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Abstract

An anisotropic damage model is proposed for concrete materials. As required by thermodynamics a

single damage variable, tensorial, is considered for any loading: as a state variable it represents the

micro-cracking pattern whatever the loading sign. Damage anisotropy is used to model the strong

dissymmetry tension/compression. Ladevèze damage variable H = (111−D)−1/2 is introduced within

a deviatoric/hydrostatic split. An original shear-bulk coupling is derived, in accordance with numerical

Discrete Element computations. The sought property of gradual stress softening, with a tail in stress-

strain diagram, is obtained. Stress triaxiality is used to enhance the performance of Mazars criterion

therefore of the full anisotropic damage model in bicompression.

Keywords
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Introduction

Damage anisotropy is loading induced. From a micro-mechanics point of view it is due to an oriented micro-
cracking pattern. From Continuum Damage Mechanics point of view anisotropic damage is represented
by a tensorial damage variable, either a fourth order tensor DDD of components Dijkl (Chaboche 1979;
Leckie and Onat 1981; Chaboche 1984; Lemaitre and Chaboche 1985; Ju 1989; Maire and Chaboche 1997;
Chaboche and Maire 2000) or a symmetric second order damage tensor D of components Dij (Cordebois
and Sidoroff 1982; Ladevèze 1983; Murakami 1988) such as Dijkl = Dij = 0 for virgin material and such
as rupture at vanishing stress corresponds to maximum principal damage equal to 1.

Second order anisotropic damage representation is restrictive compared to fourth order tensorial
formulation but since its interpretation is quite simple it has been widely and successfully used for either
metallic or quasi-brittle materials (Kattan and Voyiadjis 1990; Ramtani et al 1992; Papa and Taliercio 1996;
Halm and Dragon 1998; Steinmann and Carol 1998; Lemaitre et al 2000; Carol et al 2001; Menzel and
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Steinmann 2001; Menzel et al 2002; Brünig 2003; Billardon and Pétry 2005; Desmorat et al 2007; Badel
et al 2007; Desmorat and Otin 2008; Gatuingt 2008; Ragueneau et al 2008). The three principal values
Di correspond to 3 orthogonal families of microcracks. Damage evolution law takes then the tensorial rate
form Ḋ = · · · ≥ 0 with then the need to properly bound the principal damages to 1 for Finite Element
computations. In the context of quasi-brittle failure, alternative theories are the microplane damage models
usually introducing several scalar damage variables dk defined for fixed damage directions k all over unit
sphere (Bazant and Gambarova 1984; Bazant and Prat 1988a,b; Bazant and Ozbolt 1990; Fichant et al 1997;
Kuhl and Ramm 1998).

Other tensorial damage representations exist in literature such as the use as thermodynamics damage
variable of integrity tensor ΦΦΦ = 111−D, its invert ΦΦΦ−1 or even their squareroot ΦΦΦ

1
2 = (111−D)

1
2 , ΦΦΦ−

1
2 =

(111−D)−
1
2 = H (Ladevèze 1983, 1995; Ladevèze et al 1994; Steinmann and Carol 1998; Menzel and

Steinmann 2001; Badel et al 2007; Souid et al 2009; Desmorat et al 2010a,b; Chen et al 2011; Chambart
et al 2014) as introduced in pioneering work of Cordebois and Sidoroff (1982). The tensorial damage
evolution laws take different forms according to the authors, from Φ̇ΦΦ = · · · ≤ 0 to Ḣ = · · · ≥ 0. Note
that in a similar spirit a compliance version of microplane damage modeling (Jirasek 1999) performs
unit sphere averaging process with damage evolution law applied to inverse of integrity tensor in order to
ensure gradual softening and numerical efficiency. As the principle of energy equivalence is used the tensor
thus defined is in fact tensor H. Carol et al (2001) and Pröchtel and Häußler-Combe (2008) for instance
use Lavedèze general framework but define damage evolution as L̇ = 2ΦΦΦ

1
2 · d

dtΦΦΦ
−1 ·ΦΦΦ 1

2 = 2H · Ḋ ·H =

2(Ḣ ·H−1 + H−1 · Ḣ) = · · · ≥ 0 from the concept of pseudo-logarithmic damage tensor rate. Last, some
authors instead straigthforwardly consider the effective (damaged) elasticity tensor as damage variable
(Govindjee et al 1995; Meschke et al 1998).

One aims in present work to model monotonic multiaxial concrete materials behavior and loading
induced anisotropic damage. It has been shown that a proper consideration of damage anisotropy allows
to diminish the number of material parameters needed to represent concrete response in not too confined
state of stresses (Desmorat 2004; Desmorat et al 2007): the strong dissymmetry of tension/compression
behaviors can be obtained by means of 5 material parameters, including elasticity parameters, i.e. less than
in reference Mazars (1984, 1986) damage model. This property has been gained in so-called next ”initial
anisotropic damage model”:

– within Ladevèze second order damage thermodynamics framework,
– as required by thermodynamics (Lemaitre and Desmorat 2005) by considering a single

thermodynamics variable, standard damage variable D: as a state variable it represents the micro-
cracking pattern whatever the loading sign,

– by means of a deviatoric/hydrostatic splitting within effective stress (Papa and Taliercio 1996;
Lemaitre et al 1999, 2000),

– from a full hydrostatic stiffness recovery in compressive stress states,
– with damage intensity and anisotropy both governed by the extensions (Mazars 1986).

The constitutive equations are recalled in next section with an emphasis on the shear-bulk coupling. The
biaxial responses of the initial model are derived next from a closed form polar representation in principal
stresses plane. The model advantages but also drawbacks are discussed so that a novel shear-bulk coupling
is then proposed, in accordance with numerical Discrete Element results of Delaplace and Desmorat (2007).
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Main features of finally proposed anisotropic damage model are i) the use of unbounded second order tensor
H as damage variable instead of D, ii) that both damage level and damage anisotropy are assumed to be
governed by the extensions (Mazars 1984) and iii) that an improved multiaxial behavior in confined stress
states is gained from an original stress triaxiality enhancement of Mazars criterion function for anisotropic
damage. In present work stress triaxiality is classically defined as the ratio hydrostatic stress σH / von Mises
equivalent stress σeq ,

TX =
1

3

trσ

σeq
=
σH
σeq

(1)

if σ is the stress tensor.

Initial anisotropic damage model

For concrete, the microcracks due to tension are mainly orthogonal to the loading direction, when the
microcracks due to compression are mainly parallel to the loading direction. The damage state is then chosen
to be represented by tensorial variable D, bounded to unit tensor 111. As mentioned in the introduction the use
of a second order damage tensor is convenient for practical applications but also for the material parameters
identification. The damage anisotropy induced by either tension or compression is simply modeled by the
consideration of damage evolution laws ensuring a damage rate proportional to the positive part of the strain
tensor, i.e. damage – and its anisotropy – governed by the extensions 〈εi〉 = max(0, εi) if εi stand for the
eigenstrains (Mazars 1984, 1986).

Thermodynamics framework

In initial anisotropic damage model (Desmorat 2004), Gibbs free enthalpy is assumed to be a function of
the stress tensor and of the second order damage tensor, as follows

ρψ?(σ,D) =
1

4G
tr
(

(111−D)−
1
2 · σ′ · (111−D)−

1
2 · σ′

)
+

1

18K

[ 〈trσ〉2
1− 1

3η trD
+ 〈− tr σ〉2

]
(2)

with E Young’s modulus, ν Poisson’s ratio, G = E/2(1 + ν) and K = E/3(1− 2ν) the shear and bulk
moduli. 〈x〉 = max(x, 0) denotes the positive part of a scalar and (.)′ = (.)− 1

3 tr(.)111 stands for the
deviatoric part of a tensor.

A splitting between deviatoric and hydrostatic contributions has been made and the hydrostatic term
has itself been split into two parts, the part at positive hydrostatic stresses σH = 1

3 trσ being affected by
damage (through its mean / hydrostatic damage valueDH = 1

3 trD, not an additional variable), the negative
hydrostatic stresses remaining unaffected by damage.

Corresponding state laws are

ε = ρ
∂ψ?

∂σ
Y = ρ

∂ψ?

∂D
(3)

Elasticity law coupled with anisotropic damage can be recast as Eq. (4)-(5). See the works of Lemaitre and
Desmorat (2005) and Lemaitre et al (2009) for the derivation of the thermodynamics force Y associated
with anisotropic damage D.
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The model is completed by a criterion function f ≤ 0 defining both the elasticity domain and the mean
damage growth and by a tensorial non standard damage evolution law Ḋ = . . . ≥ 0 ensuring positivity of
the damage rate tensor and of the intrinsic dissipation.

Constitutive equations

The full set of constitutive equations for the initial anisotropic damage model reads (Desmorat et al 2007;
Chambart 2009)

– Initially isotropic elasticity coupled with damage,

εεε = EEE−1 : σ̃ =
1 + ν

E
σ̃σσ − ν

E
tr σ̃σσ 111 i.e.

ε′ = σ̃σσ′

2G

tr ε = tr σ̃σσ
3K = σ̃H

K

(4)

σ̃H = 1
3 tr σ̃ is the effective hydrostatic stress and EEE is isotropic Hooke’s tensor for virgin

(undamaged) material.
– Effective stress,

σ̃ =
(

(111−D)−
1
2 · σσσ′ · (111−D)−

1
2

)′
+

1

3

[ 〈trσσσ〉
1− 1

3η trD
− 〈− tr σσσ〉

]
111 (5)

Material constant η ≥ 1 is the hydrostatic sensitivity parameter (Lemaitre et al 2000).
– Damage criterion,

f = ε̂− κ ≤ 0 (6)

with ε̂ =
√∑〈εi〉2 Mazars (1984) equivalent strain. Consolidation function κ is set as a function of

the trace of the damage tensor,

κ = κ(trD) = a · tan

[
trD

aA
+ arctan

(κ0
a

)]
(7)

– Induced damage anisotropy governed by the positive – in terms of principal values – effective strain
tensor,

Ḋ = λ̇〈ε̃〉+ ε̃ = EEE−1: σ (8)

In such a rate independent formulation, the damage multiplier λ̇ satisfies Kuhn-Tucker loading-
unloading conditions f ≤ 0, λ̇ ≥ 0, λ̇f = 0.

There are 5 material parameters introduced if η = 3 is set: E, ν for elasticity, κ0 as damage threshold and
A and a as damage parameters.

Mathematical and thermodynamics features

Let us first recall that thermodynamics potential ρψ? (Eq. 2) can be continuously differentiated (Ladevèze
1983; Ladevèze and Lemaitre 1984; Lemaitre and Desmorat 2005).

This mathematical property ensures the continuity of the model response in the non proportional loading
cases. As a counterexample for example, if 〈σ〉+ is the positive part of stress tensor in terms of principal
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values and ẼEE damaged elasticity tensor, a term of the form 〈σ〉+ : ẼEE
−1

: 〈σ〉+ cannot be continuously
differentiated and leads to discontinuities in multiaxial stress-strain response.

The mathematical differentiability feature can be illustrated from non proportional numerical tests (with
rotating principal directions). The result to Willam et al (1987) test are given in Fig. 1. The loading is
applied in two steps: i) a first uniaxial tension is applied in direction z till the peak in the stress-strain
diagram, ii) the second loading consists in a rotation of the strain tensor principal axis by applying a
non proprtional loading using biaxial-tension and shear (∆εxz). The applied increments for step ii) are as
follows, ∆εzz = 1

2∆εxz , ∆εxx = 3
4∆εxz . The major principal directions angles for second order tensors

σ, ε and D are denoted respectively ϕσ , ϕε and ϕD, with ϕσ = ϕε = ϕD = 0 up to the end of step i).
Continuity of the stress components (Fig. 1a) as well as of the principal directions (Fig. 1b) is obtained.

a) b)

Figure 1. Willam’s test result for initial anisotropic damage model (Ragueneau et al 2008) a) continuous
stresses, b) continuous principal directions angles ϕσ , ϕε, ϕD (angles in degree) for stress, strain and damage
tensors.

Last the damage evolution law is non standard, i.e. it does not derive from a convex evolution (dissipation)
potential with respect to thermodynamics force Y. The proof of the positivity of the intrinsic dissipation for
the initial anisotropic damage model has therefore to be derived. It is given in (Desmorat 2006; Desmorat
et al 2007; Lemaitre et al 2009). Numerical schemes for the computation of intrinsic dissipation due to
anisotropic damage can be found in (Chambart et al 2014).

Effective Hooke’s tensor

The elasticity law can be inverted in a closed form expression σ = ẼEE : ε so that the effective (damaged)
elasticity tensor is

ẼEE = 2 G̃GG + K̃ 111⊗ 111 = 2G

[
(111−D)1/2⊗(111−D)1/2 − (111−D)⊗ (111−D)

3− trD

]
+K

(
1− 1

3
η trDH (tr ε)

)
111⊗ 111

(9)
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where H(x) is the Heaviside function, and tensorial product ⊗ is defined by the identity (A⊗B) : C =

A ·C ·B for all symmetric tensors A, B, C.

Bulk modulus

One sees from Eq. (9) that effective bulk modulus is

K̃ = K

(
1− 1

3
η trDH(tr ε)

)
= K (1− ηDH H(tr ε)) (10)

It is constant equal to virgin value K in compressive loadings at trσ = 3K tr ε < 0 (negative stress
triaxiality). This physically corresponds to a state of closed micro-cracks. At trσ = 3K̃ tr ε > 0 (positive
stress triaxiality) it is the same linear function K̃ = K(1− ηDH) of the hydrostatic damage DH =
1
3 trD = 1

3 (D1 +D2 +D3) whatever the stress triaxiality. It is therefore not a function of quadratic norm
‖D‖ =

√
D2

1 +D2
2 +D3

3 nor of infinite norm ‖D‖∞ = maxDi, and this for any positive triaxiality.
The linearity of effective bulk modulus with respect toDH has been checked by Delaplace and Desmorat

(2007) – at least at low damage – for two states of micro-cracking:

• left curves of Figure 2 show that Eq. (10) is valid, perfectly for the 16× 16× 16 mm3 cube, up to
DH = 0.3 ,

• right curves Figure 2 show that K̃ cannot be a function of ‖D‖.

Uniaxial state of micro-cracking – not represented – is due to uniaxial tension loading applied on the
cubes of Fig. 3 (considered as a Representative Volume Element (RVE)), triaxial state of micro-cracking
– represented in Fig. 3 – is due to equi-triaxial tension loading applied on the cubes. Both monotonic
loadings are applied numerically as Discrete Element computations on the lattice medium (the cubes
made of Voronoi cells and considered as the RVE). In such numerical tests the material is described as
a particles assembly representative of the material heterogeneity, the particles being here linked by elastic-
brittle beams (Herrmann and Roux 1990; Schlangen and Garboczi 1997; Van Mier et al 2002). Two sizes
8× 8× 8 mm3 and 16× 16× 16 mm3 of RVE of a micro-concrete were considered (Fig. 3), the increase
in size corresponding to an increase in the number of particles and in the number of degrees of freedom
(dof): 512 particles and 4,096 dof for the 8-cube, 3,072 particles and 24,576 dof for the 16-cube. The crack
patterns obtained at the end of the triaxial loading are those of Fig. 3 for the two samples. Note that the
number of beams to break before failure varies from 1,500 beams for the 8-cube sample to 8,000 for the 16
one. The components of damage tensor have been measured (for each mark of Fig. 2) by means of repeated
numerical elastic loading-unloading sequences performed in uniaxial tension (even for the triaxial loading),
using then the coupling of elasticity with anisotropic damage given by Eq. (11)-(12) with one non zero
principal stress σi = σ, the two others σj 6=i = 0.

The negative slope −η in the K̃/K vsDH diagram is found close to −1 (≈ −1.2). The precise value is
subjected to caution as it is obtained from a numerical modeling (with no aggregates for instance) but it can
nevertheless be noticed that it is quite different from the slope −η = −3 obtained from first set of material
parameters identified for initial anisotropic damage model (Desmorat 2004) or for metals (Lemaitre et al
2000).

Note that considering η = 1 in such an initial damage model means that bulk modulus K̃ fully vanishes
at trD = 3, i.e. at maximum principal damage maxDi larger than 1 in uniaxial and equi-biaxial tension (K̃
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Fig. 9 Evolution of K̃/K = 1/h(D) versus hydrostatic damage
(left, in fact versus

√
3DH for comparison) and versus the norm

‖D‖ (right) for the 8-cube sample: h(‖D‖) exhibits a loading

dependency when h(DH ) is kept invariant and can be consid-
ered as intrinsic
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Fig. 10 Evolution of K̃/K = 1/h(D) versus hydrostatic
damage DH for the six 8-cube samples. Straight line corresponds
to K̃/K = 1 − ηDH

Identification of parameter η (Eq. 13) is obtained from
Fig. 12 in which bulk modulus measurements on
uniaxialy damaged specimens are superimposed.

Note that localization occurs for the y ≡ 2 and z≡3
directions after the peak load making the specimen a

full structure instead of an equivalent Gauss point. One
has to limit the identification of the damage hydro-
static parameter to the beginning of the loading (prior
to localization) if the iso-triaxial damage assumption is
used. Parameter η is evaluated to be:

η ≈ 1.2

The crack patterns obtained for the two samples are
shown in Fig. 13. Note that the number of beams to
break before failure varies from 1,500 beams for the
8-cube sample to 8,000 for the 16 one. Using elastic
prediction algorithm needs to solves 8,000 systems of
24,576 degrees of freedom.

5 Identification of the anisotropic damage model

One can now represent the response of the anisotropic
damage model with the identified sensitivity to hydro-
static stresses function h(D) = 1/(1−ηDH ), the elas-
ticity law reading:

ε = 1 + ν

E

[
(1 − D)−1/2σD(1 − D)−1/2

]D

+ 1 − 2ν
3E

[ 〈tr σ 〉
1 − η

3 tr D
− 〈−tr σ 〉

]
1 (14)

The monotonic response in tension and compression is
plotted in Fig. 14. On this curve, the effect of parameter
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Discrete 3D model as complimentary numerical testing for anisotropic damage
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Fig. 12 Evolution of K̃/K = 1/h(D) versus hydrostatic dam-
age DH for the 16-cube sample. Straight line corresponds to
K̃/K = 1 − ηDH

η cannot be noticed (it does not affect compression).
The sensitivity to η is shown in Fig. 15, with as dif-
ferent values considered η = 0, η = 1.25, η = 3. As
expected, the response in uniaxial tension is not much
influenced by this parameter. On the other hand, tri-
tension response strongly depends of η. Note that the

Fig. 13 Crack patterns for the two samples (left 8 × 8 × 8, right
16 × 16 × 16)

value η = 0 corresponds to unphysical response with
no damage developed in tritension.

6 Conclusion

The popularity and the use of a constitutive model
depend on its robustness, its simplicity, and its easiness
to implement in a numerical code. Concerning simplic-
ity, the number, the physical meaning and the identifica-
tion easiness of material parameters is an important fea-
ture to be considered. Both the discrete and anisotropic
damage models have been developed with respect to
these considerations with quite a reduced number of
parameters introduced.

123

Figure 2. Effective bulk modulus K̃ from Discrete Element computations as a function of hydrostatic damage (of√
3DH for comparison) and of quadratic norm ‖D‖. Top: 8× 8× 8mm3 cube, bottom: 16× 16× 16mm3 cube

(from (Delaplace and Desmorat 2007)).

cannot vanish then as principal damages are bounded by 1 !). This corresponds to a quite high (spurious)
elastic stiffness which is kept at rupture. On the other hand the therefore preferred case η = 3 leads to
K̃ = 0 at trD = 1, i.e. at maximum principal damage maxDi equal to 1/2 in equi-biaxial tension, equal
to 1/3 in equi-triaxial tension: at values of shear moduli far to be zero. Enforcing then K̃ = 0 but allowing
still damage tensor D to evolve up to unit tensor 111 in an adequate procedure for the numerical control of
rupture is a solution which leads to numerical difficulties in Finite Element computations (Badel et al 2007;
Desmorat et al 2007; Ragueneau et al 2008; Chambart 2009; Leroux 2012).

One will propose next an adequate shear-bulk coupling that makes coincide the full loss of both bulk and
shear stiffnesses K̃ = G̃ = 0 with no need of a procedure for the numerical control of rupture to bound the
damage eigenvalues to 1.
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6 Conclusion

The popularity and the use of a constitutive model
depend on its robustness, its simplicity, and its easiness
to implement in a numerical code. Concerning simplic-
ity, the number, the physical meaning and the identifica-
tion easiness of material parameters is an important fea-
ture to be considered. Both the discrete and anisotropic
damage models have been developed with respect to
these considerations with quite a reduced number of
parameters introduced.
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Figure 3. Discrete Element samples considered as Representative Volume Element (left 8× 8× 8mm3 cube,
right: 16× 16× 16mm3 cube) and crack patterns at the end of triaxial loading (high damage level) for the two
samples.

Uniaxial and biaxial responses of initial model

In proportional loading, radial loading at constant stress triaxiality TX = trσ/3σeq = σH/σeq , the stress,
strain and damage tensors are colinear and closed form expressions can be derived.

In the principal framework the different tensors are all diagonal (of principal components σi, εi,Di). The
effective stress σ̃ is related to the stress and damage state by Eq. (5) and is also diagonal. In plane stress
condition (σ3 = 0) its deviatoric part is given by

σ̃′1 =
σ1
9

(
4

1−D1
+

1

1−D2
+

1

1−D3

)
− σ2

9

(
4

1−D1
− 2

1−D2
+

1

1−D3

)
σ̃′2 = −σ1

9

(
− 2

1−D1
+

4

1−D2
+

1

1−D3

)
+
σ2
9

(
1

1−D1
+

4

1−D2
+

1

1−D3

)
σ̃′3 = −σ1

9

(
− 1

1−D1
+

2

1−D2
+

2

1−D3

)
− σ2

9

(
− 1

1−D1
+

2

1−D2
+

2

1−D3

) (11)

when its hydrostatic part by
σ̃H =

σ1 + σ2
3(1− ηDH)

(12)

The elasticity law coupled with damage ε′ = σ̃′/2G, tr ε = σ̃H/K gives for an in-plane stress loading
σ1 = ρ cos θ, σ2 = ρ sin θ, interpreting ρ as an equivalent polar stress,

εi =
ρ

E
Bi(θ,Di) (13)

with Bi a function of the parametric angle in the stress plane θ and of the principal damages Di given in
Appendix B.

Similar but simpler calculations give the effective strain principal components as

ε̃i =
ρ

E
B̃i(θ) B̃i(θ) = Bi(θ,Di = 0) (14)
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The damage evolution law Ḋ = λ̇ 〈ε̃〉+ becomes

Ḋi = λ̇ 〈ε̃i〉 =
λ̇ρ

E
〈B̃i〉 (15)

and can be integrated at constant θ in

Di =
〈ε̃i〉

〈ε̃1〉+ 〈ε̃2〉+ 〈ε̃3〉
trD =

〈B̃i〉
〈B̃1〉+ 〈B̃2〉+ 〈B̃3〉

trD (16)

Consistency condition

f = ε̂− κ =
ρ

E

√
〈B1〉2 + 〈B2〉2 + 〈B3〉2 − κ(trD) = 0 (17)

allows to determine equivalent polar stress ρ = ρ(θ,Di) as a function of angle θ and principal damages Di.

Previous derivations give analytically the model response in proportional biaxial loading by proceeding
as follows:

1. Consider a loading biaxiality through angle θ (constant for each proportional loading calculations)
and any given value for the trace of the damage tensor trD, starting from trD = 0.

2. Calculate the principal damage components,

Di =
〈B̃i〉

〈B̃1〉+ 〈B̃2〉+ 〈B̃3〉
trD (18)

as B̃i only depends on θ.
3. Calculate the equivalent polar stress,

ρ =
E κ(trD)√

〈B1〉2 + 〈B2〉2 + 〈B3〉2
(19)

with Bi = Bi(θ,Di).
4. Calculate the stress components

σ1 = ρ cos θ σ2 = ρ sin θ (20)

5. Calculate the strain components
εi =

ρ

E
Bi (21)

The model responses are plotted next. The material parameters are representative of a concrete (peak
stress in tension σtu = 3.5 MPa, peak stress in compression σcu = 30.5 MPa).

E = 37000 MPa, ν = 0.2, η = 3, κ0 = 5 10−5, A = 5000, a = 3 10−3.
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Uniaxial tension

The case of tension – performed in direction 1 – corresponds to θ = 0 (stress triaxiality TX = 1/3). The
stress-strain response is given in Fig. 4a. The different curves σ(ε1), σ(ε2) correspond to the tensile strain
ε1 and to transverse strain ε2 = ε3 abscissa. The damage state is simply D1 ≥ 0, D2 = D3 = 0.
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Figure 4. Response of initial anisotropic damage model a) in tension, b) in equi-biaxial tension.

Equi-biaxial tension

Equi-biaxial tension corresponds to θ = π/4 (stress triaxiality TX = 2/3). The stress σ = σ1 = σ2 vs strain
ε = ε1 = ε2 curve (Fig. 4b) exhibits a peak a bit lower than in tension (3.45 instead of 3.5 MPa) and a more
brittle behavior, as expected for a quasi-brittle material. The damage state is D1 = D2 ≥ 0, D3 = 0.

Uniaxial compression

The stress strain responses σ(εi) and σ(εv) for compression in direction 1 (θ = π, stress triaxiality
TX = −1/3) are given in Fig. 5, denoting εv = tr ε = ε1 + 2ε2 the volumetric strain. As expected, the
σ(εv) response is found linear (σ = trσ = Kεv) due to the deviatoric/hydrostatic splitting with no effect
of the damage on bulk modulus in compressive states. The factor of around 10 between the peak stresses in
tension and in compression, usual for concrete, is obtained. The tension/compression dissymmetric behavior
is mainly due to damage anisotropy: micro-cracks perpendicular to loading direction in tension (D1 > 0,
D2 = D3 = 0), micro-cracks parallel to loading direction in compression D1 = 0, D2 = D3 > 0.

Equi-biaxial compression

The response in equi-biaxial compression (θ = − 3π
4 , stress triaxiality TX = −2/3, Fig. 6) is found much

too brittle (a snapback is exhibited) with a much too low peak stress (6.5 MPa) as for concrete it is usually
larger than compression peak stress σtu (Kupfer et al 1969). This feature has been pointed out in earlier
works. Modeling improvements, not fully satisfactory due to their complexity, have been proposed in
(Ragueneau et al 2008; Leroux 2012). The damage state is D1 = D2 = 0, out of plane damage D3 ≥ 0.
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Figure 5. Response of initial anisotropic damage model in compression.

-0.0020 -0.0015 -0.0010 -0.0005

-10

-8

-6

-4

-2

"

�
(MPa)

Figure 6. a)Response of initial anisotropic damage model in equi-biaxial compression.

Shear

The shear stress τ = σ1 vs shear strain ε12 = ε1 curve is plotted in Fig. 7 (case θ = −π/4, stress triaxiality
TX = 0). It exhibits a peak stress of the same order of magnitude than the one in tension as for well
established Mazars (1984, 1986) isotropic damage model. But present model does not give any ductility at
all in shear (one would have expected a plateau or a slow softening more representative of friction-wear
behavior).

Discussion

This initial anisotropic damage model, dedicated to initially isotropic quasi-brittle materials such as
concrete, has some nice properties:

– It represents the damage state encountered in tension (micro-cracking D1, D2 = D3 = 0, parallel
perpendicular to loading direction 1), in compression (micro-cracking D2 = D3, D1 = 0, parallel to
loading direction 1), in bicompression (out of plane micro-cracking D3, D1 = D2 = 0), in shear.
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Figure 7. Response of initial anisotropic damage model in shear, b) Microcracking pattern corresponding to
damage state D1 ≥ 0, D2 = 0 in shear.

– The damage anisotropy is itself responsible for the dissymmetry of tension and compression
responses, as observed experimentally.

– There is only one damage variable, tensorial, for all loadings including tension and compression,
as requested by the status of a state variable of thermodynamics: D represents the micro-cracking
pattern present in the material whatever the loading sign.

– As a consequence the number of material parameters is quite low: 5 including elasticity parameters
if η = 3 is reasonably set.

– It can be proven that dissipation due to damage is positive in any case Desmorat (2006), this thanks
to the deviatoric/hydrostatic splitting in the definition of the effective stress (5).

– Total softening of all stress components is obtained in 3D at positive stress triaxiality (property
due again to the deviatoric/hydrostatic splitting in the definition of effective stress). At negative
stress triaxiality bulk modulus is unchanged, trσ = 3K tr ε < 0, and only (all) deviatoric stress
components σ′ij softens to zero.

There are of course drawbacks. The main one is the response in equi-bicompression which is way too
brittle. One can argue that the behavior in confined states has not to be modeled by elasticity coupled with
damage only and that plasticity and permanents strains has to take over (Govindjee et al 1995; Meschke
et al 1998; Burlion et al 2002; Gatuingt et al 2002; Grassl and Jirasek 2006). Nevertheless an elasticity
coupled with damage model that includes acceptable monotonic responses in confined stress states would be
appreciated (see for instance the work of Leroux (2012)). A second drawback is that the post-peak response
has no tail. Maximum principal damage reaches 1 at finite rupture strain, whose value is a bit small in tensile
cases. Brittleness is physical but it leads to costly numerical difficulties. One needs a specific numerical
control of rupture (Badel et al 2007; Desmorat et al 2007; Chambart 2009) in order to enforce the principal
damages to remain bounded to 1. In case of plain concrete applications this works well but difficulties arise
at concrete/bars sheared interfaces in reinforced concrete structures (Leroux 2012)). Related to this control
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of rupture procedure, there is the fact that full softening at stress triaxiality larger than 1/3, such as in equi-
biaxial tension case, occurs at principal damages Di < 1, strictly smaller than 1. This is due to shear-bulk
coupling considered as damage D acts on both shear modulus (in a tensorial manner as (111−D)

1
2 terms,

Eq. (9)) and bulk modulus as K̃ = K(1− trD).
Next section is dedicated to the proposal of an anisotropic damage model that attempts to keep the

advantages of initial model and to correct its drawbacks. The validity domain sought still consists in
monotonic applications at not too high triaxial confining pressures, so that one allows us not to model the
irreversible strains, neither the volumetric dilatancy in simple compression, nor all complex cyclic effects,
see for instance (Bazant and Prat 1988a,b; Ragueneau et al 2000; Goidescu et al 2015) and (Desmorat 2004;
Ramtani et al 1992; Halm and Dragon 1998; Souid et al 2009; Lebon 2011; Richard and Ragueneau 2013)
in case of tensorial damage).

Model with modified shear-bulk coupling

The change of second order tensorial damage variable H = (111−D)−
1
2 is operated and the damage

dependency of deviatoric and of hydrostatic parts of novel effective stress (23) are both made homogeneous
to H2. This allows to consider an unbounded damage evolution up to H→∞ for any loading case. The
same damage variable H is chosen to act on both shear and bulk parts, representative of so-called shear-bulk
coupling. There is no need to refer anymore to standard damage variable D but it is nevertheless convenient
to still calculate it (as D = 111−H−2) as principal damages Di ∈ [0, 1] are more easily interpreted than
unbounded principal values Hi ∈ [1,∞[ of tensor H. The ”no damage” case corresponds to H = 111⇔
D = 000 or Hij = δij ⇔ Dij = 0 in terms of components.

Constitutive equations

The proposed anisotropic damage constitutive equations for quasi-brittle materials, such as concrete, are as
follows.

– Initially isotropic elasticity coupled with damage,

εεε =
σ̃′

2G
+

1

9K
tr σ̃ 111 (22)

– Effective stress,

σ̃ = (H · σσσ′ ·H)
′
+

1

3

[
1

3
trH2 〈trσσσ〉 − 〈− tr σσσ〉

]
111 (23)

– Damage criterion,

f = ε̂− κ ≤ 0 (24)

with ε̂ Mazars equivalent strain.
Consolidation function is taken linear in trH as,

κ = κ0 + SRsν (trH− 3) (25)

with as material parameters the damage threshold κ0, the triaxiality exponent s and the damage
strength S, enhanced by (negative) stress triaxiality TX by means of triaxiality functionRν (Lemaitre
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and Chaboche (1985), see Appendix D), here normed to unity in shear and possibly bounded to
material constant B > Rcν = 3/2(1 + ν) in order to properly model biaxial compression,

Rν = min

[
1 +

9

2

1− 2ν

1 + ν
〈−TX〉2 , B

]
TX =

σH
σeq

(26)

– Induced damage anisotropy governed by the positive – in terms of principal values – effective strain
tensor 〈ε̃〉+ but written in terms of rate of damage tensor H,

Ḣ = λ̇〈ε̃〉+ ε̃ = EEE−1: σ (27)

The damage multiplier λ̇ satisfies Kuhn-Tucker loading-unloading conditions f ≤ 0, λ̇ ≥ 0, λ̇f = 0.

The stress triaxiality is TX = 1/3 in tension leading to the value Rtν = 1 for triaxiality function, it is
TX = 2/3 in equibiaxial tension so that Rν = 1, it is TX = 0 in shear with then Rν = 1, TX = −1/3 in
compression with Rν = Rcν = 3/2(1 + ν) > 1, and TX = −2/3 in equibiaxial compression in which case
Rν = 3(1− ν)/(1 + ν) > Rcν > 1. Standard definition for stress triaxiality function is here preferred to
the definition of equivalent strain reducing factor γ =

√
〈−σ〉+ : 〈−σ〉+/〈− trσ〉 introduced by Mazars

and coworkers in criterion function f (Mazars 1984; Pontiroli 1995; La Borderie 2003).

There are 6 or 5 material parameters introduced, depending on whether bounding value B is introduced
or not: E, ν for elasticity, κ0 as damage threshold, damage strength S, damage triaxiality exponent s,
bicompression parameter B. Their number is quite low for constitutive equations attempting to properly
model concrete multiaxial behavior with dissymmetry tension/compression. Again the key point of
modeling is the fact that such a dissymmetry is due to damage anisotropy with a tensorial damage state
represented by single variable H = (111−D)−

1
2 . There is no – thermodynamically inconsistent – use of a

first damage variable for ”tension” and of a second damage variable for ”compression”.

Effective Hooke’s tensor

The elasticity law can be inverted in a closed form expression σ = ẼEE : ε so that the effective (damaged)
elasticity tensor is at positive stress triaxiality TX (positive trσ and tr ε):

ẼEE = 2G

[
H−1⊗H−1 − H−2 ⊗H−2

trH−2

]
+

3K

trH2
111⊗ 111 (28)

It tends toward 000 in limiting case H→∞.

At negative TX (negative trσ and tr ε):

ẼEE = 2G

[
H−1⊗H−1 − H−2 ⊗H−2

trH−2

]
+K 111⊗ 111 (29)

It tends toward K 111⊗ 111 in limiting case H→∞.

Bulk modulus

Bulk modulus K̃ = K remains unchanged at negative stress triaxiality TX (σH = 1
3 trσ < 0, εv =

tr ε < 0).
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One sees from Eq. (28) that effective (damaged) bulk modulus at positive stress triaxiality (σH > 0,
εv > 0) is

K̃ =
3K

trH2
=

3K

tr (111−D)
−1 (30)

It decreases with damage as potted in Fig. 8, where hydrostatic damage DH in terms of D has been
calculated from the knowledge of damage tensor H,

DH =
1

3
trD = 1− 1

3
trH−2 (31)

This gives a nonlinear variation in most cases including uniaxial tension H1 ≥ 1, H2 = H3 = 1. Equi-
triaxial tension case corresponds to spherical damage tensors of principal components

Hi =
1√

1−Di

=
1

3
trH Di = 1− 1

H2
i

= 1−
(

3

trH

)2

=
1

3
trD = DH (32)

so that in such a particular case one recovers a linear loss of stiffness K̃ = K(1−DH) which corresponds
to hydrostatic sensitivity parameter η = 1 in initial anisotropic damage modeling. The loss of bulk modulus
is found very similar to the one of Fig. 2 obtained from Discrete Element computations.

Altogether vanishing shear and bulk stiffnesses are gained from proposed shear-bulk coupling (at infinite
strain as illustrated in the examples of next section).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tension

Tri-tension

DH =
1

3
trD

K̃

K

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

K̃

K

kDk

Tension

Tri-tension

Figure 8. Effective bulk modulus K̃ from shear-bulk coupling (23)-(30) as a function of hydrostatic damage DH

and of quadratic norm ‖D‖ with D = 1−H−2.

Responses of proposed anisotropic model

Let us consider cases of proportional loading and use again the plane stress polar representation σ1 =

ρ cos θ, σ2 = ρ sin θ.
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Following the same formal derivation than for the initial anisotropic damage model one sets for elasticity
law coupled with damage (see Appendix C for functions Ci and C̃i, Ceq =

√
〈C1〉2 + 〈C2〉2 + 〈C3〉2),

εi =
ρ

E
Ci(θ,Hi) ε̂ =

ρ

E
Ceq(θ,Hi) (33)

and for effective strain ε̃ = EEE−1 : σ,

ε̃i =
ρ

E
C̃i(θ) C̃i = Ci(θ,Hi = 1) (34)

The damage evolution law Ḣ = λ̇ 〈ε̃〉+ becomes in proportional loading

Ḣi = λ̇ 〈ε̃i〉 =
λ̇ρ

E
〈C̃i〉 (35)

and can be integrated in

Hi = 1 +
〈ε̃i〉

〈ε̃1〉+ 〈ε̃2〉+ 〈ε̃3〉
(trH− 3) = 1 +

〈C̃i〉
〈C̃1〉+ 〈C̃2〉+ 〈C̃3〉

(trH− 3) (36)

The consitency condition gives then, with triaxiality function Rν = Rν(TX(θ))

f = ε̂− κ(θ, trH) = 0 κ(θ, trH) = κ0 + SRsν (trH− 3) = 0 (37)

In the same manner than for the initial anisotropic damage model, proceed then as follows to calculate
the model response in proportional biaxial loading:

1. Consider a loading biaxility through angle θ and any given value for trH, starting from trH = 3.
The stress trixaxiality is:

TX =
1

3

σ1 + σ2√
σ2
1 − σ1σ2 + σ2

2

=
1

3

sin θ + cos θ√
1− sin θ cos θ

= TX(θ) (38)

2. Calculate the principal damage components,

Hi = 1 +
〈C̃i〉

〈C̃1〉+ 〈C̃2〉+ 〈C̃3〉
(trH− 3) (39)

as C̃i only depends on θ.
3. Calculate the equivalent polar stress,

ρ =
E κ(θ, trH)

Ceq
(40)

due to Ceq = Ceq(θ,Hi).
4. Calculate the stress components

σ1 = ρ cos θ σ2 = ρ sin θ (41)
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5. Calculate the strain components
εi =

ρ

E
Ci (42)

One cross-identifies the proposed anisotropic model on the initial tension and compression responses of
initial model, Eq. (4)-(8). As already mentioned the purpose is to avoid the sudden softening to zero stress
and to gain ductility, as a tail decreasing gently to zero stress in stress-strain diagrams. The peak stresses
are enforced identical for both models in tension (σtu = 3.5 MPa) and in compression (σcu = 30.5 MPa).

The material parameters for concrete are:

E = 37000 MPa, ν = 0.2, κ0 = 9 10−5, S = 1.45 10−4, s = 4.9, B =
5

3

The responses of initial anisotropic damage model are reported as dashed lines in next figures.

Uniaxial tension

The response in uniaxial tension, at polar angle θ = 0 and stress triaxiality TX = 1/3, is given in Fig. 9a and
9b. The peak stress is well σtu = 3.5 MPa as for initial damage model. A larger strain scale is considered in
Fig. 9b in order to exhibit the gain in ductility and the tail obtained at high softening (the stress nevertheless
tends to zero at infinite strain).

The micro-cracking pattern characteristic of tension performed in direction 1 is recovered asH2 = H3 =

1 (equivalent to D2 = D3 = 0) and

H1 =
1√

1−D1

= trH− 2 > 1 D1 = 1− 1

H2
1

= 1− 1

(trH− 2)2
> 0 (43)
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Figure 9. Response of proposed anisotropic damage model in tension (dashed line: initial anisotropic damage
model). A larger strain scale used in b).
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Biaxial tension

The same peak stress than for initial damage model (still with more ductility, Fig. 10) is obtained in
equi-biaxial tension case θ = π/4, TX = 2/3. The damage state is H1 = H2 = 1

2 (trH− 1) > 1, H3 = 1

equivalent to D1 = D2 > 0, D3 = 0.
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Figure 10. Response of proposed anisotropic damage model in equi-biaxial tension (dashed line: initial
anisotropic damage model).

Uniaxial compression

Compression in direction 1 is the case θ = π, stress triaxiality TX = −1/3 (Fig. 11).

Cross-identification on compression response can be performed up to softening stage at high damage level
(up to D2 = D3 ≈ 0.9). The fact that the stress has not softened of 90% at this damage level is due both
to damage anisotropy (damages D2 and D3 are not in loading direction) and to unchanged (undamaged)
bulk modulus in compression K̃ = K. Such last model feature is reflected by linear response in terms
of volumetric stress-strain curve σ(εv) = Kεv = K tr ε in Fig. 11. A softening tail is obtained for σ(ε1)

response but its role in compression (as well as in next bicompression) is much less important for most
practical applications than at positive or zero stress triaxiality.

The micro-cracking pattern in compression D1 = 0, D2 = D3 > 0 is gained as

H1 = 1 and H2 = H3 =
1

2
(trH− 1) > 1 (44)

corresponding to standard damages

D2 = D3 = 1− 1

H2
2

= 1−
(

2

trH− 1

)2

> 0 (45)

Biaxial compression

Model response in equi-biaxial compression is plotted in Fig. 12 for different values of bounding material
parameter B. Poisson’s ratio is ν = 0.2 so that the same response is obtained for any B ≥ 2 than for
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Figure 11. Response of proposed anisotropic damage model in compression (dashed line: initial anisotropic
damage model).

unbounded caseB →∞. One sees clearly that parameterB allows to represent any physical bicompression
response, depending on the concrete considered: it is named bicompression parameter. Be careful just to
chose B > 3/2(1 + ν) = 1.25 so that the response in uniaxial compression remains unchanged (as well
as all other model responses at larger stress triaxiality TX ≥ −1/3 plotted in present work). The choice
B = 5/3 is found consistent with Kupfer et al (1969) multiaxial experiments exhibiting a ratio peak stress
in bicompression / peak stress in tension of approximately 1.15, i.e. here a peak stress of 35 MPa in
bicompression. The choice B = 1.725 is consistent with ratio of 1.35 obtained by Yin et al (1989) (peak
stress of 41 MPa in bicompression).

Physical damage state of initial anisotropic modelD3 > 0,D1 = D2 = 0 is recovered from principal out
of plane damage H3 = (1−D3)−

1
2 = trH− 2 > 1 and in-plane damages H1 = H2 = 1.
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Figure 12. Response of proposed anisotropic damage model in equi-biaxial compression for different values of
bicompression parameter B (dashed line: initial anisotropic damage model, thick line: unbounded Rν case
B →∞ or any case B ≥ 2).
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Shear

Shear response, θ = −π/4 and TX = 0, is plotted in Fig. 13. The peak stress is satisfactory of the same
magnitude than the peak stress in tension or than the peak stress in shear calculated from initial anisotropic
damage model. The nice feature of a softening tail is obtained. Note that a non zero residual shear strain is
still present (of value τ = 0.1 MPa) at quite important strain ε12 = 10−2.
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Figure 13. Response of proposed anisotropic damage model in shear (dashed curve: initial anisotropic damage
model). A larger strain scale used in b).

Lode angle dependency

General elasticity criterions for isotropic materials depends on the 3 stress invariants I1 = trσ, J2 =
1
2 trσ′

2
= σ2

eq/3, J3 = 1
3 trσ′

3
= detσ′, or in a equivalent manner of von Mises stress σeq , of stress

triaxiality TX = 1
3 trσ/σeq and of Lode angle Θ ∈

[
0, π3

]
defined as

Θ =
1

3
arccos

27

2

detσ′

σ3
eq

(46)

not to be confused with previous polar angle θ. The principal deviatoric stresses are then σ′i = 2
3σeq cos Θi

where Θ1 = Θ, Θ2 = Θ− 2π
3 , Θ3 = Θ + 2π

3 , so that in principal basis diagonal deviatoric stress is
expressed as

σ′ =
2

3
σeqn(Θ) n(Θ) =

 cos Θ1 0 0

0 cos Θ2 0

0 0 cos Θ3

 (47)

with tensor n(Θ) deviatoric as trn(Θ) = 0. This exhibits the feature that Mazars initial elasticity surface
f = ε̂− κ0 = 0, built from the positive part of the principal strains within definition of equivalent strain ε̂,
is function of second (von Mises) stress invariant σeq =

√
3J2 but also on both stress triaxiality and Lode

angle. Mazars elasticity surface has parametric representation

σi =
2

3

Eκ0 cos Θi√
〈ẽ1(Θ, TX)〉2 + 〈ẽ2(Θ, TX)〉2 + 〈ẽ3(Θ, TX)〉2

(48)
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in principal stress space (σ1, σ2, σ3).

In both anisotropic damage models studied the tensorial damage evolution is governed by the effective
positive strain tensor 〈ε̃〉+ of principal components

〈ε̃i〉 =

〈
σ′i
2G

+
trσ

9K

〉
=
σeq
E
〈ẽi〉 ẽi =

2

3
(1 + ν) cos Θi + (1− 2ν)TX (49)

so that the rates of principal damages Ḣi = λ̇〈ε̃i〉 =
λ̇σeq

E 〈ẽi〉 and even their mean value ḢH = 1
3 tr Ḣ are

Lode angle dependent. This dependency for HH can be explicited from f = ε̂− κ = 0 as

HH =
1

3

∑
Hi = 1 +

σeq
√∑〈ei(Θ, TX ,H)〉2 − Eκ0

3ESRsν
(50)

due to ε̂ =
σeq

E

√∑〈ei(Θ, TX ,H)〉2 if the ei are the principal values of tensor

e =
2

3
(1 + ν)(H · n(Θ) ·H)′ + (1− 2ν)

[
1

3
trH2〈TX〉 − 〈−TX〉

]
111 (51)

Nevertheless the Lode angle dependency exhibited here is not specific to the damage models considered
in present work: it is included in most anisotropic damage models, as stated in Desmorat (2012) for a
J2-plasticity model coupled with anisotropic damage.

Thermodynamics of second order anisotropic damage

Let us now derive the thermodynamics framework for novel anisotropic damage model.

Thermodynamics potential and state laws

The Gibbs free enthalphy density ρψ?, with ρ the density, for proposed anisotropic damage model is a
function of the stress and damage tensors, σ, H, considered as a thermodynamics state variables,

ρψ?(σ,D) =
1

4G
tr (H · σ′ ·H · σ′) +

1

18K

[
1

3
trH2 〈trσ〉2 + 〈− tr σ〉2

]
(52)

Thermodynamics potential ρψ? can be continuously differentiated (Ladevèze and Lemaitre 1984; Lemaitre
et al 2000; Desmorat 2000; Lemaitre and Desmorat 2005). This ensures continuous stress-strain response
for any multiaxial non proportional loading (as exhibited in Willam et al (1987) test of Fig. 1) for initial
damage model).

The state laws are:
ε = ρ

∂ψ?

∂σ
Z = ρ

∂ψ?

∂H
(53)

They lead

– to elasticity coupled with damage ((.)′ denotes deviatoric part),

ε =
1

2G
(H · σ′ ·H)

′
+

1

9K

[
1

3
trH2 〈trσ〉 − 〈− tr σ〉

]
111 (54)
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This elasticity law coupled with damage defines effective stress σ̃ from Eq. (22) and can be recast as
Eq. (22)-(23).

– to the definition of thermodynamics force associated with damage H,

Z =
1

2G
σ′ ·H · σ′ + 1

27K
〈trσ〉2 H (55)

Convexity with respect to stress tensor and to damage variable H

The second derivative of thermodynamics potential with respect to stress tensor is (where H is Heaviside
function and tensorial product ⊗ is such as H⊗H : σ = H · σ ·H, fourth order tensor H⊗H being
symmetric),

ẼEE
−1

= ρ
∂2ψ?

∂σσσ∂σσσ
=

1

2G

[
H⊗H− 1

3
(H⊗ 111 + 111⊗H) +

1

9

(
trH2

)
111⊗ 111

]
+

1

9K

[
1

3
trH2H(trσ) +H(− trσ)

]
111⊗ 111

(56)

It is the invert of the effective elasticity tensor. Convexity of thermodynamics potential ρψ? with respect
to stress tensor is ensured – through deviatoric/hydrostatic splitting – by positivity of ẼEE

−1
(X) for any non

zero symmetric second order tensor X,

X : ẼEE
−1

: X =
1

2G
X : (H ·X′ ·H)

′
+

1

3

[
1

3
trH2 〈trX〉 − 〈− tr X〉

]
trX

=
1

2G
tr (X′ ·H ·X′ ·H) +

1

27K

[
1

3
trH2 〈trX〉2 + 〈− tr X〉2

]
=

1

2G
tr (X′ ·H)

2
+

1

27K

[
1

3
trH2 〈trX〉2 + 〈− tr X〉2

]
> 0

(57)

This proves convexity with respect to σ as X : ẼEE
−1

: X = 2ρψ?(X,H) > 0 for any symmetric X 6= 0.

Convexity of ρψ? with respect to damage tensor H is also obtained as

ρ
∂2ψ?

∂H∂H
=

1

2G
σ′⊗σ′ + 1

27K
〈trσ〉2 111 (58)

and for any X 6= 0

X : ρ
∂2ψ?

∂H∂H
: X =

1

2G
tr (σ′ ·X)

2
+

1

27K
〈trσ〉2 (trX)

2
> 0 (59)

Convexity of free enthalpy with respect to damage variable is not necessary (both state potentials for initial
anisotropic model and for novel anisotropic model are not convex with respect to damage D). Convexity
with respect to H prevents from instabilities in damage evolution driven by its associated thermodynamics
force (in so-called standard generalized materials framework, Halphen and Nguyen (1975)), whatever the
loading intensity. Such a mathematical property was seeked for instance by Badel et al (2007) in case of
anisotropic damage.
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Non standard anisotropic damage evolution law

Mazars criterion function f = ε̂− κ is used. It is not expressed as a function of Z, the thermodynamics
force associated with damage, and damage evolution law (27) does not derive from an evolution (pseudo-
dissipation) potential whereas it does in Ladevèze (1983) pioneering work who considered damage criterion
fZ extended to anisotropy and expressed in terms of thermodynamics force Z

fZ =
√

tr (Z ·H · Z) + k H : Z− k0 ≤ 0 Ḣ = µ̇
∂fZ

∂Z
(60)

with k0, k1 as material parameter and where µ̇ is damage multiplier satisfying Khun-Tucker loading-
unloading conditions fZ ≤ 0, µ̇ ≥ 0 µ̇fZ = 0. Applications to Ceramics Matrix Composites can be found
in (Ladevèze et al 1994; Ladevèze 1995).

The anisotropic damage model proposed uses evolution law Ḣ = λ̇〈ε̃〉+, it is therefore non standard and
the positivity of the dissipation is not guaranteed: it has to be proven (done in further section). The damage
multiplier λ̇ ≥ 0 is determined from consistency condition f = ε̂− κ = 0 & ḟ = ˙̂ε− κ̇ = 0,

λ̇ =
tr Ḣ

tr〈ε̃〉+ =
1

S tr〈ε̃〉+
d

dt

(
R−sν ε̂

)
(61)

At positive stress triaxiality TX (i.e. at trσ ≥ 0, Rν = 1) or in case of compressive loading at negative TX
(trσ ≤ 0) but in the second case by neglecting the triaxiality change over a time increment :

λ̇ =
1

SRsν

˙̂ε

tr〈ε̃〉+ =
1

SRsν

〈ε〉+ : ε̇

ε̂ tr〈ε̃〉+ (62)

so that damage law is explicited as,

Ḣ =
1

SRsν

˙̂ε

tr〈ε̃〉+ =
1

SRsν

〈ε̃〉+
tr〈ε̃〉+

〈ε〉+: ε̇
ε̂

(63)

Tangent operator, such as σ̇ = LLL : ε̇, can be derived using damaged elastic tensor (28) and derivatives
d
dtH

−1 = −H−1 · Ḣ ·H−1 and d
dtH

−2 = −H−2 ·
[
H · Ḣ + Ḣ ·H

]
·H−2,

LLL = ẼEE − 2

SRsν

[(
σ′ · 〈ε̃〉

+

tr〈ε̃〉+ ·H
−1
)Sym

− tr(σ′ · 〈ε̃〉
+

tr〈ε̃〉+ ·H
−1)

H−2

trH−2

]

− 2

3S
〈trσ〉 H

trH2
:
〈ε̃〉+

tr〈ε̃〉+ 111⊗ 〈ε〉
+

ε̂

(64)

showing then that LLL→ 0 at high damage H→∞ in case of positive stress triaxiality TX (trσ ≥ 0), but
not at negative stress triaxiality at which the bulk modulus remains constant in effective Hooke’s tensor ẼEE.

Tangent operator is not symmetric, Lklij 6= Lijkl.
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Positivity of intrinsic dissipation

The intrinsic dissipation has for expression D = ρ
∂ψ?

∂H
: Ḣ = Z : Ḣ (Desmorat 2000, 2006; Lemaitre et

al 2009) so that

D =

[
1

2G
σ′ ·H · σ′ + 1

27K
〈trσ〉2 H

]
: Ḣ = A : Ḣ ≥ 0 (65)

The term within the brackets is the sum of two positive symmetric second order tensors 1
2Gσ

′ ·H · σ′
and 1

27K 〈trσ〉2 H, as H is a positive symmetric tensor. The scalar product A : Ḣ of two positive tensors
is positive (see Appendix A) so is the dissipation, proving D ≥ 0 and fulfilling second principle of
thermodynamics, and this for any loading, possibly multiaxial, non proportional.

Numerical implementation and nonlocal regularizations

Numerical scheme for Finite Element implementation

The time integration procedure for the full anisotropic damage model takes place at Gauss points of a Finite
Element code and solves in a coupled manner the constitutive equations of section ”Model with modified
shear-bulk coupling / Constitutive equations”. The strain εn+1 = ε(tn+1) at time tn+1, the stress triaxiality
TX n, the damages Hn, Dn at time tn are the inputs of the procedure. The outputs are the stresses σn+1

and the damages Hn+1, Dn+1. In order to integrate the damage model for loading paths more complex
than those of section ”Responses of proposed anisotropic model” – for instance non proportional loading –
proceed as follows:

1. Compute the equivalent strain ε̂n+1 =
√∑〈εi n+1〉2 from eigenstrains εi n+1.

2. Make a test on the criterion function f = ε̂n+1 − κn, κn = κ0 + SRsνn(trHn − 3).

• If f ≤ 0, the material behaves elastically, set then Hn+1 = Hn, Dn+1 = Dn.
• If f > 0, the damage must be corrected by using the damage evolution law discretized as ∆H =

Hn+1 −Hn = ∆λ 〈ε̃n〉+ with damage direction evaluated at time step tn, ε̃n = EEE−1 : σn

with EEE isotropic undamaged Hooke’s tensor. The expression for the damage multiplier
increment ∆λ is

∆λ =
trHn+1 − trHn

tr〈ε̃n〉+
where trHn+1 = 3 +

ε̂n+1 − κ0
SRsνn

and the actualization of the damage tensor H and D is

Hn+1 = Hn + ∆λ 〈ε̃n〉+ Dn+1 = 1−H−2n+1

3. Compute the stresses at the end of the increment σn+1 using first the elasticity law σ̃n+1 = EEE : εn+1,
then by inverting the deffinition (23) of effective stress,

σn+1 = H−1n+1 · σ̃n+1 ·H−1n+1 −
H−2n+1 : σ̃σσn+1

trH−2n+1

H−2n+1 +
1

3

[
3〈tr σ̃n+1〉
trH2

n+1

− 〈− tr σ̃n+1〉
]

111

There is no need of a specific procedure for the numerical control of rupture to bound damage tensor D to
unity as principal damages Di in novel model do not reach 1 at finite strain. For a nonlocal implementation,
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simply replace local Mazars strain ε̂n+1 by its nonlocal averaging ε̂nl
n+1 at time tn+1 (see next), the test of

step 2 being then made on criterion function f = ε̂nl
n+1 − κn and the damage multiplier reading

∆λ =
trHn+1 − trHn

tr〈ε̃n〉+
where now trHn+1 = 3 +

ε̂nl
n+1 − κ0
SRsνn

Nonlocal, nonlocal with internal time and eikonal nonlocal regularizations

Spurious mesh dependency is obtained in computations with local damage (softening) models. In dynamics
visco-damage framework allows to obtain mesh independency if the damage rate is bounded (Allix &
Deü 1997; Allix 2013). See (Gatuingt 2008; Chambart 2009; Desmorat et al 2010a; Leroux 2012) for the
extension to anisotropic damage including the modeling of the strain rate effect of concrete material.

In present rate independent model formulation, a nonlocal averaging of the equivalent strain is needed to
ensure mesh independency, the criterion function being changed into

f = ε̂nl − κ ≤ 0 (66)

with ε̂nl nonlocal equivalent strain. Different choices are possible, taking advantage or not of damage
anisotropy:

– the use of standard nonlocal integral equivalent strain (Pijaudier-Cabot & Bažant 1987),

ε̂nl(x) =
1

Vr(x)

∫
V

α0

(‖x− ξ‖
lc

)
ε̂(ξ)dξ (67)

with normalizing factor

Vr(x) =

∫
V

α0

(‖x− ξ‖
lc

)
dξ (68)

with the integrals performed over the whole structure V . The quantity ε̂(ξ) is local value of equivalent
strain at points ξ around position x and ‖ξ − x‖ is the geometric distance. Two frequently used
weight functions are the Gaussian function α0(ζ) = e−

1
2 ζ

2

and the bell-shaped polynomial function
α0(ζ) =

〈
1− ζ2

〉2
(Bažant & Jirásek 2002).

Such an approach considers a constant (isotropic) internal length lc whatever the damage level and
anisotropy.

– the use of gradient enhanced modeling (Aifantis 1987; Peerlings et al 1996), defining ε̂nl from
implicit differential equation

ε̂nl − l2c∇2ε̂nl = ε̂ (69)

introducing an isotropic and constant internal length lc with the same remark on isotropy and
constancy of internal length than for standard nonlocal integral.

– the use of an internal time τc as material parameter – instead of characteristic length lc – in nonlocal
integral averaging (Desmorat and Gatuingt 2007; Desmorat and Gatuingt 2010)

ε̂nl(x) =
1

Vr(x)

∫
V

α0

(
τxξ
τc

)
ε̂(ξ)dξ Vr(x) =

∫
V

α0

(
τxξ
τc

)
dξ (70)
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with τxξ the information time for an elastic wave to propagate from points x to ξ. This leads to an
evolving internal length, as suggested by Geers et al (1998), Pijaudier-Cabot et al (2004) and Simone
et al (2004), but here damage induced and anisotropic. The approach makes a highly damage zone
equivalent to a crack. The main drawback of the nonlocal integral with internal time framework is its
prohibitive numerical cost in structural cases.

– the use of eikonal nonlocal integral framework (Desmorat et al 2015),

ε̂nl(x) =
1

Vr(x)

∫
V

α0

(
˜̀
xξ

lc

)
ε̂(ξ)dξ, Vr(x) =

∫
V

α0

(
˜̀
xξ

lc

)
dξ (71)

where effective distances ˜̀= ˜̀
xξ between points x and ξ are solution of anisotropic eikonal equation

∇˜̀·H−2 · ∇˜̀= ∇˜̀· (111−D) · ∇˜̀= 1 (72)

An anisotropic evolving internal length is obtained, dependent on both the damage level and
anisotropy. A higly damaged zone is found equivalent to a crack. In 1D the eikonal nonlocal integral
framework is equivalent to the nonlocal with internal time theory.

– the use of eikonal gradient enhancement (Desmorat et al 2015),

ε̂nl − 1

2

l2c
detH

∇ ·
(
(detH) H−2 · ∇ε̂nl) = ε̂ (73)

Such an approach behaves as Geers et al (1998) gradient enhancement but with an anisotropic
evolving internal length, dependent on both the damage level and anisotropy. For an uniaxial state
of damage H = diag[H1, 1, 1] = diag[1/

√
1−D1, 1, 1], setting x the normal to nucleated crack, Eq.

(73) gives

ε̂nl − 1

2
l2c
√

1−D1
∂

∂x

(√
1−D1

∂ε̂nl

∂x

)
= ε̂ (74)

Both eikonal nonlocal integral and eikonal gradient enhancement end up

• to a local behavior normally to the nucleated crack surface at D1 → 1,
• and to a non local behavior parallel to the nucleated crack, as sought by Pijaudier-Cabot et

al (2007).

One does not enter here in the debate nonlocal integral versus gradient enhancement, both choices being
most often possible. It worth it to recall the well known (non physical) feature of a highly damaged
zone spreading zone in nonlocal averaging. An evolving internal length (such as from eikonal nonlocal
integral, refer to Desmorat et al (2015) work) allows for present anisotropic damage modeling to localize
the nucleated crack at a single point, where H1 → 0, D1 → 1.

Conclusion

An anisotropic damage model has been proposed for concrete materials, using single Ladevèze variable
H = (111−D)−

1
2 for both coupling of deviatoric and hydrostatic elastic properties with damage. The shear-

bulk coupling obtained at positive stress triaxiality is found in accordance with numerical Discrete Element
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results when bulk modulus is not affected by damage in compressive stress states. The model biaxial
responses have been derived in a closed form parametric representation in principal stresses space and
advantageously compared to initial anisotropic damage model responses. A key feature of the modeling is
proposed evolution law Ḣ = λ̇〈ε̃〉+ of damage anisotropy governed by the extensions, keeping second order
damage tensor H unbounded and allowing for the sought property of gradual stress softening. Lemaitre
stress triaxiality function has been introduced to enhance the performance of Mazars criterion therefore
the performance of the full anisotropic damage model in bicompression. Related thermodynamics aspects
have been discussed and both proof of convexity of thermodynamics potential with respect to stress σ and
damage H as well as proof of the positivity of the intrinsic dissipation have been given.

The anisotropic damage models have been presented first in their local form. Different nonlocal
enhancements have finally been described, they simply replace the expression of local equivalent strain
ε̂ within Mazars criterion by its nonlocal averaging ε̂nl, either integral or of gradient type, with a possibly
evolving internal length, made anisotropic because of tensorial nature of damage.

The modeling of permanent strains and of dilatancy in confined stress states is left to further work;
suggested improvements in considered anisotropic damage framework, not using plasticity theory for
instance, can be be found in (Herrmann and Kestin 1988; La Borderie 1991, 2003; Desmorat 2004; Lebon
2011). Extension to cyclic loading is straightforward from the concept of active damage (Souid et al 2009;
Desmorat et al 2010a).

Appendix A – Positive scalar product of two positive symmetric tensors

Consider two positive symmetric second order tensors A and Ḣ. Spectral decomposition of A gives

A =
∑
i

Ai a
i ⊗ ai Ai ≥ 0 (75)

with eigenvalues Ai and eigenvectors ai. Scalar product

A : Ḣ =
∑
i

Ai a
i · Ḣ · ai ≥ 0 (76)

is positive, as sum of positive terms.

Appendix B – Functions Bi

Bi = B′i +BH = Bi(θ,Di)

B′1 =
1 + ν

9

(
4

1−D1
+

1

1−D2
+

1

1−D3

)
cos θ

− 1 + ν

9

(
2

1−D1
+

2

1−D2
− 1

1−D3

)
sin θ

B′2 =− 1 + ν

9

(
2

1−D1
+

2

1−D2
− 1

1−D3

)
cos θ

+
1 + ν

9

(
1

1−D1
+

4

1−D2
+

1

1−D3

)
sin θ
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B′3 =− 1 + ν

9

(
2

1−D1
− 1

1−D2
+

2

1−D3

)
cos θ

+
1 + ν

9

(
1

1−D1
− 2

1−D2
− 2

1−D3

)
sin θ

BH =
1− 2ν

3− η(D1 +D2 +D3)
〈cos θ + sin θ〉 − 1− 2ν

3
〈− cos θ − sin θ〉

Appendix C – Functions Ci

Ci = C ′i + CH = Ci(θ,Hi)

C ′1 =
1 + ν

9

(
4H2

1 +H2
2 +H2

3

)
cos θ − 1 + ν

9

(
2H2

1 + 2H2
2 −H2

3

)
sin θ

C ′2 = −1 + ν

9

(
2H2

1 + 2H2
2 −H2

3

)
cos θ +

1 + ν

9

(
H2

1 + 4H2
2 +H2

3

)
sin θ

C ′3 = −1 + ν

9

(
2H2

1 −H2
2 + 2H2

3

)
cos θ +

1 + ν

9

(
H2

1 − 2H2
2 − 2H2

3

)
sin θ

CH =
1− 2ν

9

(
H2η

1 +H2η
2 +H2η

3

)
〈cos θ + sin θ〉 − 1− 2ν

3
〈− cos θ − sin θ〉

Appendix D – Triaxiality functions Rν

The strain energy density of virgin (undamaged) material is

we =
1

2
ε : EEE : ε =

σ2
eqRν

2E

where the concept of triaxiality function Rν has been introduced (Lemaitre 1992), normed to 1 in tension,

Rν =
2

3
(1 + ν) + 3(1− 2ν)T 2

X TX =
σH
σeq

=
1

3

trσ

( 3
2σ
′ : σ′)

1
2

In present work we use a similar definition but for negative triaxiality only and normed to 1 in pure shear
(Rν = 1 at TX ≥ 0),

Rν = 1 +
9

2

1− 2ν

1 + ν
〈−TX〉2

and we bound it to B.
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Allix O. and Deü J.F., Delay-damage modelling for fracture prediction of laminated composites under dynamic loading,

Engineering Transactions, 45: 29-46, 1997.

Allix O., The bounded rate concept: a framework to deal with objective failure predictions in dynamic within a local

constitutive model, Int. J. of Damage Mechanics, 22, pp. 808-828, 2013

Badel P., Godard V., Leblond J.B., Application of some anisotropic damage model to the prediction of the failure of

some complex industrial concrete structure, International Journal of Solids and Structures, 44 (2007) 5848-5874.

Prepared using sagej.cls



Desmorat 29

Bazant Z.P., Gambarova P.G., Crack shear in concrete: Crack band microplane model, J. Struc. Engrg. 110 (1984)

2015-2036.

Bazant, Z.P., Prat, P.C., 1988a. Microplane model for brittle-plastic material: I. Theory. ASCE J. Eng. Mech. 114,

1672-1688.

Bazant, Z.P., Prat, P.C., 1988b. Microplane model for brittle-plastic material: II. Verification. ASCE J. Eng. Mech. 114,

1689-1702.

Bazant Z.P., Ozbolt J., Nonlocal microplane model for fracture, damage and size effects in structures, J. Engrg. Mech.

116 (1990), 2485-2505.

Bažant Z.P. and Jirásek M., Nonlocal integral formulations of plasticity and damage: Survey of progress, Journal of

Engineering Mechanics ASCE, 128:1119-1149, 2002.

Billardon, R. and Pétry, C. (2005). Creep damage behaviour of a copper alloy on a large temperature range. In

ASME/ASCE/SES Conference on Mechanics and Materials (McMat2005), 1-3 juin, Baton Rouge, Louisiana,

USA.

Brünig, M., 2003. An anisotropic ductile damage model based on irreversible thermodynamics. Int. J. Plasticity 19,

1679–1714.

Burlion N, Gatuingt F, Pijaudier-Cabot G, Daudeville L. Compaction and tensile damage in concrete: constitutive

modelling and application to dynamics. Computer methods in applied mechanics and engineering 2000; 183: 291-

308.

Carol I., Rizzi E., Willam K.. On the formulation of anisotropic elastic degradation. Part I: Theory based on a pseudo-

logarithmic damage tensor rate. Part II: Generalized pseudo-Rankine model for tensile damage. Int. J. of Solids

and Structures, 38(4):491-518,519-546, 2001.

Chaboche, J.-L. (1979). Le concept de contrainte effective appliqué à l’élasticité et à la viscoplasticité en présence d’un
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Université de Pau et des Pays de l’Adour, France, 2003.
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