POINTS TOTALEMENT RÉELS DE LA COURBE $x^5 + y^5 + z^5 = 0$

ALAIN KRAUS

RÉSUMÉ. Soient $\overline{\mathbb{Q}}$ une clôture algébrique de \mathbb{Q} et \mathbb{Q}^{tr} le sous-corps de $\overline{\mathbb{Q}}$ formé de la réunion des corps de nombres totalement réels. Pour tout nombre premier $p \geq 3$, soit F_p/\mathbb{Q} la courbe de Fermat d'équation $x^p + y^p + z^p = 0$. En 1996, Pop a démontré que le corps \mathbb{Q}^{tr} est large. En particulier, l'ensemble $F_p(\mathbb{Q}^{tr})$ des points de F_p rationnels sur \mathbb{Q}^{tr} est infini. Comment expliciter des points non triviaux $(xyz \neq 0)$ de $F_p(\mathbb{Q}^{tr})$? Si on a $p \geq 5$, il semble que les seuls points déjà connus de $F_p(\mathbb{Q}^{tr})$ soient ceux de $F_p(\mathbb{Q})$ et ils sont triviaux. Dans cet article, on s'intéresse à cette question dans le cas où p = 5. Il n'existe pas de corps totalement réels de degré sur \mathbb{Q} au plus 5 sur lesquels F_5 a des points non triviaux. On se propose ici d'expliciter une infinité de points de F_5 rationnels sur des corps totalement réels de degré 6 sur \mathbb{Q} .

ABSTRACT. Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and \mathbb{Q}^{tr} be the subfield of $\overline{\mathbb{Q}}$ obtained by taking the union of all totally real number fields. For any prime $p \geq 3$, let F_p/\mathbb{Q} be the Fermat curve of equation $x^p + y^p + z^p = 0$. In 1996, Pop has shown that the field \mathbb{Q}^{tr} is large. In particular, the set $F_p(\mathbb{Q}^{tr})$ of the points of F_p rational over \mathbb{Q}^{tr} is infinite. How to explicit non-trivial points $(xyz \neq 0)$ in $F_p(\mathbb{Q}^{tr})$? If one has $p \geq 5$, it seems that the only points already known in $F_p(\mathbb{Q}^{tr})$ are those of $F_p(\mathbb{Q})$ and they are trivial. In this paper, we investigate this question in case p = 5. There are no totally real fields whose degree over \mathbb{Q} is at most 5 over which F_5 has non-trivial points. We propose here to explicit infinitely many points of F_5 rational over totally real fields of degree 6 over \mathbb{Q} .

1. Introduction

Soit $p \ge 3$ un nombre premier. Notons F_p/\mathbb{Q} la courbe de Fermat d'équation

$$x^p + y^p + z^p = 0.$$

Un point [x, y, z] de $F_p(\overline{\mathbb{Q}})$ est dit non trivial si $xyz \neq 0$.

Notons \mathbb{Q}^{tr} la réunion des corps de nombres totalement réels dans $\overline{\mathbb{Q}}$. Wiles a établi en 1994 que $F_p(\mathbb{Q})$ est réduit aux points triviaux ([12]). Depuis, il a été démontré, pour des familles infinies de corps K totalement réels, que $F_p(K)$ est réduit aux points triviaux si p est assez grand fonction de K (voir par exemple [3]). Cela étant, le corps \mathbb{Q}^{tr} est large ([7], page 2) et $F_p(\mathbb{Q})$ n'est pas vide. Par suite, l'ensemble $F_p(\mathbb{Q}^{tr})$ est infini. Le degré d'un point de F_p étant le degré sur \mathbb{Q} de son corps de définition, cela suggère la question suivante :

Question 1.1. Quel est le plus petit entier d tel que $F_p(\mathbb{Q}^{tr})$ contienne des points non triviaux de degré d?

Date: 9 avril 2024.

2020 Mathematics Subject Classification. 11D41 - 11Y40 - 12F05.

Mots-clés. Équation de Fermat - Corps de nombres - Points totalement réels - Coniques.

Si p = 3, on a d = 2. En effet, F_3 est une courbe elliptique, $F_3(\mathbb{Q})$ est réduit aux points triviaux et par exemple $[18+17\sqrt{2},18-17\sqrt{2},-42]$ est un point de F_3 rationnel sur $\mathbb{Q}(\sqrt{2})$. En utilisant [1], on vérifie que c'est un point d'ordre infini de F_3 .

À ma connaissance, si on a $p \ge 5$, aucun point non trivial de $F_p(\mathbb{Q}^{tr})$ n'a déjà été explicité dans la littérature. On démontre dans cet article que pour p = 5 on a d = 6, et on explicite une infinité de points totalement réels de degré 6 sur F_5 . Si on a $p \ge 7$, la question 1.1 semble ouverte. Pour p = 7, signalons qu'en utilisant les travaux de Sall et Tzermias dans [9] et [10], on peut établir avec des arguments analogues à ceux évoqués ci-dessous que l'on a $d \ge 10$.

Ce qui précède suggère aussi le problème suivant. Comment démontrer qu'il existe un entier n tel que $F_p(\mathbb{Q}^{tr})$ contienne une infinité de points de degré n, si tel est le cas? Pour p=3 (resp. p=5) un tel entier existe et le plus petit d'entre eux est n=2 (resp. n=6). Si on a $p \geq 7$, ce problème semble non résolu.

Supposons désormais p = 5. Soit ζ_3 une racine primitive cubique de l'unité. D'après les travaux de Gross et Rohrlich, les seuls points quadratiques de F_5 sont ([5], Theorem 5.1)

(1.2)
$$P = [\zeta_3, \zeta_3^2, 1] \text{ et } \overline{P} = [\zeta_3^2, \zeta_3, 1].$$

Par ailleurs, Klassen et Tzermias ont démontré qu'il n'existe pas de points cubiques sur F_5 , et que les points de F_5 de degré 4 ou 5 s'obtiennent comme l'intersection de F_5 avec une droite définie sur \mathbb{Q} ([6], Theorem 1).

On en déduit que l'on a $d \ge 6$ i.e. qu'il n'existe pas de corps totalement réels, de degré au plus 5 sur \mathbb{Q} , sur lesquels F_5 a des points non triviaux. En effet, supposons qu'il existe un point non trivial $A = [x, y, 1] \in F_5(\mathbb{Q}^{tr})$ de degré au plus 5. D'après les résultats rappelés ci-dessus, le degré de A est 4 ou 5. Quitte à permuter x et y, il existe donc des nombres rationnels a et b tels que y = ax + b. En posant $F = X^5 + (aX + b)^5 + 1 \in \mathbb{Q}[X]$, on a ainsi F(x) = 0 et $\mathbb{Q}(x)$ est le corps de définition de A. Or on vérifie directement que F possède au plus trois racines réelles, d'où une contradiction et notre assertion.

Klassen et Tzermias ont aussi décrit géométriquement les points de F_5 de degré 6. Ils établissent que ces points s'obtiennent comme l'intersection de F_5 avec quatre familles de coniques planes sur \mathbb{Q} ([6], Theorem 1). On décrit dans le paragraphe 3 la famille des coniques planes sur \mathbb{Q} , irréductibles sur \mathbb{Q} , passant par P et ayant comme tangente en P celle de F_5 en P. En déterminant l'intersection de ces coniques avec F_5 , on démontre qu'il existe une infinité de corps totalement réels, galoisiens sur \mathbb{Q} de degré 6, de groupe de Galois isomorphe à \mathfrak{S}_3 , sur lesquels F_5 a un point non trivial.

Tous les calculs numériques que ce travail a nécessités ont été effectués à l'aide des logiciels de calculs Pari-gp ([8]) et Magma ([1]). Il se trouve dans [4], un fichier Magma qui a été écrit par Nuno Freitas, ainsi qu'un fichier Pari-gp, permettant de vérifier ces calculs.

Remerciements. Je remercie vivement Nicolas Billerey et Nuno Freitas pour les remarques dont ils m'ont fait part au cours de ce travail, ainsi que pour l'aide informatique qu'ils m'ont apportée. Je remercie également Dominique Bernardi qui a réalisé la figure intervenant dans l'exemple du paragraphe 2, ainsi que le rapporteur de cet article pour tous les commentaires très instructifs qu'il m'a communiqués et qui ont amélioré la première version de ce travail.

2. ÉNONCÉ DES RÉSULTATS

Dans toute la suite, la lettre t désigne un nombre rationnel distinct de 2. Posons

$$u = \frac{3t^2 - 2t + 2}{t^2 + t - 1}, \quad v = \frac{t^5 - 5t^4 + 10t^3 - 20t^2 + 15t - 7}{(t - 2)(t^2 + t - 1)^2},$$
$$w = \frac{-3t^5 + 10t^4 - 20t^3 + 20t^2 - 20t + 6}{(t - 2)(t^2 + t - 1)^2}.$$

Notons f_t le polynôme de $\mathbb{Q}[X]$ défini par l'égalité

$$f_t = X^6 + uX^5 + vX^4 + wX^3 + vX^2 + uX + 1.$$

Posons par ailleurs

$$s = (t^4 - 3t^3 - t^2 + 3t + 1)(t - 2) \quad \text{(on a } s \neq 0),$$

$$a_0 = -\frac{(t^2 + 1)(t^3 - t^2 + 2t - 3)}{s}, \quad a_1 = -\frac{3t^7 - 9t^6 + 16t^5 - 15t^4 + 10t^3 - 11t^2 + 8t - 7}{(t^2 + t - 1)s},$$

$$a_2 = \frac{2t^8 - 14t^7 + 52t^6 - 99t^5 + 100t^4 - 54t^3 + 38t^2 - 44t + 13}{(t^2 + t - 1)(t - 2)s},$$

$$a_3 = \frac{t^8 + t^7 - 21t^6 + 65t^5 - 90t^4 + 78t^3 - 57t^2 + 32t - 15}{(t^2 + t - 1)(t - 2)s},$$

$$a_4 = -\frac{2t^5 - 6t^4 + 13t^3 - 14t^2 + 7t - 5}{s}, \quad a_5 = -\frac{(t^2 + t - 1)(t^3 - t^2 + 2t - 3)}{s}.$$

Désignons par K_t le corps de décomposition de f_t dans $\overline{\mathbb{Q}}$. Soit $\alpha \in K_t$ une racine de f_t . Posons

$$\beta = \sum_{i=0}^{5} a_i \alpha^i$$

Théorème 1. Supposons $t \neq 1$.

- 1) Le polynôme $f_t \in \mathbb{Q}[X]$ est irréductible sur \mathbb{Q} .
- 2) L'ensemble des six racines de f_t dans K_t est

$$\{\alpha, \beta, \beta/\alpha, 1/\alpha, 1/\beta, \alpha/\beta\}.$$

En particulier, on a $K_t = \mathbb{Q}(\alpha)$ et l'extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ est galoisienne de degré 6. Son groupe de Galois est isomorphe à \mathfrak{S}_3 .

3) Les points

$$[\alpha, \beta, 1], [1/\alpha, \beta/\alpha, 1], [1/\beta, \alpha/\beta, 1],$$

et ceux obtenus en permutant leurs deux premières coordonnées, appartiennent à $F_5(K_t)$. Ils sont distincts et non triviaux. L'ensemble de ces points est l'orbite galoisienne et la \mathfrak{S}_3 -orbite de chacun d'eux.

Remarque 2.3. Les six points de $F_5(K_t)$ décrits ci-dessus forment l'ensemble des points de degré 6 dans l'intersection de F_5 avec la conique C_t d'équation (3.5). Le groupe \mathfrak{S}_3 agit sur F_5 et C_t par permutation des coordonnées. Il en résulte que l'ensemble de ces points est la \mathfrak{S}_3 -orbite de chacun d'eux.

Théorème 2. Soit r le nombre réel tel que $7r^5 - 10r^4 - 20r^3 - 4 = 0$. On a $r \simeq 2,558$.

- 1) Le corps K_t est totalement réel si et seulement si on a 2 < t < r.
- 2) Il existe une infinité de nombres rationnels t tels que 2 < t < r et que les corps K_t soient deux à deux distincts.

On en déduit l'énoncé suivant :

Corollaire 1. Il existe une infinité de corps de nombres K totalement réels, galoisiens sur \mathbb{Q} de degré 6, de groupe de Galois sur \mathbb{Q} isomorphe à \mathfrak{S}_3 , tels que $F_5(K)$ possède un point non trivial.

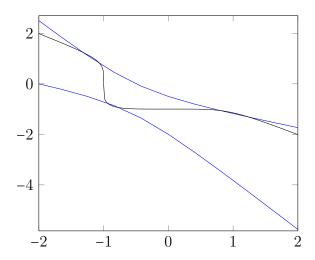
Exemple. Prenons t = 5/2. On a

$$f_t = X^6 + \frac{63}{31}X^5 - \frac{1149}{961}X^4 - \frac{4283}{961}X^3 - \frac{1149}{961}X^2 + \frac{63}{31}X + 1.$$

Le corps $K_t = \mathbb{Q}(\alpha)$ est totalement réel et on a

$$\alpha^5 + \beta^5 + 1 = 0 \quad \text{avec} \quad \beta = \frac{2821}{89}\alpha^5 + \frac{2850}{89}\alpha^4 - \frac{196815}{2759}\alpha^3 - \frac{188718}{2759}\alpha^2 + \frac{90989}{2759}\alpha + \frac{2639}{89}.$$

On constate sur la figure ci-dessous que l'intersection de F_5 avec la conique C_t est formée de six points réels, qui constituent l'orbite galoisienne et la \mathfrak{S}_3 -orbite de $[\alpha, \beta, 1]$.



Remarque 2.4. Les trois autres familles de coniques décrites dans le théorème 1 de [6] forment une orbite sous l'action de \mathfrak{S}_3 . On peut démontrer que leur intersection avec F_5 ne contient pas de points totalement réels de degré 6. On obtient ainsi, avec les théorèmes 1 et 2, une description de tous les points totalement réels de degré 6 de F_5 .

3. La conique C_t/\mathbb{Q}

Rappelons que les points P et \overline{P} sont définis par les égalités (1.2). Décrivons la famille des coniques projectives planes sur \mathbb{Q} , irréductibles sur \mathbb{Q} , passant par P et ayant comme tangente en P celle de F_5 en P.

Soit \mathcal{C} une conique projective plane définie sur \mathbb{Q} . Il existe a,b,c,d,e,f dans \mathbb{Q} tels que \mathcal{C} possède une équation de la forme

$$ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz = 0.$$

Proposition 1. 1) Supposons que C soit irréductible sur \mathbb{Q} et que P appartienne à C. Alors, P est lisse.

- 2) Les deux conditions suivantes sont équivalentes :
 - 2.1) La conique C est irréductible sur \mathbb{Q} , le point P appartient à C et la tangente à C en P est celle de F_5 en P.
 - 2.2) On a

$$(3.1) a = b = c, d = e = f et d \neq 2a.$$

Démonstration. Notons F le polynôme homogène de degré 2 définissant C et F_x , F_y , F_z ses polynômes dérivés par rapport à x, y et z.

1) La conique \mathcal{C} étant définie sur \mathbb{Q} , le point P appartient à \mathcal{C} et est lisse si et seulement si tel est le cas de \overline{P} . Si P était singulier, \mathcal{C} serait donc la droite double sur \mathbb{Q} passant par P et \overline{P} , contredisant ainsi notre hypothèse. Vérifions ce fait directement. On a les égalités

(3.2)
$$F_x(P) = 2a\zeta_3 + d\zeta_3^2 + e$$
, $F_y(P) = 2b\zeta_3^2 + d\zeta_3 + f$, $F_z(P) = 2c + e\zeta_3 + f\zeta_3^2$.

Supposons que l'on ait $F_x(P) = F_y(P) = F_z(P) = 0$. En utilisant l'égalité, $\zeta_3^2 = -1 - \zeta_3$, on obtient les conditions a = b = c, e = d = f et d = 2a, d'où $F = a(x + y + z)^2$ et l'assertion.

2) Supposons que la condition 2.1 soit satisfaite. D'après l'assertion précédente, l'équation de la tangente à $\mathcal C$ en P est

$$F_x(P)x + F_y(P)y + F_z(P)z = 0.$$

L'équation de la tangente à F_5 en P est

$$\zeta_3 x + \zeta_3^2 y + z = 0.$$

D'après l'hypothèse faite, il existe donc $\lambda \in \overline{\mathbb{Q}}^*$ tel que

$$\lambda(\zeta_3, \zeta_3^2, 1) = (F_x(P), F_y(P), F_z(P)).$$

On obtient $\lambda = F_z(P)$, d'où

$$\zeta_3 F_z(P) = F_x(P)$$
 et $\zeta_3^2 F_z(P) = F_y(P)$.

On en déduit avec (3.2) que l'on a

$$-2a + d - e + 2c = 0$$
 et $d - 2e + f = 0$,

$$-d - 2c + f + 2b = 0$$
 et $e - 2c - f + 2b = 0$.

La différence entre les deux dernières égalités implique la relation e-2f+d=0. Avec l'égalité d-2e+f=0, on obtient alors e=f=d, puis a=b=c. De plus, on a $d\neq 2a$, sinon $F = a(x + y + z)^2$, ce qui n'est pas, d'où la condition (3.1).

Inversement, supposons que la condition 2.2 soit satisfaite. On vérifie que \mathcal{C} est irréductible sur \mathbb{Q} si et seulement si on a $(2a-d)(a+d)\neq 0$ i.e. $a+d\neq 0$ (cf. [11], Chapter III, Theorem 6.1). Par suite, si $a+d\neq 0$, alors \mathcal{C} est en particulier irréductible sur \mathbb{Q} . Si a+d=0, l'équation de \mathcal{C} est $x^2 + y^2 + z^2 - (xy + xz + yz) = 0$, et on constate avec [8] que \mathcal{C} est irréductible sur \mathbb{Q} . Par ailleurs, on a $d \neq 2a$, donc P est un point lisse de C et la tangente à C en P est celle de F_5 en P, d'où la condition 2.1.

Remarque 3.3. Le pinceau des coniques définies par la condition (3.1) est engendré par la droite double $(x+y+z)^2$ passant par P et \overline{P} , et le produit

$$(\zeta_3 x + \zeta_3^2 y + z)(\zeta_3^2 + \zeta_3 y + z) = x^2 + y^2 + z^2 - (xy + xz + yz),$$

des équations des tangentes en P et \overline{P} .

Remarque 3.4. Les points P et \overline{P} étant conjugués sur \mathbb{Q} , si la condition 2.1 est satisfaite, alors \overline{P} est un point lisse de C et la tangente à C en \overline{P} est celle de F_5 en \overline{P} .

La détermination de l'intersection de F_5 avec la famille de coniques vérifiant la condition (3.1) fournit ainsi, génériquement, des points de F_5 rationnels sur des corps de degré 6 sur Q ([6], Theorem 1). Afin de démontrer les résultats que l'on a en vue, on se limitera au cas où $a \neq 0$, l'équation de ces coniques étant alors de la forme $x^2 + y^2 + z^2 + t(xy + xz + yz) = 0$ avec $t \in \mathbb{Q}$ et $t \neq 2$. En fait, on constate avec la démonstration du théorème 1 que, si t est distinct de 1, ces coniques ont avec F_5 un contact d'ordre 2 en P et P.

Pour tout nombre rationnel $t \neq 2$, notons désormais C_t la conique définie sur \mathbb{Q} d'équation

(3.5)
$$x^2 + y^2 + z^2 + t(xy + xz + yz) = 0.$$

4. L'INTERSECTION $F_5 \cap C_t$

On vérifie que l'intersection de la droite d'équation z = 0 avec $F_5 \cap C_t$ est vide. Décrivons $F_5 \cap C_t$ dans l'ouvert z = 1.

Rappelons que, pour $t \neq 2$, le polynôme $f_t \in \mathbb{Q}[X]$ est défini par l'égalité (2.1) et que les nombres rationnels a_i (fonctions de t) ont été définis dans le paragraphe 2. La proposition qui suit n'est pas indispensable pour établir nos résultats, mais elle permet de comprendre comment l'énoncé du théorème 1 a été trouvé. On utilisera essentiellement dans la suite la proposition 3 ci-dessous.

Proposition 2. Soit [x, y, 1] un point de $F_5 \cap C_t$, distinct de P et \overline{P} . On a

(4.1)
$$f_t(x) = 0 \quad et \quad y = \sum_{i=0}^{5} a_i x^i.$$

Démonstration. Compte tenu de l'équation (3.5), considérons le résultant $R_t \in \mathbb{Q}[X]$ par rapport à Y des polynômes de $\mathbb{Q}[X,Y]$

$$X^5 + Y^5 + 1$$
 et $X^2 + Y^2 + 1 + t(XY + X + Y)$.

On a l'égalité (cf. [8])

$$R_t = (2-t)(t^2+t-1)^2(X^2+X+1)^2f_t.$$

Le point [x, y, 1] étant distinct de P et \overline{P} , x n'est pas ζ_3 ni ζ_3^2 . On en déduit que l'on a

$$f_t(x) = 0.$$

Par ailleurs, on a

$$y^2 = -1 - x^2 - t(xy + x + y).$$

Cette égalité permet d'exprimer y^5 comme un polynôme de degré 1 en y, dont les coefficients dépendent de x et t. En utilisant les relations

$$x^5 + y^5 + 1 = 0$$
 et $f_t(x) = 0$,

on constate alors que y vérifie la seconde égalité de (4.1) (voir [4]), d'où le résultat.

Proposition 3. Soit x un élément de $\overline{\mathbb{Q}}$ tel que $f_t(x) = 0$. Posons

$$y = \sum_{i=0}^{5} a_i x^i.$$

Alors, on a $f_t(y) = 0$ et le point [x, y, 1] appartient à $F_5 \cap C_t$.

Démonstration. On vérifie directement cet énoncé en utilisant [4].

Remarque 4.2. Décrivons géométriquement les points de $F_5 \cap C_t$ distincts de P et \overline{P} . On dispose du morphisme $F_5 \to F_5/\mathfrak{S}_3$ qui à tout point de F_5 associe sa \mathfrak{S}_3 -orbite. Par ailleurs, l'application $\varphi: F_5/\mathfrak{S}_3 \to \mathbb{P}^1$ définie dans un ouvert convenable par l'égalité

$$\varphi$$
(orbite de $[x, y, z]$) = $[t, 1]$ avec $t = -\frac{x^2 + y^2 + z^2}{xy + xz + yz}$,

se prolonge en un morphisme de degré 1 de F_5/\mathfrak{S}_3 sur \mathbb{P}^1 , qui est donc un isomorphisme. En particulier, si t est un nombre rationnel distinct de 1 et 2, la fibre en [t,1] du morphisme $F_5 \to F_5/\mathfrak{S}_3 \simeq \mathbb{P}^1$ ainsi obtenu, est $F_5 \cap C_t$ privé de P et \overline{P} , et c'est la \mathfrak{S}_3 -orbite de chacun de ses points.

5. Démonstration du Théorème 1

5.1. **Démonstration de l'assertion 1.** Supposons que f_t soit divisible par un polynôme unitaire $g \in \mathbb{Q}[X]$, irréductible sur \mathbb{Q} , de degré 1, 2 ou 3. Soit $x \in \overline{\mathbb{Q}}$ une racine de g. On a en particulier $f_t(x) = 0$. Posons

$$y = \sum_{i=0}^{5} a_i x^i.$$

Le point [x, y, 1] appartient à F_5 (prop. 3). Son corps de définition est $\mathbb{Q}(x)$.

Il n'existe pas de points cubiques sur F_5 ([6], Theorem 1). Par suite, le degré de g est 1 ou 2. Si g est degré 1, vu que $F_5(\mathbb{Q})$ est réduit aux points triviaux, on a xy = 0. On a $f_t(x) = f_t(y) = 0$ (prop. 3) or $f_t(0) = 1$, d'où une contradiction. Ainsi, g est de degré 2. Il en résulte que [x, y, 1] est P ou \overline{P} , et donc que x est une racine primitive cubique de l'unité

([5], Theorem 5.1). On en déduit que l'on a $g = X^2 + X + 1$. Le reste de la division euclidienne de f_t par $X^2 + X + 1$ est

$$\frac{5(t^4-3t^3+4t^2-2t+1)(t-1)}{(2-t)(t^2+t-1)^2}.$$

On obtient t = 1, ce qui par l'hypothèse est exclu, d'où une contradiction et le résultat.

Remarque 5.1. Pour t = 1, on a $f_t = (X^2 + X + 1)^3$.

5.2. Démonstration des assertions 2 et 3. On vérifie avec [4] que l'on a l'égalité

$$f_t = (X - \alpha)(X - \beta)(X - \beta/\alpha)(X - 1/\alpha)(X - 1/\beta)(X - \alpha/\beta).$$

Le discriminant de f_t est non nul, car on a $t \neq 1$, donc f_t est séparable. On obtient ainsi l'ensemble annoncé des racines de f_t . En particulier, on a $K_t = \mathbb{Q}(\alpha)$ et l'extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ est galoisienne de degré 6.

Démontrons que le groupe de Galois de K_t/\mathbb{Q} est isomorphe à \mathfrak{S}_3 . Il existe σ_1 et σ_2 dans $\mathrm{Gal}(K_t/\mathbb{Q})$ tels que l'on ait

$$\sigma_1(\alpha) = 1/\alpha$$
 et $\sigma_2(\beta) = 1/\beta$.

Les éléments σ_1 et σ_2 sont d'ordre 2. Vérifions qu'ils sont distincts, ce qui prouvera que $Gal(K_t/\mathbb{Q})$ n'est pas cyclique, donc est isomorphe à \mathfrak{S}_3 . D'après l'égalité (2.2), on a

$$\sigma_1(\beta) = \sum_{i=0}^5 a_i \sigma_1(\alpha)^i = \sum_{i=0}^5 a_i (1/\alpha)^i.$$

Par ailleurs, on a

$$\beta/\alpha = \sum_{i=0}^{5} a_i (1/\alpha)^i$$
 et $\beta/\alpha \neq 1/\beta$.

On en déduit que $\sigma_1 \neq \sigma_2$, d'où la seconde assertion du théorème.

Vérifions la troisième assertion. On a $f_t(\alpha) = 0$, donc le point $[\alpha, \beta, 1]$ appartient à $F_5(K_t)$ (prop. 3). On déduit alors de la première assertion que son orbite galoisienne est de cardinal 6, et qu'elle est formée des points décrits dans l'énoncé du théorème. Compte tenu de la remarque 2.3, cela établit le résultat.

6. Démonstration du Théorème 2

6.1. **Démonstration de l'assertion 1.** D'après la remarque 5.1, on a $K_1 = \mathbb{Q}(\zeta_3)$. On peut donc supposer $t \neq 1$. L'extension K_t/\mathbb{Q} étant galoisienne de groupe de Galois isomorphe à \mathfrak{S}_3 (th. 1), K_t contient trois corps cubiques non galoisiens sur \mathbb{Q} . Parce que f_t est un polynôme réciproque, l'un d'entre eux est $\mathbb{Q}(\xi)$ où $\xi = \alpha + 1/\alpha$. Le polynôme minimal de ξ sur \mathbb{Q} est

$$g_t = X^3 + uX^2 + (v-3)X - 2u + w.$$

Le discriminant Δ de g_t est

$$\Delta = -\frac{5^2(t^4 - 3t^3 - t^2 + 3t + 1)^2(7t^5 - 10t^4 - 20t^3 - 4)(t - 1)^2}{(t - 2)^3(t^2 + t - 1)^6}.$$

On constate que Δ modulo \mathbb{Q}^{*2} est $(2-t)(7t^5-10t^4-20t^3-4)$. Le corps K_t est donc le composé de $\mathbb{Q}(\xi)$ et du corps quadratique

$$\mathbb{Q}\left(\sqrt{(2-t)(7t^5-10t^4-20t^3-4)}\right).$$

Le polynôme g_t a trois racines réelles si et seulement si on a $\Delta > 0$. Il en résulte que K_t est totalement réel si et seulement si on a

$$(2-t)(7t^5-10t^4-20t^3-4)>0.$$

On vérifie directement que cette condition signifie que l'on a 2 < t < r.

Remarque 6.1. D'après le théorème 1 et la démonstration de cette assertion, l'ensemble des points rationnels sur \mathbb{Q} de la courbe de genre 2 d'équation $y^2 = (2-x)(7x^5 - 10x^4 - 20x^3 - 4)$ est le singleton $\{(2,0)\}$. On peut aussi constater avec [1] que le groupe de Mordell-Weil sur \mathbb{Q} de la Jacobienne de cette courbe est trivial.

6.2. **Démonstration de l'assertion 2.** Supposons qu'il n'existe qu'un nombre fini de rationnels $t \in]2, r[$ tels que les corps K_t soient deux à deux distincts. Dans ce cas, il existe un rationnel $t_0 \in]2, r[$ et une infinité de $t \in]2, r[\cap \mathbb{Q}$ tels que l'on ait $K_{t_0} = K_t$. Indiquons deux arguments conduisant à une contradiction.

Soient t et t' deux nombres rationnels distincts dans]2, r[. On déduit de la remarque 4.2 que les \mathfrak{S}_3 -orbites des points de degré 6 de $F_5 \cap C_t$ et $F_5 \cap C_{t'}$ sont distinctes. Ces points sont rationnels sur K_t et $K_{t'}$. Il en résulte que $F_5(K_{t_0})$ est infini, ce qui contredit le théorème de Faltings [2] Satz 7.

On peut aussi procéder comme suit. Soit d_0 l'entier sans facteurs carrés tel que $\mathbb{Q}(\sqrt{d_0})$ soit le corps quadratique contenu dans K_{t_0} . On a constaté que $\mathbb{Q}(\sqrt{(2-t)(7t^5-10t^4-20t^3-4)})$ est le corps quadratique contenu dans K_t . La courbe de genre 2 d'équation

$$d_0y^2 = (2-x)(7x^5 - 10x^4 - 20x^3 - 4)$$

possède donc une infinité de points rationnels sur Q, d'où la contradiction cherchée.

Références

- [1] W. Bosma, J. Cannon et C. Playoust: The Magma Algebra System I: The User Language, J. Symb. Comp. 24 (1997), 235–265. (voir aussi http://magma.maths.usyd.edu.au/magma/) 1, 1, 6.1
- [2] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. **73** (1983), 349–366. **6.2**
- [3] N. Freitas, A. Kraus et S. Siksek, Class field theory, Diophantine analysis and the asymptotic Fermat's Last Theorem, Adv. Math. 363:106964, (2020). 1
- [4] N. Freitas et A. Kraus, Fichiers Magma et Pari-gp de vérification des calculs, https://github.com/AlainKraus/Points_totalement_reels_Fermat. 1, 4, 4, 5.2
- [5] B. H. Gross et D. E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201-224. 1, 5.1
- [6] M. Klassen et P. Tzermias, Algebraic points of low degree on the Fermat quintic, Acta Arith. 82 (1997), 393-401. 1, 2.4, 3, 5.1
- [7] F. Pop, Embedding problems over large fields, Ann. Math. 144 (1996), 1-34.
- [8] The PARI Group, PARI/GP version 2.15.4, Université de Bordeaux I, (2023). 1, 3, 4

- [9] O. Sall, Algebraic points on some Fermat curves and some quotients of Fermat curves : Progress, African Journal of Math. Physics 8 (2010), 79-83. 1
- [10] P. Tzermias, Algebraic points of low degree on the Fermat curve of degree seven, Manuscripta Math. 97 (1998), 483-488. 1
- [11] R. J. Walker Algebraic Curves, Springer-Verlag, 1950, 1978. 3
- [12] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math. 141 (1995), 443–551. 1

SORBONNE UNIVERSITÉ, INSTITUT DE MATHÉMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE, UMR 7586 CNRS - PARIS DIDEROT, 4 PLACE JUSSIEU, 75005 PARIS, FRANCE

Email address: alain.kraus@imj-prg.fr