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Abstract—Network Function Virtualization (NFV) is now well
known for making network services deployable in a virtual
environment, for instance in data-centers. On another hand,
the programability of functions has come down to the network
forwarding equipment itself, such as programmable switches,
using the Programming Protocol-independent Packet Processors
(P4) solution. Each of the two programmable concepts has its
own advantages and drawbacks and micro-services should be
preferably developed in one or the other solution depending on
their constraints and requirements. In this paper, our objective
is to combine both approaches. We propose to leverage Segment
Routing (SR) to define a solution allowing to chain the micro-
services to be executed at both levels. This signaling protocol
is integrated within network equipment but not within a NFV
infrastructure. To overcome it, we design an intermediary proxy
between the P4 nodes and the VNFs. This proxy is in charge of
managing the SR labels and their association with the related
VNF. The demonstrator we have developed proves the feasibility
of the approach and opens the way towards a composition of net-
work services taking the best of the two levels of programmable
networks.

Keywords—Segment Routing, P4, Traffic Detection, Cloud
Gaming, Virtualized Network Function

I. INTRODUCTION

For several years, programmability has become increasingly
important in network architectures. A first generation of pro-
grammable networks was born ten years ago with the Software
Defined Networking (SDN) concept and its implementations
(e.g. OpenFlow) which offers a first level of control plane
programmability. Then, the Network Function Virtualization
(NFV) [1] was introduced to enable the deployment of
software functions that were initially provided by dedicated
network equipment, and more recently to split them into
finer micro-services. Today, the data plane programmability
is approaching, mainly instantiated by P4 (a programming
language for packet forwarding planes) that further extends the
concept of network programmability [2][3]. As a consequence,
it appears that standard traffic engineering functions, such as
routing/switching, filtering, field translation, flow classifica-
tion, etc. can be implemented through different means, accord-
ing to these different software environments, and at different
topological locations and different layers, thus opening the
way to fully end-to-end programmable networks. However,
each solution for network programmability (SDN, NFV, P4)
exhibits advantages and limitations related to the intrinsic

features of its networking environment that are, for instance,
related to execution time, resource consumption, programming
ability, protocol stack layer, ease of deployment, configuration,
migration, etc. For instance, P4 modules can apply simple
processing to packets transiting via a hardware P4 switch at
high rates, but it cannot handle complex computational tasks,
which must be done by application level modules [4]. This
calls for a more versatile, multi-level and multi-technology,
programmable network solution that defines an effective mean
to chain the services deployed at one or another level.

Some orchestration solutions start to include networking
programmable technologies in their design (i.e. ONOS inte-
grating SDN and P4), but they do not clearly mention how to
chain services running in the data plane or in the control plane.
This is even more tricky with the split of network services into
micro-services, a recent trend to obtain a finer granularity and
to be able to deploy only the necessary micro-services where
needed and take advantage of a better horizontal scalability.
Indeed, if a few research works propose automatic methods
to help monolithic applications to be split into micro-services,
selecting essential network functions to convert into micro-
services (and their level of division) is still a complex problem
[5] and a convenient way to chain them, that would also be
compatible with P4 data plane modules, is of high interest.

In this paper, we propose to use Segment Routing (SR)
[6], [7], based on MPLS (Multi-Protocol Label Switching)
labels, for the service chaining of micro-services. We advocate
that label stack is used here to route packets according to
the service composition, with the orchestration algorithms
deciding how to compose the micro-services, and considering
different parameters, such as the execution environment, the
network topology, the required latency, the nodes’ load, etc.
There are consequently two main challenges addressed by our
architecture:

1) mixing and routing the execution of micro-services at
the two levels (P4 and NFV) and instantiating SR-MPLS
labels for both levels;

2) managing the removal of SR-MPLS labels when packets
are forwarded from a P4 node to a NFV compute node
since code in the compute node does not have to manage
SR-MPLS labels.

The solution we propose takes the form of a proxy module
interacting with the compute nodes.



Fig. 1: Segment Routing Approach, from [11]

In this paper, we first present in Section II the background
and related work of P4 and NFV for hosting network func-
tions and SR-MPLS for service chaining. In Section III, we
detail how SR-MPLS can be used for chaining micro-services
running in data-plane (P4) and control plane (NFV). We then
describe our SR-MPLS aware P4 switch in Section IV and our
SR-MPLS aware proxy for VNFs in Section IV. We present
in Section VI our demonstrator and its evaluation. Finally, we
discuss the reliability and scalability of our solution in Section
VII before concluding in Section VIII.

II. BACKGROUND & RELATED WORK

A. Network softwarization technologies

Most network devices, such as, routers, switches, etc. were
not, at least initially, programmable. These devices were ded-
icated to specific network functions and, once deployed, only
realized those. It was not possible to change their behavior. For
several years from now, SDN (Software-Defined Networking),
using the Open Flow protocol, allows to program the control
plane of the network thanks to a controller that can send
dynamic configurations to the managed switches. This gives
an abstraction and a more global view of the network. SDN
and NFV are the key enabling technologies for 5G networks
[8]. More recently, P4 (Programming Protocol-Independent
Packet Processor) language [3][9] has been designed to allow
administrators and developers to fully configure the way
packets are processed in a network programmable equipment.
It introduces the ability to program the devices according
to the controller’s specific requirements, rather than being
constrained by a traditional switch design based on address’
prefix. With P4, it becomes easier to implement new packet
processing and to quickly deploy them while guaranteeing
a hardware enforced throughput. P4 is potentially becoming
the disruptive technology [10] enabling the programming and
customization of the data plane of next-generation SDN/NFV-
based mobile networks. It opens the door for a finer man-
agement of network packets in network devices and allows a
better communication between devices and their controller by
introducing an interface between them.

NFV being known for a while, many research papers have
been published in relation to the service chaining of VNFs
(Virtualized Network Functions). In this section, we will not
survey this exhaustive literature, but will rather focus on the
few solutions that propose a conjoint use of NFV and P4.
The very few papers dealing with NFV and P4 altogether
do not address the service chaining between micro-services
running at the two programmable levels as we do, but rather
propose to use P4 as an helper for NFV. [12] proposes to
use a P4 switch to forward the incoming packets to the right
VNF in an efficient way, with a better performance than
software solutions and in a more flexible way than OpenFlow.
Their P4 switch uses tables that can be dynamically modified
to fit new requirements for service chaining to manage the
VNFs connected to it. [13] suggests to develop some net-
work mobile services in P4 programs, instead of VNFs, for
performance reasons. The authors present the use-case of the
5G mobile network and propose to offload some functions
such as the User Plane Function (UPF) to P4 switches. They
use modules at the 2 levels, but do not mention the chaining
between them. [14] deals with P4 switches and SmartNICs
deployed in data centers to accelerate packet processing and
the challenges in managing them together. The paper proposes
a host-local SDN Agent to improve the overall resource
utilization, considering the network, host, and sNIC specific
capabilities and constraints. Based on workloads and traffic
characteristics, P4NFV determines the partitioning of the P4
tables and optimal placement of services to minimize the
overall delay and maximize resource utilization. In [15], the
authors mention that NFV services are not really designed
to cope with low-level networking functions and propose a
framework where network functions can be offloaded from
VMs to the P4 infrastructure. The authors propose to use the
Dynamic Optimization of Packet Flow Routing mechanism,
defined by ETSI to forward some flows from the P4 node to the
VNF connected to it, but it is not a service chaining solution
for a whole composite chain of modules being identified as
micro-services. Finally, in [16], the authors argue that service
chaining for NFV is done either at the software layer, but with
performance issues, or with NIC/FPGA, but with a limited
processing capability. They propose to implement the service
chaining in P4. Operators can define the service chains and
configure the P4 programs accordingly to route packets. In
their solution, the P4 program is limited to the chaining and
does not offer any other network function.

In this paper, we promote the combined use of both data-
plane programmable networks using P4 and control-plane pro-
grammable networks with VNFs and we argue that Segment
Routing (SR) is a good candidate for chaining micro-services
at different levels.

B. Segment Routing

Segment Routing (SR) is an architecture [6][7] that lever-
ages the source routing paradigm, where a packet carries the
path to reach its destination in its header, as illustrated in
Figure 1. Segment Routing is currently being standardized



by the Internet Engineering Task Force (IETF) which has
already published the main RFCs defining this technology.
It can be instantiated over two existing data planes, namely
MPLS (Multi-Protocol Label Switching) [17] and IPv6 [18].
SR-MPLS is mostly used in networks to route packets be-
tween nodes (i.e. IP routers). First, SR architecture defines
Segment Identifier (SID) that can identify a node, a link, a
service, or more generally whatever that is reachable in the
network. For SR-MPLS, SID are represented by a MPLS
label while for SRv6, SID are represented by a special IPv6
header (i.e. the SR header). At the control plane level, SR
defines mechanisms to exchange SID between nodes. Based
essentially on Internet Gateway Protocol (IGP), it simply re-
uses the prefix advertisement mechanism to associate SID to
these prefixes. Thus, when a node receives such prefix + SID
information, it configures its Label Forwarding Data-Base (L-
FIB) to determine how to reach a given SID and how to route
incoming SID.

This architecture has generated a lot of enthusiasm [19]
among Service Providers (SP), due to the simplification that
it brings to their IP/MPLS networks. In fact, when Segment
Routing is instantiated over the MPLS data plane, there is no
need to pre-establish tunnels. Therefore, no signaling protocol
such as LDP and/or RSVP-TE is required. Consequently, the
number of states maintained in the network is considerably re-
duced and the per-flow states are maintained only at the edges
of the network. In several defined use cases, Segment Routing
has proven its superiority in comparison to standard IP/MPLS
mechanisms [18]. In particular, it natively supports Equal-cost
multi-path (ECMP) and delivers full network coverage of link
and node protection for a fast recovery in case of failure.
Segment routing simplifies the deployment of VPNs, allows
Tactical Traffic Engineering by explicitly specifying the paths
that respect the Quality of Service (QoS) requirements and
eases network monitoring and measurement. More recently,
IETF has standardized the Flexible Algorithm (Flex-Algo)
[20] which allows a router to compute the next hop based
on different metrics, in particular the delay metric to enable
latency aware routing.

If the primary use case for Segment Routing is to ease
instantiating IP/MPLS or IPv6 paths on IP networks, the
mechanism can also be applied to Service Chaining for VNFs.
In a first approach, VNFs can be linked together by enforcing
the stack of MPLS labels [21] on top of the packet at the
edge node. This requires that each intermediate node contains
the corresponding VNF. Another approach consists to deploy
VNFs that are SR-MPLS aware [22]. In both cases, VNF
deployment is constrained by i) the routing node capacity, or
ii) the nature of VNFs that should be SR-aware. Similarly to
us, [23] proposes a SR-Proxy for VNFs which are not SR-
compliant. However, this work differs a bit since they mainly
address SRV6 and not MPLS and mostly because the authors
propose a proxy directly integrated into the Linux kernel of
the VNF node. In our paper, we rather propose a distinct node,
which offers the SR-proxy function, such that the VNFs and
their operating system do not need any modification.

In a previous work [4], we proposed an hybrid P4/NFV
architecture for the detection of Cloud Gaming traffic. This
paper proposes a significant improvement since the different
micro-services are now properly chained using SR-MPLS,
whereas in the previous paper, the chaining was static and all
the VNFs were located on the same node, hardly connected.
This new architecture offers more flexibility and scalability
and the possibility to chain dynamically the micro-services.

III. SEGMENT ROUTING FOR MULTI-LEVEL SERVICE
CHAINING

In this paper, we propose to use SR-MPLS to chain services
both for P4 programs and VNFs. As SID could represent any
kind of reachable resource in the network, we propose here to
associate each micro-service with a SID (i.e an MPLS label for
SR-MPLS) and the global service is composed by using a stack
of SID (a label stack for SR-MPLS). Service chaining consists
then to route packets between micro-services according to the
MPLS label that has been associated to the given micro-service
and to stack of labels to chain micro-services. The first label
will be related to the first micro-service to execute, then the
second label, etc. until the end of the stack is reached for
the final micro-service. When a micro- service is executed, its
label is removed from the stack.

We can see on each side of Fig.2 the client and the
server of the global service, and in-between the P4 nodes and
NFV nodes that process the packets. Above, the orchestrator
configures the nodes to define the service chaining to be
carried out. In this version, we use a centralized controller
which configures the different programmable nodes, but, as
indicated in section II, it is possible that the nodes announce
their identifier by themselves. This allows each local node
to keep an association between the MPLS label and the
destination of a programmable node which can carry out this
processing. Thus, if several nodes can offer the service, it is
possible to balance the load or select one node according to a
strategy considering the network configuration at a given time.

Fig 2 shows the two levels of the programmable network,
with at the low level, the P4 nodes, that are designed to carry
out simple and very high-speed processing on all packets
passing through them, and at the high level, the VNF ap-
plication modules rather intended for complex/computation-
intensive processing, but not necessarily at rate line. They
can therefore carry out processing on only certain packets or
work on some statistics reported by P4, for instance to apply
a Machine Learning Model like in [4]. In between we see the
proxy we developed which is responsible for handling SR-
MPLS signaling for the VNF modules. The objective is that the
VNF modules are not impacted by the architecture, and can be
deployed as they currently are. It is therefore the responsibility
of the proxy to analyze the MPLS signaling of the packet, to
detect if a label corresponds to a VNF processing, to interact
with this VNF (send the packet to it and receive the answer)
and then send the packet to the next module, being either
another VNF in the same data center or a more distant one,



Fig. 2: Architecture of the 2 levels SR-MPLS based pro-
grammable network

Fig. 3: Architecture of P4 programmable program, from [24]

or a P4 node. In the latter case, the packet is rerouted to the
P4 node, which forwards it further in the network.

IV. SEGMENT ROUTING IN P4 SWITCH

A P4 programmable switch is made up of 4 main com-
ponents that constitute the complete pipeline to process and
forward packets, namely the Parser, the Ingress control, the
Egress control and the Deparser. Fig.3 shows the 4 main
components of a P4 program. Being given this architecture,
we describe below where we add the specific processing to
support SR-MPLS in P4.

• The Parser allows to select the different headers of the
packets on which the program will be able to make
actions (Ethernet, IPV4, UDP, . . . ). The fields of these
headers should be declared in the P4 program or in an
external file, referenced by the P4 program. To integrate
SR-MPLS in our architecture, we add here the parsing of
the MPLS protocol, a recursive loop of the MPLS labels,
until the Bottom of Stack (BoS) field is 0 (what indicates
the bottom of the label stack).

• Actions can then be applied in the Ingress part, using a
match-action table. The controller configures entries of
the table, with different actions to perform, based on
input values of the packet headers. This match-action
table system is at the heart of P4. The controller can,
at any time, decide to change the configuration of the
table, the entries, the actions to process, etc. This allows
a dynamic configuration of the network. Then, the packets
are placed in a queue (Traffic Manager). This part is not
programmable currently and this is one of the limitations

of P4, which is not able to program queues dynamically.
For the SR-MPLS use-case, the orchestrator configures
the P4 program to check if the incoming packet should
be processed by the current P4 node or forwarded to a
next node. In the former case, the P4 program applies
the function related to the expected processing. Then it
applies the function to forward the packet to the next
node.

• Leaving the traffic manager queue, packets are processed
with actions and tables at the Egress part, in a similar
way to the Ingress.

• Finally, the Deparser reconstitutes the packets, adding
the extracted (eventually modified) headers to the packet
payload, and sends them to the network from the Egress
port.

V. SEGMENT ROUTING PROXY FOR VNFS

The major part of this work concerns the SR-MPLS proxy
placed between the P4 nodes and the VNF modules. Indeed,
SR- MPLS is a network protocol intended to be used be-
tween network equipment, but which is not understood by
end points. We could have integrated the SR-MPLS protocol
into the protocol stack of the VNF endpoints to make them
compatible, but our objective being to provide an architecture
requiring no modification of the current VNFs for a seamless
integration, we opted for another solution. We define a proxy
which analyzes MPLS labels, associates them with the local
VNF, sends the received packets to the correct VNF, receives
the packets back (possibly modified by the VNF), and then
forwards them to the next VNF. Fig.4 describes the operational
architecture of the proxy.

As for the P4 node, the first task of the proxy is to analyze
the first MPLS label of each packet arriving via the P4 switch,
and to evaluate this label according to the configuration table
sent by the controller. Then, the proxy sends this packet to
the VNF associated with the label, removes this first label
from the MPLS stack and stores the remaining MPLS fields if
there are any, to be able to chain the remaining micro-services
afterwards.

The most tricky part of this proxy is to keep the state of the
connections with the VNFs and the labels stack associated with
the sessions, to maintain the chaining of the following services
to be carried out on the packets. To achieve this, we use a hash
function for each packet based on the session identifiers, such
as the IP addresses and port numbers. The hash is computed
and stored for packets sent to the VNFs. When packets are
sent back by the VNFs, the proxy first computes the hash of
the incoming packet, compares it with the stored hashes to
identify the session, and then adds to the packet the MPLS
fields of the original packet that were previously stored.

Regarding the communication between the VNFs and the
proxy, sockets are used. This choice is motivated by the fact
that they allow to establish connections between applications
running on separate machines and are already implemented in
current VNFs modules (for example running inside contain-
ers), then without requiring any modification.



Fig. 4: Algorithm of the proxy for managing MPLS labels and VNFs

Afterwards, the proxy restarts the whole process and first
analyses the ’new’ first MPLS label. If it is associated to
another VNF the proxy is in charge of, the same processing
applies. Otherwise, the packet is sent back to the P4 switch to
be forwarded on the network to the next SR-MPLS node.

VI. DEMONSTRATOR

For illustrating our service chaining solution based on
SR-MPLS, we implemented a use-case of in-network Cloud
Gaming (CG) traffic detection [4]. The goal is to identify
cloud gaming sessions, in order to prioritize this traffic which
requires together a high bit-rate and a low-latency, compared
to other best effort traffic. Typically, cloud gaming flows
should constitute a traffic class that would benefit from a
Hierarchical Token Bucket queuing discipline featuring a small
(to avoid queuing delays) but dedicated queue (to avoid other
applications’ loss-based transport protocols to fulfil the queue).
More details about this use-case can be found in previous
papers [4], [25]. Fig. 5 presents our demonstrator, with the
different deployed programs (P4 and VNF) and the MPLS
stack to chain the global service to offer.

A. P4 modules

We developed two P4 modules and deployed them in one
hardware switch. The first module extracts session information
from all incoming packets from end-users and computes
several features per 33ms time window such as the number
of bytes, the average packet inter-arrival time, the number of
packets, etc. At the end of a 33ms window, the P4 module
mirrors one incoming packet and adds all computed features
to the packet to be sent to the NFV modules for further compu-
tational processing which results in the binary classification of

the flow as cloud gaming traffic or not. The destination of this
mirrored packet is the first NFV module, being identified by
the next MPLS label in the incoming packet. Regarding other
received packets that do not have to be transmitted to NFV
modules, but just forwarded to the next network node, the P4
switch removes the MPLS labels related to the NFV modules
in addition to the removal of its own label. The second P4
module prioritizes cloud gaming traffic versus the best effort
traffic using a dedicated queue. This P4 module is aware of
the nature of the session thanks to the controller which sends
the 5-tuple of the session to be prioritized.

The P4 hardware switch we used is an Edgecore Wedge
100BF-32X, with 32 QSFP28 ports supporting each 100 GbE,
and embedding a P4 programmable Intel/Tofino1 chipset. The
P4 modules are developed with the TNA (Tofino Native
Architecture) SDE (Software Development Environment), a
set of tools to create and test network functions for Intel Tofino
switches. It includes a P4 compiler, a network simulator and
a set of testing tools. The version used for this work is SDE
9.9.1.

B. NFV micro-services

For the complex computational task that is traffic classi-
fication, we implemented 3 NFV modules1. A first one is
in charge of checking the validity of the digest packet and
selecting the next processing node to perform load balancing
and horizontal scalability. The next one executes a ML model
and gives a value of true or false regarding the incoming
analysed digest packet that reports the extracted statistical

1The source code of the VNFs is available: https://github.com/mosaico-anr/
CG Classifier



Fig. 5: Demonstrator using SR-MPLS to chain P4 and VNF micro-services for cloud gaming traffic detection and prioritization

feature of a flow (true in case of a cloud gaming traffic pattern
recognized by the ML model, false otherwise). Finally, the
last NFV module aggregates information from the previous
classification decisions of a given flow’s samples and makes
the final decision. In our demonstrator, the 3 modules are
distributed in 3 virtual environments, such as we could have,
for instance, 2 VNFs in a same data center, and the third one
in another (as shown in Fig. 5). In this configuration, we have
2 SR-proxies, one for each data center.

C. Proxy

We have developed the proxy in Python (version 3.8). For
processing packets, we use the Scapy library for its flexibility
for creating, sending, capturing, modifying and analyzing
packets. It is not meant to provide high performance but it was
deemed sufficient for a proof of concept. We use Hashlib to
calculate the hashes, with the goal of specific security and data
integrity. JSON (JavaScript Object Notation) is used for the
serialization and deserialization of data into a format that can
be easily stored, transmitted, or exchanged between different
applications or systems. Finally, for performance issues, the
proxy program is multi-threaded.

The demonstrator is working as expected. On Fig. 6, we
show that the Aggregator (final NFV micro-service of the
chain) has well classified 2 different flows transiting on the
network at the same time : 1 is a cloud gaming session, for
which 88% of samples have been detected at as such resulting
in the correct labelling of the flow, the other one is a file
transfer, for which no sample (0%) is considered as CG. For
each session, we made the test for a time duration leading
to the computation of 1000 reports (containing the statistical
features per time window and that are computed by the first

Fig. 6: Classification of 2 flows: 1 CG and 1 not CG

P4 module) and we can see that all the packets have been
received, without loss, in the right order of the service chain.

With this demonstrator, we only aim to prove the feasibility
of our approach and let the evaluation of performance metrics
for future works. Indeed, the hardware P4 is not an issue
because its performance is guaranteed at compilation time of
the P4 programs, and will thus operate at its specifications’
line rate. Regarding the VNFs, we developed them simply
in Python and evaluated them in Linux namespaces, without
leveraging DPDK (Data Plane Development Kit). It is then
not representative of current NFV deployment, and as such,
performance tests are not relevant.

In this paper, we do not focus on the orchestrator/controller
part. In our demonstrator, it is a simple Python program that
sends configuration data (mapping between MPLS labels and
node destination). But we can imagine to integrate it with
ONOS (Open Networking Operating System) or other popular
orchestrator solutions.



VII. RELIABILITY AND SCALABILITY

In a first approach, we use an SDN controller to configure
the SID for each micro-service and compute the service
chaining as a stack of MPLS labels. However, in a standard
SR-MPLS network, the IGP (Interior Gateway Protocol, e.g.
OSPF or IS-IS) is used to exchange the SID between routers.
In turn, each router configures its Label FIB (Forwarding
Information Base) to mark packets with the corresponding SR-
MPLS label for a given prefix, or to forward packets based
on their SR-MPLS label. Applied to micro-services, the IGP
could also exchange the micro-service SID in the same way
it exchanges prefix SID. For that purpose, the SDN controller
should just add new SIDs configuration in P4 nodes. These
SIDs are associated to the interfaces:

• where the compute node is connected to a micro-service
running on a dedicated node;

• to a given loopback interface when the micro-service is
associated to the P4 code itself.

The SR architecture offers natively two main advantages
that our architecture inherits: the possibility to auto-repair
packet forwarding in case of failure without creating micro-
loop and the possibility to manage Equal Cost Multipath
(ECMP) as well as Anycast routing. The first one relies
on Loop Free Alternate (LFA) and Topology Independent
Loop Free Alternate (TI-LFA). Routers or nodes are able to
automatically compute an alternate route in case of failure
and install this route into the LFIB. The alternate route is
chosen to minimise the failure and avoid packet loss. Once
detected by the IGP, and the routing protocol convergence
done, a new default route is installed and a new alternate one is
computed until the failure is resolved. Such failure mitigation
is done automatically and within the so-known sub 50 ms
objective. The second one allows, in an SR-MPLS network, the
possibility to advertise the same SID from different locations.
Thus, it is then possible to deploy the same micro-service in
different locations in the network and configure them with the
same SID. Automatically, the routing protocol will compute
the path to the nearest SID location by using its Shortest Path
First algorithm associated with the routing protocol. Again,
in case of failure of a micro-service itself, packets will be
automatically redirected to the next micro-service that has
been advertised with the same SID. Finally, ECMP could
be also used to load-balance packets between similar micro-
services. For that purpose, similar micro-services using the
same SIDs should be deployed in the network at an equal
distance from the users. Flows using the same micro-services
will then be automatically shared between the micro-services.

In addition, a new feature provided by SR-MPLS is Flex-
Algo. This function gives a router the possibility to advertise
several SID for a same prefix but with different routing
objectives. In fact, a router computes the Shortest Path First
(SPF) of the SID to install the next-hop route in its FIB and
L-FIB based on the standard metric. The Flex-Algo standard
allows the definition and exchange of Traffic Engineering (TE)
metric and Delay metric in order for a router to compute

SPF based on these TE or Delay metrics instead of standard
metrics. Applying again to a micro-service chaining, delay
based Flex-Algo will allow to automatically chain micro-
services with a low latency objective without the need of
an external SDN controller for that purpose. Like with other
standard metrics, if a delay metric evolves in the network over
time, routers will automatically re-compute the new SPF based
on the new delay metric value without the need of an external
SDN controller.

So, our solution takes advantage of routing protocol and
native SR-MPLS network features such as TI-LFA, Anycast,
ECMP and Flex-Algo, so that we can easily manage the reli-
ability and scalability of the network functions that compose
the service chain.

VIII. CONCLUSION

The P4 and NFV architectures both enable programmable
networks, but run at different levels and both having their own
intrinsic strengths and weaknesses. In this paper, we proposed
to connect these two levels of programability to allow the
execution of a global service chaining micro-services operated
at both levels. This allows to make the most of each of the
programmable technology, ie. P4 programs for simple and
rapid processing of all packets, NFV modules to carry out
more complex processing tasks, typically on a smaller number
of packets. The proposed solution is based on SR-MPLS. To
support SR-MPLS, we developed a proxy interfacing with
the P4 modules and with the VNFs to avoid modifying them
and thus keep their initial nature of reusable components. We
developed a demonstrator to detect Cloud Gaming traffic based
on our solution chaining P4 and VNF micro-services, with the
objective to prioritize this traffic over other best effort traffic,
which proved the feasibility of the approach.

In this paper, the orchestrator is a simple python program,
responsible for configuring the P4 nodes and the proxy to
know how to process the MPLS labels present in the packets.
A possible future work would be to integrate this feature into
a widely used orchestrator such as ONOS or MANO. Another
evolution would be to use Segment Routing features, such
as the automatic announcement of the identifiers to populate
MPLS routing tables in the P4 and proxy nodes.
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