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ON THE APPROXIMATION OF THE DIRAC OPERATOR COUPLED WITH CONFINING
LORENTZ SCALAR §-SHELL INTERACTIONS

MAHDI ZREIK!

ABSTRACT. Let Q4 C R3 be a fixed bounded domain with boundary & = 9. We consider ¢ a tubular neigh-
borhood of the surface 3 with a thickness parameter ¢ > 0, and we define the perturbed Dirac operator D9, =
Dy, + MB1lye, with D, the free Dirac operator, M > 0, and 1y/e the characteristic function of &/¢. Then, in
the norm resolvent sense, the Dirac operator D9, converges to the Dirac operator coupled with Lorentz scalar J-shell
interactions as e = M ~! tends to 0, with a convergence rate of O(M ~1).

CONTENTS

1. Introduction and Main results

Description of main results.

Organization of the paper.

2. Setting and MIT bag operator

2.1. Boundary integral operators associated with the free Dirac operator

2.2.  Definition and some properties of the MIT bag operator.

2.3. Some geometric aspect

3. Parametrix for the Poincaré-Steklov operators (large mass limit)

3.1.  Symbol classes and Pseudodifferential operators

3.2.  Reduction to local coordinates

3.3. Semiclassical parametrix for the boundary problem 1
4. Reduction to a MIT bag problem. 20
4.1. Notations 21
4.2.  The Krein resolvent formula of k5, 21
5. Resolvent convergence to the Dirac operator with Lorentz scalar. 25
Acknowledgement 31
Appendix A. 31
References 35

— O 00 0 00 ON Lt L B W —

1. INTRODUCTION AND MAIN RESULTS

The aim of this work is to approximate the Dirac operator coupled with a singular d-interactions, supported
on a closed surface. More precisely, our main goal in this article is to approximate the Dirac operator coupled
with confining Lorentz scalar §-shell interactions (i.e., when 7 = 0 and ¢ = £2 in (1.2), below) by a perturbed
Dirac operator ®9, = D,, + M1y, where D,, is the free Dirac operator, and M is a large mass supported
on a tubular neighborhood, U/¢, with thickness € > 0. Working with this type of massive potential leads to the
appearance of what we’ve seen in [4], called Dirac operators with MIT bag boundary conditions, when the mass
M becomes large. In this paper we interested in establishing the convergence (for suitable relation between € and
M: e = M~ as ¢ goes to 0) of such perturbations to a direct sum of two MIT bag operators, which we denote by
D?,IJ{T (m) and D?,I}T (m) (see Section 2.2 for the exact notations), acting in the domains 4 and Q_ := R3\ O,
respectively. This decoupling of these MIT bag Dirac operators can be linked to the confining version of the Dirac
operator coupled with purely Lorentz scalar §-shell interaction supported on the surface ¥ := 9€2., which will be
discussed briefly in the following part of the current paper.

2010 Mathematics Subject Classification. 81Q10 , 81V05, 35P15, 58C40.
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2 MAHDI ZREIK

The convergence of ©9, to the MIT bag operator was established in [4, Section 6], in the norm resolvent sense,
when M tends to +o00, and ¢ fixed. However, in [4], the mass M is supported on an unbounded domain, which
has only one boundary. Whereas, in the current work, M is supported on a bounded domain with two boundaries,
whose distance between them is the thickness ¢, as shown in Figure 1. Thus, it is then natural to address the
following question: Let M be a large mass supported on a tubular vicinity of surface . What happens when the
thickness of the tubular tends to zero with M ~1?

The methodology followed, as in the problem of [4] study the pseudodifferential properties of the Poincaré-
Steklov (PS) operators for the Dirac operator (i.e., an analogue of the Diricklet-to-Neumann operators for the
Laplace operator). The complexity in the current problem is that these operators take a pair of functions with
respect to OU® := ¥ U ¢ such that for all zy, € ¥, we have X° > = = zy + ev(zy), where v is the unit
normal to the surface 3 pointing outside €2;.. So, we will control these operators by tracking the dependence on
the parameter ¢, and consequently, the convergence when € goes to 0 and M goes to 4-0c0.

Now, to give arigorous definition of the operator we are dealing within this paper and to go into more details, we
need to introduce some notations. For m > 0, the free Dirac operator D,,, in R? is defined by D,,, := —ia-V+mp,

with
(0 o o L 0 (10
Qj = (Jj 0) fOI‘] =1,2,3, 6 - (O ]12) ) I := (O 1) ’

do (01 (0 —i (10
and o1 = 1 0/ 0—2_2- 0 ) 03 = 0o -1/’

the family of Dirac and Pauli matrices satisfying the anticommutation relations:
{aj7ak}:26jkﬂ4a {Oéjvﬁ}:o7 and BQ :]147 J?ke {15273}7 (11)

where {-, -} is the anticommutator bracket. As usual, we use the notation av-x = Z?:l ajz; fore = (z1,22,23) €
R3. We recall that D,,, is self-adjoint in L?(R?)* with dom(D,,,) = H'(R?)* (see, e.g., [16, subsection 1.4]),
and that the spectrum is given by

Sp(Dim) = SPeont(Dm) = (=00, =m] U [m, +-00).

Let 2, be a bounded smooth domain in R3, and ¥ := 9Q, its boundary. For (n,u) € R2, the three-
dimensional Dirac operator with §-shell interactions is defined formally by

Dy, = D f + (nla + pB)ds f, (1.2)

where Jy; is the Dirac delta distribution supported on ¥, and the constant 7 (resp. 1) measures the strength of the
electrostatic (resp. Lorentz scalar) part of the interaction. In this case, the operator in (1.2) is called the Dirac
operator coupled with electrostatic and Lorentz scalar §-shell interactions.

The investigation of the properties of the Dirac operator ID,, , goes back to the articles [9] and [10]. Further-
more, in [9], the authors state that the shell becomes impenetrable if we assume that 7> — u? = 4 (known as the
confinement case). Physically, this means that a particle such as an electron that is in the region 2 at time ¢t = 0
cannot cross the surface ¥ to reach the region R? \ Q as time progresses (and vice versa). Mathematically, this
implies that we can decompose the considered Dirac operator into a direct sum of two operators acting respectively
on Q. and R?\ Q,, each with the corresponding boundary conditions. If 7 = 0, physicists in particular have
been aware of this phenomenon since the 1970s, when they considered confinement in hadrons with a model (see
[8] and [11]). The mathematical model describing this, using the Dirac operator with MIT boundary conditions,
has been extensively studied in mathematical papers such as those mentioned in [3]. In our paper we refer to the

Dirac operator, with MIT bag boundary conditions as DMIT (m) (see the beginning of Section 2.2 for the exact
definitions).

The approximation of the Dirac operators with regular/singular potential has been the subject of several re-
cent mathematical papers. Therefore, in the one-dimensional case, the analysis is carried out in [13], where Seba
showed that convergence in the sense of norm resolvent is true. In 2D case, [7] considered the approximation
of Dirac operators with electrostatic, Lorentz scalar, and anomalous magnetic d-shell potentials on closed and
bounded curves, in the non-critical and non-confinement cases. In 3D case, the authors of [12] showed an approx-
imation of the Dirac operators coupled with d-shell interactions, however, a smallness assumption for the potential
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was required to achieve such a result. Finally, in 3D case, I have established in [ 18] an approximation of the opera-
tor D,, -, in terms of the strong resolvent, in the non-critical and non-confinement cases (i.e., when 1? — p? # +4)
without the smallness assumed in [12]. Now, let us describe the main results of the present manuscript.

FIGURE 1. Domain

Description of main results. Let {2, be a open bounded set in R3 with a compact smooth boundary ¥ := 9Q,,
let v be the outward unit normal to {2;. Throughout the current paper, we shall work on the Hilbert space L?(R3)*
(resp. L2(05)* with QL =QpUUand Q. = R?\ Qi) with respect to the Lebesgue measure, and we will
make use of the orthogonal decomposition L?(R?)* = L?(Q)* & L?(Q%.)*. We denote by N° the outward unit
normal with respect to 2° . More precisely, for ¢¢ sufficiently small, we assume that 3, Q¢ , 32 and U/¢ satisfied
Yi={z R} 2z =25 +ev(zs): 25 €T},
Q° = {2z € R? dist(x,%) > ¢}, (1.3)
U ={reR® z=xx+tv(es): zx €Y and t € (0,e)}, withe € (0,&).
In other words, the Euclidean space is divided as follows:

R} =Q°F UX UU UDUQ,.

We consider perturbations of the free Dirac operator D,,, in the whole space by a large mass M term living in an
¢ neighborhood U/¢ of ¥. The perturbed Dirac operator we are interesting on is ©5, := D,, + M 31y, where
1< is the characteristic function of {/® and ¢ is the thickness of the tubular region (/. The results of the present
article are presented as follows:

To establish the main result outlined in Theorem 1.1, we must show the following approximations:

Proposition 1.1. We consider the confining version of the Dirac operator coupled with a purely Lorentz scalar
0-shell interaction, denoted by P, := Dy o (i.e., whenn =0and = 2 in (1.2)). Then, for any z € p(Z1,) and
€ sufficiently small, the following estimate holds:

QE
Heﬂi,RMH (2)ros — RL(Z)‘

=0() as e—0. (1.4)
L2(R3)4— [2(R3)4

where Rilﬁ{ is the resolvent of the direct sum of both MIT bag operators, refer to Dl?/ﬁf (m) and which will be
defined rigorously in Section 2.2, Ry, is the resolvent of the Dirac operator coupled with purely Lorentz scalar
0-shell interactions, 9r,, and rQs _ resp. eqs s the restriction operator in Q% _ = Q UQE resp. its adjoint
operator, i.e., the extension by 0 outside of Q2% _.

Remark 1.1. We mention that the proof of Proposition 1.1 is not difficult to realize. Indeed, we establish the
above approximation by tracking the dependence on the thickness €, when € goes to 0. However, what is important
to achieve is the proof of the following proposition, for which studies and estimates are required by tracking the
dependence on the parameters € and M, in order to establish such a relationship between the parameters, and
prove therefore the main result of Theorem 1.1.
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Proposition 1.2. Ler K C C\ R be a compact set. Then, there is My > 0 such that for all M > M, and
e=M"1: K C p(D%,) and for all z € K, the following estimate holds on the whole space

Q5 _
HR?VI(Z) — eﬂi_RMJIrT (z)rgi_ ‘ ‘L2(R3)4HL2(R3)4 =0O(M™).

The latter proposition means that the Dirac operator D5, is appr0x1mated in the norm resolvent sense, by both
MIT bag Dirac operators, acting in Q% _ with a rate of O(M ~!) when M tends to cc.

By combining Propositions 1.1, 1.2, we arrive at the following main result:

Theorem 1.1. Let 2z € p(21), then for M sufficiently large, z € p(D5;), and e = M ™", the following estimate
holds

185 (2) = Rp ()|l papays = O (M) .
(]

The most important ingredient in provmg Proposmon 1.1 is the use of the Krein formula of the resolvents
of 21, and both MIT bag operators, DMIT and DMIT (see Section 4.2), acting in L?(2;)* and L?(Q°)*,

Qs

spectively. Then, in Proposition 5.1, we establish that the convergence (D — 2)~* toward (Dyip — z)_1

holds for any non- real 2 when e goes to 0, and we then obtain, in the norm resolvent sense, the convergence of
Q35 :

Dyir := Dyjin @ DMIT to 71 = Dy ® Dy

The key point to establish the result of Proposition 1.2 is to treat the elliptic problem (D5, — 2)U = f € L*(R3)*
as a transmission problem (where Pj[tZiJ.m+ = Pyitsll),. and Pitsetl) . = Pftseil) . are the transmis-

sion conditions) and to use the semiclassical properties of the auxiliary operator Y5, (z) acting on the boundary
OU® = Y UXE, which is constructed by the Poincaré-Steklov operators (see (4.11) for the exact notation). Indeed,

in Section 5, we show convergence of the Dirac operator, 5, to both MIT bag operators, Df\)ﬁT and D?ET, with
a convergence rate of O(M 1) for M = ! sufficiently large. Consequently, using these ingredients, a kind of
convergence can be established in Theorem 1.1 fore = M1,

Unlike the application in paper [4, Theorem 6.1], we mention that in this problem the operator Y9, (which is
constructed by the Poincaré-Steklov operators) takes a pair of functions with respect to OU°®.

We note that P{ and P4 are the orthogonal projections with respect to N° and v, respectively, defined by
P :=(IyFifa-N®)/2 and Py := Iy Fifa-v)/2. (1.5)
We end this part with the following remark on the projections P and P :

Remark 1.2. We define the diffeomorphism p : ¥ — X.° such that for all xs, € %, we get p(xy) := zx +
ev(xy) = x. Then, we have

Né(z) = —(vop™')(z) = —v(zz),
with

Pi(z) = % (I4 F iBa - Ni(2)) = % (Iy £ iBa - v(xs)) == Pr op *(z) = Px(vx).

Organization of the paper. The present paper is structured as follows. Section 2 is dedicated to the preliminaries
and the MIT bag operators, where we give some notations and definitions, and we recall some basic properties
of boundary integral operators associated with (D,,, — z). Moreover, in this section we set up some geometric
aspects characterizing our domains, define the Dirac operator with MIT bag boundary conditions and give some
properties. Section 3 is devoted to the study of pseudodifferential properties of the Poincaré-Steklov operators,
where the main result are Proposition 3 6 and Corollary 3.1. In Section 4, we set up a Krein formula connecting

the resolvents of D9, w1th those of DMH With its help, in Section 5 turns out that a kind of convergence can
be achieved for ¢ = M ~!, with a convergence rate of O(M ~1) as M becomes large (i.e., € € (0,0) sufficiently
small). Therefore, we show the main results of this paper: in the proof of Proposition 1.1, we approximate
the resolvent of MIT bag operators with that of the Dirac operator coupled with purely Lorentz scalar §-shell
interactions, in the norm resolvent sense, with a convergence rate of O(e), and we prove Proposition 1.2 on the

convergence of the resolvent of 5, to those of the MIT bag operators, D;lﬁ’f (m), for M sufficiently large.
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2. SETTING AND MIT BAG OPERATOR

In this section we gather some well-known results about boundary integral operators. Before proceeding fur-
ther, however, we need to introduce some notations that we will use in what follows.
We define the unitary Fourier-Plancherel operator .Z : L?(R%)* — L2(R%)* as follows:

a(€) == Fu(€) = (2m) ¢ /]Rd e” " ly(x)dr, VE€RY

For 7 € R?~!, we will abbreviate the partial Fourier transform on the variable T with .%. Given s € [0, 1], we
define the usual Sobolev space H*(R%)* as

H*(RY)* = {u € L*(RT)*: /W(l +[€%)° | Z [u) (€)1 dé < oo},

and for a bounded or unbounded Lipshitz domain 2 C R3, we write 92 := ¥ for its boundary and we denote by v
and o the outward pointing normal to €2 and the surface measure on ¥, respectively. By L?(R3)* := L2(R3,C*)
(resp. L2(Q)* := L?(Q,C*)) we denote the usual L?—space over R? (resp. 2), and we let rq : L?(R3)* —
L?(Q)* be the restriction operator on € and e : L?(2)* — L2?(R3)* its adjoint operator, i.e., the extension by
0 outside of 2. Now, we let H(€2)* to be the first order Sobolev space

HY(Q)* = {p € I*(Q)* : there exists ¢ € H'(R*)* such that ¢|q = ¢}.

By L?(X)* := L*(3,do)* we denote the usual L?-space over . The Sobolev space of order 1/2 along the
boundary, H'/?(2)%, consists of all functions g € L?(X)? for which

2
g\x)—gly
9002 = [ Jat@)Paot) + [ [ =IO  dog)0(0) < .
= ste |z -yl
As usual we let H~1/2(X)* to be the dual space of H'/2(X)*. We denote by ts : H'(Q)* — H'/?(X)* the
classical trace operator, and by g : H'/2(£)* — H'(Q)* the extension operator, that is
tséalf] = f, VfeH* (D)

2.1. Boundary integral operators associated with the free Dirac operator. The aim of this part is to introduce
boundary integral operators associated to the fundamental solution of D,,, and to summarize some of their well-
known properties. In this section, € is a bounded domain in R? with ¥ := 9€) its boundary and we denote by v
the outward pointing normal to Q. We set 2, := Qand Q_ =R3\ Q.

For z € C\(—o00,—m] U [m, +c0), with the convention that Imv/22 — m? > 0, the fundamental solution of
(D, — 2) is given by

ivz2Z—m?2|x
Ve <z FmB+ (1 —iv22 — m|z|)ia - |x) . Vo e R®\ {0}. 2.1)

() = 47 || x|?

We define the potential operator ®Z, : L*(X)* — L2(R3)* by
Bl71@) = [ Ghle =)o), foralls € R\ 2.

Furthermore, (D,, — z)®Z,[f] = 0 holds in D' (Q1)*, for all f € L?(2)*. Finally, given z € ¥ we define the
Cauchy operators €7 : L2(X)* — L?(X)* as the singular integral operator acting as

€% f](z) := lim ¢z (x —y)f(y)do(y), fordo-ae,x e, f€ (%)%, (2.2)
PO ja—y|>p

and the following bounded operator C§ ,,, : L*(X)* — L?*(X)* as follows:
CLmlfl(x):= lim  ©F[f|(y),

Q4 2y LA

where 24 > y 2 2 means that y tends to x non-tangentially from Q. and Q_, respectively, i.e., for y € Q4
we get |z —y| < (14 a)dist(y,X) fora > Oand z € X.

It is well known that ®7, and %, are bounded and everywhere defined (see [ !, Section 2]), and that

(- V)22 = (€ (- v)? = _3114, Wz € p(Du),
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holds in L?(X)%, cf. [2, Lemma 2.2]. In particular, the inverse (6%)"! = —4(a - )67 (« - v) exists and is
bounded and everywhere defined. Note that ¢Z, (y — z)* = ¢Z,(z — y), as a consequence (6%)* = 6, holds in
L2(X)%. In particular, €7 is self-adjoint in L2(X)* for all z € (—m, m).

Now, we define the operator A% ,,, by
1
T =gBEE,,  forallz e p(Dp),

which is clearly a bounded operator from L?(3)* into itself.
In the next lemma, we collect the main properties of the operators ®7,, 677 and A7 , .

Lemma 2.1. [4, Lemma 2.1]. Given z € p(D.,) and let ®;,, 6, and A% ,, be as above. Then the following
holds true:

(i) The operator ®7, is bounded from HY/?(£)* to H'(Q)*, and the following Plemelj-Sokhotski jump for-
mula holds that

50l 1] = Cilf = (F5(a-n) + 65 ) 1), ¥F € M)

(i) The operator €7, gives rise to a bounded operator €7, : H/?(£)* — HY?(L)%

3

(ili) The operator A3 ,,, : H'/?($)* — H'Y/2() is bounded invertible for all z € p(Dy,). O

The last thing in this section is the definition of the Dirac operator coupled with purely Lorentz scalar 4-
interaction.

Definition 2.1. Let u € R\ {0}. The Dirac operator coupled with purely Lorentz scalar §-shell interaction of
strength i, is the operator g ,,, acting in L?(R?)* and defined on the following domain

dom(Dy ) :=={p=u+ P [g], ue Hl(R3)4, gE L2(2)4, tsu = —Ai’m[g] onX}. (2.3)

Hence, Dy, acts in the sense of distributions as D ,,(¢) = Dpu, for all ¢ = u + ®Z [g] € dom(Dy ).
Consequently, we can identify Dg ,, as

Do,y = Dimp— @ Dy,
dom(Dy,) = {ws + O, 4[g], we € H(Q4)*, g € L*(2)*,
Pi(tsws +C% ,,[9]) = 0, with tswy = =A%, [g] on ¥},
where ®7, | [g] : L*(X)* — L?(Q+)* is the operator defined by ®7, ,[g](z) = ®7,|a.[g](x), for g € L*(X)*
and x € Q4.

Moreover, recall that Dy ,, is a self-adjoint operator on HY(R3)* for all 1 € R (see, [2, Section 5.1]), and for all
z € C\ R, the following resolvent formula holds [5, Proposition 4.1]

(DO,N - Z) = (Dm - 2)71 - (I)fn(Aj-,m)iltz(Dm - Z)il'

2.2. Definition and some properties of the MIT bag operator. Recall the definition of the perturbed Dirac op-
erator 5, := D, + M1y, where 1 is the characteristic function of /*. Then, we consider the MIT bag

operators, Dy (m) and DﬁfT(m), acting in €, and Q° , respectively, and defined on the following domains

Dijir(m)vy = Doy, Voi € dom(Dyjip(m)) = {vy € H'(24)*,  P_tyvy =0on X},

Dﬁ}T(m)ve = Dpv°, Yo e dom(Df\z/ﬁT(m)) ={v° € H'(Q°)*, PStg-v° =0onX}.
Then, let the MIT Dirac operator, D?ﬁf = Di}f{T ® D;ZT, acts in 25 := Q, U Q¢ , and defined on the

following domain

dom(Dl?ﬁT’) ={v° = (v°,vy) € HY Q) @ HY(Qp)?*, Pitg-v® =0= P_txv,},

with Df\?ﬁ v*=(Dy®D_)v°; Dy =D_ = Dy, forallv® € dom(Df\zﬁf ), and where the boundary condition
holds in H/2(%¢)* and H'/2(X)*, respectively. Here, we recall that P5 and Py are the projections given in (1.5).
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Finally, on {/¢, we introduce the following Dirac auxiliary operator
Dfrr(m + M)u® = Dy g ru,
u® € dom (DY r(m + M)) = {uf € H'(U%)*, PStseu® =0 = Pytsu® on dUS := DU},
with Dy, ps = Dy + MB = —ic - V + (m 4 M) . We note that D, is the MIT bag operator on /.

€ e

Theorem 2.1. The operators (Dlg\zﬁT7 dom(Df\zﬁT)) (resp. (Dl?/ﬁT7 dom(DiZ/HT)) and (D¥;p, dom (DY p))) are
self-adjoint and we have

(DSET —2)7t = 1. (Dm — z)_leg+ — <I>fn’+(Aj’m)_1tZ(Dm — z)_leg+, Vz € p(Dy,).
Moreover, the following statements hold true:

(i) Sp(D MIT) = Spdlsc(Di}ﬁ’T) C R\ [-m,m)]. (Similarlyfor D¥yp for (m + M) instead ofm).

(ii) Sp(D MIT) = Spess(Dng) = (—o00, —m| U [m, +00). Moreover, if Q°_is connected then Sp(DI{Z/ET) is

purely continuous.
(iii) Let z € p(Df\Z/ﬁT) be such that 2|z| < (m + M), then for all f € L*>(U®)*, it holds that

D% = 27|, S M I ey

uniformly with respect to € € (0, ).

L2 (L{E

Proof. The proof of this theorem follows the same arguments as the proof of [4, Theorem 3.1], where the
estimates are valid uniformly with respect to €. U

Definition 2.2. Let z € p(D,,)Np(D¥r)), ¢ € PEHY2(X9)4, g4 € P_HY?(S)* and (h®,hy) € PSHY/?(29)4
©P, H'/2(X)%. We denote by E,,(z) : P_HY?(2)* — HY QM) respectively, ES,(z) : P H'Y/?(x2)*
HY (92 )* the unique solution of the boundary value problem:

(Dp, — 2)v4 =0, inQ.y, o4
P_tsvy = g4, on %, @4
(Dpp — 200° =0,  inQF, .
Petsev® = ¢°, on X°. @5

Similarly, we denote by E;,  \/(2) : PsHY2(S5)4 @ PLHY?(S)* — HY(U®)* the unique solution of the
boundary value problem:
(D —2)u® =0, inlUe,

Plts-u® =h°, onXF, (2.6)
Pitsu® =hy, onk.
Define the Poincaré-Steklov operators associated with the above problems by
G (2) : P_HY?(2)* — P HY?*(D)*
g+ = Ip(2)gt = PitsEn(2)P-gy,
A5 (2): PEHY2(R5)* —  PsHY2(29)4
G = de(2)g = PitnES,(2)PE g,
A ai(2) s PLHY2(S) @ PEHYA(S5)Y - P_HY2(S) @ PEHY?(S5)Y,  with

AfnJrM(h-‘r? he) = (P—tzgz@JrM(Z)P-&-vPitZngn+M(Z)P-§E—)'

In particular, for z € p(D,,) we have the following explicit formulas
G (2) = =Py B(B)2+ €)' P,y (2) = —PLB(B/2+65°) 7 P2,
Remark 2.1. We define the Poincaré-Steklov operator, B, ., \;, as a part of the operator A5, . \,, which is only
associated with 3¢ as follows:
oiar () PLHYA(S) 5 PEH (52
h® = A, (2)h° 1= PltseE L (2) PL

In particular, AZ, , \ will be used to establish the approximation in Section 3.
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2.3. Some geometric aspect.

Definition 2.3. [Weingarten map]. Let ¥ be parametrized by the family {¢;,U;,V;, }ics with J a finite set,
Ui CR%,V; CR3, T C Ujes Vi and ¢(U;) = Vj and ¢; = Vi N S forall j € J. Forx = ¢;j(u) € XNV;
with u € Uj, one defines the Weingarten map (arising from the second fundamental form) as the following linear
operator

Wy =W(x): T, — T,
0ipj(u) = W(x)[0;0;](u) := —0iv(p;(u)),

where T, denotes the tangent space of ¥ on x and {0;¢;(u) }i=1,2 is a basis vector of T,

2.7

The eigenvalues k1(x), ...., ky(x) of the Weingarten map W, are called principal curvatures of ¥ at x. Then,
we have the following proposition:

Proposition 2.1. [[17], Chapter 9 (Theorem 2), 12 (Theorem 2)]. Let ¥ be an n—surface in R"1, oriented by
the unit normal vector field v, and let © € X.. The principal curvatures are uniformly bounded on ..

Definition 2.4. [Transformation operator]. Let 3, ¥ C R3 be as above. We define the diffeomorphismp : ¥ —
3¢ such that for all vy, € ¥, we get p(xy) := xx + ev(zy), € € (0,e0). Then for ¢ sufficiently small, we define

the transformation operator as an unitary and invertible operator as follows
T.: L2(X)* —  L2(x9)%,

1

v o= T[Y)(2)

- (2.8)
~ det(1 — eW(zy))

(Wop')(@), ==p(rs),

and its inverse is given by
T L2(R9)E - LEA(D)4,
o = T Hpl(rs) = det(l — W (z5)) (¢ o p)(as).
We also introduce the projection Ps, : ¢ — X given by

Ps(rs +trv(zs)) :=2x, Vg eXandte (0,¢].

3. PARAMETRIX FOR THE POINCARE-STEKLOV OPERATORS (LARGE MASS LIMIT)

Set k := (M + m). This section is devoted to study the (classical and semiclassical) pseudodifferential prop-
erties of the Poincaré-Steklov operator, A%, in order to use it in the application of Section 4. The main goal of
this section is to study the Poincaré-Steklov operator, A%, as a k-dependent pseudodifferential operator when s
is large enough. Roughly speaking, we will look for a local approximate formula for the solution of (2.6). The
approximation in this section follows the steps of the one in paper [4, Section 5], but since our elliptic problem
(2.6), defined on the domain I/¢, has two different boundary (0U/¢ = X U X%¢), and we have to take into account
the dependence in €, so we prefer to study rigorously the construction of the approximation. Once this is done,
we use the regularization property of the resolvent of the MIT bag operator to catch the semiclassical principal
symbol of A . Throughout this section, we assume that z € p(D¥j;()).

We see that U/ has two boundaries, 3 and ¥°. Since the approximation with respect to X has already been
established in [4, Section 4], and we therefore have this result in the present problem, it is then sufficient to
establish the approximation of A%, just with respect to X°. For this purpose, and for simplicity of notation, we set
AP := A% withe = h := k™! € (0, 1] as the semiclassical parameter, where A% is defined in Remark 2.1.

3.1. Symbol classes and Pseudodifferential operators. We recall here the basic facts concerning the classes of
pseudodifferential operators that will serve in the rest of the paper. Let .#4(C) be the set of 4 x 4 matrices over C.
For d € N* we let S™(R? x R?) be the standard symbol class of order m € R whose elements are matrix-valued
functions a in the space C*°(R? x R¢;.#,(C)) such that

020 a(w,&)| < Cap(L+ €)™, ¥(2,6) e R x R?, Ya € N%, VB € N°.

Let .7 (R9) be the Schwarz class of functions. Then, for each a € S™(R? x R?) and any h € (0, 1], we associate
a semiclassical pseudodifferential operator Op" (a) : ./ (R%)* — .#(R%)* via the standard formula

Op"(a)u(x) = @) /]Rd e %a(x, he)u(€)dE, Vu e S (R
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If a € S°(R? x R?), then Calderdn-Vaillancourt theorem’s (see, e.g., [0]) yields that Op"(a) extends to a bounded

operator from L?(R9)% into itself, and there exists C, N¢ > 0 such that

o20fal| .
w9 4|

By definition, a semiclassical pseudodifferential operator Op"(a), with a € S°(R? x R?), can also be considered

as a classical pseudodifferential operator Op!(ay) with a;, = a(x, h€) which is bounded with respect to h €

(0, hg), where hg > 0 is fixed. Thus the Calderén-Vaillancourt theorem also provides the boundedness of these
operators in Sobolev spaces H*(R%)* = (D,)~*L?(R?)* where (D,) = v/—A + L. Indeed, we have

||Op ap 2)*0p*(ap)(Dy)™

||Op" (a)

3.1)

<C max
2 2 X
HL — L |04+5|<NC

(3.2)

||H s—H* || HL2—>L27

and since (D,)*Op(ap)(D,) ™% is a classical pseudodifferential operator with a uniformly bounded symbol in
S, we deduce that Op”(a) is uniformly bounded with respect to h from H* into itself.

3.2. Reduction to local coordinates. Let us consider A = {(U,,;,V,,, ;) : j € {1,---, N}} an atlas of ¥ and
(Uyp, Vi, ) € A. We consider also the case where U, is the graph of a smooth function x, and we assume that
Q¢ corresponds locally to the side z3 > x (21, x2). Then, for

USD :{(x§)7$227X(x127x22))7 (55%;,5522) € th}a @((1‘1271‘227X(x127x22)) = (CC%,SU%),
Vo ={(y1,y2,y3 + Xx(y1,¥2)); (1,2, y3) € Vo x (0,7)} C Q4
with 7 sufficiently small, we have the following homeomorphism:

O Vpn — Vo, X (g,1)
(léh l‘%, .’L‘%) = (;C%;, x%? ‘T?X)) - X(xlEv x%))?
and the pull-back
" C®(Vy x (g,1)) — C* (Vo)
v o' v i=vo .
Now, using the coordinates in (1.3), we let the diffeomorphism ¢. : C>°(V,, ;) — (V) defined by follows:
¢e(T1, 22, 73) 1= P(2%, 2%, 2%,) + ev(g(ax)) = (23, + evi, % + eva, 23, + vz — x(28,2%)),

with § = (y1,%2) and v the outward pointing normal to Q. Now, let ¥ = (¢~1)*v be the pull-back of the
outward pointing normal to §2 restricted on V,:

1 _6301)( vy
———— | —0a,X (ylvy2) =
V 1+ |VX|2 ]_2 1/(%0

Then, the pull-back (¢ ')* transforms the differential operator D, restricted on V,, ,, into the following operator
on V,, x (0,7):

Dy, = (¢:')" Dinl92)”
=—i (alayl + OQayz - (—alale - 0428952)( + 043)8y3) +mp —ic [Clazn + CQayz + 0382;3}
= _i(alayl + a28y2) +Vv1+ |VX|2(ia ) ch)(g)ays — i€ [Claw + CQa?n + 6383/3} + mﬁv

vi(y) =

where c, are 4 X 4 matrices having the form ce = (10;, + @20y, )ve, fore = 1,2,3.

Thus, in the variable y € V,, x (g,n) for 0 < € < 7, the system (2.6) becomes:

(D¢ — z)u =0, inV,, x (e, +00), (3.3)
I“fu:g?’:gocp_l, on V, x {e}, ‘
where I'Y = Pfty,, ..
By isolating the derivative with respect to y3, and using that (i - v%) ™! = —ia - 1%, we get

-1
. yP v - P (17
By = (h . <a>) VD) (i, i+ B 2 ey icesdy )

V14 |Vx[? 14+ [Vx(9)[?
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(- v¥e3)

T VI+|VXP

Neumann series converges

-1 4 k
I, e(a-v¥cs) _ ng a-v¥Pcey
V14 [Vx[? =0 L+ [VX@P)

Since is a bounded linear operator, then for ¢ € (0, () with ¢q sufficiently small, the following

and we obtain
Oyt =

too o k+1
Z ek LCSN ( — 1010y, — 10020y, + KB — i€c10y, — i€C20y, — z)u, in V, x (e, +00),
s 1+ [Vx(@)[?

Iu = g%, onV, x {e}.

Let us now introduce the matrices-valued symbols

Lo(€) = ia.y¢(ﬂ))2(a,f+ﬁ)’ and L1(§)?=W@)|Q(C'§—Z)a (3.4)

1+ [Vx(y 1+ V(7

with £ = (&1,&) € R? identified with (£1,&2,0) € R3 and ¢ = (c1,c2). Then for e = h := 1/m, the system
(3.3) becomes:

hayguh = Lo(§, hDy)u" + hLi(§, hDy)u"

p (a-v 2ez)” ~ h ~ h 2
+Zh AT (Lo(§, hDg)u" + hL1(§,hDy)) u",  inR? x (&, +00), (3.5)
P+t{y3:6}u = g%, on R? x {e}.

Remark 3.1. In this remark, we clarify the first difference in the approximation of this section compared to that
of [4, Section 5]. Indeed, according to the formula of L1 from (3.4), we observe that the term c - £ appears in our
case, whereas it was absent in the case of [4]. Moreover, we mention that this difference plays an important role in

the subsequent progression of this approximation, exerting a significant impact on the symbol class of the solution

ul.

Before constructing an approximate solution of the system (3.5), let us give some properties of Ly. Besides,
we mention that L, also verifies these properties.

Lemma 3.1. Recall the projections P{ := (I Fif o - v?(y))/2, and set

V5 1= —laiipa3 = (HOZ %) and S-X = —vy5(a-X), VX €R3 (3.6)

Using the anticommutation relations of the Dirac’s matrices we easily get the following identities
ila- X)(a Y)=iX-Y+S5 - (XAY),
{S - X,0-Y}=—(X-Y)y, [5-X,8]=0, VX,Y€R’
Let v and £ be as above. Then, for any z € C and any T € R3 such that T | v?, the following identities hold:
(8- 7 —imp(a-v?())* = (|7 +m*) L,
P{(S-1)=(S-7)P{ and Pf(ia-v¥) = (ia-v?)P%.
The next proposition gathers the main properties of the operator Ly.

Proposition 3.1. [4, Proposition 5.1]. Let Lo(g, &) be as in (3.4), then we have

) = i - v¥ —iB(a-v?(y
Lo(i:6) = —mmromr=rs (i€ 7(0) + 5+ (7(0) 1) - il 7 (7))
=g () + =L, .- —208 ),

1+ [Vx(@)P 1+ |Vx(@))?
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where

5:€) =) A EP T,
A P—— )

I+ VxP
1 (h L 8- (PG A —iBla u%g)))
2 A(7,€)
In particular; the symbol Lo(§,€) is elliptic in symbol class S* (defined in Section 3.1) and it admits two eigen-
values o+ (-,-) € St of multiplicity 2 which are given by
. w?(y) - £ Ay, €
0:(5,¢) = LU EZAGY
V1+[Vx|

and for which there exists ¢ > 0 such that

3.7

H:I:(g, 5)

im@i(@:f) > C<§>7 (3.8)

uniformly with respect to . Moreover, 1. (g, &) are the projections onto Kr(Lo (7, &) — 0+ (7, £)1y), belong to the
symbol class S° and satisfy:

PP (9,8) P = k5(9,§)PL  and PL1L(3,€) PY = FO%(3,) P, (3.9
with

6.9 -3 (12 505): 0700 = 5505 (S DA,

Now, using Lemma 3.1 and the properties (3.7), a simple computation shows that

1
PFIL = KEPF + 50 (S (#9(5) 1)) PF,
1 -
o (5 W2 @) A &) PE.
That is, k% is a positive function of SO, (k‘i)_l € S% and ©% € S where S is zero-order symbol class defined
in Section 3.1.

PPTly = kZP? +

3.3. Semiclassical parametrix for the boundary problem. In this section, we construct the approximate solu-
tion of the system (3.5). For simplicity of notation, in the sequel we will use y, 7, and P4 instead of g, y3, and
PY, respectively. We are going to construct a local approximate solution of the following first order system:

hdy,u™ = Lo(y, hDy)u" + hLy(y, hD,)u"

e . UPea)F
+3 h’f(o‘”—c‘;)m (Lo(y, hDy)u" + hLy(y,hDy)) u”,  inR? x (&, +00),
(14 |Vx[?)k/
k=1
h _ ¢ 2
Pit—gu” = g%, on R x {e}.
This system is equivalent to
h h = g (a-vPeg)ht - h 2
h3y3u = Lo(y, hDy)U =+ Z h qu (y, hDy)’LL 5 in R x (E, —‘y—OO)7 (3 10)
k=1 .
Pyitgr—eyu = g, on R? x {e},

with El(y:E) = Ll (ya f) + (a : 179963)1/0(:(}7 5)
To be precise, we will look for a solution u” in the following form:
W) = 0" (A )f = [ AMhe ) (e

with A"(-,-,7) € S° for any 7 > 0 constructed inductively in the form:

Ah(ya 3 T) ~ Z thj (y’ & T)'

Jj=20
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: oo g (0 vFes)" Tt < h o h ;
The action of hdy, — Lo — ), 2 h*———"—— L1 on A"(y, hD,, 7)f is given by T"(y, hD,,, 7) f, with
(1+|Vx[?)=
T(y,€.7) = h(O: A")(y,€,7) = Lo(y: A"y, &,7) = h(Lu(y, A" (9,6, 7) — 0 Lo(y,€) - ,A" (4,6, 7))
— n? (LoAh + Ly(y, &) A" + 8¢ Lo - 9, A" —i0c Ly - 0,A" + (a - D¢03)zl(y,§)Ah) +

Then, by identifications of the coefficients of 7, 7 > 0, we look for Ay satisfying:

ha‘rAO(yag?T) = LO(yag)AO(yvga T)a (3 11)
P_A,_(y)Ao(y,f,E:) = P+(y)7 -
and for j > 1,
ha‘rA (ya ga 7_) = LO(yv g)AJ (y7 57 T) + (Zl(yvg) - ZaﬁLO(ya 5) : ay)Ajfl(yv ga 7_)
+ Z - ¥eg)’ ((04 - 5%¢3) Ly (y, €) — iagL(%f) ‘ ay)Al72(y>§7 ), (3.12)

1>2

Py (y)A;(y,€e) = 0.
Let us introduce a class of parametrized symbols, in which we will construct the family A;:
Pri={b(-,-,7) € S™; V(k,1) € N*, 7%0Lb(-, -, 7) € RFTIS™TFY m e Z.
Proposition 3.2. There exists Ag € Py solution of (3.11) given by:
hr—o)o_(ge) U=y, P4 (y)Ao(y, € €)
k2 (y,€)
h=(r—2)o_ (y,6) H= (¥, E) P (y)
k2 (y,¢€)

— T T=e)e-(v.8) <H4 _ (Z) P,.

AO(yu 57 T) =e€

=€

Proof. The proof follows the same argument as [4, Proposition 5.2]. The solution of the differential system
hd,; Ay = LoAg is Ag(y, &, 7) = et (7=9)Lo Ay (y, £, ). By definition of g1 and I, we have:

el Lo = TN TR (y, &) + e (TR T (y, €). (3.13)
It follows from (3.8) that Ay belongs to SO for any 7 > ¢ if and only if I (y, &) Ao(y, &, ) = 0. Moreover, the
boundary condition P; Ay = Py implies Py (y)Ao(y, &, ) = Py (y). Thus, we deduce that
P_II, P P II_P II_P
Ao(y,&,€) = Pi(y) — %(%5) = Py(y) + TJF(?/,@ = e (y,¢€).

The properties of o_, II_, P_ and k4 given in Proposition 3.1, imply that (k¥)"'II_P_ € S° and that
eh™'7e-(w.€) ¢ PY. This concludes the proof of Proposition 3.2. O

Proposition 3.3. Let Ay be defined by Proposition 3.2. Then for any j > 1, there exists A; solution of (3.12)
which has the form:

Aj(y,€,7) = b Tm9e-w:8) Z (1 —e)(€)*B,x(y,&), with Bj, € hS°. (3.14)

Remark 3.2. An important difference in the approximation between the solution A; resulting from this work and
the solution presented in the work [4, Proposition 5.3] lies in the order of the standard symbol class S™. Indeed,
by referring to the form of As (see (A.11) from Appendix A) one can deduce that the optimal order of the term

P.O%
II_ag (PJr —};@ + H+a0) in B o is in h S8, and this property is reflected in the construction of Aj forj > 3.

However, in [4, Proposition 5.3], it was possible to obtain all A; in hS™. This discrepancy leads us to deduce
the following propositions concerning the solutions A;.
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Remark 3.3. We mention that this difference in the symbol class of terms B ;. with that obtained in [4] is mainly
due to the difference discussed in Remark 3.1, i.e., to the influence of c - £ as presented in the formula of Ly in
system (3.5), and subsequently to that mentioned in Remark 3.2.

Proof of Proposition 3.3. For initialization and calculation of A; and A,, see Appendix A. So, for A; with
j > 1, it is sufficient to prove the induction step. Thus, assume that the A; solution of (3.12) satisfies the above
property and let us prove that the same holds for A, ;. In order to be a solution to the differential system

haTAjJrl(ya 6, T) = LO(y7 g)Aj+1<yv 57 T) + (El(ya 5) - ZaELO(yv 5) : 87,/)‘4] (y7 57 T)
I=j+1
+ 0 (o 77e) ! (0 776 La(y, €) — i0eLa(9,€) - 9, ) Aoy, 7).

=2
then, for A;; we have:

Aj+1 — ehilLO(T_s)A]PFI‘T:E 4 ehflTLo / e—hflsLo (zl _ ZagLo . 8?!)‘47 (y’§77-) ds
€

@
—1 o —1 l:]+1 . ~ ~
+eh TLo/ et sLo Z(Oz-ﬁ‘p03)]+1_l((a-17“"63)L1—i@ELl(y,f)-8y>Al,2(y7§,T))ds
€ 1=2

(b)

_ eh—lLO(T_E)AjJrllT:E + eh*17L0 / 6h718L0 ((a) + (b))dS
€

(3.15)
In order to know the form of (a) and (b), let us consider the formula (A.9). Then for the quantity (a), we have

2j
OyA; =T (7 (r = )0 +9,) D (n7M T - g)<§>)kBj,k.

k=0

Now, applying (El —140¢Lg - @,) to A;(y, &, 7):
- . 2J k
(L1 —i0¢Lg - 0y)Aj = ao(y)( —z+c-&—icgly —ia- (%)eh (r—e)e- Z (h_l(T — €)<§>) Bj
k=0
2j

N ao(y)( —z4cza-U¥[ —ia- ay) (h_l(T - 5)<§>)kBj,k
k=0

®

e e 7)€ 5 (10— 16

k=0

(i)

25

1 k
e ey (y) (= ih T (r = ea- 9,0-) D (hTHT = 2)()) By
k=0
(iii)
Thanks to the properties of ¢o_ and B; 1, (i), (ii) and (iii) have respectively the form:
25
()= 0T N7~ e){€) By, ), (3.16)
k=0
— 2
(i) = e T NN =) ()" (€) Byn(y, ), (3.17)
k=0
25
(iii) = " 7T S (T — )(€) By (1, ), (3.18)

k=0
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with B  and B  verifying the properties of B; j, and (€) Bj i € hS'. Therefore, toghether (3.16), (3.17) and

(3.18) glve that
2j+1

()= " e N (h M — e)(€) B a(y. 6), (3.19)

k=0

where éjk verifies
Ej,k € hS'fork =0,...,2j, and §j72j+1 € hS°.
Similarly, to calculate (b), applying ( — i@gzl <Oy + (a- 17‘903)z1) (see (A.9)) to the identity (3.14) yields that
(- z@ELl Oy + (a- 7%e3)L 1)A; =

- 2 k (3.20)
eh T T=Ee g4 (y) <d+ e-&—ihM(ys—e)f - 5y9> > (h_l(T - €)<§>) Bjk,
k=0
with d, e and f defined in (A.10). Let us decompose (b) as the following
I=j+1 _ N
> (a- 9“003)]“4( —i0¢Ly - Oy + (o - ﬁpCB)Ll)Al—2(ya§,7—)) =
1=2
(o #es)’ ™ (= 0Ly - 0, + (o~ 77e3) L) Aoy, €))
(m1)
I=j+1 N _
+ Y (a7 (< ideLy - 0y + (o 77es) Ly ) Ay, € 7))
1>3
(m2)
Since Ag € SY, this gives that
(ml) = f . BO’O + B\()’() + (—ih_l(T — E)f . 611@,)3070, (3.21)
11
where Bo 0 BO o0 € 8Y are respectively the constants obtained by applying d and e to ——— 7 *and f - dyo— € S
Thus, (m1) € S',Vj > 1.
In the other hand, and for all [ > 3 (i.e., | — 2 > 1), A;_5 has the form
2(1-2)
-1
Aoy, &) = e 70 N (T (r = ) () Bioar (v, ), (322)
k=0
with B;_» ;, € hS°. Applying (3.20) to the identity (3.22) we get
I=5+12(1—2)+1
(m2) =eh T - Z (1 = e){€))* B; x(y, ), (3.23)

>3

with B; , € hS! and B.j’z(l,z)ﬂ € h 8. Therefore, fori = (I —2) > 1and j > 2, toghether (3.21), (3.23) with
(3.19) give that

2j+1 l=j+12(1— 2)+1
(a) + (b) = (Te)e- <Z(h1(7'—€ Bix+ Y Z (r—e <§>)kél_2,k+m1>

k=0 >3
2j+1 i=7—12¢+1

= el (Te)e- < Z(h_l(T—s *Bjx + Z Z (T —¢)(§) Bi,;@—i-ml)
k=0 i>1 k=0
2i+1 i=j—1

= eh (T=Se- <Z(h_1(7 —e)(€))k (Ei,k + > BZ,,C) —|—m1>,
k=0 i>1

Ci ik

(3.24)
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with Ci,j,k S hSl, and Ci,j,k e hS%for k=2i+1.
So, using the decomposition (3.13), for the second term of the r.h.s. of (3.15) we have:

eh’lf%/ e—h’lsLO((a) n (b))ds =TT (7) 4 h TN (1), (3.25)

with

T 2141
HZ‘:(T) = e—hflagf / eh’ls(!)——ai) ( Z (h—l(s _ 5)<€>)kci,j7k + ml) ds.

k=0

For IV_, the exponential term is equal to 1 and by integration of s*, we obtain:

Hj_(T) =
e~hee- 2i:Jrl(ffl(7' —e)(€))kHt he)”! Cijr+ ((7’ —e)(¢€- Boo + B ) —ih Y1 — 5)2]8.871/973
2 o1 Jidk 0,0 0,0 5 0,0
. 2141 h -1
= e h e ’;(h_l(T — E)<§>)k+1]§§7_|210¢,]‘7k+

<<h1<r =) (M€ Boo + 1(&) " Bug) ~ i1 (7~ 2)(6)) WB) 7

then ¢ Te~TI_I” (r) has the following form:

A 2141 k+1p —1

R lro_ — h i r—e)e- p; 1= () »

T (7) = e pi kZ:O (Fe-a©) TG +
2 _

i, B B ) o~ e h 1r. 9 o

e ((h {7 = 2@ (W€ Boo + 19 Bun) —i (17 - o)) ) ML By g
. (3.26)
For I, let us introduce PPj, the polynomial of degree k such that
T 1
/ eMshds = NS (€™ Py (1)) — e*P1(0)), forany A € C*.
€

Using the above formula, then we obtain:

4 ) T 2i+1
E(r)=e " f@—/ eh™ sle——e+) < > (M s =) ) Cijn + m1> ds

€ k=0
2j+1 &
—h~1 h<£> —1r - — -1 —
=e ey (o — o) (eh (e-mepy (! (r —e)(0- — 04)) — " & 9+)Pk(0))ci,j,k
k=0 & &F
_ _ -Boo+ B - h
+ €_h 1697€h l(gf_ng)T h(£ 0,0 + 0’0) +1 (T 6) f . ayng0,0 — iig 2f . (9yQ,B()’0
0- — 0+ o- — 0+ (0- —o4)

—e~hTlee-ghT (- e+ )e h(ig Boo + BO’O) — iigh 5/ - Oyo—Boyo
0- — o4 (0- —o+)
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With this notation in hand, we easily see that the term eh”iTer l'IJr]Ij+ (7) has the following form:

IO T (1) =

241
my %C@j,k (ehil(T_E)g*Pk (hHr —e)o- —04)) — ehil(T_E)“Pk(O))
=0 (0- —o0+)
“1(r_g B +§ (T —¢€ X ch
et ey, h(L_OO) n 2(7_>f.@y9_3070 — it 60 Bog
0 — oy 0 — ot (0- —oy)
1 -Boo+ B ch
_oh ey, | p(E Boot Booy ek o g
e i 0-Bool-
* ( 0 —or ) (o —or2! Ove-Poo
(3.27)
Thus, combining (3.26) and (3.27) with (3.15), (3.25) and (3.13), yield that
2i+1 k1 ey —1
_ hl(r—e)eo } 1 €
A]+1 =e =e H*AJ+1‘T=6 + - k;) (h (T €)<€>) k + 1 1,5,k

2141

2
+H<(h_1(7—5)<§>)(h<§>_15'Bo,o+h 1Boo l(h Yr—e) ) MBO,O)
+ 114 Z hf kHC’jk(Pk(h (r—¢)(o- — 0+)

] 2

v

1 ¢-Boo+ Boo P h(¢§)~ 1f Oyo-Boo . eh
+eh e, | p( 220 00 (N (- Y —1 - Oy0_B
() i e gy e B
241 X
}171('1'—5;‘)94r . _ h<§> o
1 €-Boo+ Boo . eh
+ el (T=2)e+qp, [ p( 2220 T 700 - 4—f-0,0_B .
+< ( o0_ — o4 ) (Qf_g+)2f yQ 0,0
(3.28)
We set
— 241 A ) .
h{¢) £+ Boo+ Bo,o . eh
B, =T S o Pe(0) — L, (A2 P00 ey, B
R ,; (0= — gy )FHT 0ok +(0) +< ( o — oy ) (Q——Q+)2f vemme
(3.29)

belongs to 1 S° as a linear combination of products of I € 89, h{€)*(o— — o4) %1 € hS™L, and of C; ;1
which verify the properties as in (3.24).

Now, in order to have 4;.1 € S, we let the contribution of the exponentially growing term vanish by choosing

H+Aj+1(y, Ea E) = B;:,—Lk(y, E)

Then, we obtain

. 2i+1 K1y (g) 1
A =00 Ay 410 Y (- e) " A g,
k=0

+H<<h_1(7_5)<§>)(h<f>_lf'30,0+h 1Boo Z(h Y1 —¢) ) MBO 0)
~—04))

2i+1 § ‘|
(

+ 10, Z
e r=ee-11, h(§)~ 1f 9y0-Bo,o s eh
~ -0+ (0- —o0+)

o oy Gl (Pe(h ™ (r — )0

\_/

- Boo + B
h(§ 0,0 + 0,0)
00— — 0+

—i(h_l(T —e){¢ >)

2 f : 8le-BO,O‘| bl
(3.30)
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since the boundary condition P (y)A;11(y,&,€) = 0, gives

I_Aji(y,€e) = (Pr + P_)Aj1(y, &) =TI_P_Aj11(y, &, €),
using the formula of A, (y,§, T) above, we get that

P_II
PfAj+1<y’§7E) - k +Bj++1 k>
therefore
II_P_1I
M_Aj(y.&e) = T+Bﬂ++1 - (3.31)

In the other hand, regarding the following two series mentioned in (3.28)

2i+1 k1 p(6)=1 2i+1 h(e)k
n Y (b o)) Ciga + T Y0 e Gy (B (7 = )(0- — 04)))
.7, — 170, ’
k=0 k+1 k=0 (o- —o4)
(3.32)
by calculation, it is easy to verify that for all j > 2 (i.e., ¢ > 1), this quantity can be written as follows
2(j+1)
> (hr - e)e)" B (3.33)
k=0
such that B, ;, as a linear combination, belong to h2S% fork =0,...,25 + 1 and Bl i1+ € h2S—L.

Finally, the fact that we have the other terms (first and last) of the equality (3.30) of order h S° and admit the
same structure as that of the terms in (3.32), then thanks to (3.31), and (3.29), (3.33), together with (3.30) give that

) I_P.II 2(j+1) o
+ _ —
Aja(y,&7) = el (T79)e-w9) <kB]++1(y,£) + > (- g)<g>)k3j+17k(y,g)>
- k=0
where B, (y, ), Bj 1 x(y,€) belong to 7: S°, and Proposition 3.3 is proven with
II_P,.II _
Bjj10= k++3++1 + By andfork > 1,Bjp1x = Bj,, O

Proposition 3.4. Let A;, j > 0, be of the form (3.14). Then, for any s > f%, the operator A; defined by
1 e
Ay £ (i) m) = s [ A b e 7€)
(27'(') R2

gives rise to a bounded operator from H*(R?) into H5*2(R2 X (g, +00)). Moreover, for any | € [0, 1] we have:
MGy vy = O(RISIEY), (3.34)

Proof. The proof of this proposition follows exactly the arguments of [4, Proposition 5.4]. However, this
difference obtained at the rate level on h is because of the presence of a parameter h in the terms B of the
solution A;.

Proposition 3.5. Let f € H*(R?) and Aj, j > 0, be as in Propositions 3.2, 3.3. Then for any N € N, the
function u®; = Z;V:O hi A; f satisfies:
Ce )1 L
hdsufe = Lo(y, hDy)u hZh’“ o ”VCTQ Li(y.hDy)ul = NP RY S, inR? x (e, +00),
+
Poul = f, on R? x {e},
(3.35)

with

-1 = - vPcz)kl ~ N : e 7
RN = /R (Zh’“m&imz@gm 9,Ax) zasLoﬁyAN)vef(f)ds,
k=1 2
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a bounded operator from H*(R?) into Hs+3 (R? x (g, +00)) satisfying for any | € [0, %]
IRN Iy o= = ORI, (3.36)

Proof. By construction of the sequence (4;);eo,...,n—1} as in (3.10), we have the system (3.35) with R% =
OP}L(TKr(" -, 7)), such that

R s ST .

(y 57 Z (h LlAN —Zang 8yAN) —’LagLo &,AN (yJIf,T).
= AV

As in the proof of Proposition 3.3, L1 Ap has the form (3.17), and agil - 0yAn and O¢ Ly - 0, AN have the form

(3.18). Then, 7‘1'(, has the form (3.19) (with j = ). Therefore, as in the proof of Proposition 3.4, we obtain the

estimate (3.36). [l

Proposition 3.6. Let us consider the Poincaré-Steklov operator A" introduced at the beginning of Section 3. For
h = ¢ € (0,1] and for all N € N, there is a h-pseudodifferential operator of order 0, A?V such that for h
sufficiently small, we have the following estimate:

H.Ah—.Ah

NHH1/2(2€)—>HT’(Z€)

= O(h2l+%), foranyl € |0, (3.37)

o
Proof. The proof of this proposition follows the same argument of [4, Theorem 5.1]. That is a consequence of

the above Proposition 3.4 and 3.5, combined with the regularity estimates from Theorem 2.1-(iii). More precisely,
let (Ug, V5, ¢°) a chart of an atlas A® of X¢, and 91,92 € C§°(Ug). Let also h° € P_H'Y2(%¢) be such
that ¢ := (o7 1)*[¥2hf] € HY2(V)*, which can be extended by 0 to a function of H'/2(R?)*. Then, for

e =h =r"'and N € N, the previous construction provides a function u% € H'(R? x (g,+0o0))* which

verifies the following system

(D¢ — 2)uly = hWNHIRE fe, in R? x (g, +00),

Pts-uly = f2, on R? x {},
where u?;, R% are defined in Proposition 3.5. Moreover, from the latter, we know that R%, € HV+L(R? x
(¢,+00)) with norm in H'~!, I € [0, 1], bounded by O(h!*2). Consequently, v}y := ¢:ul, defined on V5
satisfies

(D = 2)uiy = BN o) (R f7),  inVg,

P_tsevl = hoh, on Ug.
Recall the definition of the lifting operator £, given in Definition 2.2. We have for h® € P_H'Y/2(%%)%,
EE[poh®] € HY(UF)™. Since P_tx-vly = P_ts:ES[1hoh®] = 1hoh, it follows that

= Ewah] = WD (k) = )7 (o) (R (02 1) [02h7]).

Thanks to the estimation of [4, Theorem 3.2-(i)], and also by continuing the steps of the proof of Theorem 5.1 in
[4], we obtain that A% € h Op"S®(X°) and the estimate (3.37) holds for any [ € [0, 1]. O

At the end of this section, let’s give some pseudodifferential properties of the Poincaré-Steklov operators, o7,
and <77, introduced in Definition 2.2, in order to use it in Section 4.

Remark 3.4. We mention that the fixed Poincaré-Steklov operator <y, have been introduced and studied in details
in the paper [4, Theorem 4.1]. Moreover, it is a pseudodifferential operator of order 0, which can be considered
as a h-pseudodifferential operator, and whose semiclassical principal symbol (in local coordinate) is given by

S (€Avaz)) ,

yh ($27§):W —

forany xx € X.

For 477, , we have the following results:
Theorem 3.1. Let z € p(D,,) and xx. € ¥ and recall the definition of T from Definition 2.4. We define the
Cauchy operator €7 : L*(%°)* — L?(X%)* as the singular integral operator acting as

G l9l(z) := lim / ¢%(z — y)g(y)do(y), fordo-ae.z=xx +ev(zs) € X%, g€ L*(X9)%
PO S jw—y|>p
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Also, we consider the Poincaré-Steklov operator <75, given in Definition 2.2. Then, T. Y€ %°T. and T, ' /5 T.
are homogeneous pseudodifferential operators of order 0, and we have

1
TAET, = det(1 = eW(as)) [ g <o+ Oplho(w. €)) + Op(br (5. 2)]

—1 e _ . . (VE A V)
T e Te = det(1 — eW (2)) [s e
where Vs =V — v(v - V) is the surface gradient along 3, and — Ay, is the Laplace-Beltrami operator, with by,
bé, resp. b_1, b/_l the symbols of order 0, resp. —1.

PE 4 & Oplby (s, ) + Op(b_ (w5, 2))]

Proof. The proof follows similar arguments as in [4, Theorem 4.1]. Let f € L?(X)* and consider the operator
T 1€ 7=T. f. Using the explicit formula of <7, we have the following connection

-1
L) > T i Tof = ~PLB(B/2+ T 65T ) PE.

Now, fix a local chart (U, V, ) of ¥ and let ¢y, : ¥ — R, k = 1,2, be a C°°-smooth function with supp(¢1) N
supp(v2) = 0. For zs € 3,

(71627 () = det(1 W (as))pv. | G5 s + ev(s) — )T f(0)do ()

|zs+ev(zs)—y|>p

= det(1 — eW(zyx)) p-V-/ P (T +ev(rs) —ys — ev(ys)) f(ys)do(ys)

los—ys|>p

— det(1 - W (z5)) /V 67 (s — ys + e(v(as) — v(ys)) f(y=)do (ys).

(3.38)
Now, recall the definition of ¢, from (2.1), and observe that

frz(x - y) = /C(Jf - y) + a(a: - y)a

where
iVz2—m?2|z—y| _ iz2—m2|z—y| _ 1
kz(x—y)ze<z+m5+\/z2—m2a-x y>—|—ie —a- (v —y),
dr|z — y| |z —yl drlz — y|
)
a(z —y) = ma'(x—y)'
Using this, it follows that
" lg](z) = lim a(z —y)g(y)do(y) + | k*(z —y)g(y)do(y)
PO Sz—y[>p ze

=Alg](z) + Klg] ().

As |k*(z — y)| = O(]z — y|~!) when |z — y| — 0, using the standard layer potential techniques (see, e.g. [15,
Chap. 3, Sec. 4] and [14, Chap. 7, Sec. 11]) it is not hard to prove that the integral operator 7.~ ! K'T_ gives rise
to a pseudodifferential operator of order —1, i.e., 7'5_1]( T. € OpS—! (3). Thus, we can (formally) write

T 65T, = TP AT, mod OpS™1(%), (3.39)

which means that the operator A encodes the main contribution in the pseudodifferential character of 7.~ 167 ° 7.

For¥* >z =zx +ev(zs), y = ys + ev(ys),

(zs —ys +e(v(zs) —v(ys)))

o — ys + o) —v(v)|”

Set X = 25 — yx. Then, |z5 — ys + e(v(zs) — v(ys))| = | X +evX|. And | X + evX| 73 yields

a(rs —ys +e(v(zs) —v(ys))) = ia-

-3 _ 2\—3/2| y|—3 2y—1 (X, v X)\ —3/2
X +evX|™% = (1+2)732|X| (1+2€(1+€) W)
By a series expansion (first order), we get
3 v1-3 B _3 (X, vX)
X +evX| 73 = [X] +5( X )
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For any X € U we have X = (X, x(X)) with X € V and where the graph of x : V — R coincides with U.
With the same argument in [4, Theorem 4.1] we get that, uniformly with respect to & € (0, £¢), with &¢ sufficiently
small

1

(X, G(@) X)3/2
(X, vX)

(X, G(@x) X))o/

where G(Ty) is the metric tensor. We deduce that

o (T AT 1 f]) (w5) = 1h20plao(as, €)1 f(xs) + € 1h20p(bo(ws, £)) 1 f (w5) + oLy, (3.40)

with L a pseudodifferential operator of order —1. Thus, 7."1 AT, is a zero-order pseudodifferential operator.
Furthermore, thanks to (3.39) and (3.40) we get that 7;_1‘5,;’57; is a homogeneous pseudodifferential operator of
order 0, with principal symbol given by

X +evX| 3 = + ki (X), with [k (X)] = O(|X|~2) when | X| — 0,

X +evX| 75 (X, vX) = + (X, vX)ky(X),  with [ky(X)| = O(|X|™*) when | X| — 0,

1 \Y
T 1655 T, = det(1 — eW (2x)) ba . \/%Az +eOp(bo(zx,§)) + Op(b71(£v2,€§))}.
Consequently, thanks to the relation between %,>° and <7

e, we have that 7.71.«7¢ T is a homogeneous pseudo-
differential operators of order 0

(Vs Av(zyx)) :

Tl T = det(1— €W (am))|S - 2250 P2 42 Oplby (o, €)) + Op(b.a (w5, <6)) |

O

Corollary 3.1. The Poincaré-Steklov operator 275, is a homogeneous pseudodifferential operator of order 0, and
we have that

(Vse AN®(p(zs)))

ot = 8- LD pr 2 Op(b (o €))+ O (,26))
=-S- (Vzei\\/%gz))]gg +eOp(bh(zx,€)) + Op(b” | (zx,e8)), withe € (0,e0),

where Ve is the surface gradient along X°, —Axe is the Laplace-Beltrami operator, and b? (zx,&) has the
following form

s, = by (ples). (Voles) 1)'€). fors € (1,01

t Nt
with p(xs) = xs+ev(xys) the diffeomorphism from Definition 2.4, and (Vp(xz;)_1> = ((1 — eW(zy)) 1) =
(1—eW(xy)) _1, where W (xx) is the Weingarten matrix, symmetric, given in Definition 2.3.

Proof. The proof of this corollary is a consequence of Theorem 3.1 and the arguments of [19, Theorem
9.3]. O

4. REDUCTION TO A MIT BAG PROBLEM.

Throughout the section, we denote 2, 2 and /¢ the domains as in Figure 1 such that ¥ = 00, ¢ := 0Q%
and OU® = X U X¢, respectively, and we let N¢ be the outward pointing unit normal to 2°.. We set v the outward
unit normal to the fixed domain Q, C R3. Fix m > 0 and let M > 0. Remember our perturbed Dirac operator

% = (Dm + MBly:)p, Vo€ dom(D5,) = H'(R*)*,

where 1y is the characteristic function of /€.

Let us now recall the definition of the MIT bag operator from Section 2.2 by D?ﬁT, D?/{f@ and D%, which act
in L2(24)%, L2(92)%, and L?(U4°)* repsectively. The aim of this section is to use the properties of the Poincaré-
Steklov operators carried out in the previous sections to study the resolvent of 0%, when M is large enough.
Namely, we give a Krein-type resolvent formula of the Dirac operator D5, in terms of the resolvent of the MIT

Q° .
bag operator DizﬁT @ Dyp, and we show that the convergence of D5, toward Z;, holds in the norm resolvent
sense when M and e converge to oo and 0T, respectively. To set up Krein’s formula between the resolvent of D5,
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and the resolvent of Df\zﬁT S D?A}T, we will fix v the only normal acting in our domain. Throughout this section,
the projections associated with the surface 3¢ (i.e., P (x), for x € X¢) verify the properties of Remark 1.2.

. Notations. Let z € p(DMIT) N ,O(ZD6 ). We recall QE = Q4 U Q. We define the resolvents associated
with the operators D5, DMIT, and DMIT = DMIT ® DMIT, respectlvely, by
o R5,(2):= (D5, —2) 1 LA(R3)* —» HY(R3)™
° RMIT( ) = (DIL\{/IEIT 2)7h L2UF)* — dom(Dffp)-
* RMIT (z) == (D MIT —2)7 s LAyt @ L2(02)! — dom(Dyjly) @ dom(Dls\Z/:fT) C LA(Qy)?

L2(Qa )4
can be read as the following matrix:
o R&H?‘m 0 o, Q° a, Q°
Ryir = 05 =ra:_eq, Ryprro, +rog_eos Ryppros = (Byirras, Ryrres ),
0 Ryprras
4.1

Q4 Q2 Q4 Q. .
where Ryg1(2), Ryr(2) are the resolvents of Dyyir, Dy, respectively, and ros , eqs  are defined below.

We define ro:  and eq: _ as the restriction operator in €2
outside of Q% _, respectively, by

and its adjoint operator, i.e., the extension by 0

rog L2(R3)* — L2Qu)*@ L2(Q°)*
W Tos W= (ro,w®rq: w) = (ro, ,ros )w
4.2)
eg: 1 LA(Q) @ L2(Q4)' — LA(R®)*
v=(v%,v1) = eqs (V5,v4):=eq: V" +eq, vy

Let us recall for z € p(D,,), the lifting operators associated with boundary value problems (2.4), (2.5) and (2.6)
are defined respectively, by

En(2): PLHY?(2)* — HY Q)
g+ = Em(2)gy = @5 (AL )7 P,

Ee(2): PLHY?(Z5)* — HY(Q)*
£ =

g Eren(z)gg (Aj-sm) 1P+7
Enina(2) : PLHY2(S) @ PLH'Y(29)* — H'(U°)*,
with & 3 (2)(hy, h®) = (1)12':1+M(Ai,m+M)71P+h+ + 00 (AT )T Lp_he.
In addition, we also recall the Poincaré-Steklov operators from Definition 2.2
Ay (2) : PLHY2(Z) = P HY?(D)*
9+ = m(2)gy = —PiB(AL ) Pogy,
e (2): Py HY?(29)r —  P_HY?(x%e)*
9= = dn(2)g" = —P_B(ATL,) T Pyt
A v (2): PyHY2(S) @ PoHY2(25) - P_HY?(S)* @ PLHY?(X5)*,  with
Afn+M(h+> hE) = ( - P—B(Aj—,m+M)71P+h+7 7P+5(Aj-€m+M) IP—hE)'
4.2. The Krein resolvent formula of R5,. Let f € L?*(R3)* and set

ut =ryRy(2)f and v=ros Ry (2)f:= (" @vy).
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Then u® and v satisfy the following system

(Dm — 2)vye = f  inQy,

(D —2z)v° =f in°,
(Dyort — 2 = inlde,
Pitsvy = Pitsu® on X,

P:T:tEEUE = P:EFtEEUE on X°.
Using Lemma 2.1, it is straightforward to check that the following resolvent formulas hold:
Q° — z z — —
Ryir(2) =rqs (D — 2) leqe — @57 (ALS,) Mg (D — 2) " leqs (4.3)

Q° _ _ _
Ryt (2) = ros (Dm — 2) 16937 —ras_eq, P, (AL ) Y5 (D — 2) 17"Q+€QE+7

—TQs_€q: (I)f,’fi (Aifm)_ltzs (Dm — Z)_l’I“Qi €Qs

R{p(2) = 14e (D + MB — 2) " leys — q’fﬁiM(AfquM)fltﬁw (D + MB — 2) " eye.

In the whole following sections, and for simplicity, we’ll use the following notation:

(o, 0) :— diag(e, ) — <5 0> .

Now, we set I'y := Pity and I'S := Pyitse. Since E,,(2), Ef, (2) and &, ;,(2) gives the unique solution to
the boundary value problem (2.4), (2.5) and (2.6), respectively, and the fact

Q £
I_Ryir(2)ra, f =0, Ty RYnmr(2)ru-f =0,
Q° E
IS Rypr(2)res f =0, T R{yr(z)ru-f =0,
Then, if we let
o=T1rq Ry(2), ¢ =T%rq: Ry (2),
Y =T_ryRy(2), ¥ =T"ry-R5(2),
it is easy to check that
Q
vy = Ryr(2)ra, f+ En(2)Y,
vF = Ry (2)rae £+ B (207, (4.4)
u® = R (2)rus f + €5y (2) (0, ).

Hence, to get an explicit formula for R5,(z) it remains to find the unknowns (¢, ¢°, %, 1. ). To do this, from (4.4)
we get

¢ =Tyv; =T Rytpra, f+ Don(2)0,
o =T 0% =T° Roiro. f + 5 (2)0°,
¥ =T_u® =T_R{p(2)rus f + T4y 0 (2) (0, 9%),
¥ =T5u" =TS Rifim (2)rus [ +T+E5 0 (2) (0, 9%).
Using the restriction map 7, and the extension map e, given in (4.2), we get
v=eqs (RﬁYT(z), R&%T(Z))Tgiif + e (Em(z)P,, Efn(z)P+) (P, T%)ru=R3,(2) f,
W = R (2)rue |+ €5y ar(2)(Pey Po)(Dara, TS ras ) Ry (2) .

Thus, we obtain

(4.5)

QE =
Ry (2) = eq, ng\zﬁTTQ+ +eqs Ryppras + eys R (2)rus
+ <€Qs+ (Em(z)P,, E;(z)P+) (T, T)rye + ew=Enp s (2) (F+TQ+,FETQE))R§V[(2)

Q € 5 € pe
=eq: Rygr(2)rog + e Rifir (2)1us + B (2)T° Ry (2),
4.6)
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05
with Ry ;77 (2) asin (4.1).

Here I'® and E¥,(#) are defined as follows:
Te: Hl(Q+)4 @ Hl(QE_)4 @ Hl(us)4 N H1/2(2)4 e H1/2(25)4 @ H1/2(Z)4 e H1/2(25)4

(ra,,rae, tu=) +— (Tyra, Teroe Torys TSry:)t,

and E5/(2) = eqs Bt (2)+eu=&r,a(2)(Py, Po), with Bt (2) =ras_eq, Em(2)P-+roq eq- B, (2)Py
can be read as the following matrix:

Eor PLHYA(S) @ PLHV2(R) - HY QL) @ HY(Q2)
. _ (E,P_ 0 (0 4.7
(d’a 7/15) = (Emp—w7 Emp+¢s) = < 0 E;PjL) (w€> .

Now, applying I'® to the identity (4.6), it yields

P Rigre(2) = (1= (9 (2) P 5, (2)Py) = Ay g (2)(Py, P) JTER3 (2) 1= T3, (TR (2), - (48)
with Ry (2) := eqs Rﬁi{f (2) + ey R¥r(2). Similarly, we mention that [.<7,,(2), <F, ()] means the sum of
both terms o7, <7, and can be read as the following matrix

A = (S, )« PLHY2(S) @ Py HY2(S2)E 5 Py HY2(S)t @ HY?2(59)t
. (dnP. 0 "
wev) = (e = (70 0 ) (1)

4.9)
Using the formula of A, ;. the term (I'_,T'9)&7 5, (2) is identified with (P_AS, ./, P A5, /) =
(P, Py) AT (2) = (P, 0) AT, (2) + (0, PL)AT Ly (2).
Now, applying also (]I + mffi* (2) + (P-, P+)Afn+M(z)) to the identity (4.8) we get
PR3y (2) = Zag(2) (T+ 9 (2) + (P P) Ay (2) )T R (2),
with 5, (2) : HY/2(2)* @ H'Y/2(2%)* — HY2(2)* @ H'/?(%°)* the following quantity
—1
— o Qs
=50) = (T = o P PO~ At (P PO ()) L @0
From which it follows that,
i (2) = Bipr(2) + By (2)[T5 (2)] 7' T Ry (2), (4.11)
with
_ - QL _
05,171 (2) = B (2) (T ™ (2) + (P, P) A5 ar(2))-
Remark 4.1. The identity (4.8) has the following matrix form
ro, RS, L't Ry 0 0 A I ro, RS,
T ros Ry | _ | 12 Rugpros N 0 0 0 P, | [Torg: Ry,
I'_ry=R5, I_RU oy ot (P Po) Ay (Pyy Po) 0 0 I'_ry=RS,
D5 ry- Ry FiRZI(’;ITrua v (P, P-) v (P, P-) 0 0 IS rus= Ry
Moreover, if we note by TS _ = (Uyrq, T rq- ) and T | = (T _rye TS ry<)". Then, using the quantities of

(4.5), we remark that the Krein resolvent formula 4.11 can be also written in the following matrix

€ QL Q% e, —+ € I 5 Q5 _
<r@1_RM> _ MITT5 | En'" 2y 0 . Ar i élg I'S _Ryar rQs 7
- R& U € =e T +- £ U e
Tu= Ry R rrue 0 E¢ By I, T, R{rrue

QE
where <y, is the matrix in (4.9) and Ej’fﬁ are given in the following corollary.
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Corollary 4.1. Consider the operator _.M( ) given in (4.10). Then, there is My > 0 such that for every M > M,

h =¢e = 1/M and for all z € p(DMIT) N p(D9,), the operator E5,(z) is everywhere defined and uniformly
bounded with respect to M. Moreover, the operators 25,7~ (2) and 23,  (2) defined by

2, (2)  PLHA(D) @ P_HY (X)) — P H3(D)*@ P_H(X°)%,

E?\["L(z) P HS(X)* @ PLH(X5)r — P_HS(XD)* @ PyH(X9)4,
which have the following formula
et Q° . -1
E5 (@) = (= ™ ()P P A () (P P))

=55t (2) = (1= (P, P () (P, POt (2))

are bounded for any s € R, and it holds that

et
=3 (= N pLa-12(2) 0P H-1/2(22) 15 PLH-1/2(S)t@Ps H-1/2(0)t S 1 (4.12)

uniformly with respect to M > M.
Moreover, the Poincaré-Steklov A3, |\, satisfies the following estimate

AL mll by 12 (syi@ P HI2 (o) P H-1/2(5) @ P, H-1/2(5e )3 S M~ (4.13)

Proof. Set x = m + M and h = x~'. The proof of this corollary follows a similar argument as in [4,

Proposition 6.1]. It is based on the pseudodifferential properties of the Poincaré-Steklov operators .o7% and A%..

Since o7, (resp. <75) are a pseudodifferential operators of order 0, see Remark 3.4 (resp. Corollary 3.1), we can
consider it as an h-pseudodifferential operator of order 0 whose principal symbol is given by:

Pty (T3, §) = S (Env(zs))

P_, ey,
‘fAy(xg)‘ e

Phe (1,8) = —(1 - aW(xg))_l 5 (€ /\ﬁp‘l(w))) Py, Y >z =p(zs) = 25 + ev(zy),
(1= W (2s)) |]g Av(p=1(z))

where S is the spin angular momentum given in Lemma 3.1, ¢ € R? can be identify with £ = (£;,&,0)F € R3, p
is the diffeomorphism from Remark 1.2, and for z = (&) stands for v¥(Z). On the other hand, Proposition 3. 6
follows that A2, is h-pseudodifferential operator of order 0 has the following principal symbol

. V 7]‘ J—
f@h,Ai(aj75) = (1 - 5W(sz))_1 > (f s (p (x))) 2 < 0P+ P9> ’
\/((1 — EW(acE))_lf A l/(p_l(x))> +1+1
Consequently, the symbol calculus yields for all h < hq that
(ﬂs — S (2)(P-, Py)AL(Z) = AL(2) (P, P ) (z>>

is a k~1-pseudodifferential operator of order 0.

Now, using the principal symbols of <7,,, 45, the principal symbol of mﬁf *~ can be written as the following:

. e@hﬂgfm (mzag) 0
,@h 05 (z5,8) = ( 0 gzh,gi;; (p(l’z),f))

) “¥m

_ S (EAv(zy)) (1- €W(l‘z))
v(x 0
|§/\ ( E)| |(1*€W(I’Z)) |

Sy

Using Lemma 3.1, we obtain

c@h 5 (r5,8) Phas (x,§) =

s “¥m

B (1 —EW(IED_l’g/\V(‘TZ)’ (1 —EW(mz))_l

\/((1 —eW(zs)) €A V(p_l(x))>2 +1+1 (1 eW(as)) |
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Then, it yields

ls =& as_ (w5,8) Ph,as (2,€) — Ph,a: ($7§)<@h S5 (5,8 =

y ¥m s “¥m

(1- EW(xg))_l|§ Av(zs)|

2 0
\/((1 — EW(‘Tz))ilf A V(p*l(x))) +1+1 ’(1 - €W($Z))_1|

Is +

Thus, =5, is a zero-order pseudoddiferential operator.

Thanks to the following relationship: Ei\f@ (2) = (Py, P£)=9,(2) (P, Px), it yields the same properties for

Ef\}[ijF(z) and therefore (4.12) is established.

Regarding the estimate of A%, exploits also the Calder6n-Vaillancourt theorem which shows that for any oper-
ator in h Op”S°(9U?) is uniformly bounded by O(h), with respect to h = k=1 € (0, 1), from H'/2(dU%)* into
HY2(0U)* — H='/2(0U%)*, see (3.2). Thus,

S (Vous Av(p~'(@)))
\V4 _/4372A8u5 + I + I
uniformly with respect to x big enough and € € (0,&0). Then we conclude the proof of the estimate by using

-1
that (\/_K}_QA(’)ME +1I+ ]I) is uniformly bounded from H'/2(0U%)* into itself and (Vo= A v(p~'(x))) is
uniformly bounded from H'/2(0U)* into H~1/2(aU*)*.

45 - (P, P)| Sk,
H1/2(8M5)4—)H71/2(6UE)4

Remark 4.2. Let E,?}’ Sfrom (4.7). Thanks to [4, Proposition 4.1 (ii)], we have that

. " - * t Z/{ETE
(B () =B ) Byin (@) and (Ehan(2) =B @%ED

e

Q5
forany z € p(Dyi71) N p(D5;)-

5. RESOLVENT CONVERGENCE TO THE DIRAC OPERATOR WITH LORENTZ SCALAR.

In this section, we gather the necessary elements to prove the main result of this work. The components of the
proof for the main theorem (i.e., Theorem 1.1) are dedicated to examining the convergence of the terms present in
the resolvent formula (4.6). It is important to note that this resolvent formula includes certain terms independent
of M and ¢, namely E,,, %, and R?ﬁTm .» which remain fixed and act within 2. Consequently, our focus
shifts to examining the convergence of terms dependent on ¢ but independent of M, namely R&}TTQL and B,
(see, Proposition 1.1). Subsequently, we will proceed to estimate the remaining terms in relation to M and € (see,
Proposition 1.2).

Proposition 5.1. Let ¢y > 0 be small enough, and let z € C\R. We set Q_ := R3\ Q0 the exterior fixed domain
and by ¥ = 0)_ = 09, its boundary. We denote by Rﬁ}f the resolvent of the fixed MIT bag operator, which we
denote by Dlg\l,[fT, acts in Q_. Then, for any € € (0,e¢) the following holds:

= 0(e). (5.1)

Qc Q_
eqs R 2)rge —eq R z TQ,‘
[eos Riiin(Iras —eo Rin(ara ||, oo

Proof. The Krein formula for the resolvent Rﬁ]T (from equality (4.3) )

eqs Rﬁ}T(z)rgi =(Dp —2)"t —eqe @f,;ff(Aifm)_ltge (D — 2)71,

e Rygr(2)ra. = (D —2) ™' —eq_ @, (A%, ) tn(Dyp —2) 7
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yield that
< Q-

BQiRMIT(Z)TQi o BQ—RMIT(Z)TQ—’ L2(R3)4 5 [2(R3)4

z z -1 —1 Z, z, —1 —1
= Heﬂf(bm,f(A+,m) tE(Dm - Z) —€qQs (I)mi:* (A+,Em> txe (Dm - Z) ’ L2(R3)4— [2(R3)4

2 P —1 Z,€ z,e \—1 _ -1
= Heﬂfq)m,—(A-hm) ty —eas @5 (AYn) tstHl(R3)4—>L2(R3)“ (Do = 2) ’L2(R3)4—>H1(R3)4

<

z z -1 - . Z,€ zZ,E —1 R
ca Op (A% )" e — ez Ol (AT tZHHl(R?’)‘ML?(RS)“

(5.2)
since (D,,, — z) ! is bounded from L?(R3)* into H!(R?)%.

To obtain a rigorous estimate of the right-hand side of (5.2), we’ll use the unitary transformation 7. from Defini-

tion 2.4 and the explicit formula for A%, (resp. AT5). Let f,g € L?(R®)*. Since ts (D, — 2z)~! = (®7,)*

(resp. tse (D — 2)71 = (®5°)* ) by duality and interpolation arguments, we get that

‘<[652_‘I’fn,— (5/2 + SOﬂfn) _1t2 —eas (I)frf— (5/2 + Cgﬁ{&) _1t25]f’ g>L2(R3)4,L2(R3)4

(eo0z (824 62) tsia) o = (e @3 (3/24637) b fug)

- ’<(B/2+Cgvi)_ltzf,tz(l)m —2)717’979> _

L2 ()4, L2 (D)4

L2(R3)4, L2 (R3)4

<<ﬂ/2 n %;75)717;7;17526 Fotse (Do — 2) " rge g>

(o) =

L2(2)4, L2 (%)

L2(25)47L2(Z€)4

((8/2+ TT 6 TT) T e ot (D — 2)rac g)

= ‘<(ﬁ/2+%;)_1tzf,tz(Dm —Z)_lmfg> -

L2(Z)*, L2 (%)*

L2 (25)4,[/2(25)4

(824 TG T) T e £. T e (Do — ) )

L2(2)4,L2(E)4

-1
By adding and subtracting the term < (6/2 + 7:1‘5,?;57'5) T e fits (D — z)*lm_g>

in the
L2()4,[2(2)4
last quantity, we obtain that
—1 .. —1
< o @5, (5/2 + %;L) fz — e O (ﬁ/Q + Cgf”) te] f’g>L2(R3>4 L2(R3)t
—1 —1
< H [(B/2+%5) tn— (B/2+ T\ ) T Mse|f t5(Dm — 2)"'rq_g
L2(E)4 L2(E)4
—1
+ ‘ (ﬁ/? + 7;_1%;;57;) T e f {tz(Dm —2) " rq. — T s (D) — z)_lrgi]g
L2 (%) L2(T)4

=:711 +Ta.

Now, let €% and 7.~ 147 T. from (2.2) and (3.38) respectively. Then, for a fixed p, p > 0 such that p”
min{p, pl }, the regularity of ¥ and ¢Z,, and a combination of the mean value theorem give

|¢>fn(:cg —ys +e(v(zyg) — V(yg))) — ¢, (xy — yg)| <eld¢:,| < Ce, withC only depending on z.
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We set f-(ys) := det(1 — ev(zx)) f(ys). On one hand, using the Cauchy-Schwarz inequality, we obtain that
Cifws) = (TV65° T ) (ws)|

S /
|zs—ys|>p"

< [ (0 os = s+ cloos) = viu2)) = G5 (o = 1)) ) [dotas)

On the other hand, Proposition 2.1 gives us
det(1 —eW(zx)) =1 —ei(zs) — eXe(zs) + %A1 (25) A2 (25),

where A1 (2yx), A2(xyx) are the eigenvalues of the Weingarten map W (zx). Then, we get

07 (2 —ys +e(w(zs) — v(ye))) flys) — ¢ (s — ys) f=(y=)|do(ys)

4 / 162, (@ — yx) (e (ys) — £ (=) |do(ys).
>

|fe(ys) — flys)] = |det(1 —eW(ys)) — L|[f(y2)| < llfllr2(z)s-
‘We conclude that

| (€5 — T '65°T2) =0(e). (5.3)

| |L2(Z)4—>L2(2)4

Now, we are going to establish the estimate r;. First, we have that t5(D,,, — z) " 'rq_ is bounded from L?(R?)*
into L2(X)*. On the other hand, using triangular inequality, we get that

e A e R S

L*(z)*

<H[(§+ﬁ) - (ﬁ+7' T ]tzf

L2(%)4

+ H(g TG [ s —ts]f <t g

L2 (2)4

To prove the estimate q1, we let f € L?*(X)* and we set h = <B + ¢ ) ts. f bounded from L?(X)? into itself.

Then, the Cauchy-Schwarz inequality and the following statement

—1 -1 -1 -1
(g + 7:%;;87;) — (g + %,;) = (§ + %;;8) (€ —T'65°T7) (ﬁ + %,;) (5.4)

2
yields that
5 -1
L2(X)*
-1
) (5 T ET) | 65~ T 65T Al
L2(D)4—L2(B)*
<|[(€5 =TT | sy
|| (%;L o lcgz ET) ||L2(Z)4—)L2(Z)4Hh||L2(E)4 5 || (%;1 — 7'8*1%1%57—5) ||L2(2)4—>L2(Z)4

since 6% and T, '6¢%°7T. are bounded from L?(¥)* into itself. Thanks to the estimate (5.3), we get that
a1 = O(e).

To prove the estimate g2, we have for 2 € X, the following estimate holds in L?(¥)*

ts (D, — z)*lm_ - 7:17525 (D — z)*lmi =0(e). (5.5)

L2(R3)4— [2(X)4

Next, based on (3.38), we immediately get that 7.~ %% 7 is uniformly bounded from L?(%)* into itself.
Thus, together with (5.3), (5.5), we deduce that 5 has a convergence rate of O(g).
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Now, for the same reasons as those used to prove the estimate gs, subsequently, the fact that we have we im-

—1 -1
mediately deduce that (6 /2+ 7;_1‘5,';’57;) = (ﬁ /2 + ‘Kﬁl) + O(e) (see the estimate ¢; for more details),
we obtain the estimate 5.

Thus, we conclude that the statement (5.1) is valid in L?(R?)%. The proof of Proposition 5.1 is complete. [

Lemma 5.1. If the Lorentz scalar is ;n = 2 (confinement case). We can identify the domain (2.3) by the following
form

dom(Z1) = {(¢p4,9-) € H'(Q)' @ H(Q)*, g€ H/*(2)*, Py = P_p; =0on ¥},
and then, 9y, = D?ET &) DS{}T, where D?HT resp. D&}T is introduced in Section 2.2 resp. Proposition 5.1.
Proof. Using Plemelj-Sokhotski jump formula from Lemma 2.1-(i), and that ¢+ = txu + CZ ,,[g], then we
get Pryp = —BP_P, =0and P_p, = —3P, P_ = 0. Moreover, as Py + P_p, =tsu+ A7, [g], we
have that tsu = —A% ,,[g]. O
Proof of Proposition 1.1. For z € p(Zy,), we have the following estimate

Q° Q
Hegi RMIT(Z)TQE— + €Q+RMJIFT(Z)TQ+ - RL(Z)‘ L2(R3)4

Q° Q Q_ Q_
< ||eqs Rypr(2)re= + €Q+RMYT(Z)TQ+ +eq_ Rygr(2)ra_ —ea_ Rygp(2)ra_ — RL(Z)'

L2(R3)4

Qc Q_ Q Q_
< Heﬂi Ry (2)ras — eQ—RMIT<2)T97‘ + HeQJrRMJfT(Z)TQJr +ea Rypr(2)ra. — RL(Z)‘

L2(R3)4 L2(R3)4

Then, Proposition 5.1 and Lemma 5.1 yield the statement (1.4). (]
Remark 5.1. Forall f € L?(R3)*, g € P, L*(X)* the following convergence holds

HeQi Ei@(z)[ﬁ] - leE;z(Z) | ’L2(Z)4—>L2(R3)4 = O(E)v (5.6)

where E,. is the lifting operator associated with the boundary value problem (D,, — z)U = 0 in Q_ with
PLU=0o0n%.

Proof. Now, let me show la convergence considered in (5.6). To this end, let g := T.g € P+L2(25)4, then we
have

[(eas B2, (D Tegl, £) 2o — (o B9, £) raesys
= ‘ 597( TS RMEET( Jras — Iy Ryyp(2)ra_ )f>L2(2)4

(T F_,’_T'QE eqs Ri/HT(z)TQi - F+7‘Q_ eq R;}IET(E)TQ_)f‘

< lgllz2(z)s

L2(2)4

Q°
S H( lrimf eq: Ryp(2)ras — T 1F+7’QE €a_ RMIT( Zra_ + T 1F+TQE eq_ RMIT( Z)ra_

—I'yirq_eq_ RMIT( )T’Q f‘ L2y

ST Tras

Q° Q.
L2(x)4 eQE_‘RMIT( )TQ5 f_engMIT(Z)rQ*f’ L2(R3)4

T, T ro: —F+m,’ L2 z)4|| Q- RMITTQ )f||L2(R3)4'

Since I'¢. is bounded form L?(Q°)* to L?(X)* for ¢ small enough, then 7. 'T'¢ rq- is bounded in L?(X)*.

Thus, together with the boundedness of eq, Rﬁ}r in L? (IRS)4 and the convergence established in Proposition 1.1,
we get

(eas E5,(2)[Tegl, flrzms)s — (ea_ B (2)g, f)r2 (o) forall f e L*(R%)™.

Since this is true for all g € L?(X)*, by duality arguments it follows that
|leas B5, (2)[Te] — ea_ Ep,(2)

~ )

= O(e).

| ’L2(Z)4—>L2(R3)4
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Lemma 5.2. Let K C C be a compact set. Then, there exists Mo > 0 such that for all M > My, for e € (0, &),
K C p(D¥r(m + M)), and for z € K the following estimates hold:

€ 1
u 2 (3y4
e BrGIrue ]| o = 7 W1l ¥ fe (R,

£ € ].
HF—+R21<I/HT(Z)”"M€JC' L2 (oue) S Vi Sl 2 (rsya v fe (R,

£ € ]. ‘
[P Bifir(me 1| S = Wl gscaoys v f e PRY)Y,

H—l/z(aus)zk

1
’eufgrarﬂrM(Z)(w?7—€§D)HL2(RS)4 g W ||w||L2(E)4 ||<)0HL2(§])4 ) v (7/%7—6%0) € P+L2(Z)4 @ P*L2(26)47

Hez,{sgfn+M( )(’(/}77;:90 HLZ(RS 4~ ||¢HH1/2(2 4 ||@HH1/2(2)
(1/}7 6()0) c P+H1/2(Z)4 s P7H1/2(25)4.

Proof. Using the same arguments as in the proof of [4, Lemma 6.1], we can show the above estimates with
respect to M. First, I want to show the claimed estimates for ey R p(2)rye and T RY 1+ (2)7y- . For this, fix a
compact set K C C, and note that for z € K and M; > sup,c g {|Re(z)| — m} it holds that K C p(Dymyar, )s
and hence K C p(DXp) forall M > M;. Let f € L2(R3)*. We have that

llews Riirr (2)rue fl 2 sys = || RSGre (2)reee fll p2 e

Now, for 1y f € L?(U*)* and ¢ € dom(D¥;1), then a straightforward application of the Green’s formula yields
that

| DAl aeys =l D)l aqeieys + (0 MYl ey + (m o+ M) || P Lo

2(ous=)4
with PY" tgye = P_ts, + P, ts-. Using this and the Cauchy-Schwarz inequality we obtain that
H(DMIT )SOHLZ (U=)4 —||DM1T<P||2L2(ME)4 + |Z|2H<PH%2(L{E)4 - 2Re( )<D11<{/IEIT90790>L2(Z/{5)4
>||DM1T<P||2L2(ME)4 + |Z|2H<PH%2(L{E)4 - ||DMIT<P||2L2(L{E)4 - Q\RG(Z)PHSO”%%ME)‘*
(m+ M)? 2 2 2
> (2 s tna) = R s + T || P2 e[ -

Therefore, taking R r(2)rysf = ¢ and M > My > sup,c{1/|Re(2)[2 — [Im(2)|2 — m} we obtain the
inequality

~

N 1 3 £ g
R () ] < Ll paguoys» with 9L = S U,

+RM1T( Ty f‘

L2(u5)4 L2 (91/15)4

Thus

HeMERMIT( 2)rys f‘ FE—+RZ1<{/IEIT(Z)7"MEJC’

1
oneys S 77 Wl

Since I'® | := (I'_,T%) is bounded from L?(14¢)* into H~1/2(9U*)* for e € (0,e0) with ¢ sufficiently small,
it follows from the above inequality that

1
L2(R3)4 N M ||f||L2(]R3)4 s and ‘

R ()|

Z/{E
‘ ‘FE_+RMIT(2)TZ/IEf‘ ‘H*1/2(8L{E)4 5 HFE_+ ’ ‘LQ(M5)4~>H’1/2(8M5)4 LZ(Z/{E)‘l
1
< L fllaqaoye
for any f € L?(R®)%, which gives the last inequality.

Let us now turn to the proof of the claimed estimates for e=E5, | /(). Let f, ¢ belong to L?(R?)* and L?(X)*,
respectively, and consider the transformation operator 7 defined in (2.4). For ¢ € L?(X)*, we set p. =
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T-¢ € L*(X%). We mention that 3(I'_, 'S ) R{; (%) is the adjoint of the operator &F,, ,(z) : PyL?*(2)*
P_IL2(x%)* — L*(U7)*. Using this and the estimate fulfilled by (I'_,T'5 ) R¥1.(%)ry- we obtain that

’(f, eu557i1+M(z)(w5908 LQ(JRB)4 ‘< 1FE RMIT( Jru. f, B, %0)>L2(2)4

H (0., 7175 R (2

|WJHL2 ()4 H80||L2(2 4

2(x)4
1
H’(/}HL?(Z 4 H‘P”Lz (2)4 HT HL2 (dU=)1 - L2 (D)4 ( Z)Tus f‘ L2 (0u<)
S \/7M ||f||L2(]R3)4 |W||L2(2)4 H‘PHH(E)4
So, we get
1
‘ ‘6U55§z+kf(z)<w> 7;()0)‘ |L2(R3)4 S \/M ||1/}HL2(Z)4 ||@||L2(E)4 :

Similarly, we established the last inequality of the lemma andthis finishes the proof of the lemma. U

The last ingredient to prove Theorem 1.1 is to show that the second term in the ride hand side of the resolvent
formula (4.11) converges to zero when M converges to oo, (i.e., h =& = M~ — 0).

Proof of Proposition 1.2. Recall the following notations: DI?/ET’ = D?A{T@Dﬁﬁ and R?ﬁ{ = R?AJ{T @Rﬁﬁ,

with Q5 = Q, UQS. Let z € p(D5,) N p(Df\ﬁf) and f € L?(R®)%. From the resolvent formula (4.11) and
Remark 4.1, together give us the following

[1R5:(2) = eas_ Rtz (2070 || ooy pagasys < |lews Birn (2)rues ] o oy
+ || Bt (5 ()il Byiir (eS| o s
+ | B (F5 P B e ]| s e
1€ (Z57 (TS Rugir (2o F| e ey

+ "5fn+M(z>E§\74+_(z)ﬂm+7ri+RMIT(z TMEfHLz(u5)4
= J1+J2+J3+J4+J5.

We start with J;. From the second item of Lemma 5.2, we get that J; < M —1, Now, thanks to the uniform bound

(with respect to M) of =5 i¢ , see Corollary 4.1, J3, J3, Jy, J5 become as follows
_ QE
J2 5 HEm+ (Z)HL2(957 HJZ{ +MHH 1/2(0)4qpH-1/2 EE)4HFE MYT( TQfHHl/2(E)4@H1/2(EE)47
O
J3 /S HEm+ z }|H—1/2(2)4@1{—1/2(25)4*}L2(Q6 HF—+RMIT( TUEf||H—1/2(E)4@H—1/2(25)47

QF _
J4 ,S ’|5§1+M(z)}|H1/2(2)4@H1/2(Es)4_>L2(us)4||Pi7RMJIrT (Z)Tﬁf‘ |H1/2(E)4@H1/2(25)4’

JS S/ ’|5§1+M(2)}|L2(u5)4||dm+7HL2(2)4@L2(25)4HF RMIT( rUEf||L2(Z)4@L2(EE)4~

Notice that the terms Eﬁi‘, JZfTS i‘, and Fi_R&iﬁq (%) are bounded operators for all ¢ € (0,¢q), everywhere
defined and do not depend on M. Now, thanks to Lemma 5.2, T | R¥1.(2)ry= and ey-EZ, ., () hold the
following estimate

‘Fa RMIT Tusf‘

)4andHF RMIT TuefH <7||f||L2]R3)4’

ey S 77 Mz

H-1/2(5U=)*
||€u65§L+M(Z)(1/%7280)||L2(R3)4 < f ||7/)HL2 (2)4 ||<P||L2(2)4 )
|lev=E5nr (2) (W, Te) || Lo sy S IIwIIHuz(z)4 el gz sys -

Thus, from the above estimates, we deduce that
Jr §M71‘|f||L2(R3)4, Vk e {3,4,5}.
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Moreover, the following lower bound of A$, s see Corollary (4.13),

5 —1
Al 2 myrem 2oy s m-1/2(syi@m-1/2(me)s S M7,

yields that Jo < M~ f|| L2(rz)s. Thus, we obtain the estimate

Q° _
HR;:\/I(Z) _eQi_RMYT (z)rﬂi_HLQ(RS)4_>L2(]R3)4 S M 1||f||L2(]R3)4-
And this achieves the proof of the proposition. U

Thus, Theorem 1.1 is then obtained by a simple combination of Propositions 1.1, 1.2.
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APPENDIX A.

For a better understanding of the construction of the approximation of the solutions A;(y, &, T) and the order
of the coefficients B; x(y, &) as well as the proof of Proposition 3.3, an explicit calculation is presented in this
appendix, which aims to obtain an exact form of the solutions A;(y,&,7) for j =1, 2.

For j = 1, we define A;(y, £, 7) inductively by

haTAl(ya§7T) = Lo(yvg)Al(:%faT) + (Ll(yvg) + (a ' I;LPC?))LO(yv{) - ZafLO(y7£) ' 8@/)140(%5, T)7

P+A1(y, ga 5) = Oa
(A1)
we have 0¢Lo(y, &) - 0y = i~ 0¥ (- Oy) = ao(y)(a - 9y), with ag(y) = icv - 0¥. The solution of the differential
system (A.1) is

Ay, &,7) = e BT 4, (y, €, ¢)
+eh T Eor / Tt Lo)s (L1 + (@ - 7%es) Lo = D Loy, €) - 9y ) Aoy, €, 7)ds
e
=" Lo 4y (y, €, ¢)
4 h LT /T efh_lLosao(y)< —z4c-&—icsly —ia- 3@,)/10(%5,7)015
c

= Il + 127

where I; and I, have the following quantity:

I = (e("'*f)@f(yvf)ni + 6(776)97(%5)H+> Ay(y,€,¢),

I = et Lo O)T / eihilLO(y’g)sao(y)< —z4c¢-&—icsLg —ia- 8y>A0(y, &, s)ds.
g
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Now, to obtain an explicit form of I5, let’s decompose the quantity e~h™ Lo To do this, we have

/ e—}rlLo(yé)s (y) ( —z4+c- é’ _ Z'CSLO — o - ay)AO(ya 57 S)dS

e~h Tse- (WO +e M 39+(”’£)H+) ao(y) ( —z4+c-&—icgLg —ia- 8y)A0(y,§, s)ds

- II_pP
(e hlsooq1 +e 90+H+) ao(y)(—z+c-§—iC3L0—ia~8y) (eh I(S_E)Q_M) ds

Il
N\\

_ II_P
e—h so— H,ao(y)( —z+c-&—icgLg —ia- 81/) <€h Y(s—e)o— M) ds

(1)
T -1 In_°P
+/ e " 159+H+a0(y)(fz+c-§fi63L0 fm.ay) <eh (s=e)e- +) ds.

(2

(A.2)
First of all, note that the quantity

(—z+c-&—icsLo —ia-0y) (ehilg‘(Tfs)fm) =eh e-(—9) (a+b-&— i (1 — ) Byo— )M,
with 9 € #,(C) and

a=—-z+cso-0¥f—ia-0y and b=c+cza- - (A.3)

_P
“— % inthe following calculation.

II
belong to .#4(C). Note also the term « - 9, in the quantity « is applies to P

Now, we want to explain the quantities (1) and (2) given in (A.2). Let’s start with (1):

T - II_P.
(1) = / e—h 1397H7a0(y)( —z4c-&—icsly —ia- 8,,) (eh Y(s—e)o- k“"+) ds
. z

I_rP,
—Tds

A4
s (A4)

:/:6EhlgH_ao(y)<a+(b-§)—ih1(7—6)a-6‘y9 )

= (T — 5)675h_19*H_a0(y) (a —+ b- f) BO,O — Z'hil(’r — 8)267€h_1gfn_a0(y) (%)BO 0,

. n_prPy
with BO,O(ya g) = ktp

Similarly, for (2) we get

e SO,

(2) :/ efhflsg+H+a0(y)( —z+4c-€&—icsLy —io- 8y> (ehfl(sfa)g— BO,O) ds
€
=e~h - / eh_15(9*79+)H+a0(y) (a +b-&—ih s —¢e)a- 8yg_>Boyods

= h e h(o— — 04) 'yao(y) (ehil(g‘j’*)r — eh71(9‘79+)€> (a +b- §> Bo,o (A.5)

_ _ —i(r — 0.0  hic- 7
femshTle-gh 1(9**9+)Tﬂ+ao(y) { ir —e)aOye + ia- 9y 2] 0,0
00— — 0+ (0- —o4)

—hio - Oyo—

+e*5h’1e—eh’1(9—*9+)fﬂ ao(y) {
" (0- —0+)?

:| BO,O-
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Putting the formula of (1) and (2) as in (A.4) and (A.5), respectively, in I5. Together, with I;, we obtain that
Ay, €7) = ("1 OTITL T T ) Ay (3,6, )

et eI (y) _(T —¢) (a + (- g))BO,o —ihY(r — ) (O"Zy@—)gw}
+ (Qﬁng)Hﬂlo(y)ehlg(Te) (a +(b- 5))30,0

- [—i(T — -Oyo—  hia-90,0_
+e" 1Q*(T_E)l_brao(y) ir —ele Sy o yQ] 0,0

o- — o0+ (- —04)?

- [ ha- _ —1 h 11
+ 6h 1Q+(T76)H+a0(y) i (Qa a;;@)g:| BO,O _ eh o+ (7—¢) (Q +a0Q(y)) (aBO,O +b- €BO,O) .
L -~ 0+ -0+

Thanks to the properties of o given in (3.8), and the fact that ¢’ ("=9)¢+1I, (y) is unbounded in L?({r > ¢}),
then we look A1 (7, &, €) such that
ia - Oyo—

11
H+A1(y7£,e>:hg+—“°(a+b~£+

)Bo,o. (A.6)
-0t

00— — 0+
Thus, we obtain

io - Oyo—

@—QJ Hoo

Ai(y,&,m) = el TmRe- {H_Al(yé,e) + h Hiao(y)(o- — o0+) [a +b-&+

i - Oyo—

(0- —o4)

Calculate of TI_ A4 (y, £, ). From (A.7), we get that

—ia - Oyo— )

+ =) [Maol)(a+ b+6) - TLyan(s) .

| Boo 174 = 21t

A1y 6:8) =T (P- + Po)As (g6, e) + orol) [a

(0- —o4)
From (A.1) we have P; A;(y,&,¢) = 0, then

P—Al(yafvg) = P_H_P_Al(y,f’g) + M l:a

(0- —o4)

Thanks to the relations (3.9), we obtain

h1l_agP. o jov - Oyo—

and so (A.7) becomes as follows

-1 © . - -
Ai(y, & 7) = el (770 {h{l’[ao <P+—P+f )+H+ao] [(”b SR }Bo,o

io- Oyo— _ —ia - Oyo—
+(r—¢) [Hao(y) (a+b-¢) - H+a0(y)Qy5+)} Boo + h™ (1 — 6)QHCLO(?J)<M)BO,0}-
Consequently, we get that

Ai(y,&,7) = 6"_19*“*5){31,0(%5) + (W (r —e)(o- — 04))B1.1(y.€)

+ (WM (r—2)(o- — 04)) Bialy, 5)} (A.8)

2
_ M r—e)e- Z (h_1(7 —&)(o- — Q+)>kBLk(y’£)’
k=0
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where,
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P, O¥ +b- v - Oy 0
B1,0(y»§) =h [Hao <P+ - +> —|—H+a0} [(a 3 + gyl } Bo,o,

k¥ o- —0+)  (0- —04)?
atb-¢ o 8,0
Bia(y,§) =h H—ao(y)((g_m)) - ngdy)ﬁ Bo,o,
i - Oyo—
Bl,2(y7§) =-h HJo(y)(W)&,o,

with o — o4 = —2X(y,€) € S! and 9,0_ € S identified with (¢), then By, € hS° for k = 0,1, and
Bl’z S hS— L.

Let’s look at the form of A; for j = 2. To do it, we define A, (y, £, 7) inductively by

where,

B, Aa(y, € 7) = Lo(y, ) A2 (9,6, 7) + (L1 (5, €) — Loy, €) - 0, ) Ar(y.&,7)

+ (e 72¢s)La(y, €) — i0eLi (,€) - 9y ) Aoly €. 7),
P+A2(ya§7€) = 07

Ly —i0cLo - 9,) (M oo = ehilQ*(T_E)ao(y) a+b-&—ih 1 —¢e)a- 9,0 )M,
3 Y Y

(- i@gzl <Oy + (a- 17“"03)51) (eh_lgf(T*E)Sm) = eh_lgf(T*E)ao(y) (d te-&E—ih N r—e)f- ayg,)sm,

with 90, a, b were noted in (A.3), d, e, f belong to .#,(C), where d, e and f are the following

d=(c3a-0¥)?B — cza- 0¥z —i(c+ cza - Pa) - 9,

e = (cza- 0¥ + (cza - 17“’)204) <€ and f=c+cza-vfa.

Then, after a many calculation, we arrive at the following formula
As(y,&7) = €= (07 (7 = () By, €) + (A7 (7 = £)(€)) ' Baa (4:€)
+ (T =€) Baa &) + (0717 = () Bay, ©) + (W7 (r = £)(©) ' Baa(y:, )}

where,

—. hle-(r—9) Z (hfl(f - s)(é))k31,k(y75),

k=0
Baoy.€) = h |ILas (p+ - sz@“") 1y [ 22204 0B B e O
~ (a-9y0-)Bio+(§)aBii + (§)(b-&)Bii + f - dy0-Boy
(0- —04)?
2(8)a - 0yo_Bi1 +2(6)(b- &) B1o+2(6)?(b-€)B12  6(¢)%a-0yo_Bio
+ - )
(0- —o04)? (0- —o4)*

CLBLO + dBo,o

+ bBl,o + 630,0
(0- —o04)

Ba(.6) = h T_ao(y) [
f-0yo-Boo+aBi1+(§)Bin  a-0y0-Biyg
(0- —04) (0— —04)(&)

_ 2a-9y0-Bi + (2(§)a +2(§)*) B n 6(&)a- Oyo_Bi o
(0- — 04)? (0- —o04)3

+h H+ao(y)l

)

(A.9)

(A.10)

(A.11)
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aBi1 bBi1  (a-0y0-)Bio | (f-0y0-)Boo
2 + 2
2(0- — 04) 2 2(0- — 04) 2(0- —04)
(a-9y0-)B1a aBi, (b-8)Bi2  3(a-0y0-)Bis

TAILa) T NS (om0 T (e —es) | (oo —er)?

Baa(y,§) = h H_ag(y) [

aBip 0By  (a-0y0-)Bi;

] o gy | @22 Bre)

Bs3(y,§) = h I_ao(y) [

3(€) 3 3(0- —0+) (0- —04)(§)
B (o~ Oyo-) Bi2
B2,4(y7£) =h H,ao(y) 4(0_ — Q+)2 5
with o— — o4 = —2\(y,€) € S' and 90— € S'. Then By, € hS® for k = 0,1,2, Bo3 € h®S~!, and
By € 2872, O

Remark A.1. Using (3.7) and (3.9), then the boundary condition associated with As(y, &, €) is the following
aBio+ (§-b)B1o+dBoo+ (e-&)Boo

I As(y, € e) = h1lag

(Q— - 9+)
(- 9yo-)Bio + (§)aBii + () (b-§)Bii+ f-9yo-Boo
(0- —04)?
T 2(€)a - dyo-Bia +2(§) (b~ €)Bio +2(6)*(b- &) B B 6(6)%a - dyo-Bio
(0- —o04)? (0 —o4)*
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