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Abstract

The statistical dispersion in Vickers hardness measurements is discussed in order to check the reliability of hardness
measurements. Several indentations were made under the same nominal conditions on a hardness standard. This was repeated for
different loads. The distribution of diagonal lengths of indentation prints is found to be of Gaussian type. From the distribution
function of the indentation lengths, the probability density function of the hardness is derived for the general case of several
indentation measurements. The mean value and variance of hardness are compared with results based on Gaussian statistics.
From this comparison, it follows that statistical analysis relying upon Gaussian distributions can be carried out within a given
confidence level which depends on the number of indentations. A method is presented to calculate the number of indentations
needed to achieve a certain level of accuracy. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

The Vickers indentation test is a common method
used to characterize the hardness of materials. These
experiments are simple to perform, need a small quan-
tity of material, are generally non-destructive and can
be repeated many times. As all mechanical tests, they
are subject to large statistical fluctuations, which are
important to be evaluated. The probability distribution
function (PDF) of the Vickers hardness was reported in
the literature to correspond to a Gaussian (or Normal
law) [1], a log normal [2] or a Weibull distribution [3,4].
The objective of this work is to establish the statistical
distribution function of a set of hardness values com-
posed of n indentations and to evaluate the accuracy of
the result. In this manner, one should be able to design
a measurement for any desired confidence level. It also
becomes possible to distinguish between the precision
of the result and a hypothetical heterogeneity of the
sample. The indentation experiment is described in
Section 2, the statistical analysis of Vickers diagonal
lengths is presented in Section 3. The hardness PDF is

calculated by statistical considerations. Its mean, vari-
ance and confidence intervals are derived. The errors
made by approximating the hardness probability by a
normal law are calculated and lead to the determina-
tion of an interval of confidence. The consequences of
these results are discussed in Section 4 and an experi-
mental method is proposed which permits the hardness
to be determined within a given accuracy.

2. Statistical analysis of indentation measurements

2.1. Experimental procedure

Experimental indentation tests were performed with
a Vickers microhardness tester Leitz Miniload. The
loads were 0.0981, 0.491, 0.981, 1.96, 4.91, and 9.81 N.
They were applied with a dwell time of 10 s and
maintained in contact with the sample surface for an-
other 10 s. The tested material was a hardness standard,
whose surface was carefully electropolished to avoid
compressive surface stresses. Thirty indentations were
performed at each load and both diagonal lengths of
each indentation were optically measured in the hard-
ness apparatus with a magnification of 400, or using a
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Lasertec confocal microscope to obtain a better preci-
sion. The results are reported in Table 1. The hard-
ness is calculated with the equation

HV=
kP
d2 , (1)

where k a constant depending on the indenter geome-
try and on the units chosen (here k=1.89×105), P is
the applied force (in N) and d the diagonal length (in
mm) of the indentation. As commonly reported in the
literature, the units of the Vickers hardness are omit-
ted and correspond to kgf mm −2 (1 kgf mm−2=
9.81 MPa).

2.2. Results

2.2.1. Test of Normal Law for the indentation diagonal
The statistical frequency of the indentation length

was investigated in order to verify the validity of
Bückle’s assumption [5] of a Gaussian distribution.
The histograms as well as the fitted Gaussian PDF
are shown in Fig. 1 (least-squares fitting). Indentation
prints measured by optical and by confocal mi-
croscopy are presented. The data were investigated by
means of five tests: Kolmogorov–Smirnov, Shapiro,
Pearson x2, Lilliefors and Henry [6]. The results are
presented in Table 2. For all the tests investigated,
the normal law assumption is followed at the 95%
confidence level, except for the indentation set done
with a load P=0.49 N and recorded by confocal
microscopy. Therefore, the Gaussian distribution is
considered to be a good representation of the PDF of
the indentation diagonal length.

This first result is interpreted by considering that
the variability of the diagonal length is the additive
combination of random variables such as: uncertainty
on the applied load, errors on the indentation print
measurement, vibrations, lack of perpendicular align-
ment of the indenter relative to the surface, surface
stresses, precipitates or grain boundaries, orientation
of anisotropic material, experimenter’s errors, etc. [5].
Owing to the Central Limit Theorem, as the number
of random variables increases, the shape of the inden-
tation length PDF approaches normal shape, even if
the distributions of the variables listed before are not
following a normal distribution.

2.2.2. Tests of homogeneity of 6ariances
Variances of indentation diagonal lengths are ho-

mogenous if the magnitudes of fluctuations are inde-
pendent of the average value. This is equivalent to
stating that for a given hardness the variance of diag-
onal lengths is not affected by a change of the ap-
plied load. To test this assumption, the test of
Bartlett, Cochran and Levene [7] was used. Results
are shown in Table 3. The variances are found to be
homogeneous when recorded by confocal microscopy.
Measurements obtained by the optical device of the
hardness tester are not homogeneous when considered
as a whole. Indeed, the subset of measurements taken
with applied loads of 4.90 and 9.81 N are consistent
with the variance homogeneity and lead to variances
comparable to those measured by confocal mi-
croscopy. This discrepancy concerns measurements of
small applied loads, which are more likely to be af-
fected by experimental errors. Thus, the standard de-
viation of the indentation print is considered to be
constant and equal to 0.27 mm. This might imply that
the same deformation mechanisms are involved in this
range of loads.

3. Statistical analysis of the hardness

3.1. Probability density function of the hardness

Following the results of the preceding section, the
Vickers hardness PDF can be calculated using the
knowledge of the diagonal length PDF g(d) which is
a Gaussian distribution parameterized by its mean md

and its variance sd
2.

g(d)=
1


2psd

exp
�

−
1
2
�d−md

sd

�2n
(2)

Table 1
Average diagonal length and standard deviation from a set of inden-
tation prints with different applied loads recorded by the optical
device of the hardness tester (a) and with the confocal microscope (b)

Number of indenta- sd (mm)Load (N) Average length md

tions (mm)

(a)
0.491 30 0.4910.16

30 14.560.981 0.29
44 0.621.96 21.03
304.91 33.45 0.33

9.81 30 47.72 0.29
(b)

300.0981 4.21 0.27
0.491 30 9.90 0.28

30 14.43 0.330.981
441.96 20.75 0.25
30 33.42 0.224.91

0.2548.12309.81
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Fig. 1. Histograms of the diagonal lengths recorded by the optical device (a) and with the confocal microscope (b).

The Vickers hardness PDF f(HV) is found by asserting
the conservation of the probability density when ex-
pressed by the diagonal length or by the corresponding
hardness

f(HV) dHV=g(d) dd. (3)

Expressing the right-hand side explicitly in term of the
hardness leads to

f(HV)=

kP

2
2psd

HV
−3/2 exp

<
−

1
2

:'kP
HV

−md

sd

;2=
. (4)
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Table 2
Result of non-parametric tests [6] at the 95% confidence level recorded with the optical device of the hardness tester (a) and by confocal
microscopy (b)

Lillierfors Pearson (x2)Load (N) Number of indentations Kolmogorovs. Smirnov Shapiro-Wilk

(a)
Accepted Accepted0.491 30 Accepted Accepted

AcceptedAccepted AcceptedAccepted0.981 30
Accepted Accepted1.96 44 Accepted Accepted

Accepted Accepted4.91 30 Accepted Accepted
AcceptedAccepted AcceptedAccepted9.81 30

(b)
AcceptedAcceptedAcceptedAccepted0.0981 30

Accepted Accepted0.491 30 Accepted Accepted
Accepted Accepted0.981 30 Accepted Accepted

AcceptedAcceptedAcceptedAccepted1.96 44
Accepted Accepted4.91 30 AcceptedAccepted
Accepted Accepted9.81 30 Accepted Accepted

If a set of n indentations is considered, according to
Gaussian statistics, the average diagonal length remains
unchanged and the variance decreases by a factor n.

sd,n
2 =

sd
2

n
(5)

Thus, the hardness PDF can be written as

fn(HV)

=

kP

2
2p
sd


n

HV
−3/2 expÃ

Ã

Ã
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Ã
Ã

Ã
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−md
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Ã
Ã

Ã
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Å

2

Ã
Ã

Ã

Ç

É
. (6)

Hardness PDFs are not Gaussian distributions. This is
seen in Fig. 2, where they are represented for several
mean indentation lengths with an applied load of 0.049
N and a standard deviation sd=0.27 mm. They reveal
a finite skewness, which is less pronounced when the
average diagonal length increases. Calculations of
confidence intervals and other statistical estimates are
usually based on the assumption of an underlying
normal distribution (especially, the symmetry of the
PDF is of great importance). Here, this hypothesis does

not hold. However, as will be shown in the next section,
characteristic parameters of the distribution tend to
those of the Gaussian PDF when the standard devia-
tion becomes smaller than the mean diagonal length.

3.2. Mode, mean, 6ariance and inter6al of confidence

Although the hardness PDF contains the full statisti-
cal information, its reduction to a few characteristic
parameters is sufficient for an error analysis (see Ap-
pendices A, B, C and D for a complete derivation).

The mode of the hardness PDF HV,mode is the most
probable hardness. It corresponds to the maximum of
the hardness PDF.

HV,mode=
kP
md

2 4
�

1+
'

1+12
�sd,n

md

�2n−2

. (7)

Although this result is exact, it is useful to rewrite it as
a Taylor expansion in powers of sd,n/md,

HV,mode=
kP
md

2

�
1−6

�sd,n

md

�2

+45
�sd,n

md

�4

+…
n

(8)

The mean hardness mHV is the first moment of the
hardness PDF. It can be approximated by a Taylor
expansion,

mHV=
kP
md

2

�
1+3

�sd,n

md

�2

+15
�sd,n

md

�4

+…
n

(9)

An analogous derivation gives the variance

sHV
2 =

�kP
md

2

�2�
4
�sd,n

md

�2

+57
�sd,n

mFd

�4

+…
n

(10)

As a consequence of the homogeneity of variances, for
two measurements on the same sample only differing
by the applied load, the measurement with the bigger
load will be more precise because the average diagonal
length will increase while the variance remains constant.

The confidence interval corresponding to a given
confidence level is defined by the range [HV,min, HV,max]

Table 3
Study of the homogeneity of variances with the tests from Bartlett,
Cochran and Levene [7]a

Confocal MicroscopyTest Optical Microscopy

RejectedAcceptedBarlett
0.000010.3

AcceptedCochran Rejected
0.11 0.00002
AcceptedLevene Rejected
0.52 0.008

a For result\0.05, the assumption of homogeneity of the variances
is accepted at the 95% confidence level.
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Fig. 2. Hardness PDF for indentation prints of 3, 4, 5, and 6 mm as given by Eq. (6), for a load P=0.049 N and sd=0.27 mm.

which contains the fraction a of the statistical events.
Due to the conservation of the probability density, this
range is indeed the image of the interval [dmin, dmax] by
means of the function of Eq. (1) that corresponds to the
same confidence level.

d min

max
=md�uasd,n, (11)

where ua is the reduced value defining the a-confidence
interval in Gaussian statistics (ua=1.96, 2.33, and 2.56
for a=95, 98, and 99% respectively). The boundaries
of the hardness interval are

HVmax
min =

kP
md

2

�
19ua

sd,n

md

�−2

. (12)

This interval is centered on the hardness

HV,center=
kP
md

2

�
1+3

�
ua

sd,n

md

�2

+5
�

ua

sd,n

md

�4

+…
n

(13)

its width is

DHV=

kP
md

2

�
4
�

ua

sd,n

md

�
+8

�
ua

sd,n

md

�3

+12
�

ua

sd,n

md

�5

+…
n

.

(14)

3.3. Gaussian approximation

The mean hardness, its variance and an a-confidence
interval could be calculated from the hardness PDF
(Eq. (6)) as function of the relative spread in diagonal

length
sd


nmd

. In practice, this factor is sufficiently small

to be able to cut every Taylor expansion after the first
term of non-vanishing power. Furthermore, as the
number of indentations increases, this factor tends to
zero. This implies that the mean hardness corresponds
to the mean diagonal length and that the hardness
variance vanishes as the variance in diagonal length
does.

On the other hand, it is convenient to approximate
the hardness PDF by a Gaussian distribution, so that
the hardness random variable becomes easier to handle.
The best fitted Gaussian PDF is exactly the one, which
is parameterized by the mean hardness and the hard-
ness variance found earlier. Therefore, if the number of
indentations increases, the Gaussian approximation be-
comes more valid.

In order to discuss the error made by accepting the
approximation, the interval of confidence is calculated
for a confidence level a and both intervals are com-
pared with each other. The boundaries are

HV
Gaussmax

min

=mHV�uasHV. (15)

The interval is centered on the mean hardness mHV and
has a width of

DHV
Gauss=

kP
md

2 ua

�
4
�sd,n

md

�
+

57
2
�sd,n

md

�3

+…
n

. (16)

It is noticeable that first-order terms of the interval
widths of the hardness PDF and its approximation are
equal. For higher-order terms, this is no longer the
case. On the other hand, intervals of confidence are
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centered on different values. Comparison of Eq. (13)
with Eq. (9) shows the existing bias, which can reach up
to several percent of the hardness. However, the shift of
the center is always smaller than half the width of the
interval of confidence (for sufficiently large values of
confidence level).

Thus, the interval of confidence of the Gaussian PDF
was obtained. The error made by the approximation
occurs mainly in the determination of the interval cen-
ter rather than in its width.

4. Number of indentation prints

In practical situations, the accuracy of a hardness
measurement consisting of n indentations is of great
importance. It is also very convenient to be able to
predict the number of indentations required for a cer-
tain precision. The method presented here extracts these
values from the experiment itself. Therefore, a given set
of diagonal lengths {di}i=1

n has first to be recorded (say
n=5). From this, the average diagonal length and
variance can be calculated.

md=
1
n

%
n

i=1

di (17)

sd
2 =

1
n−1

%
n

i=1

(di−md)2 (18)

Strictly speaking, these values are only estimates of the
average and variance. Thus, some precautions have to
be taken. It has to be checked that these values are
good estimates, which means, they should be approxi-
mately constant as n increases. Especially, the average
diagonal length calculated from a measurement subset
should remain within the interval defined by the stan-
dard deviation sd.

Using Eqs. (5), (9) and (16), the interval of confi-
dence can be calculated for a given confidence level
within the Gaussian approximation. The number ñ of
indentations required to attain the accuracy level a is
found by inverting these equations.

ñ=
� 2ua

(1−a)
sd

md

�2

(19)

Calculated numbers of indentations required to reach a
confidence level of 95, 98, and 99% are shown in Table
4. The precision a enters in two different ways into the
calculation. First, in the sense of a signal-to-noise ratio,
it defines the maximum acceptable spread of the hard-
ness. This has the strongest influence on ñ through the
(1−a) term in the denominator, which is much smaller
than one. Secondly, it defines the width of the interval
through the value of ua. This term shows a weaker
a-dependency.

In practice, after having recorded the estimated num-
ber of indentations ñ, the procedure should be re-iter-
ated. Using the larger set of diagonal lengths, the
average and variance have to be calculated once again,
because they provide better estimates than the former
one. Then, the accuracy of the result can be checked
and the procedure ends, when the final precision has
been reached.

5. Conclusion

Some authors have shown that the hardness should
obey a Gaussian distribution [1], but, in conflict with
the hypothesis of a normal law, they observed a varia-
tion of the skewness with increasing load. Weibull
distributions were also reported in the literature [3,4].
They have the advantage of being able to represent the
asymmetry of the distributions, but the determination
of the Weibull parameters is difficult. Furthermore,
Weibull statistics is generally used to account for fa-
tigue phenomena and has no clear physical meaning
when applied to hardness tests. The log normal distri-
bution [2] is justified by the Kolmogorov hypothesis [8],
which states that fluctuations are due to multiplicative
combinations of elementary sources of noise. However,
there is no evidence for the hardness to behave as such.
In this paper, it has been shown that indentation
lengths rather than the hardness follow a Gaussian
distribution. Thus, the hardness distribution was
derived. It is an asymmetric distribution, where Gaus-
sian statistics is only valid as an approximation. The
required number of indentations to achieve a given
accuracy is directly proportional to the square of the
spread in diagonal length and inversely proportional to
the square of the desired signal-to-noise ratio. A quan-
titative estimate of the measurement spread can be
achieved and, as an application, heterogeneous speci-
men can be studied with this method. The number of
indentations should be sufficiently large to ensure that a
Gaussian distribution could approximate the hardness.
The indentation size effect, which is the observed varia-
tion of the hardness when the applied load is changed,
can also be studied using these results.

Table 4
Number of indentations required to reach a 95, 98, and 99% confi-
dence level for some value of the ratio sd/md as calculated by Eq. (19).

ñ98% ñ99%S.D.

md

ñ95%

210.005 7
10.010 6 27
3 1050.020 22

0.050 13616 656
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Appendix A

A.1. Mode of the hardness

The zero of the first derivative of the hardness
PDF Eq. (6) leads to the mode of the hardness.

HV,mode=
kP
md

2 4
�

1+
'

1+12
�sd,n

md

�2n−2

(A1.1)

Appendix B

B.1. Mean of the hardness

The average hardness is the first moment of the
hardness PDF as given by Eq. (6).

mHV=
&

0

�

HV fn(HV) dHV (A2.1)

This was integrated after substitution of the integration
variable.

x=

'kP
HV

−md

sd,n

(A2.2)

mHV=
1


2p

&
−�

+� kP
md

2

1�
1+

sd,n

md

x
�2 e−

1

2
x2 dx (A2.3)

The Taylor expansion of the denominator gives the
following expression.

mHV=
kP
md

2

1


2p

&
−�

+� �
1−2

�sd,n

md

�
x+3

�sd,n

md

�2

x2

−4
�sd,n

md

�3

x3+5
�sd,n

md

�4

x4+…
n

e−
1

2
x2

dx

(A2.4)

The odd terms give no contribution to the sum because
of the even symmetry of the integration range. The even
terms are recursively integrated.

1


2p

&
−�

+�

x2n e−
1

2
x2

dx= (2n−1)·(2n−3)· ··· ·5·3·1

(A2.5)

From this, the mean hardness follows.

mHV=
kP
md

2

�
1+3

�sd,n

md

�2

+15
�sd,n

md

�4

+105
�sd,n

md

�6

+…
n

(A2.6)

Appendix C

C.1. Hardness 6ariance

The variance of the hardness is the second moment
of the hardness PDF.

sHV
2 =

&
0

�

(HV−mHV)2fn(HV) dHV (A3.1)

The same integration way was followed. First, the
integration variable was substituted.

mHV
2 =

�kP
md

2

�2 1
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2
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(A3.2)

Then, the expression was developed and the even power
terms were retained.

sHV
2 =

�kP
md

2

�2 1
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From which the hardness variance follows.

sHV
2 =

�kP
md

2

�2�
4
�sd,n

md

�2

+57
�sd,n

md

�4

+…
n

(A3.4)

Appendix D

D.1. Number of indentations

The minimum number of indentation is found by
asserting that the spread of the hardness should be
smaller than (1−a), which is complementary to the
confidence level.

2uasd,n

md

5 (1−a) (A4.1)

n]
� 2ua

(1−a)
sd

md

�2

(A4.2)
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