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ON THE APPROXIMATION OF THE DIRAC OPERATOR COUPLED WITH CONFINING
LORENTZ SCALAR δ-SHELL INTERACTIONS

MAHDI ZREIK1

ABSTRACT. Let Ω+ ⊂ R3 be a fixed bounded domain with boundary Σ = ∂Ω+. We consider Uε a tubular neigh-
borhood of the surface Σ with a thickness parameter ε > 0, and we define the perturbed Dirac operator Dε

M =

Dm + Mβ1Uε , with Dm the free Dirac operator, M > 0, and 1Uε the characteristic function of Uε. Then, in
the norm resolvent sense, the Dirac operator Dε

M converges to the Dirac operator coupled with Lorentz scalar δ-shell
interactions as ε = M−1 tends to 0, with a convergence rate of O(M−1).
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1. INTRODUCTION AND MAIN RESULTS

The aim of this work is to approximate the Dirac operator coupled with a singular δ-interactions, supported
on a closed surface. More precisely, our main goal in this article is to approximate the Dirac operator coupled
with confining Lorentz scalar δ-shell interactions (i.e., when η = 0 and µ = ±2 in (1.2), below) by a perturbed
Dirac operator Dε

M = Dm +Mβ1Uε , where Dm is the free Dirac operator, and M is a large mass supported
on a tubular neighborhood, Uε, with thickness ε > 0. Working with this type of massive potential leads to the
appearance of what we’ve seen in [4], called Dirac operators with MIT bag boundary conditions, when the mass
M becomes large. In this paper we interested in establishing the convergence (for suitable relation between ε and
M : ε =M−1, as ε goes to 0) of such perturbations to a direct sum of two MIT bag operators, which we denote by
D

Ω+

MIT(m) and DΩ−
MIT(m) (see Section 2.2 for the exact notations), acting in the domains Ω+ and Ω− := R3 \Ω+,

respectively. This decoupling of these MIT bag Dirac operators can be linked to the confining version of the Dirac
operator coupled with purely Lorentz scalar δ-shell interaction supported on the surface Σ := ∂Ω+, which will be
discussed briefly in the following part of the current paper.
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The convergence of Dε
M to the MIT bag operator was established in [4, Section 6], in the norm resolvent sense,

when M tends to +∞, and ε fixed. However, in [4], the mass M is supported on an unbounded domain, which
has only one boundary. Whereas, in the current work, M is supported on a bounded domain with two boundaries,
whose distance between them is the thickness ε, as shown in Figure 1. Thus, it is then natural to address the
following question: Let M be a large mass supported on a tubular vicinity of surface Σ. What happens when the
thickness of the tubular tends to zero with M−1?

The methodology followed, as in the problem of [4] study the pseudodifferential properties of the Poincaré-
Steklov (PS) operators for the Dirac operator (i.e., an analogue of the Diricklet-to-Neumann operators for the
Laplace operator). The complexity in the current problem is that these operators take a pair of functions with
respect to ∂Uε := Σ ∪ Σε such that for all xΣ ∈ Σ, we have Σε ∋ x = xΣ + εν(xΣ), where ν is the unit
normal to the surface Σ pointing outside Ω+. So, we will control these operators by tracking the dependence on
the parameter ε, and consequently, the convergence when ε goes to 0 and M goes to +∞.

Now, to give a rigorous definition of the operator we are dealing within this paper and to go into more details, we
need to introduce some notations. Form > 0, the free Dirac operatorDm in R3 is defined byDm := −iα·∇+mβ,
with

αj =

(
0 σj
σj 0

)
for j = 1, 2, 3, β =

(
I2 0
0 −I2

)
, I2 :=

(
1 0
0 1

)
,

and σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

the family of Dirac and Pauli matrices satisfying the anticommutation relations:

{αj , αk} = 2δjkI4, {αj , β} = 0, and β2 = I4, j, k ∈ {1, 2, 3}, (1.1)

where {·, ·} is the anticommutator bracket. As usual, we use the notationα·x =
∑3

j=1 αjxj for x = (x1, x2, x3) ∈
R3. We recall that Dm is self-adjoint in L2(R3)4 with dom(Dm) = H 1(R3)4 (see, e.g., [16, subsection 1.4]),
and that the spectrum is given by

Sp(Dm) = Spcont(Dm) = (−∞,−m] ∪ [m,+∞).

Let Ω+ be a bounded smooth domain in R3, and Σ := ∂Ω+ its boundary. For (η, µ) ∈ R2, the three-
dimensional Dirac operator with δ-shell interactions is defined formally by

Dη,µ : f 7→ Dmf + (ηI4 + µβ)δΣf, (1.2)

where δΣ is the Dirac delta distribution supported on Σ, and the constant η (resp. µ) measures the strength of the
electrostatic (resp. Lorentz scalar) part of the interaction. In this case, the operator in (1.2) is called the Dirac
operator coupled with electrostatic and Lorentz scalar δ-shell interactions.

The investigation of the properties of the Dirac operator Dη,µ goes back to the articles [9] and [10]. Further-
more, in [9], the authors state that the shell becomes impenetrable if we assume that η2 − µ2 = 4 (known as the
confinement case). Physically, this means that a particle such as an electron that is in the region Ω+ at time t = 0
cannot cross the surface Σ to reach the region R3 \ Ω+ as time progresses (and vice versa). Mathematically, this
implies that we can decompose the considered Dirac operator into a direct sum of two operators acting respectively
on Ω+ and R3 \ Ω+, each with the corresponding boundary conditions. If η = 0, physicists in particular have
been aware of this phenomenon since the 1970s, when they considered confinement in hadrons with a model (see
[8] and [11]). The mathematical model describing this, using the Dirac operator with MIT boundary conditions,
has been extensively studied in mathematical papers such as those mentioned in [3]. In our paper we refer to the
Dirac operator, with MIT bag boundary conditions as D

Ωε
+−

MIT (m) (see the beginning of Section 2.2 for the exact
definitions).

The approximation of the Dirac operators with regular/singular potential has been the subject of several re-
cent mathematical papers. Therefore, in the one-dimensional case, the analysis is carried out in [13], where Šeba
showed that convergence in the sense of norm resolvent is true. In 2D case, [7] considered the approximation
of Dirac operators with electrostatic, Lorentz scalar, and anomalous magnetic δ-shell potentials on closed and
bounded curves, in the non-critical and non-confinement cases. In 3D case, the authors of [12] showed an approx-
imation of the Dirac operators coupled with δ-shell interactions, however, a smallness assumption for the potential
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was required to achieve such a result. Finally, in 3D case, I have established in [18] an approximation of the opera-
tor Dη,τ , in terms of the strong resolvent, in the non-critical and non-confinement cases (i.e., when η2−µ2 ̸= ±4)
without the smallness assumed in [12]. Now, let us describe the main results of the present manuscript.

FIGURE 1. Domain

Description of main results. Let Ω+ be a open bounded set in R3 with a compact smooth boundary Σ := ∂Ω+,
let ν be the outward unit normal to Ω+. Throughout the current paper, we shall work on the Hilbert space L2(R3)4(
resp. L2(Ωε

±)
4 with Ωε

+ = Ω+ ∪ Uε and Ωε
− = R3 \ Ωε

+

)
with respect to the Lebesgue measure, and we will

make use of the orthogonal decomposition L2(R3)4 = L2(Ωε
−)

4 ⊕ L2(Ωε
+)

4. We denote by Nε the outward unit
normal with respect to Ωε

−. More precisely, for ε0 sufficiently small, we assume that Σ, Ωε
−, Σε and Uε satisfied

Σε := {x ∈ R3, x = xΣ + εν(xΣ) : xΣ ∈ Σ},
Ωε

− = {x ∈ R3, dist(x,Σ) > ε},
Uε := {x ∈ R3, x = xΣ + t ν(xΣ) : xΣ ∈ Σ and t ∈ (0, ε)}, with ε ∈ (0, ε0).

(1.3)

In other words, the Euclidean space is divided as follows:

R3 = Ωε
− ∪ Σε ∪ Uε ∪ Σ ∪ Ω+.

We consider perturbations of the free Dirac operator Dm in the whole space by a large mass M term living in an
ε neighborhood Uε of Σ. The perturbed Dirac operator we are interesting on is Dε

M := Dm +Mβ1Uε , where
1Uε is the characteristic function of Uε and ε is the thickness of the tubular region Uε. The results of the present
article are presented as follows:

To establish the main result outlined in Theorem 1.1, we must show the following approximations:

Proposition 1.1. We consider the confining version of the Dirac operator coupled with a purely Lorentz scalar
δ-shell interaction, denoted by DL := D0,2

(
i.e., when η = 0 and µ = 2 in (1.2)

)
. Then, for any z ∈ ρ(DL) and

ε sufficiently small, the following estimate holds:

∣∣∣∣∣∣eΩε
+−
R

Ωε
+−

MIT (z)rΩε
+−

−RL(z)
∣∣∣∣∣∣
L2(R3)4→L2(R3)4

= O(ε) as ε→ 0. (1.4)

where R
Ωε

+−
MIT is the resolvent of the direct sum of both MIT bag operators, refer to D

Ωε
+−

MIT (m) and which will be
defined rigorously in Section 2.2, RL is the resolvent of the Dirac operator coupled with purely Lorentz scalar
δ-shell interactions, DL, and rΩε

+−
resp. eΩε

+−
is the restriction operator in Ωε

+− := Ω+ ∪ Ωε
− resp. its adjoint

operator, i.e., the extension by 0 outside of Ωε
+−.

Remark 1.1. We mention that the proof of Proposition 1.1 is not difficult to realize. Indeed, we establish the
above approximation by tracking the dependence on the thickness ε, when ε goes to 0. However, what is important
to achieve is the proof of the following proposition, for which studies and estimates are required by tracking the
dependence on the parameters ε and M , in order to establish such a relationship between the parameters, and
prove therefore the main result of Theorem 1.1.
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Proposition 1.2. Let K ⊂ C \ R be a compact set. Then, there is M0 > 0 such that for all M > M0 and
ε =M−1: K ⊂ ρ(Dε

M ) and for all z ∈ K, the following estimate holds on the whole space∣∣∣∣Rε
M (z)− eΩε

+−
R

Ωε
+−

MIT (z)rΩε
+−

∣∣∣∣
L2(R3)4→L2(R3)4

= O(M−1).

The latter proposition means that the Dirac operator Dε
M is approximated, in the norm resolvent sense, by both

MIT bag Dirac operators, acting in Ωε
+− with a rate of O(M−1) when M tends to ∞.

By combining Propositions 1.1, 1.2, we arrive at the following main result:

Theorem 1.1. Let z ∈ ρ(DL), then for M sufficiently large, z ∈ ρ(Dε
M ), and ε = M−1, the following estimate

holds

||Rε
M (z)−RL(z)||L2(R3)4 = O

(
M−1

)
.

□

The most important ingredient in proving Proposition 1.1 is the use of the Krein formula of the resolvents
of DL and both MIT bag operators, DΩ+

MIT and D
Ωε

−
MIT (see Section 4.2), acting in L2(Ω+)

4 and L2(Ωε
−)

4, re-

spectively. Then, in Proposition 5.1, we establish that the convergence (D
Ωε

−
MIT − z)−1 toward (D

Ω−
MIT − z)−1

holds for any non-real z, when ε goes to 0, and we then obtain, in the norm resolvent sense, the convergence of
D

Ωε
+−

MIT := D
Ω+

MIT ⊕D
Ωε

−
MIT to DL = D

Ω+

MIT ⊕D
Ω−
MIT.

The key point to establish the result of Proposition 1.2 is to treat the elliptic problem (Dε
M − z)U = f ∈ L2(R3)4

as a transmission problem (where P±tΣU|Ω+
= P±tΣU|Uε and P ε

±tΣεU|Ωε
−

= P ε
±tΣεU|Uε are the transmis-

sion conditions) and to use the semiclassical properties of the auxiliary operator Υε
M (z) acting on the boundary

∂Uε = Σ∪Σε, which is constructed by the Poincaré-Steklov operators (see (4.11) for the exact notation). Indeed,
in Section 5, we show convergence of the Dirac operator, Dε

M , to both MIT bag operators, DΩ+

MIT and D
Ωε

−
MIT, with

a convergence rate of O(M−1) for M = ε−1 sufficiently large. Consequently, using these ingredients, a kind of
convergence can be established in Theorem 1.1 for ε =M−1.

Unlike the application in paper [4, Theorem 6.1], we mention that in this problem the operator Υε
M (which is

constructed by the Poincaré-Steklov operators) takes a pair of functions with respect to ∂Uε.

We note that P ε
± and P± are the orthogonal projections with respect to Nε and ν, respectively, defined by

P ε
± := (I4 ∓ iβα ·Nε)/2 and P± := (I4 ∓ iβα · ν)/2. (1.5)

We end this part with the following remark on the projections P± and P ε
±:

Remark 1.2. We define the diffeomorphism p : Σ −→ Σε such that for all xΣ ∈ Σ, we get p(xΣ) := xΣ +
εν(xΣ) = x. Then, we have

Nε(x) = −(ν ◦ p−1)(x) = −ν(xΣ),
with

P ε
±(x) =

1

2

(
I4 ∓ iβα ·Nε

+(x)
)
=

1

2
(I4 ± iβα · ν(xΣ)) := P∓ ◦ p−1(x) = P∓(xΣ).

Organization of the paper. The present paper is structured as follows. Section 2 is dedicated to the preliminaries
and the MIT bag operators, where we give some notations and definitions, and we recall some basic properties
of boundary integral operators associated with (Dm − z). Moreover, in this section we set up some geometric
aspects characterizing our domains, define the Dirac operator with MIT bag boundary conditions and give some
properties. Section 3 is devoted to the study of pseudodifferential properties of the Poincaré-Steklov operators,
where the main result are Proposition 3.6 and Corollary 3.1. In Section 4, we set up a Krein formula connecting
the resolvents of Dε

M with those of D
Ωε

+−
MIT . With its help, in Section 5 turns out that a kind of convergence can

be achieved for ε = M−1, with a convergence rate of O(M−1) as M becomes large (i.e., ε ∈ (0, ε0) sufficiently
small). Therefore, we show the main results of this paper: in the proof of Proposition 1.1, we approximate
the resolvent of MIT bag operators with that of the Dirac operator coupled with purely Lorentz scalar δ-shell
interactions, in the norm resolvent sense, with a convergence rate of O(ε), and we prove Proposition 1.2 on the
convergence of the resolvent of Dε

M to those of the MIT bag operators, D
Ωε

+−
MIT (m), for M sufficiently large.
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2. SETTING AND MIT BAG OPERATOR

In this section we gather some well-known results about boundary integral operators. Before proceeding fur-
ther, however, we need to introduce some notations that we will use in what follows.
We define the unitary Fourier–Plancherel operator F : L2(Rd)4 −→ L2(Rd)4 as follows:

û(ξ) := F [u](ξ) = (2π)−d

∫
Rd

e−ix·ξu(x)dx, ∀ξ ∈ Rd.

For x ∈ Rd−1, we will abbreviate the partial Fourier transform on the variable x with Fx. Given s ∈ [0, 1], we
define the usual Sobolev space H s(Rd)4 as

H s(Rd)4 := {u ∈ L2(Rd)4 :

∫
Rd

(1 + |ξ|2)s |F [u](ξ)|2 dξ <∞},

and for a bounded or unbounded Lipshitz domain Ω ⊂ R3, we write ∂Ω := Σ for its boundary and we denote by ν
and σ the outward pointing normal to Ω and the surface measure on Σ, respectively. By L2(R3)4 := L2(R3,C4)
(resp. L2(Ω)4 := L2(Ω,C4)) we denote the usual L2−space over R3 (resp. Ω), and we let rΩ : L2(R3)4 −→
L2(Ω)4 be the restriction operator on Ω and eΩ : L2(Ω)4 −→ L2(R3)4 its adjoint operator, i.e., the extension by
0 outside of Ω. Now, we let H1(Ω)4 to be the first order Sobolev space

H 1(Ω)4 = {φ ∈ L2(Ω)4 : there exists φ̃ ∈ H 1(R3)4 such that φ̃|Ω = φ}.

By L2(Σ)4 := L2(Σ,dσ)4 we denote the usual L2-space over Σ. The Sobolev space of order 1/2 along the
boundary, H 1/2(Σ)4, consists of all functions g ∈ L2(Σ)4 for which

∥g∥2H 1/2(Σ)4 :=

∫
Σ

|g(x)|2dσ(x) +
∫
Σ

∫
Σ

|g(x)− g(y)|2

|x− y|3
dσ(y)dσ(x) <∞.

As usual we let H−1/2(Σ)4 to be the dual space of H 1/2(Σ)4. We denote by tΣ : H 1(Ω)4 → H 1/2(Σ)4 the
classical trace operator, and by EΩ : H 1/2(Σ)4 → H 1(Ω)4 the extension operator, that is

tΣEΩ[f ] = f, ∀f ∈ H 1/2(Σ)4.

2.1. Boundary integral operators associated with the free Dirac operator. The aim of this part is to introduce
boundary integral operators associated to the fundamental solution of Dm and to summarize some of their well-
known properties. In this section, Ω is a bounded domain in R3 with Σ := ∂Ω its boundary and we denote by ν
the outward pointing normal to Ω. We set Ω+ := Ω and Ω− = R3 \ Ω+.

For z ∈ C\(−∞,−m] ∪ [m,+∞), with the convention that Im
√
z2 −m2 > 0, the fundamental solution of

(Dm − z) is given by

ϕzm(x) =
ei

√
z2−m2|x|

4π|x|

(
z +mβ + (1− i

√
z2 −m2|x|)iα · x

|x|2

)
, ∀x ∈ R3 \ {0}. (2.1)

We define the potential operator Φz
m : L2(Σ)4 −→ L2(R3)4 by

Φz
m[f ](x) :=

∫
Σ

ϕzm(x− y)f(y)dσ(y), for all x ∈ R3 \ Σ.

Furthermore, (Dm − z)Φz
m[f ] = 0 holds in D′

(Ω±)
4, for all f ∈ L2(Σ)4. Finally, given x ∈ Σ we define the

Cauchy operators C z
m : L2(Σ)4 −→ L2(Σ)4 as the singular integral operator acting as

C z
m[f ](x) := lim

ρ↘0

∫
|x−y|>ρ

ϕzm(x− y)f(y)dσ(y), for dσ-a.e.,x ∈ Σ, f ∈ L2(Σ)4, (2.2)

and the following bounded operator C z
±,m : L2(Σ)4 −→ L2(Σ)4 as follows:

C z
±,m[f ](x) := lim

Ω±∋y
nt→ x

Φz
m[f ](y),

where Ω± ∋ y
nt→ x means that y tends to x non-tangentially from Ω+ and Ω−, respectively, i.e., for y ∈ Ω±,

we get |x− y| < (1 + a)dist(y,Σ) for a > 0 and x ∈ Σ.

It is well known that Φz
m and C z

m are bounded and everywhere defined (see [1, Section 2]), and that

((α · ν)C z
m)2 = (C z

m(α · ν))2 = −1

4
I4, ∀z ∈ ρ(Dm),
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holds in L2(Σ)4, cf. [2, Lemma 2.2]. In particular, the inverse (C z
m)−1 = −4(α · ν)C z

m(α · ν) exists and is
bounded and everywhere defined. Note that ϕzm(y − x)∗ = ϕzm(x − y), as a consequence (C z

m)∗ = C z
m holds in

L2(Σ)4. In particular, C z
m is self-adjoint in L2(Σ)4 for all z ∈ (−m,m).

Now, we define the operator Λz
±,m by

Λz
±,m =

1

2
β ± C z

m, for all z ∈ ρ(Dm),

which is clearly a bounded operator from L2(Σ)4 into itself.
In the next lemma, we collect the main properties of the operators Φz

m, C z
m and Λz

±,m.

Lemma 2.1. [4, Lemma 2.1]. Given z ∈ ρ(Dm) and let Φz
m, C z

m and Λz
±,m be as above. Then the following

holds true:
(i) The operator Φz

m is bounded from H 1/2(Σ)4 to H 1(Ω)4, and the following Plemelj-Sokhotski jump for-
mula holds that

tΣΦ
z
m|Ω± [f ] = Cz

±,m[f ] =

(
∓ i

2
(α · ν) + C z

m

)
[f ], ∀f ∈ H 1/2(Σ)4.

(ii) The operator C z
m gives rise to a bounded operator C z

m : H 1/2(Σ)4 −→ H 1/2(Σ)4.
(iii) The operator Λz

±,m : H 1/2(Σ)4 −→ H 1/2(Σ)4 is bounded invertible for all z ∈ ρ(Dm). □

The last thing in this section is the definition of the Dirac operator coupled with purely Lorentz scalar δ-
interaction.

Definition 2.1. Let µ ∈ R \ {0}. The Dirac operator coupled with purely Lorentz scalar δ-shell interaction of
strength µ, is the operator D0,µ, acting in L2(R3)4 and defined on the following domain

dom(D0,µ) := {φ = u+Φz
m[g], u ∈ H1(R3)4, g ∈ L2(Σ)4, tΣu = −Λz

+,m[g] on Σ}. (2.3)

Hence, D0,µ acts in the sense of distributions as D0,µ(φ) = Dmu, for all φ = u + Φz
m[g] ∈ dom(D0,µ).

Consequently, we can identify D0,µ as

D0,µ = Dmφ− ⊕Dmφ+,

dom(D0,µ) = {w± +Φz
m,±[g], w± ∈ H1(Ω±)

4, g ∈ L2(Σ)4,

P±(tΣw± + Cz
±,m[g]) = 0, with tΣw± = −Λz

±,m[g] on Σ},

where Φz
m,±[g] : L

2(Σ)4 −→ L2(Ω±)
4 is the operator defined by Φz

m,±[g](x) = Φz
m|Ω± [g](x), for g ∈ L2(Σ)4

and x ∈ Ω±.
Moreover, recall that D0,µ is a self-adjoint operator on H1(R3)4 for all µ ∈ R (see, [2, Section 5.1]), and for all
z ∈ C \ R, the following resolvent formula holds [5, Proposition 4.1]

(D0,µ − z) = (Dm − z)−1 − Φz
m(Λz

+,m)−1tΣ(Dm − z)−1.

2.2. Definition and some properties of the MIT bag operator. Recall the definition of the perturbed Dirac op-
erator Dε

M := Dm +Mβ1Uε , where 1Uε is the characteristic function of Uε. Then, we consider the MIT bag

operators, DΩ+

MIT(m) and D
Ωε

−
MIT(m), acting in Ω+ and Ωε

−, respectively, and defined on the following domains

D
Ω+

MIT(m)v+ = Dmv+, ∀v+ ∈ dom(D
Ω+

MIT(m)) = {v+ ∈ H1(Ω+)
4, P−tΣv+ = 0 on Σ},

D
Ωε

−
MIT(m)vε = Dmv

ε, ∀vε ∈ dom(D
Ωε

−
MIT(m)) = {vε ∈ H1(Ωε

−)
4, P ε

−tΣεvε− = 0 on Σε}.

Then, let the MIT Dirac operator, D
Ωε

+−
MIT = D

Ω+

MIT ⊕ D
Ωε

−
MIT, acts in Ωε

+− := Ω+ ∪ Ωε
−, and defined on the

following domain

dom(D
Ωε

+−
MIT ) = {vε = (vε−, v+) ∈ H1(Ωε

−)
4 ⊕H1(Ω+)

4, P ε
−tΣεvε− = 0 = P−tΣv+},

withD
Ωε

+−
MIT v

ε = (D+⊕D−)v
ε ; D+ = D− = Dm for all vε ∈ dom(D

Ωε
+−

MIT ), and where the boundary condition
holds inH1/2(Σε)4 andH1/2(Σ)4, respectively. Here, we recall that P ε

± and P± are the projections given in (1.5).
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Finally, on Uε, we introduce the following Dirac auxiliary operator

DUε

MIT(m+M)uε = Dm+Mu
ε,

uε ∈ dom
(
DUε

MIT(m+M)
)
= {uε ∈ H1(Uε)4, P ε

+tΣεuε = 0 = P+tΣu
ε on ∂Uε := Σ ∪ Σε},

with Dm+M = Dm +Mβ = −iα · ∇+ (m+M)β. We note that DUε

MIT is the MIT bag operator on Uε.

Theorem 2.1. The operators (DΩ+

MIT,dom(D
Ω+

MIT)) (resp. (D
Ωε

−
MIT,dom(D

Ωε
−

MIT)) and (DUε

MIT,dom(DUε

MIT))) are
self-adjoint and we have

(D
Ω+

MIT − z)−1 = rΩ+
(Dm − z)−1eΩ+

− Φz
m,+(Λ

z
+,m)−1tΣ(Dm − z)−1eΩ+

, ∀z ∈ ρ(Dm).

Moreover, the following statements hold true:

(i) Sp(D
Ω+

MIT) = Spdisc(D
Ω+

MIT) ⊂ R \ [−m,m].
(

Similarly for DUε

MIT for (m+M) instead of m
)

.

(ii) Sp(D
Ωε

−
MIT) = Spess(D

Ωε
−

MIT) = (−∞,−m] ∪ [m,+∞). Moreover, if Ωε
− is connected then Sp(D

Ωε
−

MIT) is
purely continuous.

(iii) Let z ∈ ρ(D
Ωε

−
MIT) be such that 2|z| < (m+M), then for all f ∈ L2(Uε)4, it holds that∥∥∥(DUε

MIT − z)−1f
∥∥∥
L2(Uε)4

≲M−1 ∥f∥L2(Uε)4 ,

uniformly with respect to ε ∈ (0, ε0).

Proof. The proof of this theorem follows the same arguments as the proof of [4, Theorem 3.1], where the
estimates are valid uniformly with respect to ε. □

Definition 2.2. Let z ∈ ρ(Dm)∩ρ(DUε

MIT)), g
ε ∈ P ε

−H
1/2(Σε)4, g+ ∈ P−H

1/2(Σ)4 and (hε, h+) ∈ P ε
+H

1/2(Σε)4

⊕P+H
1/2(Σ)4. We denote by Em(z) : P−H

1/2(Σ)4 → H 1(Ω+)4, respectively, Eε
m(z) : P ε

−H
1/2(Σε)4 →

H 1(Ωε
−)

4 the unique solution of the boundary value problem:{
(Dm − z)v+ = 0, in Ω+,

P−tΣv+ = g+, on Σ,
(2.4){

(Dm − z)vε− = 0, in Ωε
−,

P ε
−tΣε

−
vε− = gε, on Σε.

(2.5)

Similarly, we denote by Eε
m+M (z) : P ε

+H
1/2(Σε)4 ⊕ P+H

1/2(Σ)4 → H 1(Uε)4 the unique solution of the
boundary value problem: 

(Dm+M − z)uε = 0, in Uε,

P ε
+tΣεuε = hε, on Σε,

P+tΣu
ε = h+, on Σ.

(2.6)

Define the Poincaré-Steklov operators associated with the above problems by

Am(z) : P−H
1/2(Σ)4 → P+H

1/2(Σ)4

g+ 7→ Am(z)g+ := P+tΣEm(z)P−g+,

A ε
m(z) : P ε

−H
1/2(Σε)4 → P ε

+H
1/2(Σε)4

gε− 7→ A ε
m(z)gε := P ε

+tΣE
ε
m(z)P ε

−g
ε,

Aε
m+M (z) : P+H

1/2(Σ)4 ⊕ P ε
+H

1/2(Σε)4 → P−H
1/2(Σ)4 ⊕ P ε

−H
1/2(Σε)4, with

Aε
m+M (h+, h

ε) :=
(
P−tΣEε

m+M (z)P+, P
ε
−tΣεEε

m+M (z)P ε
+

)
.

In particular, for z ∈ ρ(Dm) we have the following explicit formulas

Am(z) = −P+β(β/2 + C z
m)−1P−, A ε

m(z) = −P ε
+β(β/2 + C z,ε

m )−1P ε
−.

Remark 2.1. We define the Poincaré-Steklov operator, Aεm+M , as a part of the operator Aε
m+M , which is only

associated with Σε as follows:

Aεm+M (z) : P ε
+H

1/2(Σε)4 → P ε
−H

1/2(Σε)4

hε 7→ Aεm+M (z)hε := P ε
−tΣεEε

m+M (z)P ε
+.

In particular, Aεm+M will be used to establish the approximation in Section 3.
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2.3. Some geometric aspect.

Definition 2.3. [Weingarten map]. Let Σ be parametrized by the family {ϕj , Uj , Vj , }j∈J with J a finite set,
Uj ⊂ R2, Vj ⊂ R3, Σ ⊂

⋃
j∈J Vj and ϕ(Uj) = Vj and ϕj = Vj ∩ Σ for all j ∈ J. For x = ϕj(u) ∈ Σ ∩ Vj

with u ∈ Uj , one defines the Weingarten map (arising from the second fundamental form) as the following linear
operator

Wx :=W (x) : Tx → Tx
∂iϕj(u) 7→ W (x)[∂iϕj ](u) := −∂iν(ϕj(u)),

(2.7)

where Tx denotes the tangent space of Σ on x and {∂iϕj(u)}i=1,2 is a basis vector of Tx.

The eigenvalues k1(x), ...., kn(x) of the Weingarten map Wx are called principal curvatures of Σ at x. Then,
we have the following proposition:

Proposition 2.1. [[17], Chapter 9 (Theorem 2), 12 (Theorem 2)]. Let Σ be an n−surface in Rn+1, oriented by
the unit normal vector field ν, and let x ∈ Σ. The principal curvatures are uniformly bounded on Σ.

Definition 2.4. [Transformation operator]. Let Σ, Σε ⊂ R3 be as above. We define the diffeomorphism p : Σ −→
Σε such that for all xΣ ∈ Σ, we get p(xΣ) := xΣ + εν(xΣ), ε ∈ (0, ε0). Then for ε0 sufficiently small, we define
the transformation operator as an unitary and invertible operator as follows

Tε : L2(Σ)4 → L2(Σε)4,

ψ 7→ Tε[ψ](x) =
1

det(1− εW (xΣ))
(ψ ◦ p−1)(x), x = p(xΣ),

(2.8)

and its inverse is given by

T −1
ε : L2(Σε)4 → L2(Σ)4,

φ 7→ T −1
ε [φ](xΣ) = det(1− εW (xΣ))(φ ◦ p)(xΣ).

We also introduce the projection PΣ : Uε −→ Σ given by

PΣ(xΣ + tν(xΣ)) := xΣ, ∀ xΣ ∈ Σ and t ∈ (0, ε].

3. PARAMETRIX FOR THE POINCARÉ-STEKLOV OPERATORS (LARGE MASS LIMIT)

Set κ := (M +m). This section is devoted to study the (classical and semiclassical) pseudodifferential prop-
erties of the Poincaré-Steklov operator, Aε

κ, in order to use it in the application of Section 4. The main goal of
this section is to study the Poincaré-Steklov operator, Aε

κ, as a κ-dependent pseudodifferential operator when κ
is large enough. Roughly speaking, we will look for a local approximate formula for the solution of (2.6). The
approximation in this section follows the steps of the one in paper [4, Section 5], but since our elliptic problem
(2.6), defined on the domain Uε, has two different boundary (∂Uε = Σ ∪ Σε), and we have to take into account
the dependence in ε, so we prefer to study rigorously the construction of the approximation. Once this is done,
we use the regularization property of the resolvent of the MIT bag operator to catch the semiclassical principal
symbol of Aε

κ. Throughout this section, we assume that z ∈ ρ(DUε

MIT(κ)).

We see that Uε has two boundaries, Σ and Σε. Since the approximation with respect to Σ has already been
established in [4, Section 4], and we therefore have this result in the present problem, it is then sufficient to
establish the approximation of Aε

κ just with respect to Σε. For this purpose, and for simplicity of notation, we set
Ah := Aεκ with ε ≡ h := κ−1 ∈ (0, 1] as the semiclassical parameter, where Aεκ is defined in Remark 2.1.

3.1. Symbol classes and Pseudodifferential operators. We recall here the basic facts concerning the classes of
pseudodifferential operators that will serve in the rest of the paper. Let M4(C) be the set of 4×4 matrices over C.
For d ∈ N∗ we let Sm(Rd ×Rd) be the standard symbol class of order m ∈ R whose elements are matrix-valued
functions a in the space C∞(Rd × Rd;M4(C)) such that

|∂αx ∂
β
ξ a(x, ξ)| ⩽ Cαβ(1 + |ξ|2)m−|β|, ∀(x, ξ) ∈ Rd × Rd, ∀α ∈ Nd, ∀β ∈ Nd.

Let S (Rd) be the Schwarz class of functions. Then, for each a ∈ Sm(Rd ×Rd) and any h ∈ (0, 1], we associate
a semiclassical pseudodifferential operator Oph(a) : S (Rd)4 → S (Rd)4 via the standard formula

Oph(a)u(x) =
1

(2π)d

∫
Rd

eiξ·xa(x, hξ)û(ξ)dξ, ∀u ∈ S (Rd)4.
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If a ∈ S0(Rd×Rd), then Calderón-Vaillancourt theorem’s (see, e.g., [6]) yields thatOph(a) extends to a bounded
operator from L2(Rd)4 into itself, and there exists C,NC > 0 such that∣∣∣∣Oph(a)∣∣∣∣

L2→L2 ⩽ C max
|α+β|⩽NC

∣∣∣∣∣∣∂αx ∂βξ a∣∣∣∣∣∣
L∞

. (3.1)

By definition, a semiclassical pseudodifferential operator Oph(a), with a ∈ S0(Rd ×Rd), can also be considered
as a classical pseudodifferential operator Op1(ah) with ah = a(x, hξ) which is bounded with respect to h ∈
(0, h0), where h0 > 0 is fixed. Thus the Calderón-Vaillancourt theorem also provides the boundedness of these
operators in Sobolev spaces H s(Rd)4 = ⟨Dx⟩−sL2(Rd)4 where ⟨Dx⟩ =

√
−∆+ I. Indeed, we have∣∣∣∣Op1(ah)∣∣∣∣H s→H s =

∣∣∣∣⟨Dx⟩sOp1(ah)⟨Dx⟩−s
∣∣∣∣
L2→L2 , (3.2)

and since ⟨Dx⟩sOp1(ah)⟨Dx⟩−s is a classical pseudodifferential operator with a uniformly bounded symbol in
S0, we deduce that Oph(a) is uniformly bounded with respect to h from H s into itself.

3.2. Reduction to local coordinates. Let us consider A = {(Uφj
, Vφj

, φj) : j ∈ {1, · · · , N}} an atlas of Σ and
(Uφ, Vφ, φ) ∈ A. We consider also the case where Uφ is the graph of a smooth function χ, and we assume that
Ωε

− corresponds locally to the side x3 > χ(x1, x2). Then, for

Uφ ={(x1Σ, x2Σ, χ(x1Σ, x2Σ)); (x1Σ, x2Σ) ∈ Vφ}; φ((x1Σ, x
2
Σ, χ(x

1
Σ, x

2
Σ)) = (x1Σ, x

2
Σ),

Vφ,η :={(y1, y2, y3 + χ(y1, y2)); (y1, y2, y3) ∈ Vφ × (0, η)} ⊂ Ω+,

with η sufficiently small, we have the following homeomorphism:

ϕ : Vφ,η −→ Vφ × (ε, η)

(x1Σ, x
2
Σ, x

3
Σ) 7→ (x1Σ, x

2
Σ, x

3
Σ − χ(x1Σ, x

2
Σ)),

and the pull-back

ϕ∗ : C∞(Vφ × (ε, η)) −→ C∞(Vφ,η)

v 7→ ϕ∗v := v ◦ ϕ.

Now, using the coordinates in (1.3), we let the diffeomorphism ϕε : C
∞(Vφ,η) −→ (Vε

φ,η) defined by follows:

ϕε(x1, x2, x3) := ϕ(x1Σ, x
2
Σ, x

3
Σ) + εν(ϕ(xΣ)) =

(
x1Σ + εν1, x

2
Σ + εν2, x

3
Σ + εν3 − χ(x1Σ, x

2
Σ)
)
,

with ỹ = (y1, y2) and ν the outward pointing normal to Ω+. Now, let νφ = (φ−1)∗ν be the pull-back of the
outward pointing normal to Ω+ restricted on Vφ:

νφ(ỹ) =
1√

1 + |∇χ|2

−∂x1
χ

−∂x2
χ

1

 (y1, y2) =:

νφ1νφ2
νφ3

 .

Then, the pull-back (ϕ−1
ε )∗ transforms the differential operator Dm restricted on Vφ,η into the following operator

on Vφ × (0, η):

D̃φ
m := (ϕ−1

ε )∗Dm(ϕε)
∗

= −i (α1∂y1 + α2∂y2 − (−α1∂x1χ− α2∂x2χ+ α3)∂y3) +mβ − iε [c1∂y1 + c2∂y2 + c3∂y3 ]

= −i(α1∂y1
+ α2∂y2

) +
√
1 + |∇χ|2(iα · νφ)(ỹ)∂y3

− iε [c1∂y1
+ c2∂y2

+ c3∂y3
] +mβ,

where c• are 4× 4 matrices having the form c• = (α1∂x1
+ α2∂x2

)νφ• , for • = 1, 2,3.

Thus, in the variable y ∈ Vφ × (ε, η) for 0 < ε < η, the system (2.6) becomes:{
(D̃φ

κ − z)u = 0, in Vφ × (ε,+∞),

Γφ
−u = gφ = g ◦ φ−1, on Vφ × {ε},

(3.3)

where Γφ
± = Pφ

±t{y3=ε}.

By isolating the derivative with respect to y3, and using that (iα · νφ)−1 = −iα · νφ, we get

∂y3u =

(
I4 −

ε(α · νφc3)√
1 + |∇χ|2

)−1
iα · νφ(ỹ)√
1 + |∇χ(ỹ)|2

(
− iα1∂y1 − iα2∂y2 +mβ − z − iεc1∂y1 − iεc2∂y2

)
u.
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Since,
(α · νφc3)√
1 + |∇χ|2

is a bounded linear operator, then for ε ∈ (0, ε0) with ε0 sufficiently small, the following

Neumann series converges (
I4 −

ε(α · νφc3)√
1 + |∇χ|2

)−1

=

+∞∑
k=0

εk

(
α · νφc3√

1 + |∇χ(ỹ)|2

)k

,

and we obtain
∂y3u =

+∞∑
k=0

εk

(
α · νφc3√

1 + |∇χ(ỹ)|2

)k+1(
− iα1∂y1

− iα2∂y2
+ κβ − iεc1∂y1

− iεc2∂y2
− z
)
u, in Vφ × (ε,+∞),

Γφ
−u = gφ, on Vφ × {ε}.

Let us now introduce the matrices-valued symbols

L0(ỹ, ξ) :=
iα · νφ(ỹ)√
1 + |∇χ(ỹ)|2

(
α · ξ + β

)
, and L1(ỹ) :=

iα · νφ(ỹ)√
1 + |∇χ(ỹ)|2

(
c · ξ − z

)
, (3.4)

with ξ = (ξ1, ξ2) ∈ R2 identified with (ξ1, ξ2, 0) ∈ R3 and c = (c1, c2). Then for ε = h := 1/m, the system
(3.3) becomes:

h∂y3u
h = L0(ỹ, hDỹ)u

h + hL1(ỹ, hDỹ)u
h

+

+∞∑
k=1

hk
(α · νφc3)k

(1 + |∇χ|2)k/2
(
L0(ỹ, hDỹ)u

h + hL1(ỹ, hDỹ)
)
uh, in R2 × (ε,+∞),

Pφ
+t{y3=ε}u

h = gφ, on R2 × {ε}.

(3.5)

Remark 3.1. In this remark, we clarify the first difference in the approximation of this section compared to that
of [4, Section 5]. Indeed, according to the formula of L1 from (3.4), we observe that the term c · ξ appears in our
case, whereas it was absent in the case of [4]. Moreover, we mention that this difference plays an important role in
the subsequent progression of this approximation, exerting a significant impact on the symbol class of the solution
uh.

Before constructing an approximate solution of the system (3.5), let us give some properties of L0. Besides,
we mention that L1 also verifies these properties.

Lemma 3.1. Recall the projections Pφ
± := (I4 ∓ iβ α · νφ(ỹ))/2, and set

γ5 := −iα1α2α3 =

(
0 I2
I2 0

)
and S ·X = −γ5(α ·X), ∀X ∈ R3. (3.6)

Using the anticommutation relations of the Dirac’s matrices we easily get the following identities

i(α ·X)(α · Y ) = iX · Y + S · (X ∧ Y ),

{S ·X,α · Y } = −(X · Y )γ5, [S ·X,β] = 0, ∀X,Y ∈ R3.

Let νφ and ξ be as above. Then, for any z ∈ C and any τ ∈ R3 such that τ ⊥ νφ, the following identities hold:

(S · τ − imβ(α · νφ(ỹ)))2 =
(
|τ |2 +m2

)
I4,

Pφ
±(S · τ) = (S · τ)Pφ

∓ and Pφ
±(iα · νφ) = (iα · νφ)Pφ

∓ .

The next proposition gathers the main properties of the operator L0.

Proposition 3.1. [4, Proposition 5.1]. Let L0(ỹ, ξ) be as in (3.4), then we have

L0(ỹ, ξ) =
1√

1 + |∇χ(ỹ)|2
(
iξ · νφ(ỹ) + S · (νφ(ỹ) ∧ ξ)− iβ(α · νφ(ỹ))

)
= iξ · ν̃φ(ỹ) + λ(ỹ, ξ)√

1 + |∇χ(ỹ)|2
Π+(ỹ, ξ)−

λ(ỹ, ξ)√
1 + |∇χ(ỹ)|2

Π−(ỹ, ξ),
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where

λ(ỹ, ξ) :=
√

|νφ(ỹ) ∧ ξ|2 + 1,

ν̃φ(ỹ) :=
1√

1 + |∇χ|2
νφ(ỹ),

Π±(ỹ, ξ) :=
1

2

(
I4 ±

S · (νφ(ỹ) ∧ ξ)− iβ(α · νφ(ỹ))
λ(ỹ, ξ)

)
.

(3.7)

In particular, the symbol L0(ỹ, ξ) is elliptic in symbol class S1 (defined in Section 3.1) and it admits two eigen-
values ϱ±(·, ·) ∈ S1 of multiplicity 2 which are given by

ϱ±(ỹ, ξ) =
iνφ(ỹ) · ξ ± λ(ỹ, ξ)√

1 + |∇χ|2
,

and for which there exists c > 0 such that

±ℜϱ±(ỹ, ξ) > c⟨ξ⟩, (3.8)

uniformly with respect to ỹ. Moreover, Π±(ỹ, ξ) are the projections onto Kr(L0(ỹ, ξ)−ϱ±(ỹ, ξ)I4), belong to the
symbol class S0 and satisfy:

Pφ
± Π±(ỹ, ξ)P

φ
± = kφ+(ỹ, ξ)P

φ
± and Pφ

± Π∓(ỹ, ξ)P
φ
∓ = ∓Θφ(ỹ, ξ)Pφ

∓ , (3.9)

with

kφ±(ỹ, ξ) =
1

2

(
1± 1

λ(ỹ, ξ)

)
, Θφ(ỹ, ξ) =

1

2λ(ỹ, ξ)
(S · (νφ(ỹ) ∧ ξ)) .

Now, using Lemma 3.1 and the properties (3.7), a simple computation shows that

Pφ
+Π± = kφ±P

φ
+ ± 1

2λ
(S · (νφ(ỹ) ∧ ξ)) Pφ

− ,

Pφ
−Π± = kφ∓P

φ
− ± 1

2λ
(S · (νφ(ỹ) ∧ ξ)) Pφ

+ .

That is, kφ+ is a positive function of S0, (kφ+)
−1 ∈ S0 and Θφ ∈ S0 where S0 is zero-order symbol class defined

in Section 3.1.

3.3. Semiclassical parametrix for the boundary problem. In this section, we construct the approximate solu-
tion of the system (3.5). For simplicity of notation, in the sequel we will use y, τ , and P± instead of ỹ, y3, and
Pφ
± , respectively. We are going to construct a local approximate solution of the following first order system:

h∂y3
uh = L0(y, hDy)u

h + hL1(y, hDy)u
h

+

+∞∑
k=1

hk
(α · νφc3)k

(1 + |∇χ|2)k/2
(
L0(y, hDy)u

h + hL1(y, hDy)
)
uh, in R2 × (ε,+∞),

P+t{τ=ε}u
h = gφ, on R2 × {ε}.

This system is equivalent to
h∂y3

uh = L0(y, hDy)u
h +

+∞∑
k=1

hk
(α · νφc3)k−1

(1 + |∇χ|2) k−1
2

L̃1(y, hDy)u
h, in R2 × (ε,+∞),

P+t{τ=ε}u
h = gφ, on R2 × {ε},

(3.10)

with L̃1(y, ξ) = L1(y, ξ) + (α · ν̃φc3)L0(y, ξ).

To be precise, we will look for a solution uh in the following form:

uh(y, τ) = Oph(Ah(·, ·, τ))f =

∫
R2

Ah(y, hξ, τ)eiy·ξ f̂(ξ)dξ,

with Ah(·, ·, τ) ∈ S0 for any τ > 0 constructed inductively in the form:

Ah(y, ξ, τ) ∼
∑
j≥0

hjAj(y, ξ, τ).
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The action of h∂y3
− L0 −

∑+∞
k=1 h

k (α · νφc3)k−1

(1 + |∇χ|2) k−1
2

L̃1 on Ah(y, hDy, τ)f is given by Th(y, hDy, τ)f , with

Th(y, ξ, τ) = h(∂τA
h)(y, ξ, τ)− L0(y, ξ)A

h(y, ξ, τ)− h
(
L̃1(y, ξ)A

h(y, ξ, τ)− i∂ξL0(y, ξ) · ∂yAh(y, ξ, τ)
)

− h2
(
L0A

h + L̃1(y, ξ)A
h + ∂ξL0 · ∂yAh − i∂ξL̃1 · ∂yAh + (α · ν̃φc3)L̃1(y, ξ)A

h
)
+ ....

Then, by identifications of the coefficients of j, j ⩾ 0, we look for A0 satisfying:{
h∂τA0(y, ξ, τ) = L0(y, ξ)A0(y, ξ, τ),

P+(y)A0(y, ξ, ε) = P+(y),
(3.11)

and for j ≥ 1,

h∂τAj(y, ξ, τ) = L0(y, ξ)Aj(y, ξ, τ) +
(
L̃1(y, ξ)− i∂ξL0(y, ξ) · ∂y

)
Aj−1(y, ξ, τ)

+

l=j∑
l≥2

(α · ν̃φc3)j−l
(
(α · ν̃φc3)L̃1(y, ξ)− i∂ξL̃1(y, ξ) · ∂y

)
Al−2(y, ξ, τ),

P+(y)Aj(y, ξ, ε) = 0.

(3.12)

Let us introduce a class of parametrized symbols, in which we will construct the family Aj :

Pm
h := {b(·, ·, τ) ∈ Sm; ∀(k, l) ∈ N2, τk∂lτ b(·, ·, τ) ∈ hk−lSm−k+l}; m ∈ Z.

Proposition 3.2. There exists A0 ∈ P0
h solution of (3.11) given by:

A0(y, ξ, τ) = eh
−1(τ−ε)ϱ−(y,ξ) Π−(y, ξ)P+(y)A0(y, ξ, ε)

kφ−(y, ξ)

= eh
−1(τ−ε)ϱ−(y,ξ)Π−(y, ξ)P+(y)

kφ−(y, ξ)

= eh
−1(τ−ε)ϱ−(y,ξ)

(
I4 −

Θφ

kφ−

)
P+.

Proof. The proof follows the same argument as [4, Proposition 5.2]. The solution of the differential system
h∂τA0 = L0A0 is A0(y, ξ, τ) = eh

−1(τ−ε)L0A0(y, ξ, ε). By definition of ϱ± and Π±, we have:

eh
−1τL0 = eh

−1(τ−ε)ϱ−Π−(y, ξ) + eh
−1(τ−ε)ϱ+Π+(y, ξ). (3.13)

It follows from (3.8) that A0 belongs to S0 for any τ > ε if and only if Π+(y, ξ)A0(y, ξ, ε) = 0. Moreover, the
boundary condition P+A0 = P+ implies P+(y)A0(y, ξ, ε) = P+(y). Thus, we deduce that

A0(y, ξ, ε) = P+(y)−
P−Π+P+

kφ−
(y, ξ) = P+(y) +

P−Π−P+

kφ−
(y, ξ) =

Π−P+

kφ−
(y, ξ).

The properties of ϱ−, Π−, P− and k+ given in Proposition 3.1, imply that (kφ+)
−1Π−P− ∈ S0 and that

eh
−1τϱ−(y,ξ) ∈ P0

h. This concludes the proof of Proposition 3.2. □

Proposition 3.3. Let A0 be defined by Proposition 3.2. Then for any j ≥ 1, there exists Aj solution of (3.12)
which has the form:

Aj(y, ξ, τ) = eh
−1(τ−ε)ϱ−(y,ξ)

2j∑
k=0

(h−1(τ − ε)⟨ξ⟩)kBj,k(y, ξ), with Bj,k ∈ hS0. (3.14)

Remark 3.2. An important difference in the approximation between the solution Aj resulting from this work and
the solution presented in the work [4, Proposition 5.3] lies in the order of the standard symbol class Sm. Indeed,
by referring to the form of A2 (see (A.11) from Appendix A) one can deduce that the optimal order of the term

Π−a0

(
P+− P+Θ

φ

kφ−
+Π+a0

)
inB2,0 is in hS0, and this property is reflected in the construction ofAj for j ≥ 3.

However, in [4, Proposition 5.3], it was possible to obtain all Aj in hjS−j . This discrepancy leads us to deduce
the following propositions concerning the solutions Aj .



ON THE APPROXIMATION OF THE DIRAC OPERATOR COUPLED WITH δ-SHELL INTERACTIONS 13

Remark 3.3. We mention that this difference in the symbol class of terms Bj,k with that obtained in [4] is mainly
due to the difference discussed in Remark 3.1, i.e., to the influence of c · ξ as presented in the formula of L1 in
system (3.5), and subsequently to that mentioned in Remark 3.2.

Proof of Proposition 3.3. For initialization and calculation of A1 and A2, see Appendix A. So, for Aj with
j ≥ 1, it is sufficient to prove the induction step. Thus, assume that the Aj solution of (3.12) satisfies the above
property and let us prove that the same holds for Aj+1. In order to be a solution to the differential system

h∂τAj+1(y, ξ, τ) = L0(y, ξ)Aj+1(y, ξ, τ) +
(
L̃1(y, ξ)− i∂ξL0(y, ξ) · ∂y

)
Aj(y, ξ, τ)

+

l=j+1∑
l=2

(α · ν̃φc3)j+1−l
(
(α · ν̃φc3)L̃1(y, ξ)− i∂ξL̃1(y, ξ) · ∂y

)
Al−2(y, ξ, τ),

then, for Aj+1 we have:

Aj+1 = eh
−1L0(τ−ε)Aj+1|τ=ε + eh

−1τL0

∫ τ

ε

e−h−1sL0

(
L̃1 − i∂ξL0 · ∂y

)
Aj(y, ξ, τ)︸ ︷︷ ︸

(a)

ds

+ eh
−1τL0

∫ τ

ε

e−h−1sL0

l=j+1∑
l=2

(α · ν̃φc3)j+1−l
(
(α · ν̃φc3)L̃1 − i∂ξL̃1(y, ξ) · ∂y

)
Al−2(y, ξ, τ))︸ ︷︷ ︸

(b)

ds

:= eh
−1L0(τ−ε)Aj+1|τ=ε + eh

−1τL0

∫ τ

ε

eh
−1sL0

(
(a) + (b)

)
ds.

(3.15)
In order to know the form of (a) and (b), let us consider the formula (A.9). Then for the quantity (a), we have

∂yAj = eh
−1(τ−ε)ϱ−

(
h−1(τ − ε)∂yϱ− + ∂y

) 2j∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k
Bj,k.

Now, applying
(
L̃1 − i∂ξL0 · ∂y

)
to Aj(y, ξ, τ):(

L̃1 − i∂ξL0 · ∂y
)
Aj = a0(y)

(
− z + c · ξ − ic3L0 − iα · ∂y

)
eh

−1(τ−ε)ϱ−

2j∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k
Bj,k

:= eh
−1(τ−ε)ϱ−a0(y)

(
− z + c3α · ν̃φβ − iα · ∂y

) 2j∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k
Bj,k︸ ︷︷ ︸

(i)

+ eh
−1(τ−ε)ϱ−a0(y)

(
c+ c3α · ν̃φα

)
· ξ

2j∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k
Bj,k︸ ︷︷ ︸

(ii)

+ eh
−1(τ−ε)ϱ−a0(y)

(
− ih−1(τ − ε)α · ∂yϱ−

) 2j∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k
Bj,k︸ ︷︷ ︸

(iii)

.

Thanks to the properties of ϱ− and Bj,k, (i), (ii) and (iii) have respectively the form:

(i) = eh
−1(τ−ε)ϱ−

2j∑
k=0

(h−1(τ − ε)⟨ξ⟩)kB
′

j,k(y, ξ), (3.16)

(ii) = eh
−1(τ−ε)ϱ−

2j∑
k=0

(h−1(τ − ε)⟨ξ⟩)k ⟨ξ⟩ Bj,k(y, ξ), (3.17)

(iii) = eh
−1(τ−ε)ϱ−

2j∑
k=0

(h−1(τ − ε)⟨ξ⟩)k+1B
′′

j,k(y, ξ), (3.18)
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with B
′

j,k and B
′′

j,k verifying the properties of Bj,k, and ⟨ξ⟩ Bj,k ∈ hS1. Therefore, toghether (3.16), (3.17) and
(3.18) give that

(a) = eh
−1(τ−ε)ϱ−

2j+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)kB̃j,k(y, ξ), (3.19)

where B̃j,k verifies

B̃j,k ∈ hS1 for k = 0, ..., 2j, and B̃j,2j+1 ∈ hS0.

Similarly, to calculate (b), applying
(
− i∂ξL̃1 · ∂y + (α · ν̃φc3)L̃1

)
(see (A.9)) to the identity (3.14) yields that(

− i∂ξL̃1 · ∂y + (α · ν̃φc3)L̃1

)
Aj =

eh
−1(τ−ε)ϱ−a0(y)

(
d+ e · ξ − ih−1(y3 − ε)f · ∂yϱ−

)
2j∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k
Bj,k,

(3.20)

with d, e and f defined in (A.10). Let us decompose (b) as the following
l=j+1∑
l=2

(α · ν̃φc3)j+1−l
(
− i∂ξL̃1 · ∂y + (α · ν̃φc3)L̃1

)
Al−2(y, ξ, τ)) :=

(α · ν̃φc3)j−1
(
− i∂ξL̃1 · ∂y + (α · ν̃φc3)L̃1

)
A0(y, ξ))︸ ︷︷ ︸

(m1)

+

l=j+1∑
l≥3

(α · ν̃φc3)j+1−l
(
− i∂ξL̃1 · ∂y + (α · ν̃φc3)L̃1

)
Al−2(y, ξ, τ))︸ ︷︷ ︸

(m2)

.

Since A0 ∈ S0, this gives that

(m1) = ξ · Ḃ0,0 + B̂0,0 + (−ih−1(τ − ε)f · ∂yϱ−)B0,0, (3.21)

where Ḃ0,0, B̂0,0 ∈ S0 are respectively the constants obtained by applying d and e to
Π−P+

kφ−
and f · ∂yϱ− ∈ S1.

Thus, (m1) ∈ S1, ∀j ≥ 1.
In the other hand, and for all l ≥ 3 (i.e., l − 2 ≥ 1), Al−2 has the form

Al−2(y, ξ, τ) = eh
−1(τ−ε)ϱ−

2(l−2)∑
k=0

(h−1(τ − ε)⟨ξ⟩)kBl−2,k(y, ξ), (3.22)

with Bl−2,k ∈ hS0. Applying (3.20) to the identity (3.22) we get

(m2) = eh
−1(τ−ε)ϱ−

l=j+1∑
l≥3

2(l−2)+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)kB̈j,k(y, ξ), (3.23)

with B̈j,k ∈ hS1 and B̈j,2(l−2)+1 ∈ hS0. Therefore, for i = (l− 2) ≥ 1 and j ≥ 2, toghether (3.21), (3.23) with
(3.19) give that

(a) + (b) = eh
−1(τ−ε)ϱ−

(
2j+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)kB̃j,k +

l=j+1∑
l≥3

2(l−2)+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)kB̈l−2,k +m1

)

= eh
−1(τ−ε)ϱ−

(
2j+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)kB̃j,k +

i=j−1∑
i≥1

2i+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)kB̈i,k +m1

)

= eh
−1(τ−ε)ϱ−

(
2i+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)k
(
B̃i,k +

i=j−1∑
i≥1

B̈i,k

)
︸ ︷︷ ︸

Ci,j,k

+m1

)
,

(3.24)
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with Ci,j,k ∈ hS1, and Ci,j,k ∈ hS0 for k = 2i+ 1.
So, using the decomposition (3.13), for the second term of the r.h.s. of (3.15) we have:

eh
−1τL0

∫ τ

ε

e−h−1sL0

(
(a)+ (b)

)
ds = eh

−1τϱ−Π−Ij−(τ) + eh
−1τϱ+Π+Ij+(τ), (3.25)

with

Ij±(τ) = e−h−1εϱ−

∫ τ

ε

eh
−1s(ϱ−−ϱ±)

(
2i+1∑
k=0

(h−1(s− ε)⟨ξ⟩)kCi,j,k + m1

)
ds.

For Ij−, the exponential term is equal to 1 and by integration of sk, we obtain:

Ij−(τ) =

e−h−1εϱ−

(
2i+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)k+1h⟨ξ⟩−1

k + 1
Ci,j,k +

(
(τ − ε)(ξ · Ḃ0,0 + B̂0,0

)
− ih−1(τ − ε)2

f · ∂yϱ−
2

B0,0

)

= e−h−1εϱ−

2i+1∑
k=0

(h−1(τ − ε)⟨ξ⟩)k+1h⟨ξ⟩−1

k + 1
Ci,j,k+

e−h−1εϱ−

(
(h−1(τ − ε)⟨ξ⟩)

(
h⟨ξ⟩−1ξ · Ḃ0,0 + h⟨ξ⟩−1B̂0,0

)
− i

(
h−1(τ − ε)⟨ξ⟩

)2
h⟨ξ⟩−1f · ∂yϱ−

2
B0,0

)
,

then eh
−1τϱ−Π−Ij−(τ) has the following form:

eh
−1τϱ−Π−Ij−(τ) = eh

−1(τ−ε)ϱ−Pi−

2i+1∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k+1h⟨ξ⟩−1

k + 1
Ci,j,k +

eh
−1(τ−ε)ϱ−Π−

(
(h−1(τ − ε)⟨ξ⟩)

(
h⟨ξ⟩−1ξ · Ḃ0,0 + h⟨ξ⟩−1B̂0,0

)
− i

(
h−1(τ − ε)⟨ξ⟩

)2
h⟨ξ⟩−1f · ∂yϱ−

2
B0,0

)
.

(3.26)
For Ij+, let us introduce Pk the polynomial of degree k such that

∫ τ

ε

eλsskds =
1

λk+1
(eτλPk(τλ)− eελPk(0)), for any λ ∈ C∗.

Using the above formula, then we obtain:

Ij+(τ) = e−h−1εϱ−

∫ τ

ε

eh
−1s(ϱ−−ϱ+)

(
2i+1∑
k=0

(h−1(s− ε)⟨ξ⟩)kCi,j,k + m1

)
ds

= e−h−1εϱ−

2j+1∑
k=0

h⟨ξ⟩k

(ϱ− − ϱ+)k+1

(
eh

−1τ(ϱ−−ϱ+)Pk

(
h−1(τ − ε)(ϱ− − ϱ+)

)
− eh

−1ε(ϱ−−ϱ+)Pk(0)
)
Ci,j,k

+ e−h−1εϱ−eh
−1(ϱ−−ϱ+)τ

[
h
(ξ · Ḃ0,0 + B̂0,0

ϱ− − ϱ+

)
+ i

(τ − ε)

ϱ− − ϱ+
f · ∂yϱ−B0,0 − i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0

]

− e−h−1εϱ−eh
−1(ϱ−−ϱ+)ε

[
h
(ξ · Ḃ0,0 + B̂0,0

ϱ− − ϱ+

)
− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0

]
.
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With this notation in hand, we easily see that the term eh
−1τϱ+Π+Ij+(τ) has the following form:

eh
−1τϱ+Π+Ij+(τ) =

Π+

2i+1∑
k=0

h⟨ξ⟩k

(ϱ− − ϱ+)k+1
Ci,j,k

(
eh

−1(τ−ε)ϱ−Pk

(
h−1(τ − ε)(ϱ− − ϱ+)

)
− eh

−1(τ−ε)ϱ+Pk(0)
)

+ eh
−1(τ−ε)ϱ−Π+

[
h
(ξ · Ḃ0,0 + B̂0,0

ϱ− − ϱ+

)
+ i

(τ − ε)

ϱ− − ϱ+
f · ∂yϱ−B0,0 − i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0

]

− eh
−1(τ−ε)ϱ+Π+

[
h
(ξ · Ḃ0,0 + B̂0,0

ϱ− − ϱ+

)
− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0

]
.

(3.27)
Thus, combining (3.26) and (3.27) with (3.15), (3.25) and (3.13), yield that

Aj+1 = eh
−1(τ−ε)ϱ−

[
Π−Aj+1|τ=ε +Π−

2i+1∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k+1h⟨ξ⟩−1

k + 1
Ci,j,k

+Π−

((
h−1(τ − ε)⟨ξ⟩

)(
h⟨ξ⟩−1ξ · Ḃ0,0 + h⟨ξ⟩−1B̂0,0

)
− i

(
h−1(τ − ε)⟨ξ⟩

)2
h⟨ξ⟩−1f · ∂yϱ−

2
B0,0

)

+Π+

2i+1∑
k=0

h⟨ξ⟩k

(ϱ− − ϱ+)k+1
Ci,j,k

(
Pk

(
h−1(τ − ε)(ϱ− − ϱ+)

))]

+ eh
−1(τ−ε)ϱ−Π+

[
h
(ξ · Ḃ0,0 + B̂0,0

ϱ− − ϱ+

)
− i
(
h−1(τ − ε)⟨ξ⟩

)h⟨ξ⟩−1f · ∂yϱ−B0,0

ϱ− − ϱ+
− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0

]

+ eh
−1(τ−ε)ϱ+

[
Π+Aj+1|τ=ε −Π+

2i+1∑
k=0

h⟨ξ⟩k

(ϱ− − ϱ+)k+1
Ci,j,k

(
Pk(0)

)]

+ eh
−1(τ−ε)ϱ+Π+

(
h
(ξ · Ḃ0,0 + B̂0,0

ϱ− − ϱ+

)
− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0

)
.

(3.28)
We set

B̃+
j+1 := Π+

2i+1∑
k=0

h⟨ξ⟩k

(ϱ− − ϱ+)k+1
Ci,j,kPk(0)−Π+

(
h
(ξ · Ḃ0,0 + B̂0,0

ϱ− − ϱ+

)
− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0

)
(3.29)

belongs to hS0 as a linear combination of products of Π+ ∈ S0, h⟨ξ⟩k(ϱ− − ϱ+)
−k−1 ∈ hS−1, and of Ci,j,k

which verify the properties as in (3.24).

Now, in order to have Aj+1 ∈ S0, we let the contribution of the exponentially growing term vanish by choosing

Π+Aj+1(y, ξ, ε) = B̃+
j+1,k(y, ξ).

Then, we obtain

Aj+1 = eh
−1(τ−ε)ϱ−

[
Π−Aj+1|τ=ε +Π−

2i+1∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k+1h⟨ξ⟩−1

k + 1
Ci,j,k

+Π−

((
h−1(τ − ε)⟨ξ⟩

)(
h⟨ξ⟩−1ξ · Ḃ0,0 + h⟨ξ⟩−1B̂0,0

)
− i

(
h−1(τ − ε)⟨ξ⟩

)2
h⟨ξ⟩−1f · ∂yϱ−

2
B0,0

)

+Π+

2i+1∑
k=0

h⟨ξ⟩k

(ϱ− − ϱ+)k+1
Ci,j,k

(
Pk

(
h−1(τ − ε)(ϱ− − ϱ+)

))]

+ eh
−1(τ−ε)ϱ−Π+

[
h
(ξ · Ḃ0,0 + B̂0,0

ϱ− − ϱ+

)
− i
(
h−1(τ − ε)⟨ξ⟩

)h⟨ξ⟩−1f · ∂yϱ−B0,0

ϱ− − ϱ+
− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0

]
,

(3.30)
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since the boundary condition P+(y)Aj+1(y, ξ, ε) = 0, gives

Π−Aj+1(y, ξ, ε) = Π−(P+ + P−)Aj+1(y, ξ, ε) = Π−P−Aj+1(y, ξ, ε),

using the formula of Aj+1(y, ξ, τ) above, we get that

P−Aj+1(y, ξ, ε) =
P−Π+

kφ−
B̃+

j+1,k,

therefore

Π−Aj+1(y, ξ, ε) =
Π−P−Π+

kφ−
B̃+

j+1,k. (3.31)

In the other hand, regarding the following two series mentioned in (3.28)

Π−

2i+1∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k+1h⟨ξ⟩−1

k + 1
Ci,j,k +Π+

2i+1∑
k=0

h⟨ξ⟩k

(ϱ− − ϱ+)k+1
Ci,j,k

(
Pk

(
h−1(τ − ε)(ϱ− − ϱ+)

))
,

(3.32)

by calculation, it is easy to verify that for all j ≥ 2 (i.e., i ≥ 1), this quantity can be written as follows
2(j+1)∑
k=0

(
h−1(τ − ε)⟨ξ⟩

)k
B̃−

j+1,k, (3.33)

such that B̃−
j+1,k, as a linear combination, belong to h2S0 for k = 0, ..., 2j + 1 and ˜B−

j+1,2(j+1) ∈ h2S−1 .

Finally, the fact that we have the other terms (first and last) of the equality (3.30) of order hS0 and admit the
same structure as that of the terms in (3.32), then thanks to (3.31), and (3.29), (3.33), together with (3.30) give that

Aj+1(y, ξ, τ) = eh
−1(τ−ε)ϱ−(y,ξ)

(
Π−P−Π+

kφ−
B̃+

j+1(y, ξ) +

2(j+1)∑
k=0

(h−1(τ − ε)⟨ξ⟩)kB̃−
j+1,k(y, ξ)

)
,

where B̃+
j+1(y, ξ), B̃

−
j+1,k(y, ξ) belong to hS0, and Proposition 3.3 is proven with

Bj+1,0 =
Π−P+Π+

kφ+
B̃+

j+1 + B̃−
j+1,0, and for k ≥ 1, Bj+1,k = B̃−

j+1,k. □

Proposition 3.4. Let Aj , j ≥ 0, be of the form (3.14). Then, for any s ≥ − 1
2 , the operator Aj defined by

Aj : f 7−→ (Ajf)(y, y3) =
1

(2π)2

∫
R2

Aj(y, hξ, y3)e
iy·ξ f̂(ξ)dξ

gives rise to a bounded operator from H s(R2) into H s+ 1
2 (R2 × (ε,+∞)). Moreover, for any l ∈ [0, 12 ] we have:

∥Aj∥
H s→H s+1

2
−l = O(hl−|s|+1). (3.34)

Proof. The proof of this proposition follows exactly the arguments of [4, Proposition 5.4]. However, this
difference obtained at the rate level on h is because of the presence of a parameter h in the terms Bj,k of the
solution Aj .

Proposition 3.5. Let f ∈ Hs(R2) and Aj , j ≥ 0, be as in Propositions 3.2, 3.3. Then for any N ∈ N, the
function uhN =

∑N
j=0 h

jAjf satisfies:
h∂τu

h
N − L0(y, hDy)u

h
N − h

+∞∑
k=1

hk−1 (α · νφc3)k−1

(1 + |∇χ|2) k−1
2

L̃1(y, hDy)u
h
N = hN+1Rh

Nf, in R2 × (ε,+∞),

P+u
h
N = f, on R2 × {ε},

(3.35)
with

Rh
Nf =

−1

(2π)2

∫
R2

(
+∞∑
k=1

hk
(α · νφc3)k−1

(1 + |∇χ|2) k−1
2

(
h−1L̃1AN − i∂ξL̃1 · ∂yAN

)
− i∂ξL0 · ∂yAN

)
eiy·ξ f̂(ξ)dξ,
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a bounded operator from Hs(R2) into Hs+ 1
2 (R2 × (ε,+∞)) satisfying for any l ∈ [0, 12 ]:

∥Rh
N∥

H s→H s+1
2
−l = O(hl−|s|+1). (3.36)

Proof. By construction of the sequence (Aj)j∈{0,··· ,N−1} as in (3.10), we have the system (3.35) with Rh
N =

Oph(rhN (·, ·, τ)), such that

rhN (y, ξ, τ) = −

(
+∞∑
k=1

hk
(α · νφc3)k−1

(1 + |∇χ|2) k−1
2

(
h−1L̃1AN − i∂ξL̃1 · ∂yAN

)
− i∂ξL0 · ∂yAN

)
(y, hξ, τ).

As in the proof of Proposition 3.3, L̃1AN has the form (3.17), and ∂ξL̃1 · ∂yAN and ∂ξL0 · ∂yAN have the form
(3.18). Then, rhN has the form (3.19) (with j = N ). Therefore, as in the proof of Proposition 3.4, we obtain the
estimate (3.36). □

Proposition 3.6. Let us consider the Poincaré-Steklov operator Ah introduced at the beginning of Section 3. For
h = ε ∈ (0, 1] and for all N ∈ N, there is a h-pseudodifferential operator of order 0, Ah

N such that for h
sufficiently small, we have the following estimate:

||Ah −Ah
N ||

H1/2(Σε)→H
3
2
−l(Σε)

= O(h2l+
1
2 ), for any l ∈ [0,

1

2
]. (3.37)

Proof. The proof of this proposition follows the same argument of [4, Theorem 5.1]. That is a consequence of
the above Proposition 3.4 and 3.5, combined with the regularity estimates from Theorem 2.1-(iii). More precisely,
let (Uε

φ, V
ε
φ , φ

ε) a chart of an atlas Aε of Σε, and ψ1, ψ2 ∈ C∞
0 (Uε

φ). Let also hε ∈ P−H
1/2(Σε) be such

that fε := (φ−1
ε )∗[ψ2h

ε] ∈ H1/2(V ε
φ )

4, which can be extended by 0 to a function of H1/2(R2)4. Then, for
ε = h = κ−1 and N ∈ N, the previous construction provides a function uhN ∈ H1(R2 × (ε,+∞))4 which
verifies the following system{

(D̃φ
κ − z)uhN = hN+1Rh

Nf
ε, in R2 × (ε,+∞),

Pφ
−tΣεuhN = fε, on R2 × {ε},

where uhN , Rh
N are defined in Proposition 3.5. Moreover, from the latter, we know that Rh

N ∈ HN+1(R2 ×
(ε,+∞)) with norm in H 1−l, l ∈ [0, 12 ], bounded by O(hl+

1
2 ). Consequently, vhN := ϕ∗εu

h
N , defined on Vε

φ,η

satisfies {
(Dκ − z)vhN = hN+1(ϕ−1

ε )∗
(
Rh

Nf
ε
)
, in Vε

φ,η,

P−tΣεvhN = ψ2h
ε, on Uε

φ.

Recall the definition of the lifting operator Eε
κ, given in Definition 2.2. We have for hε ∈ P−H

1/2(Σε)4,
Eε
κ[ψ2h

ε] ∈ H1(Uε)4. Since P−tΣεvhN = P−tΣεEε
κ[ψ2h

ε] = ψ2h
ε, it follows that

vhN − Eε
κ[ψ2h

ε] = hN+1(Dε
MIT(κ)− 1)−1(ϕ−1

ε )∗
(
Rh

N (φ−1
ε )∗[ψ2h

ε]
)
.

Thanks to the estimation of [4, Theorem 3.2-(i)], and also by continuing the steps of the proof of Theorem 5.1 in
[4], we obtain that Ah

N ∈ hOphS0(Σε) and the estimate (3.37) holds for any l ∈ [0, 12 ]. □

At the end of this section, let’s give some pseudodifferential properties of the Poincaré-Steklov operators, Am

and A ε
m, introduced in Definition 2.2, in order to use it in Section 4.

Remark 3.4. We mention that the fixed Poincaré-Steklov operator Am have been introduced and studied in details
in the paper [4, Theorem 4.1]. Moreover, it is a pseudodifferential operator of order 0, which can be considered
as a h-pseudodifferential operator, and whose semiclassical principal symbol (in local coordinate) is given by

Ph,Am
(xΣ, ξ) =

S · (ξ ∧ ν(xΣ))
|ξ ∧ ν(xΣ)|

P−, for any xΣ ∈ Σ.

For A ε
m, we have the following results:

Theorem 3.1. Let z ∈ ρ(Dm) and xΣ ∈ Σ and recall the definition of Tε from Definition 2.4. We define the
Cauchy operator C z,ε

m : L2(Σε)4 −→ L2(Σε)4 as the singular integral operator acting as

C z,ε
m [g](x) := lim

ρ↘0

∫
|x−y|>ρ

ϕzm(x− y)g(y)dσ(y), for dσ-a.e.,x = xΣ + εν(xΣ) ∈ Σε, g ∈ L2(Σε)4.
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Also, we consider the Poincaré-Steklov operator A ε
m given in Definition 2.2. Then, T −1

ε C z,ε
m Tε and T −1

ε A ε
mTε

are homogeneous pseudodifferential operators of order 0, and we have

T −1
ε C z,ε

m Tε = det(1− εW (xΣ))
[1
2
α · ∇Σ√

−∆Σ

+ εOp(b0(xΣ, ξ)) +Op(b−1(xΣ, εξ))
]
,

T −1
ε A ε

mTε = det(1− εW (xΣ))
[
S · (∇Σ ∧ ν)√

−∆Σ

P ε
− + εOp(b

′

0(xΣ, ξ)) +Op(b
′

−1(xΣ, εξ))
]
,

where ∇Σ = ∇− ν(ν · ∇) is the surface gradient along Σ, and −∆Σ is the Laplace-Beltrami operator, with b0,
b
′

0, resp. b−1, b
′

−1 the symbols of order 0, resp. −1.

Proof. The proof follows similar arguments as in [4, Theorem 4.1]. Let f ∈ L2(Σ)4 and consider the operator
T −1
ε C z,ε

m Tεf. Using the explicit formula of A ε
m, we have the following connection

L2(Σ)4 ∋ T −1
ε A ε

mTεf = −P ε
+β
(
β/2 + T −1

ε C z,ε
m Tεf

)−1

P ε
−.

Now, fix a local chart (U, V, φ) of Σ and let ψk : Σ −→ R, k = 1, 2, be a C∞-smooth function with supp(ψ1) ∩
supp(ψ2) = ∅. For xΣ ∈ Σ,(

T −1
ε C z,ε

m Tεf
)
(xΣ) = det(1− εW (xΣ)) p.v.

∫
|xΣ+εν(xΣ)−y|>ρ

ϕzm(xΣ + εν(xΣ)− y)Tεf(y)dσ(y)

= det(1− εW (xΣ)) p.v.

∫
|xΣ−yΣ|>ρ′

ϕzm(xΣ + εν(xΣ)− yΣ − εν(yΣ))f(yΣ)dσ(yΣ)

= det(1− εW (xΣ))

∫
V

ϕzm(xΣ − yΣ + ε
(
ν(xΣ)− ν(yΣ))

)
f(yΣ)dσ(yΣ).

(3.38)
Now, recall the definition of ϕzm from (2.1), and observe that

ϕzm(x− y) = k(x− y) + a(x− y),

where

kz(x− y) =
ei

√
z2−m2|x−y|

4π|x− y|

(
z +mβ +

√
z2 −m2α · x− y

|x− y|

)
+ i

ei
√
z2−m2|x−y| − 1

4π|x− y|3
α · (x− y),

a(x− y) =
i

4π|x− y|3
α · (x− y).

Using this, it follows that

C z,ε
m [g](x) = lim

ρ↘0

∫
|x−y|>ρ

a(x− y)g(y)dσ(y) +

∫
Σε

kz(x− y)g(y)dσ(y)

=A[g](x) +K[g](x).

As |kz(x − y)| = O(|x − y|−1) when |x − y| → 0, using the standard layer potential techniques (see, e.g. [15,
Chap. 3, Sec. 4] and [14, Chap. 7, Sec. 11]) it is not hard to prove that the integral operator T −1

ε KTε gives rise
to a pseudodifferential operator of order −1, i.e., T −1

ε KTε ∈ OpS−1(Σ). Thus, we can (formally) write

T −1
ε C z,ε

m Tε = T −1
ε ATε modOpS−1(Σ), (3.39)

which means that the operator A encodes the main contribution in the pseudodifferential character of T −1
ε C z,ε

m Tε.

For Σε ∋ x = xΣ + εν(xΣ), y = yΣ + εν(yΣ),

a
(
xΣ − yΣ + ε(ν(xΣ)− ν(yΣ))

)
= iα ·

(
xΣ − yΣ + ε(ν(xΣ)− ν(yΣ))

)∣∣xΣ − yΣ + ε(ν(xΣ)− ν(yΣ))
∣∣3 .

Set X = xΣ − yΣ. Then, |xΣ − yΣ + ε(ν(xΣ)− ν(yΣ))| = |X + ενX|. And |X + ενX|−3 yields

|X + ενX|−3 = (1 + ε2)−3/2|X|−3
(
1 + 2ε(1 + ε2)−1 ⟨X, νX⟩

|X|2
)−3/2

.

By a series expansion (first order), we get

|X + ενX|−3 = |X|−3 + ε
(
− 3|X|−3 ⟨X, νX⟩

|X|2
)
.
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For any X ∈ U we have X = (X̃, χ(X̃)) with X ∈ V and where the graph of χ : V −→ R coincides with U.
With the same argument in [4, Theorem 4.1] we get that, uniformly with respect to ε ∈ (0, ε0), with ε0 sufficiently
small

|X + ενX|−3 =
1

⟨X̃,G(x̃Σ)X̃⟩3/2
+ k1(X̃), with |k1(X̃)| = O(|X̃|−2) when |X̃| −→ 0,

|X + ενX|−5⟨X, νX⟩ = ⟨X̃, νX̃⟩
⟨X̃,G(x̃Σ)X̃⟩5/2

+ ⟨X̃, νX̃⟩k2(X̃), with |k2(X̃)| = O(|X̃|−4) when |X̃| −→ 0,

where G(x̃Σ) is the metric tensor. We deduce that

ψ2(T −1
ε ATε[ψ1f ])(xΣ) = ψ2Op(a0(xΣ, ξ))ψ1f(xΣ) + εψ2Op(b0(xΣ, ξ))ψ1f(xΣ) + ψ2Lψ1, (3.40)

with L a pseudodifferential operator of order −1. Thus, T −1
ε ATε is a zero-order pseudodifferential operator.

Furthermore, thanks to (3.39) and (3.40) we get that T −1
ε C z,ε

m Tε is a homogeneous pseudodifferential operator of
order 0, with principal symbol given by

T −1
ε C z,ε

m Tε = det(1− εW (xΣ))
[1
2
α · ∇Σ√

−∆Σ

+ εOp(b0(xΣ, ξ)) +Op(b−1(xΣ, εξ))
]
.

Consequently, thanks to the relation between C z,ε
m and A ε

m, we have that T −1
ε A ε

mTε is a homogeneous pseudo-
differential operators of order 0

T −1
ε A ε

mTε = det(1− εW (xΣ))
[
S · (∇Σ ∧ ν(xΣ))√

−∆Σ

P ε
− + εOp(b

′

0(xΣ, ξ)) +Op(b
′

−1(xΣ, εξ))
]
.

□

Corollary 3.1. The Poincaré-Steklov operator A ε
m is a homogeneous pseudodifferential operator of order 0, and

we have that

A ε
m = S · (∇Σε ∧Nε(p(xΣ)))√

−∆Σε

P ε
− + εOp(bp0(xΣ, ξ)) +Op(bp−1(xΣ, εξ))

= −S · (∇Σε ∧ ν(xΣ))√
−∆Σε

P ε
− + εOp(bp0(xΣ, ξ)) +Op(bp−1(xΣ, εξ)), with ε ∈ (0, ε0),

where ∇Σε is the surface gradient along Σε, −∆Σε is the Laplace-Beltrami operator, and bpj (xΣ, ξ) has the
following form

bpj (xΣ, ξ) = bj

(
p(xΣ),

(
∇p(xΣ)−1

)t
ξ

)
, for j ∈ {−1, 0},

with p(xΣ) = xΣ+εν(xΣ) the diffeomorphism from Definition 2.4, and
(
∇p(xΣ)−1

)t
=
((

1− εW (xΣ)
)−1
)t

=(
1− εW (xΣ)

)−1
, where W (xΣ) is the Weingarten matrix, symmetric, given in Definition 2.3.

Proof. The proof of this corollary is a consequence of Theorem 3.1 and the arguments of [19, Theorem
9.3]. □

4. REDUCTION TO A MIT BAG PROBLEM.

Throughout the section, we denote Ω+, Ωε
− and Uε the domains as in Figure 1 such that Σ = ∂Ω+, Σε := ∂Ωε

−
and ∂Uε = Σ∪Σε, respectively, and we let Nε be the outward pointing unit normal to Ωε

−. We set ν the outward
unit normal to the fixed domain Ω+ ⊂ R3. Fix m > 0 and let M > 0. Remember our perturbed Dirac operator

Dε
Mφ = (Dm +Mβ1Uε)φ, ∀φ ∈ dom(Dε

M ) := H1(R3)4,

where 1Uε is the characteristic function of Uε.

Let us now recall the definition of the MIT bag operator from Section 2.2 by DΩ+

MIT, D
Ωε

−
MIT, and DUε

MIT, which act
in L2(Ω+)

4, L2(Ωε
−)

4, and L2(Uε)4 repsectively. The aim of this section is to use the properties of the Poincaré-
Steklov operators carried out in the previous sections to study the resolvent of Dε

M when M is large enough.
Namely, we give a Krein-type resolvent formula of the Dirac operator Dε

M in terms of the resolvent of the MIT

bag operator DΩ+

MIT ⊕ D
Ωε

−
MIT, and we show that the convergence of Dε

M toward DL holds in the norm resolvent
sense when M and ε converge to ∞ and 0+, respectively. To set up Krein’s formula between the resolvent of Dε

M
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and the resolvent of DΩ+

MIT ⊕D
Ωε

−
MIT, we will fix ν the only normal acting in our domain. Throughout this section,

the projections associated with the surface Σε (i.e., P ε
±(x), for x ∈ Σε) verify the properties of Remark 1.2.

4.1. Notations. Let z ∈ ρ(D
Ωε

−
MIT) ∩ ρ(Dε

M ). We recall Ωε
+− := Ω+ ∪ Ωε

−. We define the resolvents associated

with the operators Dε
M , DUε

MIT, and D
Ωε

+−
MIT := D

Ω+

MIT ⊕D
Ωε

−
MIT, respectively, by

• Rε
M (z) := (Dε

M − z)−1 : L2(R3)4 → H1(R3)4.
• RUε

MIT(z) := (DUε

MIT − z)−1 : L2(Uε)4 → dom(DUε

MIT).

• R
Ωε

+−
MIT (z) := (D

Ωε
+−

MIT − z)−1 : L2(Ω+)
4 ⊕ L2(Ωε

−)
4 → dom(D

Ω+

MIT) ⊕ dom(D
Ωε

−
MIT) ⊂ L2(Ω+)

4 ⊕
L2(Ωε

−)
4

can be read as the following matrix:

R
Ωε

+−
MIT =

(
R

Ω+

MITrΩ+
0

0 R
Ωε

−
MITrΩε

−

)
≡ rΩε

+−
eΩ+

R
Ω+

MITrΩ+
+ rΩε

+−
eΩε

−
R

Ωε
−

MITrΩε
−
=
(
R

Ω+

MITrΩ+
, R

Ωε
−

MITrΩε
−

)
,

(4.1)

where RΩ+

MIT(z), R
Ωε

−
MIT(z) are the resolvents of DΩ+

MIT, D
Ωε

−
MIT, respectively, and rΩε

+−
, eΩε

+−
are defined below.

We define rΩε
+−

and eΩε
+−

as the restriction operator in Ωε
+− and its adjoint operator, i.e., the extension by 0

outside of Ωε
+−, respectively, by

rΩε
+−

: L2(R3)4 → L2(Ω+)
4 ⊕ L2(Ωε

−)
4

w 7→ rΩε
+−
w := (rΩ+

w ⊕ rΩε
−
w) ≡ (rΩ+

, rΩε
−
)w,

eΩε
+−

: L2(Ωε
−)

4 ⊕ L2(Ω+)
4 → L2(R3)4

v = (vε, v+) 7→ eΩε
+−

(vε, v+) := eΩε
−
vε + eΩ+v+.

(4.2)

Let us recall for z ∈ ρ(Dm), the lifting operators associated with boundary value problems (2.4), (2.5) and (2.6)
are defined respectively, by

Em(z) : P−H
1/2(Σ)4 → H1(Ω+)

4

g+ 7→ Em(z)g+ := Φz
m(Λz

+,m)−1P−,

Eε
m(z) : P+H

1/2(Σε)4 → H1(Ωε
−)

4

gε 7→ Eε
m(z)gε := Φz,ε

m (Λz,ε
+,m)−1P+,

Eε
m+M (z) : P+H

1/2(Σ)4 ⊕ P−H
1/2(Σε)4 → H1(Uε)4,

with Eε
m+M (z)(h+, h

ε) := Φz
m+M (Λz

+,m+M )−1P+h+ +Φz,ε
m+M (Λz,ε

+,m+M )−1P−h
ε.

In addition, we also recall the Poincaré-Steklov operators from Definition 2.2

Am(z) : P−H
1/2(Σ)4 → P+H

1/2(Σ)4

g+ 7→ Am(z)g+ := −P+β(Λ
z
+,m)−1P−g+,

A ε
m(z) : P+H

1/2(Σε)4 → P−H
1/2(Σε)4

gε− 7→ A ε
m(z)gε := −P−β(Λ

z,ε
+,m)−1P+g

ε,

Aε
m+M (z) : P+H

1/2(Σ)4 ⊕ P−H
1/2(Σε)4 → P−H

1/2(Σ)4 ⊕ P+H
1/2(Σε)4, with

Aε
m+M (h+, h

ε) :=
(
− P−β(Λ

z
+,m+M )−1P+h+,−P+β(Λ

z,ε
+,m+M )−1P−h

ε
)
.

4.2. The Krein resolvent formula of Rε
M . Let f ∈ L2(R3)4 and set

uε = rUεRε
M (z)f and v = rΩε

+−
Rε

M (z)f := (vε ⊕ v+).
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Then uε and v satisfy the following system

(Dm − z)v+ = f in Ω+,

(Dm − z)vε = f in Ωε
−,

(Dm+M − z)uε = f in Uε,

P±tΣv+ = P±tΣu
ε on Σ,

P ε
∓tΣεvε = P ε

∓tΣεuε on Σε.

Using Lemma 2.1, it is straightforward to check that the following resolvent formulas hold:

R
Ωε

−
MIT(z) = rΩε

−
(Dm − z)−1eΩε

−
− Φz,ε

m,−(Λ
z,ε
+,m)−1tΣε(Dm − z)−1eΩε

−
, (4.3)

R
Ωε

+−
MIT (z) = rΩε

+−
(Dm − z)−1eΩε

+−
− rΩε

+−
eΩ+Φ

z
m,+(Λ

z
+,m)−1tΣ(Dm − z)−1rΩ+eΩε

+−

− rΩε
+−
eΩε

−
Φz,ε

m,−(Λ
z,ε
+,m)−1tΣε(Dm − z)−1rΩε

−
eΩε

+−
,

RUε

MIT(z) = rUε(Dm +Mβ − z)−1eUε − Φz,ε
m+M (Λz,ε

+,m+M )−1t∂Uε(Dm +Mβ − z)−1eUε .

In the whole following sections, and for simplicity, we’ll use the following notation:

(•, •) := diag(•, •) =
(
• 0
0 •

)
.

Now, we set Γ± := P±tΣ and Γε
± := P±tΣε . Since Em(z), Eε

m(z) and Eε
m+M (z) gives the unique solution to

the boundary value problem (2.4), (2.5) and (2.6), respectively, and the factΓ−R
Ω+

MIT(z)rΩ+
f = 0, Γ+R

Uε

MMIT(z)rUεf = 0,

Γε
+R

Ωε
−

MIT(z)rΩε
−
f = 0, Γε

−R
Uε

MIT(z)rUεf = 0.

Then, if we let {
φ = Γ+rΩ+

Rε
M (z), φε = Γε

−rΩε
−
Rε

M (z),

ψ = Γ−rUεRε
M (z), ψε = Γε

+rUεRε
M (z),

it is easy to check that 
v+ = R

Ω+

MIT(z)rΩ+f + Em(z)ψ,

vε = R
Ωε

−
MIT(z)rΩε

−
f + Eε

m(z)ψε,

uε = RUε

MIT(z)rUεf + Eε
m+M (z)(φ,φε).

(4.4)

Hence, to get an explicit formula for Rε
M (z) it remains to find the unknowns (φ,φε, ψ, ψε). To do this, from (4.4)

we get 

φ = Γ+v+ = Γ+R
Ω+

MITrΩ+
f + Am(z)ψ,

φε = Γε
−v

ε = Γε
−R

Ωε
−

MITrΩεf + A ε
m(z)ψε,

ψ = Γ−u
ε = Γ−R

Uε

MIT(z)rUεf + Γ−Eε
m+M (z)(φ,φε),

ψε = Γε
+u

ε = Γε
+R

Uε

MIT(z)rUεf + Γ+Eε
m+M (z)(φ,φε).

(4.5)

Using the restriction map r• and the extension map e• given in (4.2), we get v = eΩε
+−

(
R

Ω+

MIT(z), R
Ωε

−
MIT(z)

)
rΩε

+−
f + eΩε

+−

(
Em(z)P−, E

ε
m(z)P+

)
(Γ−,Γ

ε
+)rUεRε

M (z)f,

uε = RUε

MIT(z)rUεf + Eε
m+M (z)(P+, P−)

(
Γ+rΩ+

,Γε
−rΩε

−

)
Rε

M (z)f.

Thus, we obtain

Rε
M (z) = eΩ+R

Ω+

MITrΩ+ + eΩε
−
R

Ωε
−

MITrΩε
−
+ eUεRUε

MIT(z)rUε

+

(
eΩε

+−

(
Em(z)P−, E

ε
m(z)P+

)
(Γ−,Γ

ε
+)rUε + eUεEε

m+M (z)
(
Γ+rΩ+

,Γε
−rΩε

−

))
Rε

M (z)

= eΩε
+−
R

Ωε
+−

MIT (z)rΩε
+−

+ eUεRUε

MIT(z)rUε + Eε
M (z)ΓεRε

M (z),

(4.6)
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with R
Ωε

+−
MIT (z) as in (4.1).

Here Γε and Eε
M (z) are defined as follows:

Γε : H1(Ω+)
4 ⊕H1(Ωε

−)
4 ⊕H1(Uε)4 → H1/2(Σ)4 ⊕H1/2(Σε)4 ⊕H1/2(Σ)4 ⊕H1/2(Σε)4

(rΩ+
, rΩε

−
, rUε) 7→ (Γ+rΩ+

Γε
−rΩε

−
Γ−rUε Γε

+rUε)t,

andEε
M (z) = eΩε

+−
E

Ωε
+−

m (z)+eUεEε
m+M (z)(P+, P−), withE

Ωε
+−

m (z) = rΩε
+−
eΩ+

Em(z)P−+rΩε
+−
eΩε

−
Eε

m(z)P+

can be read as the following matrix:

E
Ωε

+−
m : P−H

1/2(Σ)4 ⊕ P+H
1/2(Σε)4 → H1(Ω+)

4 ⊕H1(Ωε
−)

4

(ψ, ψε) 7→ (EmP−ψ, E
ε
mP+ψε) ≡

(
EmP− 0

0 Eε
mP+

)(
ψ
ψε

)
.

(4.7)

Now, applying Γε to the identity (4.6), it yields

ΓεRε
MIT(z) =

(
I−

(
Am(z)P−,A

ε
m(z)P+

)
−Aε

m+M (z)(P+, P−)
)
ΓεRε

M (z) := Υε
M (z)ΓεRε

M (z), (4.8)

with Rε
MIT(z) := eΩε

+−
R

Ωε
+−

MIT (z) + eUεRUε

MIT(z). Similarly, we mention that
[
Am(z),A ε

m(z)
]

means the sum of
both terms Am, A ε

m and can be read as the following matrix

A
Ωε

+−
m :=

(
Am,A ε

m

)
: P−H

1/2(Σ)4 ⊕ P+H
1/2(Σε)4 → P+H

1/2(Σ)4 ⊕H1/2(Σε)4

(ψ, ψε) 7→
(
Am,A ε

m

)
(ψ, ψε) =

(
AmP− 0

0 A ε
mP+

)(
ψ
ψε

)
.

(4.9)

Using the formula of Aε
m+M , the term (Γ−,Γ

ε
+)Eε

m+M (z) is identified with (P−Aε
m+M , P+Aε

m+M ) =
(P−, P+)Aε

m+M (z) ≡ (P−, 0)Aε
m+M (z) + (0, P+)Aε

m+M (z).

Now, applying also
(
I+ A

Ωε
+−

m (z) + (P−, P+)Aε
m+M (z)

)
to the identity (4.8) we get

ΓεRε
M (z) = Ξε

M (z)
(
I+ A

Ωε
+−

m (z) + (P−, P+)Aε
m+M (z)

)
ΓεRε

MIT(z),

with Ξε
M (z) : H1/2(Σ)4 ⊕H1/2(Σε)4 → H1/2(Σ)4 ⊕H1/2(Σε)4 the following quantity

Ξε
M (z) :=

(
I8 − A

Ωε
+−

m (z)(P−, P+)Aε
m+M (z)−Aε

m+M (z)(P+, P−)A
Ωε

+−
m (z)

)−1

. (4.10)

From which it follows that,

Rε
M (z) = Rε

MIT(z) + Eε
M (z)[Υε

M (z)]−1ΓεRε
MIT(z), (4.11)

with

[Υε
M ]−1(z) = Ξε

M (z)
(
I+ A

Ωε
+−

m (z) + (P−, P+)Aε
m+M (z)

)
.

Remark 4.1. The identity (4.8) has the following matrix form
Γ+rΩ+R

ε
M

Γ−rΩε
−
Rε

M

Γ−rUεRε
M

Γε
+rUεRε

M

 =


Γ+R

Ω+

MITrΩ+

Γε
−R

Ωε
−

MITrΩε
−

Γ−R
Uε

MITrUε

Γε
+R

Uε

MITrUε

+


0 0 AmP− 0
0 0 0 A ε

mP+

Aε
m+M (P+, P−) Aε

m+M (P+, P−) 0 0
Aε

m+M (P+, P−) Aε
m+M (P+, P−) 0 0



Γ+rΩ+

Rε
M

Γε
−rΩε

−
Rε

M

Γ−rUεRε
M

Γε
+rUεRε

M

 .

Moreover, if we note by Γε
+− = (Γ+rΩ+ Γε

−rΩε
−
)t and Γε

−+ = (Γ−rUε Γε
+rUε)t. Then, using the quantities of

(4.5), we remark that the Krein resolvent formula 4.11 can be also written in the following matrix(
rΩε

+−
Rε

M

rUεRε
M

)
=

(
R

Ωε
+−

MIT rΩε
+−

RUε

MITrUε

)
+

(
E

Ωε
+−

m Ξε,−+
M 0

0 Eε
m+MΞε,+−

M

)(
Aε

m+M I4
I4 A

Ωε
+−

m

)(
Γε
+−R

Ωε
+−

MIT rΩε
+−

Γε
−+R

Uε

MITrUε

)
,

where A
Ωε

+−
m is the matrix in (4.9) and Ξε,±∓

M are given in the following corollary.
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Corollary 4.1. Consider the operator Ξε
M (z) given in (4.10). Then, there isM0 > 0 such that for everyM > M0,

h ≡ ε = 1/M and for all z ∈ ρ(D
Ωε

+−
MIT ) ∩ ρ(Dε

M ), the operator Ξε
M (z) is everywhere defined and uniformly

bounded with respect to M . Moreover, the operators Ξε,+−
M (z) and Ξε,−+

M (z) defined by

Ξε,+−
M (z) : P+H

s(Σ)4 ⊕ P−H
s(Σε)4 → P+H

s(Σ)4 ⊕ P−H
s(Σε)4,

Ξε,−+
M (z) : P−H

s(Σ)4 ⊕ P+H
s(Σε)4 → P−H

s(Σ)4 ⊕ P+H
s(Σε)4,

which have the following formula

Ξε,+−
M (z) =

(
I− A

Ωε
+−

m (z)(z)(P−, P+)Aε
m+M (z)(P+, P−)

)−1

,

Ξε,−+
M (z) =

(
I− (P−, P+)Aε

m+M (z)(P+, P−)A
Ωε

+−
m (z)

)−1

are bounded for any s ∈ R, and it holds that

||Ξε,±∓
M (z)||P±H−1/2(Σ)4⊕P∓H−1/2(Σε)4→P±H−1/2(Σ)4⊕P∓H−1/2(Σε)4 ≲ 1, (4.12)

uniformly with respect to M > M0.
Moreover, the Poincaré-Steklov Aε

m+M , satisfies the following estimate

||Aε
m+M ||P+H1/2(Σ)4⊕P−H1/2(Σε)4→P−H−1/2(Σ)4⊕P+H−1/2(Σε)4 ≲M−1. (4.13)

Proof. Set κ = m + M and h = κ−1. The proof of this corollary follows a similar argument as in [4,
Proposition 6.1]. It is based on the pseudodifferential properties of the Poincaré-Steklov operators A ε

m and Aε
κ.

Since Am (resp. A ε
m) are a pseudodifferential operators of order 0, see Remark 3.4 (resp. Corollary 3.1), we can

consider it as an h-pseudodifferential operator of order 0 whose principal symbol is given by:

Ph,Am
(xΣ, ξ) =

S · (ξ ∧ ν(xΣ))∣∣ξ ∧ ν(xΣ)∣∣ P−, xΣ ∈ Σ,

Ph,A ε
m
(x, ξ) = −

(
1− εW (xΣ)

)−1 S · (ξ ∧ ν(p−1(x)))∣∣(1− εW (xΣ)
)−1∣∣∣∣∣ξ ∧ ν(p−1(x))

∣∣∣P+, Σ
ε ∋ x = p(xΣ) = xΣ + εν(xΣ),

where S is the spin angular momentum given in Lemma 3.1, ξ ∈ R2 can be identify with ξ̄ = (ξ1, ξ2, 0)
t ∈ R3, p

is the diffeomorphism from Remark 1.2, and for x = φ(x̃) stands for νφ(x̃). On the other hand, Proposition 3.6
follows that Aε

κ is h-pseudodifferential operator of order 0 has the following principal symbol

Ph,Aε
κ
(x, ξ) =

(
1− εW (xΣ)

)−1 S · (ξ ∧ ν(p−1(x)))√((
1− εW (xΣ)

)−1
ξ ∧ ν(p−1(x))

)2
+ 1 + 1

(
−P+ 0
0 P−

)
.

Consequently, the symbol calculus yields for all h < h0 that(
I8 − A

Ωε
+−

m (z)(P−, P+)Aε
κ(z)−Aε

κ(z)(P+, P−)A
Ωε

+−
m (z)

)
is a κ−1-pseudodifferential operator of order 0.

Now, using the principal symbols of Am, A ε
m, the principal symbol of A

Ωε
+−

m can be written as the following:

P
h,A

Ωε
+−

m

(xΣ, ξ) =

(
Ph,Am

(xΣ, ξ) 0
0 Ph,A ε

m
(p(xΣ), ξ)

)

=
S · (ξ ∧ ν(xΣ))∣∣ξ ∧ ν(xΣ)∣∣

P− 0

0 −
(
1− εW (xΣ)

)−1∣∣(1− εW (xΣ)
)−1∣∣P+

 .

Using Lemma 3.1, we obtain

P
h,A

Ωε
+−

m

(xΣ, ξ)Ph,Aε
κ
(x, ξ) =

−
(
1− εW (xΣ)

)−1∣∣ξ ∧ ν(xΣ)∣∣√((
1− εW (xΣ)

)−1
ξ ∧ ν(p−1(x))

)2
+ 1 + 1

P+ 0

0

(
1− εW (xΣ)

)−1∣∣(1− εW (xΣ)
)−1∣∣P−

 .
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Then, it yields

I8 − P
h,A

Ωε
+−

m

(xΣ, ξ)Ph,Aε
κ
(x, ξ)− Ph,Aε

κ
(x, ξ)P

h,A
Ωε
+−

m

(xΣ, ξ) =

I8 +
(
1− εW (xΣ)

)−1∣∣ξ ∧ ν(xΣ)∣∣√((
1− εW (xΣ)

)−1
ξ ∧ ν(p−1(x))

)2
+ 1 + 1

I4 0

0

(
1− εW (xΣ)

)−1∣∣(1− εW (xΣ)
)−1∣∣ I4

 ≳ 1.

Thus, Ξε
M is a zero-order pseudoddiferential operator.

Thanks to the following relationship: Ξε,±∓
M (z) = (P±, P∓)Ξ

ε
M (z)(P±, P∓), it yields the same properties for

Ξε,±∓
M (z) and therefore (4.12) is established.

Regarding the estimate of Aε
κ, exploits also the Calderón-Vaillancourt theorem which shows that for any oper-

ator in hOphS0(∂Uε) is uniformly bounded by O(h), with respect to h = κ−1 ∈ (0, 1), from H1/2(∂Uε)4 into
H1/2(∂Uε)4 ↪→ H−1/2(∂Uε)4, see (3.2). Thus,∣∣∣∣∣∣Aε

κ − S · (∇∂Uε ∧ ν(p−1(x)))√
−κ−2∆∂Uε + I+ I

(P+, P−)
∣∣∣∣∣∣
H1/2(∂Uε)4→H−1/2(∂Uε)4

≲ κ−1,

uniformly with respect to κ big enough and ε ∈ (0, ε0). Then we conclude the proof of the estimate by using

that
(√

−κ−2∆∂Uε + I + I
)−1

is uniformly bounded from H1/2(∂Uε)4 into itself and (∇∂Uε ∧ ν(p−1(x))) is

uniformly bounded from H1/2(∂Uε)4 into H−1/2(∂Uε)4.

Remark 4.2. Let E
Ωε

+−
m from (4.7). Thanks to [4, Proposition 4.1 (ii)], we have that

(
E

Ωε
+−

m (z)
)∗

= −β(Γε
+−)

tR
Ωε

+−
MIT (z) and

(
Eε
m+M (z)

)∗
= −β(Γε

−+)
t

(
RUε

MIT(z)
RUε

MIT(z)

)
,

for any z ∈ ρ(D
Ωε

+−
MIT ) ∩ ρ(Dε

M ).

5. RESOLVENT CONVERGENCE TO THE DIRAC OPERATOR WITH LORENTZ SCALAR.

In this section, we gather the necessary elements to prove the main result of this work. The components of the
proof for the main theorem (i.e., Theorem 1.1) are dedicated to examining the convergence of the terms present in
the resolvent formula (4.6). It is important to note that this resolvent formula includes certain terms independent
of M and ε, namely Em,Am, and RΩ+

MITrΩ+
, which remain fixed and act within Ω+. Consequently, our focus

shifts to examining the convergence of terms dependent on ε but independent of M , namely R
Ωε

−
MITrΩε− and Eε

m

(see, Proposition 1.1). Subsequently, we will proceed to estimate the remaining terms in relation to M and ε (see,
Proposition 1.2).

Proposition 5.1. Let ε0 > 0 be small enough, and let z ∈ C\R. We set Ω− := R3 \Ω+ the exterior fixed domain
and by Σ = ∂Ω− = ∂Ω+ its boundary. We denote by RΩ−

MIT the resolvent of the fixed MIT bag operator, which we
denote by DΩ−

MIT, acts in Ω−. Then, for any ε ∈ (0, ε0) the following holds:∣∣∣∣∣∣eΩε
−
R

Ωε
−

MIT(z)rΩε
−
− eΩ−R

Ω−
MIT(z)rΩ−

∣∣∣∣∣∣
L2(R3)4→L2(R3)4

= O(ε). (5.1)

Proof. The Krein formula for the resolvent R
Ωε

−
MIT (from equality (4.3) )

eΩε
−
R

Ωε
−

MIT(z)rΩε
−
= (Dm − z)−1 − eΩε

−
Φz,ε

m,−(Λ
z,ε
+,m)−1tΣε(Dm − z)−1,

eΩ−R
Ω−
MIT(z)rΩ− = (Dm − z)−1 − eΩ−Φ

z
m,−(Λ

z
m,+)

−1tΣ(Dm − z)−1
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yield that

∣∣∣∣∣∣eΩε
−
R

Ωε
−

MIT(z)rΩε
−
− eΩ−R

Ω−
MIT(z)rΩ−

∣∣∣∣∣∣
L2(R3)4→L2(R3)4

=
∣∣∣∣∣∣eΩ−Φ

z
m,−(Λ

z
+,m)−1tΣ(Dm − z)−1 − eΩε

−
Φz,ε

m,−(Λ
z,ε
+,m)−1tΣε(Dm − z)−1

∣∣∣∣∣∣
L2(R3)4→L2(R3)4

≤
∣∣∣∣∣∣eΩ−Φ

z
m,−(Λ

z
+,m)−1tΣ − eΩε

−
Φz,ε

m,−(Λ
z,ε
+,m)−1tΣε

∣∣∣∣∣∣
H 1(R3)4→L2(R3)4

∣∣∣∣∣∣(Dm − z)−1
∣∣∣∣∣∣
L2(R3)4→H 1(R3)4

≲
∣∣∣∣∣∣eΩ−Φ

z
m,−(Λ

z
+,m)−1tΣ − eΩε

−
Φz,ε

m,−(Λ
z,ε
+,m)−1tΣε

∣∣∣∣∣∣
H 1(R3)4→L2(R3)4

(5.2)
since (Dm − z)−1 is bounded from L2(R3)4 into H 1(R3)4.

To obtain a rigorous estimate of the right-hand side of (5.2), we’ll use the unitary transformation Tε from Defini-
tion 2.4 and the explicit formula for Λz

+,m (resp. Λz,ε
+,m). Let f, g ∈ L2(R3)4. Since tΣ(Dm − z)−1 = (Φz̄

m)∗(
resp. tΣε(Dm − z)−1 = (Φz̄,ε

m )∗
)

by duality and interpolation arguments, we get that

∣∣∣〈[eΩ−Φ
z
m,−

(
β/2 + C z

m

)−1

tΣ − eΩε
−
Φz,ε

m,−

(
β/2 + C z,ε

m

)−1

tΣε

]
f, g
〉
L2(R3)4,L2(R3)4

∣∣∣
=
∣∣∣〈eΩ−Φ

z
m,−

(
β/2 + C z

m

)−1

tΣf, g
〉
L2(R3)4,L2(R3)4

−
〈
eΩε

−
Φz,ε

m,−

(
β/2 + C z,ε

m

)−1

tΣεf, g
〉
L2(R3)4,L2(R3)4

∣∣∣
=
∣∣∣〈(β/2 + C z

m

)−1

tΣf, tΣ(Dm − z)−1rΩ−g
〉
L2(Σ)4,L2(Σ)4

−〈(
β/2 + C z,ε

m

)−1

TεT −1
ε tΣεf, tΣε(Dm − z)−1rΩε

−
g
〉
L2(Σε)4,L2(Σε)4

∣∣∣
=
∣∣∣〈(β/2 + C z

m

)−1

tΣf, tΣ(Dm − z)−1rΩ−g
〉
L2(Σ)4,L2(Σ)4

−〈(
β/2 + TεT −1

ε C z,ε
m TεT −1

ε

)−1

TεT −1
ε tΣεf, tΣε(Dm − z)−1rΩε

−
g
〉
L2(Σε)4,L2(Σε)4

∣∣∣
=
∣∣∣〈(β/2 + C z

m

)−1

tΣf, tΣ(Dm − z)−1rΩ−g
〉
L2(Σ)4,L2(Σ)4

−〈(
β/2 + T −1

ε C z,ε
m Tε

)−1

T −1
ε tΣεf, T −1

ε tΣε(Dm − z)−1rΩε
−
g
〉
L2(Σ)4,L2(Σ)4

∣∣∣.
By adding and subtracting the term

〈(
β/2+T −1

ε C z,ε
m Tε

)−1

T −1
ε tΣεf, tΣ(Dm− z)−1rΩ−g

〉
L2(Σ)4,L2(Σ)4

in the

last quantity, we obtain that

∣∣∣∣∣〈[eΩ−Φ
z
m,−

(
β/2 + C z

m

)−1

tΣ − eΩε
−
Φz,ε

m,−

(
β/2 + C z,ε

m

)−1

tΣε

]
f, g
〉
L2(R3)4,L2(R3)4

∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣[(β/2 + C z

m

)−1

tΣ −
(
β/2 + T −1

ε C z,ε
m Tε

)−1

T −1
ε tΣε

]
f

∣∣∣∣∣∣∣∣
L2(Σ)4

∣∣∣∣∣∣∣∣tΣ(Dm − z)−1rΩ−g

∣∣∣∣∣∣∣∣
L2(Σ)4

+

∣∣∣∣∣∣∣∣(β/2 + T −1
ε C z,ε

m Tε
)−1

T −1
ε tΣεf

∣∣∣∣∣∣∣∣
L2(Σ)4

∣∣∣∣∣∣∣∣[tΣ(Dm − z)−1rΩ− − T −1
ε tΣε(Dm − z)−1rΩε

−

]
g

∣∣∣∣∣∣∣∣
L2(Σ)4

=: r1 + r2.

Now, let C z
m and T −1

ε C z,ε
m Tε from (2.2) and (3.38) respectively. Then, for a fixed ρ, ρ

′
> 0 such that ρ

′′
=

min{ρ, ρ′}, the regularity of Σ and ϕzm, and a combination of the mean value theorem give

∣∣ϕzm(xΣ − yΣ + ε(ν(xΣ)− ν(yΣ))
)
− ϕzm(xΣ − yΣ)

∣∣ ≤ ε |∂ϕzm| ≤ C ε, with C only depending on z.
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We set fε(yΣ) := det(1− εν(xΣ))f(yΣ). On one hand, using the Cauchy-Schwarz inequality, we obtain that∣∣∣C z
mf(xΣ)−

(
T −1
ε C z,ε

m Tεf
)
(xΣ)

∣∣∣
≤
∫
|xΣ−yΣ|>ρ′′

∣∣ϕzm(xΣ − yΣ + ε(ν(xΣ)− ν(yΣ))
)
f(yΣ)− ϕzm(xΣ − yΣ)fε(yΣ)

∣∣dσ(yΣ)
≤
∫
Σ

∣∣∣(ϕzm(xΣ − yΣ + ε(ν(xΣ)− ν(yΣ))
)
− ϕzm(xΣ − yΣ)

)
f(yΣ)

∣∣∣dσ(yΣ)
+

∫
Σ

∣∣ϕzm(xΣ − yΣ)
(
fε(yΣ)− f(yΣ)

)∣∣dσ(yΣ).
On the other hand, Proposition 2.1 gives us

det
(
1− εW (xΣ)

)
= 1− ελ1(xΣ)− ελ2(xΣ) + ε2λ1(xΣ)λ2(xΣ),

where λ1(xΣ), λ2(xΣ) are the eigenvalues of the Weingarten map W (xΣ). Then, we get

|fε(yΣ)− f(yΣ)| = |det(1− εW (yΣ))− 1||f(yΣ)| ≲ ε||f ||L2(Σ)4 .

We conclude that ∣∣∣∣ (C z
m − T −1

ε C z,ε
m Tε

) ∣∣∣∣
L2(Σ)4→L2(Σ)4

= O(ε). (5.3)

Now, we are going to establish the estimate r1. First, we have that tΣ(Dm − z)−1rΩ− is bounded from L2(R3)4

into L2(Σ)4. On the other hand, using triangular inequality, we get that∣∣∣∣∣∣∣∣[(β2 + C z
m

)−1

tΣ −
(β
2
+ T −1

ε C z,ε
m Tε

)−1

T −1
ε tΣε

]
f

∣∣∣∣∣∣∣∣
L2(Σ)4

≤
∣∣∣∣∣∣∣∣[(β2 + C z

m

)−1

−
(β
2
+ T −1

ε C z,ε
m Tε

)−1]
tΣf

∣∣∣∣∣∣∣∣
L2(Σ)4

+

∣∣∣∣∣∣∣∣(β2 + T −1
ε C z,ε

m Tε
)−1[

T −1
ε tΣε − tΣ

]
f

∣∣∣∣∣∣∣∣
L2(Σ)4

≤ q1 + q2.

To prove the estimate q1, we let f ∈ L2(Σ)4 and we set h =

(
β

2
+ C z

m

)−1

tΣf bounded from L2(Σ)4 into itself.

Then, the Cauchy-Schwarz inequality and the following statement(
β

2
+ T −1

ε C z,ε
m Tε

)−1

−
(
β

2
+ C z

m

)−1

=

(
β

2
+ C z,ε

m

)−1 (
C z
m − T −1

ε C z,ε
m Tε

)(β
2
+ C z

m

)−1

(5.4)

yields that

q1 =

∣∣∣∣∣
∣∣∣∣∣
(
β

2
+ T −1

ε C z,ε
m Tε

)−1 (
C z
m − T −1

ε C z,ε
m Tε

)
h

∣∣∣∣∣
∣∣∣∣∣
L2(Σ)4

≤

∣∣∣∣∣
∣∣∣∣∣
(
β

2
+ T −1

ε C z,ε
m Tε

)−1
∣∣∣∣∣
∣∣∣∣∣
L2(Σ)4→L2(Σ)4

∣∣∣∣ (C z
m − T −1

ε C z,ε
m Tε

)
h
∣∣∣∣
L2(Σ)4

≤
∣∣∣∣ (C z

m − T −1
ε C z,ε

m Tε
)
h
∣∣∣∣
L2(Σ)4

≲
∣∣∣∣ (C z

m − T −1
ε C z,ε

m Tε
) ∣∣∣∣

L2(Σ)4→L2(Σ)4

∣∣∣∣h∣∣∣∣
L2(Σ)4

≲
∣∣∣∣ (C z

m − T −1
ε C z,ε

m Tε
) ∣∣∣∣

L2(Σ)4→L2(Σ)4

since C z
m and T −1

ε C z,ε
m Tε are bounded from L2(Σ)4 into itself. Thanks to the estimate (5.3), we get that

q1 = O(ε).

To prove the estimate q2, we have for x ∈ Σε, the following estimate holds in L2(Σ)4∣∣∣∣∣∣∣∣tΣ(Dm − z)−1rΩ− − T −1
ε tΣε(Dm − z)−1rΩε

−

∣∣∣∣∣∣∣∣
L2(R3)4→L2(Σ)4

= O(ε). (5.5)

Next, based on (3.38), we immediately get that T −1
ε C z,ε

m Tε is uniformly bounded from L2(Σ)4 into itself.
Thus, together with (5.3), (5.5), we deduce that r2 has a convergence rate of O(ε).
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Now, for the same reasons as those used to prove the estimate q2, subsequently, the fact that we have we im-

mediately deduce that
(
β/2 + T −1

ε C z,ε
m Tε

)−1

=
(
β/2 + C z

m

)−1

+O(ε) (see the estimate q1 for more details),
we obtain the estimate r2.

Thus, we conclude that the statement (5.1) is valid in L2(R3)4. The proof of Proposition 5.1 is complete. □

Lemma 5.1. If the Lorentz scalar is µ = 2 (confinement case). We can identify the domain (2.3) by the following
form

dom(DL) := {(φ+, φ−) ∈ H1(Ω+)
4 ⊕H1(Ω−)

4, g ∈ H1/2(Σ)4, P+φ− = P−φ+ = 0 on Σ},

and then, DL = D
Ω+

MIT ⊕D
Ω−
MIT, where DΩ+

MIT resp. DΩ−
MIT is introduced in Section 2.2 resp. Proposition 5.1.

Proof. Using Plemelj-Sokhotski jump formula from Lemma 2.1-(i), and that φ± = tΣu + Cz
±,m[g], then we

get P+φ− = −βP−P+ = 0 and P−φ+ = −βP+P− = 0. Moreover, as P+φ− + P−φ+ = tΣu + Λz
+,m[g], we

have that tΣu = −Λz
+,m[g]. □

Proof of Proposition 1.1. For z ∈ ρ(DL), we have the following estimate∣∣∣∣∣∣eΩε
−
R

Ωε
−

MIT(z)rΩε
−
+ eΩ+

R
Ω+

MIT(z)rΩ+
−RL(z)

∣∣∣∣∣∣
L2(R3)4

≤
∣∣∣∣∣∣eΩε

−
R

Ωε
−

MIT(z)rΩε
−
+ eΩ+R

Ω+

MIT(z)rΩ+ + eΩ−R
Ω−
MIT(z)rΩ− − eΩ−R

Ω−
MIT(z)rΩ− −RL(z)

∣∣∣∣∣∣
L2(R3)4

≤
∣∣∣∣∣∣eΩε

−
R

Ωε
−

MIT(z)rΩε
−
− eΩ−R

Ω−
MIT(z)rΩ−

∣∣∣∣∣∣
L2(R3)4

+
∣∣∣∣∣∣eΩ+

R
Ω+

MIT(z)rΩ+
+ eΩ−R

Ω−
MIT(z)rΩ− −RL(z)

∣∣∣∣∣∣
L2(R3)4

.

Then, Proposition 5.1 and Lemma 5.1 yield the statement (1.4). □

Remark 5.1. For all f ∈ L2(R3)4, g ∈ P+L
2(Σ)4 the following convergence holds∣∣∣∣eΩε

−
Eε

m(z)[Tε]− eΩ−E
−
m(z)

∣∣∣∣
L2(Σ)4→L2(R3)4

= O(ε), (5.6)

where E−
m is the lifting operator associated with the boundary value problem (Dm − z)U = 0 in Ω− with

P+U = 0 on Σ.

Proof. Now, let me show la convergence considered in (5.6). To this end, let g̃ := Tεg ∈ P+L
2(Σε)4, then we

have∣∣∣⟨eΩε
−
Eε

m(z)[Tεg], f⟩L2(R3)4 − ⟨eΩ−E
−
m(z)g, f⟩L2(R3)4

∣∣∣
=
∣∣∣⟨βg,(T −1

ε Γε
+R

Ωε
−

MIT(z̄)rΩε
−
− Γ+R

−
MIT(z̄)rΩ−

)
f⟩L2(Σ)4

∣∣∣
≤ ||g||L2(Σ)4

∣∣∣∣∣∣(T −1
ε Γε

+rΩε
−
eΩε

−
Rε

MIT(z̄)rΩε
−
− Γ+rΩ−eΩ−R

Ω−
MIT(z̄)rΩ−

)
f
∣∣∣∣∣∣
L2(Σ)4

≲
∣∣∣∣∣∣(T −1

ε Γε
+rΩε

−
eΩε

−
R

Ωε
−

MIT(z̄)rΩε
−
− T −1

ε Γε
+rΩε

−
eΩ−R

Ω−
MIT(z̄)rΩ− + T −1

ε Γε
+rΩε

−
eΩ−R

Ω−
MIT(z̄)rΩ−

− Γ+rΩ−eΩ−R
Ω−
MIT(z̄)rΩ−

)
f
∣∣∣∣∣∣
L2(Σ)4

≲
∣∣∣∣T −1

ε Γε
+rΩε

−

∣∣∣∣
L2(Σ)4

∣∣∣∣∣∣eΩε
−
R

Ωε
−

MIT(z̄)rΩε
−
f − eΩ−R

Ω−
MIT(z̄)rΩ−f

∣∣∣∣∣∣
L2(R3)4

+
∣∣∣∣∣∣T −1

ε Γε
+rΩε

−
− Γ+rΩ−

∣∣∣∣∣∣
L2(Σ)4

∣∣∣∣eΩ−R
Ω−
MITrΩ−(z̄)f

∣∣∣∣
L2(R3)4

.

Since Γε
+ is bounded form L2(Ωε

−)
4 to L2(Σε)4 for ε small enough, then T −1

ε Γε
+rΩε

−
is bounded in L2(Σ)4.

Thus, together with the boundedness of eΩ−R
Ω−
MIT in L2(R3)4 and the convergence established in Proposition 1.1,

we get ∣∣∣⟨eΩε
−
Eε

m(z)[Tεg], f⟩L2(R3)4 − ⟨eΩ−E
−
m(z)g, f⟩L2(R3)4

∣∣∣ ≲ ε, for all f ∈ L2(R3)4.

Since this is true for all g ∈ L2(Σ)4, by duality arguments it follows that∣∣∣∣eΩε
−
Eε

m(z)[Tε]− eΩ−E
−
m(z)

∣∣∣∣
L2(Σ)4→L2(R3)4

= O(ε).
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Lemma 5.2. Let K ⊂ C be a compact set. Then, there exists M0 > 0 such that for all M > M0, for ε ∈ (0, ε0),
K ⊂ ρ(DUε

MIT(m+M)), and for z ∈ K the following estimates hold:∣∣∣∣∣∣eUεRUε

MIT(z)rUεf
∣∣∣∣∣∣
L2(R3)4

≲
1

M
||f ||L2(R3)4 , ∀ f ∈ L2(R3)4,∣∣∣∣∣∣Γε

−+R
Uε

MIT(z)rUεf
∣∣∣∣∣∣
L2(∂Uε)4

≲
1√
M

||f ||L2(R3)4 , ∀ f ∈ L2(R3)4,∣∣∣∣∣∣Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣∣∣
H−1/2(∂Uε)4

≲
1

M
||f ||L2(R3)4 , ∀ f ∈ L2(R3)4,∣∣∣∣eUεEε

m+M (z)(ψ, Tεφ)
∣∣∣∣
L2(R3)4

≲
1√
M

||ψ||L2(Σ)4 ||φ||L2(Σ)4 , ∀ (ψ, Tεφ) ∈ P+L
2(Σ)4 ⊕ P−L

2(Σε)4,

∣∣∣∣eUεEε
m+M (z)(ψ, Tεφ)

∣∣∣∣
L2(R3)4

≲
1

M
||ψ||H1/2(Σ)4 ||φ||H1/2(Σ)4 ,

∀ (ψ, Tεφ) ∈ P+H
1/2(Σ)4 ⊕ P−H

1/2(Σε)4.

Proof. Using the same arguments as in the proof of [4, Lemma 6.1], we can show the above estimates with
respect to M . First, I want to show the claimed estimates for eUεRUε

MIT(z)rUε and Γε
−R

Uε

MIT(z)rUε . For this, fix a
compact set K ⊂ C, and note that for z ∈ K and M1 > supz∈K{|Re(z)| −m} it holds that K ⊂ ρ(Dm+M1),
and hence K ⊂ ρ(DUε

MIT) for all M > M1. Let f ∈ L2(R3)4. We have that

||eUεRUε

MIT(z)rUεf ||L2(R3)4 = ||RUε

MIT(z)rUεf ||L2(Uε)4 .

Now, for rUεf ∈ L2(Uε)4 and φ ∈ dom(DUε

MIT), then a straightforward application of the Green’s formula yields
that

∥DUε

MITφ∥2L2(Uε)4 =∥(α · ∇)φ∥2L2(Uε)4 + (m+M)2 ||φ||2L2(Uε)4 + (m+M)
∣∣∣∣∣∣PUε

− t∂Uεφ
∣∣∣∣∣∣2
L2(∂Uε)4

,

with PUε

− t∂Uε = P−tΣ + P+tΣε . Using this and the Cauchy-Schwarz inequality we obtain that

∥(DUε

MIT − z)φ∥2L2(Uε)4 =∥DUε

MITφ∥2L2(Uε)4 + |z|2∥φ∥2L2(Uε)4 − 2Re(z)⟨DUε

MITφ,φ⟩L2(Uε)4

⩾∥DUε

MITφ∥2L2(Uε)4 + |z|2∥φ∥2L2(Uε)4 −
1

2
∥DUε

MITφ∥2L2(Uε)4 − 2|Re(z)|2∥φ∥2L2(Uε)4

⩾

(
(m+M)2

2
+ |Im(z)|2 − |Re(z)|2

)
||φ||2L2(Uε)4 +

M

2

∣∣∣∣∣∣PUε

− t∂Uεφ
∣∣∣∣∣∣2
L2(∂Uε)4

.

Therefore, taking RUε

MIT(z)rUεf = φ and M ⩾ M2 ⩾ supz∈K{
√
|Re(z)|2 − |Im(z)|2 − m} we obtain the

inequality∣∣∣∣∣∣RUε

MIT(z)rUεf
∣∣∣∣∣∣
L2(Uε)4

+
1√
M

∣∣∣∣∣∣Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣∣∣
L2(∂Uε)4

≲
1

M
||f ||L2(R3)4 , with ∂Uε = Σ ∪ Σε.

Thus∣∣∣∣∣∣eUεRUε

MIT(z)rUεf
∣∣∣∣∣∣
L2(R3)4

≲
1

M
||f ||L2(R3)4 , and

∣∣∣∣∣∣Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣∣∣
L2(∂Uε)4

≲
1√
M

||f ||L2(R3)4 .

Since Γε
−+ := (Γ−,Γ

ε
+) is bounded from L2(Uε)4 into H−1/2(∂Uε)4 for ε ∈ (0, ε0) with ε0 sufficiently small,

it follows from the above inequality that∣∣∣∣∣∣Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣∣∣
H−1/2(∂Uε)4

≲
∣∣∣∣Γε

−+

∣∣∣∣
L2(Uε)4→H−1/2(∂Uε)4

∣∣∣∣∣∣RUε

MIT(z)rUεf
∣∣∣∣∣∣
L2(Uε)4

≲
1

M
||f ||L2(R3)4 ,

for any f ∈ L2(R3)4, which gives the last inequality.

Let us now turn to the proof of the claimed estimates for eUεEε
m+M (z). Let f, ψ belong to L2(R3)4 and L2(Σ)4,

respectively, and consider the transformation operator Tε defined in (2.4). For φ ∈ L2(Σ)4, we set φε =
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Tεφ ∈ L2(Σε). We mention that β(Γ−,Γ
ε
+)R

Uε

MIT(z) is the adjoint of the operator Eε
m+M (z) : P+L

2(Σ)4 ⊕
P−L

2(Σε)4 −→ L2(Uε)4. Using this and the estimate fulfilled by (Γ−,Γ
ε
+)R

Uε

MIT(z)rUε we obtain that∣∣⟨f, eUεEε
m+M (z)(ψ,φε)⟩L2(R3)4

∣∣ = ∣∣∣⟨(Γ−, T −1
ε Γε

+)R
Uε

MIT(z)rUεf, β(ψ,φ)⟩L2(Σ)4

∣∣∣
⩽
∣∣∣∣∣∣(Γ−, T −1

ε Γε
+

)
RUε

MIT(z)rUεf
∣∣∣∣∣∣
L2(Σ)4

||ψ||L2(Σ)4 ||φ||L2(Σ)4

⩽ ||ψ||L2(Σ)4 ||φ||L2(Σ)4

∣∣∣∣T −1
ε

∣∣∣∣
L2(∂Uε)4→L2(Σ)4

∣∣∣∣∣∣Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣∣∣
L2(∂Uε)4

≲
1√
M

||f ||L2(R3)4 ||ψ||L2(Σ)4 ||φ||L2(Σ)4 .

So, we get ∣∣∣∣eUεEε
m+M (z)(ψ, Tεφ)

∣∣∣∣
L2(R3)4

≲
1√
M

||ψ||L2(Σ)4 ||φ||L2(Σ)4 .

Similarly, we established the last inequality of the lemma andthis finishes the proof of the lemma. □

The last ingredient to prove Theorem 1.1 is to show that the second term in the ride hand side of the resolvent
formula (4.11) converges to zero when M converges to ∞, (i.e., h = ε =M−1 → 0).

Proof of Proposition 1.2. Recall the following notations: D
Ωε

+−
MIT = D

Ω+

MIT⊕D
Ωε

−
MIT andR

Ωε
+−

MIT = R
Ω+

MIT⊕R
Ωε

−
MIT,

with Ωε
+− = Ω+ ∪ Ωε

−. Let z ∈ ρ(Dε
M ) ∩ ρ(DΩε

+−
MIT ) and f ∈ L2(R3)4. From the resolvent formula (4.11) and

Remark 4.1, together give us the following∣∣∣∣Rε
M (z)− eΩε

+−
R

Ωε
+−

MIT (z)rΩε
+−

∣∣∣∣
L2(R3)4→L2(R3)4

≤
∣∣∣∣eUεRUε

MIT(z)rUεf
∣∣∣∣
L2(R3)4

+
∣∣∣∣EΩε

+−
m (z)Ξε,−+

M (z)A ε
m+MΓε

+−R
Ωε

+−
MIT (z)rΩε

+−
f
∣∣∣∣
L2(Ωε

+−)4

+
∣∣∣∣EΩε

+−
m (z)Ξε,−+

M (z)Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣
L2(Ωε

+−)4

+
∣∣∣∣Eε

m+M (z)Ξε,+−
M (z)Γε

+−R
Ωε

+−
MIT (z)rΩε

+−
f
∣∣∣∣
L2(Uε)4

+
∣∣∣∣Eε

m+M (z)Ξε,+−
M (z)A

Ωε
+−

m Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣
L2(Uε)4

=: J1 + J2 + J3 + J4 + J5.

We start with J1. From the second item of Lemma 5.2, we get that J1 ≲M−1. Now, thanks to the uniform bound
(with respect to M ) of Ξε,±∓

M , see Corollary 4.1, J2, J3, J4, J5 become as follows

J2 ≲
∣∣∣∣EΩε

+−
m (z)

∣∣∣∣
L2(Ωε

+−)4

∣∣∣∣A ε
m+M

∣∣∣∣
H−1/2(Σ)4⊕H−1/2(Σε)4

∣∣∣∣Γε
+−R

Ωε
+−

MIT (z)rΩf
∣∣∣∣
H1/2(Σ)4⊕H1/2(Σε)4

,

J3 ≲
∣∣∣∣EΩε

+−
m (z)

∣∣∣∣
H−1/2(Σ)4⊕H−1/2(Σε)4→L2(Ωε

+−)4

∣∣∣∣Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣
H−1/2(Σ)4⊕H−1/2(Σε)4

,

J4 ≲
∣∣∣∣Eε

m+M (z)
∣∣∣∣
H1/2(Σ)4⊕H1/2(Σε)4→L2(Uε)4

∣∣∣∣Γε
+−R

Ωε
+−

MIT (z)rΩf
∣∣∣∣
H1/2(Σ)4⊕H1/2(Σε)4

,

J5 ≲
∣∣∣∣Eε

m+M (z)
∣∣∣∣
L2(Uε)4

∣∣∣∣A Ωε
+−

m

∣∣∣∣
L2(Σ)4⊕L2(Σε)4

∣∣∣∣Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣
L2(Σ)4⊕L2(Σε)4

.

Notice that the terms E
Ωε

+−
m , A

Ωε
+−

m , and Γε
+−R

Ωε
+−

MIT (z) are bounded operators for all ε ∈ (0, ε0), everywhere
defined and do not depend on M. Now, thanks to Lemma 5.2, Γε

−+R
Uε

MIT(z)rUε and eUεEε
m+M (z) hold the

following estimate∣∣∣∣∣∣Γε
−+R

Uε

MIT(z)rUεf
∣∣∣∣∣∣
L2(∂Uε)4

≲
1√
M

||f ||L2(R3)4 and
∣∣∣∣∣∣Γε

−+R
Uε

MIT(z)rUεf
∣∣∣∣∣∣
H−1/2(∂Uε)4

≲
1

M
||f ||L2(R3)4 ,∣∣∣∣eUεEε

m+M (z)(ψ, Tεφ)
∣∣∣∣
L2(R3)4

≲
1√
M

||ψ||L2(Σ)4 ||φ||L2(Σ)4 ,∣∣∣∣eUεEε
m+M (z)(ψ, Tεφ)

∣∣∣∣
L2(R3)4

≲
1

M
||ψ||H1/2(Σ)4 ||φ||H1/2(Σ)4 .

Thus, from the above estimates, we deduce that

Jk ≲M−1||f ||L2(R3)4 , ∀ k ∈ {3, 4, 5}.
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Moreover, the following lower bound of Aε
m+M , see Corollary (4.13),

||Aε
m+M ||H1/2(Σ)4⊕H1/2(Σε)4→H−1/2(Σ)4⊕H−1/2(Σε)4 ≲M−1,

yields that J2 ≲M−1||f ||L2(R3)4 . Thus, we obtain the estimate

∣∣∣∣Rε
M (z)− eΩε

+−
R

Ωε
+−

MIT (z)rΩε
+−

∣∣∣∣
L2(R3)4→L2(R3)4

≲M−1||f ||L2(R3)4 .

And this achieves the proof of the proposition. □

Thus, Theorem 1.1 is then obtained by a simple combination of Propositions 1.1, 1.2.
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APPENDIX A.

For a better understanding of the construction of the approximation of the solutions Aj(y, ξ, τ) and the order
of the coefficients Bj,k(y, ξ) as well as the proof of Proposition 3.3, an explicit calculation is presented in this
appendix, which aims to obtain an exact form of the solutions Aj(y, ξ, τ) for j = 1, 2.

For j = 1, we define A1(y, ξ, τ) inductively by

h∂τA1(y, ξ, τ) = L0(y, ξ)A1(y, ξ, τ) +
(
L1(y, ξ) + (α · ν̃φc3)L0(y, ξ)− i∂ξL0(y, ξ) · ∂y

)
A0(y, ξ, τ),

P+A1(y, ξ, ε) = 0,

(A.1)
we have ∂ξL0(y, ξ) · ∂y = iα · ν̃φ(α · ∂y) := a0(y)(α · ∂y), with a0(y) = iα · ν̃φ. The solution of the differential
system (A.1) is

A1(y, ξ, τ) = eh
−1L0(τ−ε)A1(y, ξ, ε)

+ eh
−1L0τ

∫ τ

ε

e−h−1L0(y,ξ)s
(
L1 + (α · ν̃φc3)L0 − i∂ξL0(y, ξ) · ∂y

)
A0(y, ξ, τ)ds

= eh
−1L0(τ−ε)A1(y, ξ, ε)

+ eh
−1L0τ

∫ τ

ε

e−h−1L0sa0(y)
(
− z + c · ξ − ic3L0 − iα · ∂y

)
A0(y, ξ, τ)ds

:= I1 + I2,

where I1 and I2 have the following quantity:

I1 =
(
e(τ−ε)ϱ−(y,ξ)Π− + e(τ−ε)ϱ−(y,ξ)Π+

)
A1(y, ξ, ε),

I2 = eh
−1L0(y,ξ)τ

∫ τ

ε

e−h−1L0(y,ξ)sa0(y)
(
− z + c · ξ − ic3L0 − iα · ∂y

)
A0(y, ξ, s)ds.
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Now, to obtain an explicit form of I2, let’s decompose the quantity e−h−1L0(y,ξ)s. To do this, we have

∫ τ

ε

e−h−1L0(y,ξ)sa0(y)
(
− z + c · ξ − ic3L0 − iα · ∂y

)
A0(y, ξ, s)ds

=

∫ τ

ε

(
e−h−1sϱ−(y,ξ)Π− + e−h−1sϱ+(y,ξ)Π+

)
a0(y)

(
− z + c · ξ − ic3L0 − iα · ∂y

)
A0(y, ξ, s)ds

=

∫ τ

ε

(
e−h−1sϱ−Π− + e−h−1sϱ+Π+

)
a0(y)

(
− z + c · ξ − ic3L0 − iα · ∂y

)(
eh

−1(s−ε)ϱ−
Π−P+

kφ−

)
ds

=

∫ τ

ε

e−h−1sϱ−Π−a0(y)
(
− z + c · ξ − ic3L0 − iα · ∂y

)(
eh

−1(s−ε)ϱ−
Π−P+

kφ−

)
ds︸ ︷︷ ︸

(1)

+

∫ τ

ε

e−h−1sϱ+Π+a0(y)
(
− z + c · ξ − ic3L0 − iα · ∂y

)(
eh

−1(s−ε)ϱ−
Π−P+

kφ−

)
ds︸ ︷︷ ︸

(2)

.

(A.2)
First of all, note that the quantity

(−z + c · ξ − ic3L0 − iα · ∂y)
(
eh

−1ϱ−(τ−ε)M
)
= eh

−1ϱ−(τ−ε)
(
a+ b · ξ − ih−1(τ − ε)α · ∂yϱ−

)
M,

with M ∈ M4(C) and

a = −z + c3α · ν̃φβ − iα · ∂y and b = c+ c3α · ν̃φα (A.3)

belong to M4(C). Note also the term α · ∂y in the quantity a is applies to
Π−P+

kφ−
in the following calculation.

Now, we want to explain the quantities (1) and (2) given in (A.2). Let’s start with (1):

(1) =

∫ τ

ε

e−h−1sϱ−Π−a0(y)
(
− z + c · ξ − ic3L0 − iα · ∂y

)(
eh

−1(s−ε)ϱ−
Π−P+

kφ−

)
ds

=

∫ τ

ε

e−εh−1ϱ−Π−a0(y)
(
a+ (b · ξ)− ih−1(τ − ε)α · ∂yϱ−

)Π−P+

kφ−
ds

= (τ − ε)e−εh−1ϱ−Π−a0(y)
(
a+ b · ξ

)
B0,0 − ih−1(τ − ε)2e−εh−1ϱ−Π−a0(y)

(α · ∂yϱ−
2

)
B0,0,

(A.4)

with B0,0(y, ξ) =
Π−P+

kφ−
∈ S0.

Similarly, for (2) we get

(2) =

∫ τ

ε

e−h−1sϱ+Π+a0(y)
(
− z + c · ξ − ic3L0 − iα · ∂y

)(
eh

−1(s−ε)ϱ−B0,0

)
ds

= e−εh−1ϱ−

∫ τ

ε

eh
−1s(ϱ−−ϱ+)Π+a0(y)

(
a+ b · ξ − ih−1(s− ε)α · ∂yϱ−

)
B0,0ds

= e−εh−1ϱ−h(ϱ− − ϱ+)
−1Π+a0(y)

(
eh

−1(ϱ−−ϱ+)τ − eh
−1(ϱ−−ϱ+)ε

)(
a+ b · ξ

)
B0,0

+ e−εh−1ϱ−eh
−1(ϱ−−ϱ+)τΠ+a0(y)

[
−i(τ − ε)α · ∂yϱ−

ϱ− − ϱ+
+
h iα · ∂yϱ−
(ϱ− − ϱ+)2

]
B0,0

+ e−εh−1ϱ−eh
−1(ϱ−−ϱ+)εΠ+a0(y)

[
−h iα · ∂yϱ−
(ϱ− − ϱ+)2

]
B0,0.

(A.5)



ON THE APPROXIMATION OF THE DIRAC OPERATOR COUPLED WITH δ-SHELL INTERACTIONS 33

Putting the formula of (1) and (2) as in (A.4) and (A.5), respectively, in I2. Together, with I1, we obtain that

A1(y, ξ, τ) =
(
eh

−1(τ−ε)ϱ−Π− + eh
−1(τ−ε)ϱ+Π+

)
A1(y, ξ, ε)

+ eh
−1ϱ−(τ−ε)Π−a0(y)

[
(τ − ε)

(
a+ (b · ξ)

)
B0,0 − ih−1(τ − ε)2

(α · ∂yϱ−
2

)
B0,0

]
+

h

(ϱ− − ϱ+)
Π+a0(y)e

h−1ϱ−(τ−ε)
(
a+ (b · ξ)

)
B0,0

+ eh
−1ϱ−(τ−ε)Π+a0(y)

[
−i(τ − ε)α · ∂yϱ−

ϱ− − ϱ+
+
h iα · ∂yϱ−
(ϱ− − ϱ+)2

]
B0,0

+ eh
−1ϱ+(τ−ε)Π+a0(y)

[
−i h α · ∂yϱ−

(ϱ− − ϱ+)2

]
B0,0 − eh

−1ϱ+(τ−ε)h Π+a0(y)

(ϱ− − ϱ+)

(
aB0,0 + b · ξB0,0

)
.

Thanks to the properties of ϱ+ given in (3.8), and the fact that eh
−1(τ−ε)ϱ+Π+a0(y) is unbounded in L2({τ > ε}),

then we look A1(ỹ, ξ, ε) such that

Π+A1(y, ξ, ε) = h
Π+a0
ϱ− − ϱ+

(
a+ b · ξ + iα · ∂yϱ−

ϱ− − ϱ+

)
B0,0. (A.6)

Thus, we obtain

A1(y, ξ, τ) = eh
−1(τ−ε)ϱ− ×

{
Π−A1(y, ξ, ε) + h Π+a0(y)(ϱ− − ϱ+)

[
a+ b · ξ + iα · ∂yϱ−

(ϱ− − ϱ+)

]
B0,0

+ (τ − ε)

[
Π−a0(y)

(
a+ b · ξ

)
−Π+a0(y)

iα · ∂yϱ−
(ϱ− − ϱ+)

]
B0,0 + h−1(τ − ε)2Π−a0(y)

(−iα · ∂yϱ−
2

)
B0,0

}
.

(A.7)
Calculate of Π−A1(y, ξ, ε). From (A.7), we get that

A1(y, ξ, ε) = Π−(P− + P+)A1(y, ξ, ε) +
h Π+a0(y)

(ϱ− − ϱ+)

[
a+ b · ξ + iα · ∂yϱ−

(ϱ− − ϱ+)

]
B0,0.

From (A.1) we have P+A1(y, ξ, ε) = 0, then

P−A1(y, ξ, ε) = P−Π−P−A1(y, ξ, ε) +
h Π+a0(y)

(ϱ− − ϱ+)

[
a+ b · ξ + iα · ∂yϱ−

(ϱ− − ϱ+)

]
B0,0.

Thanks to the relations (3.9), we obtain

Π−P−A1(y, ξ, ε) =
hΠ−a0P+

(ϱ− − ϱ+)

(
I4 −

Θφ

kφ−

)[
a+ b · ξ + iα · ∂yϱ−

(ϱ− − ϱ+)

]
B0,0,

and so (A.7) becomes as follows

A1(y, ξ, τ) = eh
−1(τ−ε)ϱ− ×

{
h

[
Π−a0

(
P+ − P+ Θφ

kφ−

)
+Π+a0

] [
a+ b · ξ
(ϱ− − ϱ+)

+
iα · ∂yϱ−
(ϱ− − ϱ+)2

]
B0,0

+ (τ − ε)

[
Π−a0(y)

(
a+ b · ξ

)
−Π+a0(y)

iα · ∂yϱ−
(ϱ− − ϱ+)

]
B0,0 + h−1(τ − ε)2Π−a0(y)

(−iα · ∂yϱ−
2

)
B0,0

}
.

Consequently, we get that

A1(y, ξ, τ) = eh
−1ϱ−(τ−ε)

{
B1,0(y, ξ) +

(
h−1(τ − ε)(ϱ− − ϱ+)

)
B1,1(y, ξ)

+
(
h−1(τ − ε)(ϱ− − ϱ+)

)2
B1,2(y, ξ)

}
= eh

−1(τ−ε)ϱ−

2∑
k=0

(
h−1(τ − ε)(ϱ− − ϱ+)

)k
B1,k(y, ξ),

(A.8)
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where,

B1,0(y, ξ) = h

[
Π−a0

(
P+ − P+ Θφ

kφ−

)
+Π+a0

] [
a+ b · ξ
(ϱ− − ϱ+)

+
iα · ∂yϱ−
(ϱ− − ϱ+)2

]
B0,0,

B1,1(y, ξ) = h

[
Π−a0(y)

(
a+ b · ξ

)
(ϱ− − ϱ+)

−Π+a0(y)
iα · ∂yϱ−
(ϱ− − ϱ+)2

]
B0,0,

B1,2(y, ξ) = −h Π−a0(y)
( iα · ∂yϱ−
2(ϱ− − ϱ+)2

)
B0,0,

with ϱ− − ϱ+ = −2λ(y, ξ) ∈ S1 and ∂yϱ− ∈ S1 identified with ⟨ξ⟩, then B1,k ∈ hS0 for k = 0, 1, and
B1,2 ∈ hS−1.

Let’s look at the form of Aj for j = 2. To do it, we define A2(y, ξ, τ) inductively by
h∂τA2(y, ξ, τ) = L0(y, ξ)A2(y, ξ, τ) +

(
L̃1(y, ξ)− i∂ξL0(y, ξ) · ∂y

)
A1(y, ξ, τ)

+
(
(α · ν̃φc3)L̃1(y, ξ)− i∂ξL̃1(y, ξ) · ∂y

)
A0(y, ξ, τ),

P+A2(y, ξ, ε) = 0,

where,(
L̃1 − i∂ξL0 · ∂y

)(
eh

−1ϱ−(τ−ε)M
)
= eh

−1ϱ−(τ−ε)a0(y)
(
a+ b · ξ − ih−1(τ − ε)α · ∂yϱ−

)
M,(

− i∂ξL̃1 · ∂y + (α · ν̃φc3)L̃1

)(
eh

−1ϱ−(τ−ε)M
)
= eh

−1ϱ−(τ−ε)a0(y)
(
d+ e · ξ − ih−1(τ − ε)f · ∂yϱ−

)
M,

(A.9)
with M, a, b were noted in (A.3), d, e, f belong to M4(C), where d, e and f are the following

d = (c3α · ν̃φ)2β − c3α · ν̃φz − i(c+ c3α · ν̃φα) · ∂y,
e =

(
c3α · ν̃φ + (c3α · ν̃φ)2α

)
· ξ and f = c+ c3α · ν̃φα.

(A.10)

Then, after a many calculation, we arrive at the following formula

A2(y, ξ, τ) = eh
−1ϱ−(τ−ε)

{(
h−1(τ − ε)⟨ξ⟩

)0
B2,0(y, ξ) +

(
h−1(τ − ε)⟨ξ⟩

)1
B2,1(y, ξ)

+
(
h−1(τ − ε)⟨ξ⟩

)2
B2,2(y, ξ) +

(
h−1(τ − ε)⟨ξ⟩

)3
B2,3(y, ξ) +

(
h−1(τ − ε)⟨ξ⟩

)4
B2,4(y, ξ)

}
=: eh

−1ϱ−(τ−ε)
4∑

k=0

(
h−1(τ − ε)⟨ξ⟩

)k
B1,k(y, ξ),

(A.11)
where,

B2,0(y, ξ) = h

[
Π−a0

(
P+ − P+ Θφ

kφ−

)
+Π+a0

][
aB1,0 + (b · ξ)B1,0 + dB0,0 + (e · ξ)B0,0

(ϱ− − ϱ+)

− (α · ∂yϱ−)B1,0 + ⟨ξ⟩aB1,1 + ⟨ξ⟩(b · ξ)B1,1 + f · ∂yϱ−B0,0

(ϱ− − ϱ+)2

+
2⟨ξ⟩α · ∂yϱ−B1,1 + 2⟨ξ⟩(b · ξ)B1,0 + 2⟨ξ⟩2(b · ξ)B1,2

(ϱ− − ϱ+)3
− 6⟨ξ⟩2α · ∂yϱ−B1,2

(ϱ− − ϱ+)4

]
,

B2,1(y, ξ) = h Π−a0(y)

[
aB1,0 + dB0,0

(ϱ− − ϱ+)
+ bB1,0 + eB0,0

]
+ h Π+a0(y)

[
f · ∂yϱ−B0,0 + aB1,1 + ⟨ξ⟩B1,1

(ϱ− − ϱ+)
+
α · ∂yϱ−B1,0

(ϱ− − ϱ+)⟨ξ⟩

− 2α · ∂yϱ−B1,1 + (2⟨ξ⟩a+ 2⟨ξ⟩2)B1,2

(ϱ− − ϱ+)2
+

6⟨ξ⟩α · ∂yϱ−B1,2

(ϱ− − ϱ+)3

]
,
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B2,2(y, ξ) = h Π−a0(y)

[
aB1,1

2(ϱ− − ϱ+)
+
bB1,1

2
+

(α · ∂yϱ−)B1,0

2(ϱ− − ϱ+)2
+

(f · ∂yϱ−)B0,0

2(ϱ− − ϱ+)2

]
+ h Π+a0(y)

[
(α · ∂yϱ−)B1,1

(ϱ− − ϱ+)⟨ξ⟩
− aB1,2

(ϱ− − ϱ+)
+

(b · ξ)B1,2

(ϱ− − ϱ+)
− 3(α · ∂yϱ−)B1,2

(ϱ− − ϱ+)2

]
,

B2,3(y, ξ) = h Π−a0(y)

[
aB1,2

3⟨ξ⟩
+
bB1,2

3
+

(α · ∂yϱ−)B1,1

3(ϱ− − ϱ+)2

]
+ h Π+a0(y)

[
(α · ∂yϱ−)

(
B1,2

)
(ϱ− − ϱ+)⟨ξ⟩

]
,

B2,4(y, ξ) = h Π−a0(y)

[
(α · ∂yϱ−)B1,2

4(ϱ− − ϱ+)2

]
,

with ϱ− − ϱ+ = −2λ(y, ξ) ∈ S1 and ∂yϱ− ∈ S1. Then B2,k ∈ hS0 for k = 0, 1, 2, B2,3 ∈ h2 S−1, and
B2,4 ∈ h2 S−2. □

Remark A.1. Using (3.7) and (3.9), then the boundary condition associated with A2(y, ξ, ε) is the following

Π+A2(y, ξ, ε) = hΠ+a0

[
aB1,0 + (ξ · b)B1,0 + dB0,0 + (e · ξ)B0,0

(ϱ− − ϱ+)

− (α · ∂yϱ−)B1,0 + ⟨ξ⟩aB1,1 + ⟨ξ⟩(b · ξ)B1,1 + f · ∂yϱ−B0,0

(ϱ− − ϱ+)2

+
2⟨ξ⟩α · ∂yϱ−B1,1 + 2⟨ξ⟩(b · ξ)B1,0 + 2⟨ξ⟩2(b · ξ)B1,2

(ϱ− − ϱ+)3
− 6⟨ξ⟩2α · ∂yϱ−B1,2

(ϱ− − ϱ+)4

]
.
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