing some structural properties of these spaces with decay estimates of the
fractional heat kernel, we were able to prove two well-posedness results for these equations. In a first
theorem, we prove the existence and uniqueness of global-in-time mild solutions in the mixed-space

L
p(·)

nb
2α−⟨1⟩γ

(Rn,L∞([0, T [)). On the other hand, by introducing a new class of variable exponents, we

demonstrate the existence of an unique local-in-time mild solution in the space Lp(·)
(
[0, T ],Lq(R3)

)
.

1 Introduction

1.1 General setting

In this paper we study the Cauchy problem for the generalized nonlinear heat equations∂tu+ (−∆)αu = F(u) + f, (t, x) ∈]0,+∞[×Rn

u(0, x) = u0(x), x ∈ Rn,
(1.1)

where u : [0,+∞[×Rn −→ R, and f : [0,+∞[×Rn −→ R is a given external force. Equation (1.1)
possess two main features, on the one hand we have involved a nonlinear term given by

F(u) = |u|bu or F(u) = 1⃗ · ∇⃗(|u|bu), (1.2)

with b ∈ N \ {0} and 1⃗ := (1, 1, ..., 1) ∈ Rn, and on the other hand we considered the fractional
Laplacian operator (−∆)α in the diffusion term. Recall that this operator is defined at the Fourier
level by the symbol |ξ|2α, whereas in the spatial variable we have

(−∆)αu(t, x) = Cα p.v.

∫
Rn

u(t, x) − u(t,y)

|x− y|3+2α
dy,

∗gaston.vergarahermosilla@univ-evry.fr
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where Cα > 0 is a constant depending on α, and p.v. denotes the principal value.

The evolution equation (1.1) models two of the classical equations in the literature; the gener-
alized semi-linear power dissipative equation and the generalized convection-diffusion equation. The
case α = 1 corresponds to the well-known classical semi-linear heat equation and has been widely
studied by many authors, where we highlight the papers [6, 10, 15, 17, 19] and the classical book [16].
In particular, the case with α = 1, nonlinear term 1⃗ · ∇⃗(|u|bu) and b = 1, is of special interest as
it can be interpreted as an scalar toy model for the Navier-Stokes equations [1, 2, 9, 18]. Regarding
more general cases, in [11, 12] the authors proved for α ∈ N the existence and uniqueness of strong
solutions of (1.1) considering as functional setting the classical Lebesgue spaces. On the other hand,
in [13] the authors provide a global well-posedness result in the case of α ⩾ 1 considering small initial
data in pseudomeasure spaces.

In this paper we address questions concerning the existence and uniqueness of solutions for equa-
tions (1.1) considering as functional framework the Lebesgue spaces of variable exponent Lp(·)(Rn).
To the best of our knowledge, this kind of functional spaces have not been considered previously in
the analysis of semi-linear power dissipative type equations nor convection-diffusion type equations.
Roughly speaking, the spaces Lp(·)(Rn) can be interpreted as a natural generalization of the classical
Lebesgue spaces Lp, in the sense that, the usual constant parameter p ∈ [1,+∞[ is replaced now by
an appropriate function p(·) : Rn −→ [1,+∞[. However, as we will see in the following lines, in the
rigorous definition of the variable Lebesgue spaces there are subtle issues that make them very differ-
ent of the classical ones. To define the spaces Lp(·), we consider a measurable function f : Rn −→ R,
and the modular function mp(·) associated to p(·), which is defined by

mp(·)(f) =

∫
Rn

|f(x)|p(x)dx. (1.3)

At this stage of the construction, is illustrative to see that, if we consider p(·) ≡ p ∈ [1,+∞[, we can
define the classical Lp-norm, and thus the Lp-space, by considering the expression

∥f∥Lp(Rn) = (mp(f))
1
p .

In this point appears an important issue; if we consider a measurable function p(·) non constant, the
previous formula does not have sense (because the exponent outside the integral). Then, the classical
strategy to avoid this difficulty is to equip to the space Lp(·) with the following Luxemburg norm:

∥f∥Lp(·)(Rn) = inf

{
λ > 0 : mp(·)

(
f

λ

)
=

∫
Rn

∣∣∣∣f(x)λ
∣∣∣∣p(x) dx ⩽ 1

}
. (1.4)

Thus, we define the variable Lebesgue spaces Lp(·)(Rn), as the set of measurable functions such that
quantity ∥ · ∥Lp(·)(Rn) is finite. For a complete presentation of the theory of variable Lebesgue spaces
we refer to the interested reader to the books [4], [5] and [8].

With this information at hand, our objective in this paper is to provide a first application of the
variable Lebesgue spaces to the analysis of the generalized semi-linear power dissipative equation and
the generalized convection-diffusion equation. For doing this, we present an unified approach which
deals both cases. More precisely, we will construct solutions for the Cauchy problem (1.1) provided
with initial data and external forces in appropriate variable Lebesgue spaces. The presentation of our
main results motivate the next subsection.
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1.2 Presentation of the results

In this subsection we state our main results about the existence and uniqueness of mild solution of
the Cauchy problem for the generalized nonlinear heat equation (1.1) on variable Lebesgue spaces.
Thus, in order to distinguish appropriately the different cases involved in (1.2), in the following we
introduce some useful notations. Given a constant s ∈ R, we denote by ⟨s⟩γ to the quantity given by

⟨s⟩γ =

0 if γ = 0,

s if γ = 1.
(1.5)

Similarly, given the operators Id(·) and 1⃗ · ∇⃗(·), we denote by ∇⃗γ(·) to the operator defined by the
expression

∇⃗γ(·) =

Id(·) if γ = 0,

1⃗ · ∇⃗(·) if γ = 1.
(1.6)

With these notations fixed, let us proceed with the presentation of our first main result, which
state the existence and uniqueness of a global mild solution of the Cauchy problem for the equations
(1.1) in the framework of variable Lebesgue spaces as long the external force and the initial data are
sufficiently small. This first theorem reads as follows.

Theorem 1 Let γ ∈ {0, 1} fixed. Consider α ∈]12 , 1], a variable exponent p(·) ∈ Plog(Rn) such that

p− > 1, an initial data u0 ∈ L
p(·)
nb

2α−⟨1⟩γ
(Rn), and let f be an external force such that f = ∇⃗γ(F) where F is

a function in L
p(·)
b+1

nb
(b+1)(2α−⟨1⟩γ)

(Rn,L∞([0, T [)). If ∥u0∥Lp(·)nb
2α−⟨1⟩γ

+ ∥F∥
L

p(·)
b+1

nb
(b+1)(2α−⟨1⟩γ)

,x
(L∞t )

is small enough,

then the equation (1.1) admits an unique global mild solution in the space L
p(·)
nb

2α−⟨1⟩γ
(Rn,L∞([0, T [)).

We must remark the fact that, we have studied the behaviour of the mild solution in the time variable
by considering the L∞ space, and thus we have analyzed the information in the space variable by con-

sidering the mixed variable Lebesgue spaces L
p(·)
r (see Subsection 2.1 for the definition of these spaces).

Now, note that the mixed variable Lebesgue spaces considered here by merely technical reasons, and
it is motivated by the lack of flexibility in the parameters that intervene in the boundedness of the
Riesz transforms involved. In Subsection 2.1 and Remark 3.1 below we will provide precise details on
this particular issue.

In our second main result we will state the existence and uniqueness of a local mild solution for
the equations (1.1) by considering a Lebesgue space of variable exponent in the time variable, and by
setting a classical Lq-space in the space variable. This theorem reads as follows.

Theorem 2 Let γ ∈ {0, 1} fixed. Consider α ∈]12 , 1], p(·) ∈ Plog(Rn) with b + 1 < p− ⩽ p+ < +∞,

fix a parameter q > nb
2α−⟨1⟩γ by the relationship αb

p(·) + nb
2q < α − ⟨12⟩γ and q(·) ∈ Pemb

q (Rn). If

f ∈ L1
(
[0,+∞[,Lq(·)(Rn)

)
is an external force and if the initial data u0 ∈ Lq(·)(Rn), then there exist

a time 0 < T < +∞ and an unique mild solution of the equation (1.1) in the space Lp(·) ([0, T ],Lq(Rn)).
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Note that, the variable exponent q(·) involved in this theorem belongs to the class Pemb
q (Rn), which

characterize the variable Lebesgue spaces embedded in the space Lq(Rn). We will give a precise notion
of this class of exponents in Definition 2.2 and Lemma 2.3 below.

To finish this subsection we must mention that the theorems recently presented here seems to be,
to the best of our knowledge, are the first applications of the variable Lebesgue spaces in the analysis
of the the generalized nonlinear heat equations (1.1). We hope that these results will inform future
studies about applications of variable Lebesgue spaces to various evolution PDEs.

Organization of the paper

The next subsections are structured as follows. In Section 2 we will present a review of the main
definitions and properties of Variable Lebesgue spaces Lp(·) and some decay estimates of fractional
heat kernels. Section 3 is dedicated to the proof of Theorems 1 and 2.

2 Preliminaries

With the aim of keeping this article reasonably self-contained, in this subsection we will present the
key results and definitions about variable Lebesgue spaces and fractional heat kernel involved in the
proofs of our main results.

2.1 Variable Lebesgue spaces

We begin this subsection by specifying some of the basic concept involved in the theory of variable
Lebesgue spaces; the notions of variable exponent, set of variable exponents and limit exponents.

Definition 2.1 Let n ∈ Z+ and p : Rn −→ [1,+∞[ a function. We say that p(·) is a variable
exponent if it is a measurable function. We denote by P(Rn) the set of variable exponents, and we
define the limit exponents p− and p+ as

p− = inf essx∈Rn {p(x)} and p+ = sup essx∈Rn {p(x)}. (2.1)

Given a variable exponent p(·), in the rest of the article we will consider that

1 < p− ⩽ p+ < +∞.

In this point we must emphasise the fact that the spaces Lp(·)(Rn) are Banach function spaces, and
thus they possess interesting and natural properties. In the next, we present the generalization of the
Hölder inequalities to this functional setting.

Lemma 2.1 Let consider the variable exponents p1(·), p2(·), p3(·) ∈ P(Rn) such that the following
pointwise relationship follows 1

p1(x)
= 1

p2(x)
+ 1
p3(x)

, x ∈ Rn. Then, given f ∈ Lp2(·)(Rn) and

g ∈ Lp3(·)(Rn), the pointwise product fg belongs to the space Lp1(·)(Rn), and there exists a numerical
constant C > 0 such that

∥fg∥Lp1(·) ⩽ C∥f∥Lp2(·)∥g∥Lp3(·) . (2.2)
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Note that, given two vector fields f⃗, g⃗ : Rn −→ Rn, the estimate (2.2) can be generalized to the
product f⃗ · g⃗. The proof of this result can be consulted in [4, Section 2.4] or [5, Section 3.2].

To continue we remark that the Luxemburg norm ∥ · ∥Lp(·) defined in (1.4) satisfies the norm
conjugate formula [5, Corollary 3.2.14]. This result reads as follow.

Proposition 2.1 Let consider two variable exponents p1(·),p2(·) ∈ P(Rn) such that 1 = 1
p1(x)

+ 1
p2(x)

,

for all x ∈ Rn. Then, given f ∈ Lp1(·), there exists a numerical constant C > 0 such that

∥f∥Lp1(·) ⩽ 2 sup
∥g∥

Lp2(·)
⩽1

∫
Rn

|f(x)||g(x)|dx. (2.3)

Remark 2.1 As is natural the notions and results recently presented in the setting of the whole space
Rn can be adapted to any subset Ω ⊂ Rn.

In the next we present some embedding results in the setting of variable Lebesgue spaces.

Lemma 2.2 Let n ⩾ 1, a bounded domain Ω ⊂ Rn and p1(·),p2(·) ∈ P(Ω) such that 1 < p+1 , p
+
2 <

+∞. Then, Lp2(·)(Ω) ⊂ Lp1(·)(Ω) if and only if p1(x) ⩽ p2(x) almost everywhere. Morevover, in the
case we have the estimate

∥f∥Lp1(·)(Ω) ⩽ (1+ |Ω|) ∥f∥Lp2(·)(Ω).

The proof of this lemma can be consulted in [4, Corollary 2.48].

An interesting fact in the setting of variable Lebesgue spaces is given by the extension of the result
presented in Lemma 2.2 to unbounded domains. In particular, we will be interested in the case when
p1(x) is a constant function. In order to characterize it in a concise manner we introduce the following
class of exponents.

Definition 2.2 Given a constant exponent q ∈ (1,∞), we define the class of variable exponents
Pemb
q (Rn), as the set

Pemb
q (Rn) =

{
q(·) ∈ Plog(Rn) : q ⩽ (q)− ⩽ (q)+ < +∞ and

qq(x)

q(x) − q
→ +∞ as |x| → +∞}

.

(2.4)

A nice and natural consequence of considering a variable exponent in the class Pemb
q (Rn) is given in

the following result, which follows by considering Theorem 2.45 and Remark 2.46 in [4].

Lemma 2.3 Let q ∈ (1,∞) and q(·) ∈ Pemb
q (Rn). Then, Lq(·)(Rn) ⊂ Lq(Rn), and there exists a

numerical constant C > 0 such that

∥f∥Lq(Rn) ⩽ C∥f∥Lq(·)(Rn).

In this point we must emphasize that the variable Lebesgue spaces are not translation invariant,
and thus, the Young’s inequality for convolution cannot be generalized to Lp(·) spaces for non-constant
exponents (see [5, Section 3.6]). In consequence, new ideas are needed to deal with many of the clas-
sical operators and techniques that appear in the analysis of PDEs.
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One of the classical techniques to study the boundedness of such operators on Lp(·) spaces, is to
consider some constrains on the variable exponents. The most important condition on these exponents
is given by the log-Hölder continuity condition, which we present in the following.

Definition 2.3 Let consider a variable exponent p(·) ∈ P(Rn) such that there exists the limit value
1
p∞ = lim

|x|→+∞ 1
p(x) .

1. We say that p(·) is locally log-Hölder continuous if for each x,y ∈ Rn, there exists a constant
C > 0 such that ∣∣∣∣ 1

p(x)
−

1

p(y)

∣∣∣∣ ⩽ C

log(e+ 1/|x− y|)
.

2. We say that p(·) satisfies the log-Hölder decay condition, if for each x ∈ Rn, there exists a
constant C > 0 such that ∣∣∣∣ 1

p(x)
−

1

p∞
∣∣∣∣ ⩽ C

log(e+ |x|)
.

3. We say that p(·) is globally log-Hölder continuous in Rn if it is locally log-Hölder continuous
and satisfies the log-Hölder decay condition.

4. We define the class as the following class of variable exponents

Plog(Rn) = {p(·) ∈ P(Rn) : p(·) is globally log-Hölder continuous in Rn} . (2.5)

To continue, we recall the definition of the Hardy-Littlewood maximal function.

Definition 2.4 Let f : Rn −→ R a locally integrable function. The Hardy-Littlewood maximal function
M is defined by

M(f)(x) = sup
B∋x

1

|B|

∫
B

|f(y)|dy

where B is an open ball of Rn.

With the notions of globally log-Hölder continuous exponents we can present the following key result
(see [5, Section 4.3]).

Theorem 3 Let consider a variable exponent p(·) ∈ Plog(Rn) satisfying p− > 1. Then, given f ∈
Lp(·), there exist a constant C > 0 such that

∥M(f)∥Lp(·) ⩽ C∥f∥Lp(·) . (2.6)

In the next we recall a classical Lemma about the Hardy-Littlewood maximal function (see [7, Section
2.1]):

Lemma 2.4 If φ is a radially decreasing function on Rn and f is a locally integrable function, then

|(φ ∗ f)(x)| ⩽ ∥φ∥L1M(f)(x),

where M is the Hardy-Littlewood maximal function.
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Let consider the Riesz transforms (Rj)1⩽j⩽n, which are defined at the Fourier level by the expression

R̂j(f)(ξ) = −
iξj

|ξ|
f̂(ξ).

The next result state that the Riesz transform of a measurable function are also bounded in Lebesgue
spaces of variable exponent. A proof of this fact can be consulted in [5, Sections 6.3 and 12.4].

Lemma 2.5 Let consider a variable exponent p(·) ∈ Plog(Rn) satisfying 1 < p− ⩽ p+ < +∞. Then,
given f ∈ Lp(·), there exist a constant C > 0 such that

∥Rj(f)∥Lp(·) ⩽ C∥f∥Lp(·) , (2.7)

In the following we recall the notion of Riesz potential operator.

Definition 2.5 Let consider a parameter β ∈ (0,n) and a measurable function f. We define the Riesz
potential operator Iβ(f) : Rn → [0,+∞] by the expression

Iβ(f)(x) :=

∫
Rn

|f(y)|

|x− y|n−β
dy. (2.8)

This operator is bounded in variable Lebesgue spaces if we consider appropriate globally log-Hölder
continuous variable exponents. A precise statement of this important is presented in the next.

Theorem 4 Let consider a variable exponent p(·) ∈ Plog(Rn) and a parameter β ∈ (0,n/p+). Then,
there exist a numerical constant C > 0 such that the following estimate follows

∥Iβ(f)∥Lq(·) ⩽ C∥f∥Lp(·) , with
1

q(·)
=

1

p(·)
−
β

n
. (2.9)

A proof of this result can be consulted in [5, Section 6.1].

Remark 2.2 Note that the estimate (2.9) introduces a very strong relationship between the variable
exponents p(·) and q(·). For instance, if p(·) is a constant function, this forces to the exponent q(·)
to be constant function as well.

In order to provide more flexibility on these parameters (see Remark 3.1 below) we will consider the
following functional spaces (see in [3] for more details).

Definition 2.6 Let consider a variable exponent p(·) ∈ Plog(Rn) and q ∈ (1,+∞). Then, we define

the mixed Lebesgue space L
p(·)
q (Rn) as

L
p(·)
q (Rn) = Lp(·)(Rn) ∩ Lq(Rn),

which can be normed by the expression

∥ · ∥
L
p(·)
q

= max{∥ · ∥Lp(·) , ∥ · ∥Lq}. (2.10)

As we mentioned above, provided with these functional spaces we have the following result (see [3]).
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Proposition 2.2 Let consider q ∈ (1,+∞), a variable exponent p(·) ∈ Plog(Rn) and a parameter

0 < β < min{n/p+,n/q}. Given a function f ∈ L
p(·)
q (Rn) and a variable exponent r(·) defined by the

following condition

r(·) = np(·)
n− βq

, (2.11)

then, there exist a numerical constant C > 0 such that the following estimate follows

∥Iβ(f)∥Lr(·) ⩽ C∥f∥Lp(·)q
. (2.12)

Remark 2.3 Note that the index q is not to related to the limit exponents p− or p+ nor to p(·).

Remark 2.4 Note that the functional spaces L
p(·)
q inherit the properties of the spaces Lp(·) and Lq.

Thus, given variable exponents p1(·),p2(·),p3(·), and constant exponents q,q2,q3, such that 1
p1(·) =

1
p2(·) +

1
p3(·) and 1

q1
= 1
q2

+ 1
q3

the following Hölder-type inequality follows

∥fg∥
L
p1(·)
q1

⩽ ∥f∥
L
p2(·)
q2

∥g∥
L
p3(·)
q3

Furthermore, the Riesz transforms are also bounded in these spaces.

For more details about the theory of Variable Lebesgue spaces, we recommend to the interested reader
to see the books [4], [5] and [8].

2.2 Some key estimates on the fractional heat kernel

In this subsection we state some estimates related to the fractional heat kernel gαt (x) involved in the
mild formulation of the system (1.1). Let us begin by recalling that this kernel is defined by

gαt (x) = F−1(e−t|ξ|
2α
) = (2π)−

n
2

∫
Rn
eix·ξe−t|ξ|

2α
dξ.

Remark 2.5 Let consider x ∈ Rn and the fractional heat kernel gαt (x). Then, there exists a numerical
constant C > 0 such that the following pointwise estimates follow

|gαt (x)| ⩽ C
t

(t
1
2α + |x|)n+2α

and |∇gαt (x)| ⩽ C
1

(t
1
2α + |x|)n+1

. (2.13)

For a precise statement of this remark see [14, Lemma 2.1 and Remark 2.1].

Lemma 2.6 Let consider x ∈ Rn, the fractional heat kernel gαt (x), and the parameters 1 ⩽ p ⩽ q ⩽
+∞. Then, given α,ν > 0, there exists a numerical constant C > 0 such that following estimates
follow

1. ∥gαt ∗ f(x)∥Lq ⩽ Ct−
n
2α(

1
p−

1
q)∥f∥Lp,

2.
∥∥(−∆)ν/2gαt ∗ f(x)

∥∥
Lq

⩽ Ct−
v
2α−

n
2α(

1
p−

1
q)∥f∥Lp.

We refer to the interested reader to [14, Lemma 3.1] for a proof of these results.
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3 Mild solutions in variable Lebesgue spaces

In this section we study mild solutions for the nonlinear heat equation (1.1) in the setting of variable
Lebesgue spaces. These mild solutions are obtained via the classical contraction mapping principle.
Note that, by considering notations introduced in (1.5) and (1.6), the equations stated in (1.1) can be
recast as ∂tu = −(−∆)αu+ ∇⃗γ(|u|bu) + f, (t, x) ∈]0,+∞[×Rn,

u(0, x) = u0(x), x ∈ Rn,
(3.1)

where γ ∈ {0, 1}. Now, due to the Duhamel formula, we can recover equation (3.1) in the following
equivalent form

u(t, x) = gαt ∗ u0(x) +
∫t
0
gαt−s ∗ f(s, x)ds−

∫t
0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds, (3.2)

where gαt denotes the fractional heat kernel. Any function satisfying the integral equation (3.2) is
called a mild solution of (3.1) (or (1.1)). In the next subsections we will apply the contraction
mapping principle on this integral equation.

3.1 Proof of Theorem 1

In this subsection we consider a variable exponent p(·) ∈ Plog(R+) such that 1 < p− ⩽ p(·) ⩽ p+ <

+∞, and the functional space

E = L
p(·)
nb

2α−⟨1⟩γ
(Rn,L∞([0, T [)),

which is dotted with the following norm

∥ · ∥E = max

{
∥ · ∥

L
p(·)
x (L∞t )

, ∥ · ∥
L

nb
2α−⟨1⟩γ
x (L∞t )

}
. (3.3)

As mentioned above, our strategy will be construct mild solutions for the integral equation (3.2) by
considering mapping contraction principle on thus functional setting. More precisely, the proof of
Theorem 1 is based in the next 3 propositions.

Let us begin by considering the following result regarding a control of the initial data.

Proposition 3.1 Let γ ∈ {0, 1} fixed. Consider α ∈]12 , 1], a variable exponent p(·) ∈ Plog(Rn) such

that p− > 1, and a function u0 ∈ L
p(·)
nb

2α−⟨1⟩γ
(Rn). Then, there exist a numerical constant C > 0 such

that

∥gαt ∗ u0∥E ⩽ C∥u0∥Lp(·)nb
2α−⟨1⟩γ

. (3.4)

Proof. Note that u0 is a locally integrable function, since u0 ∈ L
nb

2α−⟨1⟩γ ⊂ L1loc. Then, as the
fractional heat kernel gαt is a radially decreasing function, we can consider Lemma 2.4 to obtain

∥gαt ∗ u0(x)∥L∞t ⩽ CM(u0)(x).
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Recalling the norm defined in (3.3), we can write the estimate

∥gαt ∗ u0∥E ⩽ Cmax

{
∥M(u0)∥Lp(·) , ∥M(u0)∥

L
nb

2α−⟨1⟩γ

}
.

Now, by hypothesis we know that p(·) ∈ Plog(Rn) with p− > 1, then, by Theorem 3 we have that the
maximal function M is bounded on the Lebesgue space Lp(·)(Rn). Considering this fact, and since M

is also bounded on the space L
nb

2α−⟨1⟩γ , we conclude

∥gαt ∗ u0∥E ⩽ Cmax
{
∥u0∥Lp(·) , ∥u0∥

L
nb

2α−⟨1⟩γ

}
⩽ C∥u0∥Lp(·)nb

2α−⟨1⟩γ

.

With this we conclude the proof. □

Proposition 3.2 Let γ ∈ {0, 1} fixed. Consider α ∈]12 , 1], a variable exponent p(·) ∈ Plog(Rn) with

p− > 1, and a function f = ∇⃗γ(F), where F ∈ L
p(·)
b+1

nb
(b+1)(2α−⟨1⟩γ)

(Rn,L∞([0, T [)). Then, there exist a

numerical constant C > 0 such that∥∥∥∥∫t
0
gαt−s ∗ f(·, ·)ds

∥∥∥∥
E

⩽ C∥F∥
L

p(·)
b+1

nb
(b+1)(2α−⟨1⟩γ)

,x
(L∞t )

. (3.5)

Proof. To conclude the estimate (3.5), in the following we will study separately the cases when
γ = 1 and γ = 0.

• Case γ = 1. We begin the analysis of this case by noticing that since f = ∇⃗γ(F) we can write∣∣∣∣∫t
0
gαt−s ∗ f(s, x)ds

∣∣∣∣ ⩽ C ∫t
0

∫
Rn

|∇⃗gαt−s(x− y)||F(s,y)|dyds.

Then, by Fubini’s theorem and the decay properties of the fractional heat kernel in Remark 2.5,
we get ∣∣∣∣∫t

0
gαt−s ∗ f(s, x)ds

∣∣∣∣ ⩽ C

∫
Rn

∫t
0

1

( |t− s|
1
2α + |x− y| )n+1

|F(s,y)|dsdy.

Now, by considering the L∞t norm on F, we ob∣∣∣∣∫t
0
gαt−s ∗ f(s, x)ds

∣∣∣∣ ⩽ C ∫
Rn

∫t
0

1

( |t− s|
1
2α + |x− y| )n+1

ds∥F(·,y)∥L∞t dy.

Then, as α ∈]12 , 1], we can consider the Riesz potential (see definition (2.5)) provided of the
estimate ∫t

0

ds(
|t− s|

1
2α + |x− y|

)n+1 ⩽
∫+∞
0

ds(
s

1
2α + |x− y|

)n+1

=

∫+∞
0

|x− y|2αdβ(
(|x− y|2αβ)

1
2α + |x− y|

)n+1

=
1

|x− y|n+1−2α

∫+∞
0

dβ(
1+ β

1
2α

)n+1 ,

(3.6)
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in order to obtain∣∣∣∣∫t
0
gαt−s ∗ f(s, x)ds

∣∣∣∣ ⩽ C ∫
Rn

1

|x− y|n+1−2α
∥F(·,y)∥L∞t dy = CI2α−1(∥F(·, ·)∥L∞t )(x),

and then, we can write∥∥∥∥∫t
0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L∞t

⩽ CI2α−1(∥F(·, ·)∥L∞t )(x). (3.7)

Now, to reconstruct the L
p(·)
nb

2α−1

-norm given in (3.3), from the estimate (3.7) we write

∥∥∥∥∫t
0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L
p(·)
x (L∞t )

⩽ C
∥∥I2α−1(∥F(·, ·)∥L∞t )(·)

∥∥
L
p(·)
x

,

and ∥∥∥∥∫t
0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L
nb

2α−1
x (L∞t )

⩽ C
∥∥I2α−1(∥F(·, ·)∥L∞t )(·)

∥∥
L
nb

2α−1
x

.

Thus, by Proposition 2.2 we get∥∥I2α−1(∥F(·, ·)∥L∞t )(·)
∥∥
L
p(·)
x

⩽ C
∥∥∥F(·, ·)∥L∞t ∥∥

L

p(·)
b+1

nb
(b+1)(2α−1)

,x

= ∥F∥
L

p(·)
b+1

nb
(b+1)(2α−1)

,x
(L∞t )

. (3.8)

Note that, since the Riesz potentials are bounded on space L
nb

2α−1 , we obtain∥∥I2α−1(∥F(·, ·)∥L∞t )(·)
∥∥
L
nb

2α−1
x

⩽ C
∥∥∥F∥L∞t ∥∥

L

nb
(b+1)(2α−1)
x

= ∥F∥
L

nb
(b+1)(2α−1)
x (L∞t )

. (3.9)

Then, gathering together the definition of the norm ∥ · ∥E given in (3.3) with the estimates (3.8)
and (3.9), we conclude∥∥∥∥∫t

0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L
p(·)
nb

(2α−1)
,x
(L∞t )

⩽ C∥F∥
L

p(·)
b+1

nb
(b+1)(2α−1)

,x
(L∞t )

. (3.10)

• Case γ = 0. Similarly to the previous case, if we consider Fubini’s theorem and the decay
properties of the fractional heat kernel in Remark 2.5, we can write∣∣∣∣∫t

0
gαt−s ∗ F(s, x)ds

∣∣∣∣ ⩽ C

∫
Rn

∫t
0

|t− s|

( |t− s|
1
2α + |x− y| )n+2α

|F(s,y)|dsdy,

and then, involving the L∞t -norm on the previous estimate, we conclude∣∣∣∣∫t
0
gαt−s ∗ F(s, x)ds

∣∣∣∣ ⩽ C

∫
Rn

(∫t
0

|t− s|

( |t− s|
1
2α + |x− y| )n+2α

ds

)
∥F(·,y)∥L∞t dy.
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Now, considering the estimate∫t
0

|t− s|ds(
|t− s|

1
2α + |x− y|

)n+2α ⩽
∫+∞
0

sds(
s

1
2α + |x− y|

)n+1

=

∫+∞
0

|x− y|2αβ|x− y|2αdβ(
(|x− y|2αβ)

1
2α + |x− y|

)n+2α

=
1

|x− y|n−2α

∫+∞
0

βdβ(
1+ β

1
2α

)n+2α ,

(3.11)

by the definition of the Riesz potential (see definition (2.5)), we obtain∣∣∣∣∫t
0
gαt−s ∗ F(s, x)ds

∣∣∣∣ ⩽ C

∫
Rn

1

|x− y|n−2α
∥F(·,y)∥L∞t dy

= CI2α(∥F(·,y)∥L∞t )(x).
This last estimate implies∥∥∥∥∫t

0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L∞t

⩽ CI2α(∥F(·, ·)∥L∞t )(x). (3.12)

In order to reconstruct the L
p(·)
nb
2α

-norm given in (3.3), from the estimate (3.12) we write

∥∥∥∥∫t
0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L
p(·)
x (L∞t )

⩽ C
∥∥I2α(∥F(·, ·)∥L∞t )(·)∥∥Lp(·)x

,

and ∥∥∥∥∫t
0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L
nb
2α
x (L∞t )

⩽ C
∥∥I2α(∥F(·, ·)∥L∞t )(·)∥∥

L
nb
2α
x

.

Now, considering Proposition 2.2, we get the estimate∥∥∥∥∫t
0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L
p(·)
x (L∞t )

⩽ C
∥∥∥F∥L∞t ∥∥

L

p(·)
b+1

nb
(b+1)(2α)

= C∥F∥
L

p(·)
b+1

nb
(b+1)(2α)

,x
(L∞x )

, (3.13)

and, since the Riesz potential I2α satisfies ∥I2α(φ)∥
L
nb
2α

⩽ C∥φ∥
L

nb
(b+1)(2α)

, we obtain

∥∥∥∥∫t
0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L
nb
2α
x (L∞t )

⩽ C
∥∥∥F∥L∞t ∥∥

L

nb
(b+1)(2α)
x

= C∥F∥
L

nb
(b+1)(2α)
x (L∞t )

. (3.14)

Then, gathering together the norm ∥ · ∥E given in (3.3) with the estimates (3.13) and (3.14) , we
get ∥∥∥∥∫t

0
gαt−s ∗ f(s, x)ds

∥∥∥∥
L
p(·)
nb
(2α)

,x
(L∞t )

⩽ C∥F∥
L

p(·)
b+1

nb
(b+1)(2α)

,x
(L∞t )

. (3.15)
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Considering the estimates (3.10) and (3.15) we conclude (3.5) and thus the proof.
□

Proposition 3.3 Consider α ∈]12 , 1] and a variable exponent p(·) ∈ Plog(Rn) such that p− > 1.
Then, there exist a constant CB > 0 such that∥∥∥∥∫t

0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds

∥∥∥∥
E

⩽ CB∥u∥bE∥u∥E. (3.16)

Proof. In order to conclude (3.16) in the next we will study separately the cases when γ = 1 and
γ = 0.

• Case γ = 1.

We start the study of this case by noticing that, due the Minkowski’s integral inequality and
decay properties of the fractional heat kernel (see Remark 2.5), we can write∣∣∣∣∫t

0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∣∣∣∣ ⩽ C

∫t
0

∫
Rn

|∇⃗gαt−s(x− y)||u(s,y)|
b|u(s,y)|dyds

⩽ C

∫
Rn

∫t
0

1

( |t− s|
1
2α + |x− y| )n+1

|u(s,y)|b|u(s,y)|dsdy.

Then, considering the L∞t -norm on the last inequality we obtain∣∣∣∣∫t
0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∣∣∣∣
⩽ C

∫
Rn

(∫t
0

1

( |t− s|
1
2α + |x− y| )n+1

ds

)
∥u(·,y)∥bL∞t ∥u(·,y)∥L∞t dy.

Inspired by the proof of Proposition 3.2 (see (3.6)), we can write∫t
0

ds(
|t− s|

1
2α + |x− y|

)n+1 ⩽ C
1

|x− y|n+1−2α (3.17)

and then, we conclude the estimate∣∣∣∣∫t
0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∣∣∣∣ ⩽ C

∫
Rn

1

|x− y|n+1−2α
∥u(·,y)∥bL∞t ∥u(·,y)∥L∞t dy. (3.18)

Considering the definition of the Riesz Potential (see 2.5), the last inequality can be recast as∣∣∣∣∫t
0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∣∣∣∣ ⩽ CI2α−1

(
∥u∥bL∞t ∥u∥L∞t

)
(x).

To reconstruct the norm ∥ · ∥E (see (3.3)) we write∥∥∥∥∫t
0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
x (L∞t )

⩽ C∥I2α−1(∥u∥bL∞t ∥u∥L∞t )∥Lp(·)x
,
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and ∥∥∥∥∫t
0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
x (L∞t )

⩽ C∥I2α−1(∥u∥bL∞t ∥u∥L∞t )∥
L

nb
2α−⟨1⟩γ
x

.

Then, considering that ∥I2α−1(φ)∥
L

nb
2α−⟨1⟩γ

⩽ C∥φ∥
L

nb
(b+1)(2α−1)

, an Hölder inequality (see Remark

2.4) and Proposition 2.2, we conclude∥∥∥∥∫t
0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
x (L∞t )

⩽ C
∥∥∥∥u∥bL∞t ∥u∥L∞t ∥∥∥

L

p(·)
b+1

nb
(b+1)(2α−1)

⩽ C∥u∥b
L
p(·)
nb

2α−⟨1⟩γ
,x
(L∞x )

∥u∥
L
p(·)
nb

2α−⟨1⟩γ
,x
(L∞x )

,

(3.19)

and ∥∥∥∥∫t
0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∥∥∥∥
L
nb

2α−1
x (L∞t )

⩽ C
∥∥∥∥u∥bL∞t ∥u∥L∞t ∥∥∥

L

nb
(b+1)(2α−1)
x

⩽ C∥u∥b
L

nb
2α−⟨1⟩γ
x (L∞t )

∥u∥
L

nb
2α−⟨1⟩γ
x (L∞t )

.
(3.20)

Remark 3.1 Note that, in the case that we had considered Theorem 4 instead of Proposition
2.2, we had obtained an estimate of the form ∥I2α−1(φ)∥Lp(·) ⩽ ∥φ∥

L
p(·)
b+1

, which, due the strong

relationship between the the variable exponents involved, yields the constant exponent p(·) ≡
nb

2α−1 .

Gathering together the estimates (3.19), (3.20), and using the definition of the norm ∥ · ∥E given
in (3.3) we get the estimate∥∥∥∥∫t

0
gαt−s ∗ 1⃗ · ∇⃗(|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
nb

(2α−1)
,x
(L∞t )

⩽ C∥u∥b
L
p(·)
nb

(2α−1)
,x
(L∞t )

∥u∥
L
p(·)
nb

(2α−1)
,x
(L∞t )

. (3.21)

• Case γ = 0. By considering the Minkowski’s integral inequality and the decay properties of the
fractional heat kernel (see Remark 2.5), we get the estimates∣∣∣∣∫t

0
gαt−s ∗ (|u|bu)(s, x)ds

∣∣∣∣ ⩽ C

∫
Rn

∫t
0

|t− s|

( |t− s|
1
2α + |x− y| )n+2α

|u(s,y)|b|u(s,y)|dsdy.

Considering L∞t -norm we conclude∣∣∣∣∫t
0
gαt−s ∗ (|u|bu)(s, x)ds

∣∣∣∣
⩽ C

∫
Rn

(∫t
0

|t− s|

( |t− s|
1
2α + |x− y| )n+2α

ds

)
∥u(·,y)∥bL∞t ∥u(·,y)∥L∞t dy.

14



Now, considering the definition of the Riesz potential, and the estimate (see (3.11))∫t
0

|t− s|ds(
|t− s|

1
2α + |x− y|

)n+2α ⩽
1

|x− y|n−2α

∫+∞
0

βdβ(
1+ β

1
2α

)n+2α , (3.22)

we obtain the estimate∣∣∣∣∫t
0
gαt−s ∗ (|u|bu)(s, x)ds

∣∣∣∣ ⩽ C

∫
Rn

1

|x− y|n−2α
∥u(·,y)∥bL∞t ∥u(·,y)∥L∞t dy

= CI2α(∥u(·,y)∥bL∞t ∥u(·,y)∥L∞t )(x).

In order o reconstruct the norm ∥ · ∥E given in (3.3) we can write∥∥∥∥∫t
0
gαt−s ∗ (|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
x (L∞t )

⩽ C∥I2α(∥u∥bL∞t ∥u∥L∞t )∥Lp(·)x
,

and ∥∥∥∥∫t
0
gαt−s ∗ (|u|bu)(s, x)ds

∥∥∥∥
L
nb
2α
x (L∞t )

⩽ C∥I2α(∥u∥bL∞t ∥u∥L∞t )∥Lnb2αx .

If we consider an Hölder inequality (see Remark 2.4), Proposition 2.2 and the fact that the Riesz

potential is bounded in L
nb

(b+1)(2α) , we get the estimates∥∥∥∥∫t
0
gαt−s ∗ (|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
x (L∞t )

⩽ C
∥∥∥∥u∥bL∞t ∥u∥L∞t ∥∥∥

L

p(·)
b+1

nb
(b+1)(2α)

⩽ C∥u∥b
L
p(·)
nb
2α ,x

(L∞x )
∥u∥

L
p(·)
nb
2α ,x

(L∞x )
,

(3.23)

and ∥∥∥∥∫t
0
gαt−s ∗ (|u|bu)(s, x)ds

∥∥∥∥
L
nb
2α
x (L∞t )

⩽ C
∥∥∥∥u∥bL∞t ∥u∥L∞t ∥∥∥

L

nb
(b+1)(2α)
x

⩽ C∥u∥b
L
nb
2α
x (L∞t )

∥u∥
L
nb
2α
x (L∞t )

.
(3.24)

Thus, gathering (3.23), (3.24), and using the definition of the norm ∥ · ∥E given in (3.3), we
obtain ∥∥∥∥∫t

0
gαt−s ∗ (|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
nb
(2α)

,x
(L∞t )

⩽ C∥u∥b
L
p(·)
nb
(2α)

,x
(L∞t )

∥u∥
L
p(·)
nb
(2α)

,x
(L∞t )

. (3.25)

Considering the estimates (3.21) and (3.25) we conclude (3.16), and then Proposition 3.6 is proven.

□
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End of the proof of Theorem 1

Given an element u ∈ E, we consider the operator Ψ

Ψ(u) := gαt ∗ u0(x) +
∫t
0
gαt−s ∗ f(s, x)ds−

∫t
0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds.

Thus, by fixing a parameter γ ∈ {0, 1} and considering the estimates obtained in Propositions 3.1, 3.2
and 3.3, we can conclude

∥Ψ(u)∥E ⩽ C∥u0∥Lp(·)nb
2α−⟨1⟩γ

+ C∥F∥
L

p(·)
b+1

nb
(b+1)(2α−⟨1⟩γ)

,x
(L∞t )

+ C∥u∥b+1
E ,

and

∥Ψ(u) − Ψ(v)∥E ⩽ C∥u− v∥E
(
∥u∥bE + ∥v∥bE

)
.

Let us denote by

B = C∥u0∥Lp(·)nb
2α−⟨1⟩γ

+ C∥F∥
L

p(·)
b+1

nb
(b+1)(2α−⟨1⟩γ)

,x
(L∞t )

,

and set R = (2B)
1
B . Now, considering the ball

BR = {u ∈ E : ∥u∥E ⩽ R} ,

we can write

∥Ψ(0)∥E ⩽ C∥u0∥Lp(·)nb
2α−⟨1⟩γ

+ C∥F∥
L

p(·)
b+1

nb
(b+1)(2α−⟨1⟩γ)

,x
(L∞t )

= B,

and then we obtain

∥Ψ(u)∥E ⩽ ∥Ψ(u) − Ψ(0) + Ψ(0)∥E ⩽ ∥Ψ(u) − Ψ(0)∥E + ∥Ψ(0)∥E ⩽ CRb∥u∥E + B.

Now, if 2CB ⩽ 1
2 , then CR

b ⩽ 1
2 , and we conclude that

∥Ψ(u) − Ψ(v)∥E ⩽
1

2
and ∥Ψ(u)∥E ⩽

1

2
.

Thus, it follows from the contraction mapping principle that there exists an unique mild solution u ∈ E

of the equation (1.1). With this we conclude the proof of Theorem 1.

3.2 Proof of Theorem 2

In this subsection we consider a variable exponent p(·) ∈ Plog([0,+∞[) such that 1 < p− ⩽ p+ < +∞,
and the functional space

ET = Lp(·) ([0, T ],Lq(Rn)) ,

with T ∈]0,+∞[ to be precised later. The space ET is dotted with the following Luxemburg-type
norm:

∥φ⃗∥ET = inf

{
λ > 0 :

∫T
0

∣∣∣∣∥φ⃗(t, ·)∥Lqλ

∣∣∣∣p(t) dt ⩽ 1

}
. (3.26)
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In this subsection we attack the proof following the same strategy that in Theorem 1, we will construct
mild solutions for the integral equation (3.2) by considering the mapping contraction principle on the
space ET .

To this end, we begin by proving the following result regarding a control of the initial data.

Proposition 3.4 Let α ∈]12 , 1], p(·) ∈ Plog(Rn) with b + 1 < p− ⩽ p+ < +∞, fix an index q >
nb

2α−⟨1⟩γ by the relationship αb
p(·) + nb

2q < α − ⟨12⟩γ and q(·) ∈ Pemb
q (Rn). Consider a function u0 ∈

Lq(·)(Rn). Then, there exist a constant C > 0 such that

∥gαt ∗ u0∥ET ⩽ C∥u0∥Lq(·) . (3.27)

Proof. To deduce the inequality (3.27), we begin by considering the Young inequality to obtain

∥gαt ∗ u0∥Lq(Rn) ⩽ ∥gαt ∥L1(Rn)∥u0∥Lq(Rn) = ∥u0∥Lq(Rn).

Now, let recall the following result in the context of Variable Lebesgue spaces (see [5, Lemma 3.2.12,
Section 3.2]).

Lemma 3.1 Let p(·) ∈ P([0,+∞[) such that 1 < p− ⩽ p+ < +∞. Then, there exist C > 0 such that

∥1∥Lp(·)([0,T ]) ⩽ Cmax
{
T

1
p− , T

1
p+

}
.

To continue, we consider the L
p(·)
t -norm on the last inequality to get

∥gαt ∗ u0∥Lp(·)t L
q
x

⩽ C∥u0∥Lq(Rn)∥1∥Lp(·)([0,T ]) (3.28)

⩽ Cmax
{
T

1
p− , T

1
p+

}
∥u0∥Lq(Rn). (3.29)

Then, by Lemma 2.3 we conclude the estimate

∥gαt ∗ u0∥Lp(·)t L
q
x
⩽ Cmax

{
T

1
p− , T

1
p+

}
∥u0∥Lq(·)(Rn). (3.30)

With this we conclude the proof of Proposition 3.4. □

Proposition 3.5 Let γ ∈ {0, 1} fixed. Consider α ∈ (12 , 1), a variable exponent p(·) ∈ Plog(Rn)
with b + 1 < p− ⩽ p+ < +∞, fix an index q > nb

2α−⟨1⟩γ by the relationship αb
p(·) + nb

2q < α − ⟨12⟩γ
and q(·) ∈ Pemb

q (Rn). Then, given a function f ∈ Lp(·)
(
[0,+∞[,Lq(·)(R3)

)
, there exist a numerical

constant C > 0 such that ∥∥∥∥∫t
0
gαt−s ∗ f(s, ·)ds

∥∥∥∥
ET

⩽ C∥f∥
L1tL

q(·)
x

. (3.31)
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Proof. We begin by taking the Lqx -norm to the term
∫t
0 g
α
t−s∗f(s, x)ds in order to obtain the estimate∥∥∥∥∫t

0
gαt−s ∗ f(s, ·)ds

∥∥∥∥
Lq

⩽
∫t
0
∥gαt−s∥L1∥f(s, ·)∥Lqds.

Then, by considering Lemma 2.3 we can write∥∥∥∥∫t
0
gαt−s ∗ f(s, ·)ds

∥∥∥∥
Lq

⩽
∫t
0
∥gαt−s∥L1∥f(s, ·)∥Lq(·)ds ⩽ C∥f∥L1tLq(·)x

.

Proceeding as in the previous lines, i.e. taking the Lp(·)-norm in the time variable and using Lemma
3.1, we get the estimates∥∥∥∥∫t

0
gαt−s ∗ f(s, ·)ds

∥∥∥∥
L
p(·)
t (Lqx)

⩽ C
∥∥∥∥f∥

L1tL
q(·)
x

∥∥∥
L
p(·)
t

⩽ C∥f∥
L1tL

q(·)
x

∥1∥Lp(·)([0,T ])

⩽ Cmax
{
T

1
p− , T

1
p+

}
∥f∥

L1tL
q(·)
x

.

Considering the last estimate, we conclude (3.31) and we finish the proof of Proposition 3.5. □

Proposition 3.6 Let γ ∈ {0, 1} fixed. Consider α ∈]12 , 1], a variable exponent p(·) ∈ Plog(Rn) with

b + 1 < p− ⩽ p+ < +∞, fix an index q > nb
2α−⟨1⟩γ by the relationship αb

p(·) + nb
2q < α − ⟨12⟩γ, and

q(·) ∈ Pemb
q (Rn). Then, there exist a constant CB > 0 such that∥∥∥∥∫t

0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds

∥∥∥∥
ET

⩽ CB∥u∥bET ∥u∥ET . (3.32)

Proof. We begin the proof by considering the Lqx -norm to the term
∫t
0 g
α
t−s ∗ ∇⃗γ(|u|bu)(s, x)ds in

order to obtain ∥∥∥∥∫t
0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds

∥∥∥∥
Lq

⩽ C
∫t
0

∥∥∥gαt−s ∗ ∇⃗γ(|u|bu)(s, ·)∥∥∥
Lq
ds.

From this inequality we can conclude

∥∥∥∥∫t
0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds

∥∥∥∥
Lq

⩽


C

∫t
0

∥∥gαt−s ∗ (|u|bu)(s, ·)∥∥Lq ds if γ = 0,

C

∫t
0

∥∥∥∇⃗gαt−s ∗ (|u|bu)(s, ·)
∥∥∥
Lq
ds if γ = 1.

Note that, Lemma 2.6 yields the estimate∫t
0

∥∥∥∇⃗gαt−s ∗ u⊗ u(s, ·)
∥∥∥
Lq
ds ⩽ C

∫t
0

1

(t− s)⟨
1
2α ⟩γ+

nb
2αq

∥|u|bu(s, ·)∥
L

q
b+1
ds.

Thus, considering an Hölder inequality we obtain∫t
0

∥∥∥∇⃗gαt−s ∗ u⊗ u(s, ·)
∥∥∥
Lq
ds ⩽ C

∫t
0

1

(t− s)⟨
1
2α ⟩γ+

nb
2αq

∥u(s, ·)∥bLq∥u(s, ·)∥Lqds.
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Now, considering the L
p(·)
t -norm and the norm conjugate formula (2.3), provided with the variable

exponent p ′(·) defined by 1 = 1
p(·) +

1
p ′(·) , we get

∥∥∥∥∫t
0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
t (Lqx)

⩽

∥∥∥∥∥
∫t
0

1

(t− s)⟨
1
2α ⟩γ+

nb
2αq

∥u(s, ·)∥b+1
Lq ds

∥∥∥∥∥
L
p(·)
t ([0,T ])

(3.33)

⩽ sup
∥ψ∥

Lp
′(·)⩽1

∫T
0

∫t
0

|ψ(t)|

|t− s|⟨
1
2α ⟩γ+

nb
2αq

∥u(s, ·)∥b+1
Lq dsdt.

Note that, considering Fubini’s Theorem, we can write

sup
∥ψ∥

Lp
′(·)⩽1

∫T
0

∫t
0

|ψ(t)|

|t− s|⟨
1
2α ⟩γ+

nb
2αq

∥u(s, ·)∥bLq∥u(s, ·)∥Lqdsdt

= sup
∥ψ∥

Lp
′(·)⩽1

∫T
0

∫T
0

1{0<s<t}|ψ(t)|

|t− s|⟨
1
2α ⟩γ+

nb
2αq

dt∥u(s, ·)∥bLq∥u(s, ·)∥Lqds,

Now, extending the function ψ(t) by zero on R \ [0, T ], we obtain

sup
∥ψ∥

Lp
′(·)⩽1

∫T
0

∫t
0

|ψ(t)|

|t− s|⟨
1
2α ⟩γ+

nb
2αq

∥u(s, ·)∥bLq∥u(s, ·)∥Lqdsdt

= sup
∥ψ∥

Lp
′(·)⩽1

∫T
0

(∫+∞
−∞

|ψ(t)|

|t− s|⟨
1
2α ⟩γ+

nb
2αq

dt

)
∥u(s, ·)∥bLq∥u(s, ·)∥Lqds

= sup
∥ψ∥

Lp
′(·)⩽1

∫T
0
Iβ(|ψ|)(s)∥u(s, ·)∥bLq∥u(s, ·)∥Lqds,

where Iβ is the 1D Riesz potential with β = 1− ⟨ 1
2α⟩γ − nb

2αq < 1 (see Definition 2.5).

Remark 3.2 Note that the constraints nb
2α−⟨1⟩γ < q and α ∈]12 , 1] imply 0 < 1 − ⟨ 1

2α⟩γ − nb
2αq < 1,

and then the Riesz potential considered is well defined.

Considering an Hölder inequality with 1 = b
p(·) +

1
p(·) +

1
p̃(·) , we get the estimate

sup
∥ψ∥

Lp
′(·)⩽1

∫T
0
Iβ(|ψ|)(s)∥u(s, ·)∥bLq∥u(s, ·)∥Lqds

⩽ C sup
∥ψ∥

Lp
′(·)⩽1

∥Iβ(|ψ|)∥Lp̃(·)t

∥∥∥∥u(·, ·)∥Lqx∥∥∥bLp(·)t

∥∥∥∥u(·, ·)∥Lqx∥∥∥Lp(·)t

.

Remark 3.3 We must stress the fact that condition p− > b + 1 in the statement of the proposition
become from the relationship 1 = b+1

p(·) + 1
p̃(·) .
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Now, provided of Theorem 4 with indexes defined by the relationship

1

p̃(·)
=

1

r(·)
−

(
1− ⟨ 1

2α
⟩γ −

nb

2αq

)
, (3.34)

we conclude the estimate

sup
∥ψ∥

Lp
′(·)⩽1

∥Iβ(|ψ|)∥Lp̃(·)t

∥u(·, ·)∥b
L
p(·)
t (Lqx)

∥u(·, ·)∥
L
p(·)
t (Lqx)

⩽ C sup
∥ψ∥

Lp
′(·)⩽1

∥ψ∥
L
r(·)
t

∥u(·, ·)∥b
L
p(·)
t (Lqx)

∥u(·, ·)∥
L
p(·)
t (Lqx)

. (3.35)

By hypothesis we know that αb
p(·) +

nb
2q < α− ⟨12⟩γ, then from relationship (3.34) and the expressions

1

p̃(·)
= 1−

b+ 1

p(·)
and

1

p ′(·)
= 1−

1

p(·)
,

we deduce r(·) < p ′(·). Thus, by Considering Lemma 2.2 (with r(·) < p ′(·) and X = [0, T ] ), from
(3.35) we obtain

sup
∥ψ∥

Lp
′(·)⩽1

∥ψ∥
L
r(·)
t

∥u(·, ·)∥b
L
p(·)
t (Lqx)

∥u(·, ·)∥
L
p(·)
t (Lqx)

⩽ sup
∥ψ∥

Lp
′(·)⩽1

(1+ T)∥ψ∥
L
p ′(·)
t

∥u(·, ·)∥b
L
p(·)
t (Lqx)

∥u(·, ·)∥
L
p(·)
t (Lqx)

⩽ (1+ T)∥u(·, ·)∥b
L
p(·)
t (Lqx)

∥u(·, ·)∥
L
p(·)
t (Lqx)

.

Gathering these last estimates with (3.33), we conclude∥∥∥∥∫t
0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds

∥∥∥∥
L
p(·)
t (Lqx)

⩽ C(1+ T)∥u(·, ·)∥b
L
p(·)
t (Lqx)

∥u(·, ·)∥
L
p(·)
t (Lqx)

. (3.36)

Considering this last estimate, we deduce the inequality (3.32) and we finish the proof.
□

End of the proof of Theorem 2

Similarly to the strategy considered in Theorem 1, here we consider the operator Φ defined on ET by
the expression

Φ(u) := gαt ∗ u0(x) +
∫t
0
gαt−s ∗ f(s, x)ds−

∫t
0
gαt−s ∗ ∇⃗γ(|u|bu)(s, x)ds.

Thus, by fixing a parameter γ ∈ {0, 1} and considering the estimates obtained in Propositions 3.4, 3.5
and 3.6 we can conclude

∥Φ(u)∥ET ⩽ Cmax
{
T

1
p− , T

1
p+

}(
∥u0∥Lq(Rn) + ∥f∥L1t(Lqx)

)
+ C(1+ T)∥u∥b+1

ET

and
∥Φ(u) −Φ(v)∥ET ⩽ ∥u− v∥ET

(
∥u∥bET + ∥v∥bET

)
.
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Let us denote by

b = Cmax
{
T

1
p− , T

1
p+

}(
∥u0∥Lq(Rn) + ∥f∥L1t(Lqx)

)
,

and set B = (2B)
1
b . Considering the ball

BR = {u ∈ ET : ∥u∥ET ⩽ R} ,

and similar arguments as the end of the proof Theorem 1, we conclude that if B is bounded by an
appropriate constant, then Φ is a contraction map on BR. Thus, it follows from the contraction
mapping principle that there exists an unique mild solution u ∈ ET of the equation (1.1) and we
conclude the proof of Theorem 2.
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