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Constrained PSO-splines trajectory generation for an indoor nanodrone

Vincent Marguet1, Cong Khanh Dinh1, Ionela Prodan1 and Florin Stoican2

Abstract— The trajectory generation problem is still chal-
lenging as it involves determining a smooth and feasible path
considering convoluted constraints. This paper builds upon
the strengths of fast computation of PSO (Particle Swarm
Optimization) and the B-splines properties to solve an opti-
mization problem for trajectory planning. The precomputed
trajectory of an indoor quadcopter is parameterized by B-
splines functions allowing to enforce operation constraints
(i.e., position, velocity, angles, thrust, angular velocity, way-
point passing) while minimizing the input effort. Simulation
and experimental testing with a nanodrone validate our
approach.
Index Terms– Trajectory generation, B-spline curves, Quad-
copter, PSO (Particle Swarm Optimization).

I. Introduction
Nowadays, Unmanned Aerial Vehicles (UAV) are used

in various applications including search and rescue [1],
firefighting [2] and precision agriculture [3]. The common
challenge behind these applications is to generate a
feasible trajectory that can be tracked by the UAV.
While, necessarily, the trajectory tracking is carried on-
line, the trajectory generation can be done either on-line
or off-line. The first case has the advantage of considering
the real position of the UAV if re-computation of the
trajectory is needed, however the computational effort
may prove too large for real-time implementation (i.e.,
there are multiple constraints to take into account, many
of them, non-linear in the decision variables). The second
case gives the opportunity to the user to balance between
computational effort and complexity of the generation
procedure. Thus, hereinafter, we will focus on the off-
line trajectory generation problem.

Many planners provide the trajectory as a list of way-
points. While easy to manipulate, having the trajectory
as a collection of interlinked segments raises issues of
feasibility, e.g., obstacle collision, sudden changes in
attitude which cannot be tracked. To overcome those
issues, Bézier [4] or B-spline [5], [6], [7] curves can be
used as they have many mathematical and geometrical
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properties that are useful to design a smooth and feasible
trajectory. [6] gives some of the properties, formulates
constraints in function of the control points defining
the trajectory, preprocess the optimization problem with
the tool Yalmip [8] and solves it using the solver
MOSEK [9]. Instead of using any solver that has its
own requirements on the formulation of the problem
(e.g., convexity, linearity and the like), [7] generates a
trajectory using Particle Swarm Optimization. Indeed,
stochastic methods like Particle Swarm Optimization
(PSO) [7], [10], [11], [12] or Differential Evolution (DE)
[13] allow to find an optimal particle (here, the control
points define the trajectory) while penalizing in the cost
function the constraints that are not satisfied. However,
[7] does not take into account constraints on waypoint
passing, thrust and angular velocities, does not give the
formulation of the constraints in terms of control points
and tracks the resulted trajectory only in a simulator.

In this paper, we combine these ideas (with im-
provements in what regards the conservatism of the
constraint formulations) and present our PSO-spline
approach which generates off-line a feasible trajectory for
a UAV. We test our approach over a realistic scenario,
both in simulation and experiment (https://tinyurl.com/
icuas2024lcis). Moreover, we provide less conservative
expressions for the constraint formulation of the angles
and angular velocities. Our presented algorithm solving
the optimization problem benefits from the B-spline
properties to express all the constraints in function of
the control points.

A description of B-spline curves with some useful
properties are provided with the UAV model and a gen-
eral formulation of constrained trajectory optimization
problem in section II. In section III, we describe our PSO-
spline approach and present the algorithm solving this
motion planning problem. Section IV describes in detail
the simulation and experiment validating our PSO-spline
approach, before drawing the conclusions in section V.
The proofs to obtain a less conservative expression of
the angular constraint and angular velocity constraint
are given in the appendices.

Notations: Throughout the paper, the following
notations are used: n corresponds to the number of
control points describing a B-spline curve; Bd,ξ(t) are
the B-spline basis function of degree d and knot vector
ξ; τk refers to the (k + 1)-th time instant of the knot
vector ξ; xPk is the coordinate on x-axis of the (k+1)-th
control point; pwp

ℓ is the position of the ℓ-th way-point
at time tℓ; the transpose of a matrix X is written X⊤.



II. Prerequisites
We recapitulate here some basics on splines curves

which will be instrumental for the contribution proposed
in this paper: when using a standard multicopter model
we are able to formulate the constrained optimization
problem into a manageable form.

A. B-spline curves in trajectory generation
B-splines of degree up to d ≤ m − 2 are defined

recursively over the knot sequence ξ = {0 = τ0 ≤ τ1 ≤
... ≤ τm = Tf}:

Bk,1,ξ(t) =

{
1, t ∈ [τk, τk+1[

0, otherwise,
(1a)

Bk,d,ξ(t) =
t− τk

τk+d − τk
Bk,d−1,ξ(t)

+
τk+d+1 − t

τk+d+1 − τk+1
Bk+1,d−1,ξ(t). (1b)

Subsequently, a B-spline curve is described as a linear
combination of control points and B-spline basis func-
tions:

z(t) =

n−1∑
k=0

PkBk,d,ξ(t) = PBd,ξ(t), ∀t ∈ [0, Tf ], (2)

with P =
[
P0 . . . Pn−1

]
being the matrix gather-

ing the control points as its columns and Bd,ξ(t) =[
B0,d,ξ(t) . . . Bn−1,d,ξ(t)

]⊤ the basis vector. B-spline
functions and the associated curve have the properties
[14]:
P1) B-splines basis functions have a local support:

Bk,d,ξ(t) = 0, ∀t /∈ [τk, τk+d+1). (3)

P2) B-splines basis functions partition the unity:
n−1∑
k=0

Bk,d,ξ(t) = 1, ∀t ∈ [τ0, τm] (4a)

and
Bk,d,ξ(t) ≥ 0, ∀t ∈ [τ0, τm]. (4b)

P3) The ’r’ order derivatives of B-spline basis functions
are linear combinations of B-splines of lower degree,
i.e. there exists a matrix Md,d−r such that:

B
(r)
d,ξ(t) = Md,d−rBd−r,ξ(t) (5)

P4) The B-spline curve (2) lies within the union of all
convex hulls defined by subsets of d+1 consecutive
control points.

P5) On each non-empty sub-interval [τℓ, τℓ+1), the basis
functions of degree d − 1 can be expressed as
combination of the basis functions of degree d, thus,
the differentiated B-spline curve may be expressed:

ż(t) = ṖBd−1,ξ(t) = ṖDℓ
d−1,dBd,ξ(t), t ∈ [τℓ, τℓ+1),

(6)

with Dℓ
d−1,d computed accordingly. Such a matrix

always exist since any polynomial of degree d − 1,
ż(t) on the sub-interval [τℓ, τℓ+1), can be described
by polynomials of degree d, the B-splines functions
Bd,ξ(t), again on the sub-interval [τℓ, τℓ+1).

Note that, once the parameters of the B-spline func-
tions are fixed, the resulting B-spline curve depends
only on its control points. Thus, the trajectory planning
problem is reduced to finding the optimal positions of
the control points.
B. Multicopter model

We consider the quadcopter model that neglects aero-
dynamic effects and external disturbances described as
in [6]:

ξ̈ = TzB − gzw, (7a)
η̇ = N−1(η)ω, (7b)

N(η) =

1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

 , (7c)

RW
B =

cθcψ sϕsθcψ − cθsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cθcψ cϕsθsψ − sϕcψ
−sθ cθsϕ cθcϕ


(7d)

with ξ =
[
x y z

]⊤ the position vector in the inertial
frame, η =

[
ϕ θ ψ

]⊤ the Z-Y-X Euler angle vector in
the inertial frame, ω =

[
p q r

]⊤ the angular velocity
vector in the body frame, T the normalized thrust,
zw =

[
0 0 1

]⊤ the world frame’s z-axis, N(η) the
transformation matrix for angular velocities from the
inertial frame to the body frame, zB the last column
of RW

B (the rotation matrix from the body frame to
the inertial frame) and where c stands for cos and
s stands for sin. The inputs are represented by the
vector u =

[
T p q r

]⊤ and the state vector is
x =

[
x y z ϕ θ ψ ẋ ẏ ż

]⊤. Hereinafter, vector
z(t) denotes the trajectory of the UAV (components x,
y, z of the state vector).
C. Optimal trajectories generation

Typically, the constrained optimization problem gen-
erating the trajectory for dynamics such as those in (7)
is given as:

min
z(t)

∫ Tf

0

C(z(t))dt (8a)

s.t. z(t) ⊂ Kp, 0 ≤ t ≤ Tf , (8b)
v(t) ≤ vmax, 0 ≤ t ≤ Tf , (8c)
|ϕ(t)| ≤ ϵ, |θ(t)| ≤ ϵ, 0 ≤ t ≤ Tf , (8d)
Tmin ≤ T (t) ≤ Tmax, 0 ≤ t ≤ Tf , (8e)
|p(t)| ≤ ωmax, |q(t)| ≤ ωmax, 0 ≤ t ≤ Tf ,

(8f)
∥z(tℓ)− pwp

ℓ ∥2 ≤ dwp, ℓ = 1, . . . , NWP , (8g)
p(0) = p0, v(0) = v0, a(0) = a0, (8h)

p(Tf ) = pf , v(Tf ) = vf , a(Tf ) = af , (8i)



where (8a) defines the cost function minimizing, e.g.,
trajectory length, energy spent or time to achieve a
mission, (8b) and (8c) constrain the position and veloc-
ity, (8d) and (8f) constrain the angles and the angular
velocities, (8e) limits the thrust, (8g) defines waypoint
constraints and (8h) and (8i) define the initial and
terminal conditions.

We express all the constraints and the objective
function from (8) in terms of the UAV trajectory and its
derivatives. Taking the trajectory as a B-spline curve (2)
with the degree and the knot vector of the basis functions
a priori fixed and using over-approximations based on
P4), we reformulate the optimization problem only in
terms of the control points. Thus, the initial continuous-
time (infinite dimensional) optimization problem (8) is
converted to a finite-dimensional, sub-optimal optimiza-
tion problem.

III. Trajectory generation problem

The B-spline mediated form of (8) is still a difficult-to
solve nonlinear optimization problem. In here, we con-
sider a popular heuristic algorithm, the particle swarm
optimization (PSO), to provide a fast and accurate
solution. To account for the constraints, PSO is penal-
izing each of them in the cost with slack penalty terms
which measure the deviation from feasible candidate
trajectories. To express this value, we will use the ramp
function which returns zero if the constraint is satisfied
or the 1-norm of the constraint violation components
if the constraint is not satisfied. The ramp function is
defined as σ: Rn → R+ such that:

σ(x) =

n∑
i=1

max(0, xi). (9)

The variable X =
[
P0 P1 . . . Pn−1

]
gathering all

the control points of a given trajectory as in (2) will be
used to express all the penalty terms of the objective
function:

Ftot(X) =

6∑
q=0

γqFq(X), (10)

where γ0, γ1, γ2, γ3, γ4, γ5 and γ6 are the weights asso-
ciated to the penalties.

The objective function (10) is representing the con-
straint optimization problem (8) as each of the penalty
term is associated to one of its sub-equations. To express
all the penalties in function of the control points, the B-
spline properties are exploited. Some proofs to formulate
the constraints are given in [6]. However, we provide
less conservative expressions for the angular and angular
velocities constraints (proofs in appendices I and II).
Once the constraints are obtained, they are converted

into the following penalties in (10):

F0(X) =

∫ Tf

0

∥∥∥∥∥
n−5∑
k=0

(XMd,d−4)kBk,d−4,ξ(t)

∥∥∥∥∥
2

2

dt, (11a)

F1(X) =

n−1∑
k=0

σ (xmin −Pk) + σ (Pk − xmax) , (11b)

F2(X) =

n−2∑
k=0

σ
(
∥Ṗk∥2 − vmax

)
, (11c)

F3(X) =

n−3∑
k=0

n−3∑
i=0

σ (G(ϵ, i, k,P)) , (11d)

F4(X) =

n−3∑
k=0

[
σ
(
∥P̈k + gzw∥2 − Tmax

)
+ σ

(
− z

P̈k − g + Tmin

) ]
, (11e)

F5(X) =

n−d∑
ℓ=1

ℓ+d∑
k=ℓ+d−2

ℓ+d∑
i=ℓ+d−2

σ (S(ℓ, i, k,P)) , (11f)

F6(X) =

NWP∑
l=1

σ

(∥∥∥∥∥pwp
l −

n−1∑
k=0

PkBk,d,ξ(tℓ)

∥∥∥∥∥
2

− dwp

)
.

(11g)

G(ϵ, i, k,P) = cot2 ϵ P̈⊤
i P̈k −

(
1 + cot2 ϵ

)
P̈⊤

i zwz
⊤
wP̈k

− 2gz⊤wP̈k − g2, (12)

S(ℓ, i, k,P) = (
...
PD

ℓ
d−3,d−2)

⊤
i (

...
PD

ℓ
d−3,d−2)k

− ω2
max

(
P̈i + zwg

)⊤(
P̈k + zwg

)
. (13)

We explain now how the sub-equations from (8) are
represented by a penalty in (11):

i) Minimizing the input effort: (8a) is the objec-
tive function that aims to minimize the input
effort which corresponds to the trajectory’s snap:
min
z(t)

∫ Tf

0

∥∥z(4)(t)∥∥2
2

dt. Applying the derivative prop-
erty of the B-spline functions P3), the corresponding
penalty is given in (11a).
Remark 1: (11a) may be brought into a quadratic
form where only control points appear, through
standard manipulations [14]. Moreover, the expres-
sion can be simplified if the degree is 4 as the
snap function becomes a step function of amplitude
(XMd,d−4)k and constant time step Tf/(n − d).
Thus, the snap of the trajectory becomes F0(X) =
Tf

n−d

∑n−1
k=0∥(XMd,d−4)k∥22. ♦

ii) Space constraints: (8b) describes the indoor envi-
ronment limitations. The allowed volume can be
represented by a box with lower and upper limits
on each axis denoted as Kp. The convexity property
of the B-spline curves guarantees that if the control
points are inside this box then the trajectory also
stays inside this box. Thus, the position penalty is
expressed in (11b).



iii) Velocity constraints: (8c) is imposing the velocity
of the drone to always stay lower than vmax.
We remind that the respective derivative control
points are obtained by multiplying the initial control
points by the matrix appearing in property P3):
Ṗk = (XMd,d−1)k, P̈k = (XMd,d−2)k,

...
Pk =

(XMd,d−3)k. Using the derivative control points
and the convexity property, we obtain the velocity
penalty in (11c).

iv) Roll and pitch constraints: (8d) imposes that the
modulus of the roll and pitch angles stay inferior
to ϵ. The constraints expressed in terms of control
points are obtained in Appendix I and the sufficient
condition (27) is converted to the penalty term
(11d).

v) Thrust constraints: (8e) imposes the thrust to stay
in the interval [Tmin, Tmax] during the whole tra-
jectory. The expression in function of the control
points is obtained in [6] and its associated penalty
term is given in (11e).

vi) Angular velocity constraints: (8f) forces the angular
velocities’ magnitudes to stay inferior to ωmax. The
constraints expressed in terms of control points are
obtained in Appendix II and the sufficient condition
(37) is converted to the penalty term (11f).

vii) Waypoints conditions: (8g) imposes that the posi-
tion at time tℓ is inside the sphere centered in the
waypoint pwp

ℓ and of radius dwp for each ℓ. The
corresponding penalty term is given in (11g).

viii) Initial and final conditions: (8h) and (8i) are spec-
ifying the desired initial and final components for
the position (p0 and pf ), velocity (v0 and vf )
and acceleration (a0 and af ). The initial and final
position are the first and last control points (we
assume a clamped B-spline curve):

P0 = p0, Pn−1 = pf . (14)

For the initial velocity, ż(t = 0) = Ṗ0 = v0,
reminding the relation between Ṗ0 and P, we
obtain:

d

τd+1
(P1 −P0) = v0, (15)

which imposes the second control point to be:

P1 = P0 +
τd+1

d
v0 = p0 +

τd+1

d
v0. (16)

A similar calculus starting from ż(t = Tf ) = Ṗn−2 =
vf leads to

Pn−2 = Pn−1 −
Tf − τn−1

d
vf = pf −

Tf − τn−1

d
vf .

(17)
The same principle applied twice for the initial z̈(t =
0) = P̈0 = a0 and final z̈(t = Tf ) = P̈n−3 = af
acceleration is applied and results in:

P2 =p0 +
τd+1 + τd+2

d
v0 +

τd+2τd+1

d(d− 1)
a0, (18a)

Pn−3 =pf −
2Tf − τn−2 − τn−1

d
vf

+
(Tf − τn−2)(Tf − τn−1)

d(d− 1)
af .

(18b)
As it is meaningless to compute trajectories that are not
satisfying the initial and final conditions, we initialize
all the particles with the 3 first control points and 3
last control points respecting (14), (16), (17) and (18).
These control points are fixed at all the iterations for all
the particles and the algorithm is optimizing only the
remaining n− 6 control points of X.

Our PSO-spline approach is detailed in Algorithm 1.
Parameters r1 and r2 refer to random values between
0 and 1. Gb = Ftot(Xb) is the cost associated to the
current best particle Xb. The code implementing this
algorithm was run in Matlab 2023a using its codegen
option to make a C-MEX variant of the Gilbert-Johnson-
Keerthi function [15] testing polyhedron intersections
and CasADi [16] to generate the B-splines basis func-
tions.

IV. Simulation and experiment
The aim of this section is to describe the scenario,

provide the numerical values used in the simulation and
experiment, and analyse the results.
A. Simulation

The scenario is taken as in [6]: the planned trajectory
needs to pass in the neighborhood (defined as spheres
of radii dwp) of eight waypoints at the specified times
detailed in Table I. A maximum distance between the
center of the nanodrone and the waypoints of 0.3m is
allowed in experiment. Taking into account the bound
on the tracking error (δ = 0.1m) and the half size
of our nanodrone (0.05m), the proposed value in [6]
of dwp = 0.05m is relevant. During all its trajectory
(from time 0s to time Tf = 30s), the UAV must respect
all the physical constraints detailed in the previous
section. The numerical values of the associated bounds
are taken the same as [6] and are listed in the first line
of Table II. Note that the values used in the trajectory
planning are tightened to account for the contribution
of the tracking error which may lead to a violation of
the physical bounds in the experiment otherwise. The
physical bounds for the experiment are the ones usually
considered in the state of the art.

The gravitational acceleration g is 9.81 m/s2. The
position of the UAV must stay inside the box defined
by xmin =

[
−1.5 −1 0

]⊤ and xmax =
[
1.5 1 1.5

]⊤.
The number of particles npart, iterations niter and

weights γi for the objective function are detailed in Table
III and IV. The specific parameters of our PSO-spline
approach are the damping weight which is set to 1 and
the learning coefficients that are set to c1 = 1.2 and



Algorithm 1: Solving a motion planning problem
with our PSO-spline approach.

Input: list of parameters in (III)
n, c1, c2, npart, niter;

Output: Xb minimizing the fitness function Ftot;
1 Create npart random matrices of n control points

respecting the initial and final conditions:
X1, ...,Xnpart

2 Create npart random matrices of the same size
corresponding to the associated velocity:
V1, ...,Vnpart

3 for k=1:npart do
4 X∗

k ← Xk;
5 Compute Ftot(X

∗
k) in (10);

6 Store X∗
k and Ftot(X

∗
k);

7 if Ftot(X
∗
k) < Gb do

8 Gb ← Ftot(X
∗
k);

9 Xb ← X∗
k;

10 end
11 end
12 for i=1:niter do
13 for k=1:npart do
14 Vk ← Vk+c1r1(X

∗
k−Xk)+c2r2(Xb−Xk);

15 Xk ← Xk +Vk;
16 Compute Ftot(Xk) in (10);
17 if Ftot(Xk) < Ftot(X

∗
k) do

18 X∗
k ← Xk;

19 Upload Ftot(X
∗
k);

20 if Ftot(X
∗
k) < Gb do

21 Gb ← Ftot(X
∗
k);

22 Xb ← X∗
k;

23 end
24 end
25 end
26 end
27 Return Xb

TABLE I
Numerical values of the waypoints.

ℓ 1 2 3 4 5 6 7 8
-0.75 0.65 0.40 -0.15 0.65 -0.50 -0.60 0.25

pwp
ℓ 0.60 0.50 -0.40 0.25 -0.65 0.50 -0.60 0.25

0.50 0.25 .40 0.25 0.25 0.75 0.50 0.25
tℓ[s] 7.8 15.3 24 4.5 12.6 18 21 27

TABLE II
Numerical values of the bounds.

Trajectory vmax Tmin Tmax ϵ ωmax

Planning 0.5m/s 9.7m/s2 9.9m/s2 1.75◦ 1.5◦/s
Tracking 1m/s 0m/s2 10.5m/s2 7◦ 30◦/s

c2 = 1.5. To solve our optimization problem, we only
changed two values compared to [6]: the degree of the B-
spline function (4 instead of 5) and the number of control
points (20 instead of 41). Indeed, those modifications are

TABLE III
Numerical values of the weights for the cost functions.

γ0 γ1 γ2 γ3 γ4 γ5 γ6
1 1 4×104 40 8×104 5×103 5×104

also providing a feasible trajectory while leading to a
faster convergence time because it extends the influence
of each control point.

As there are random components in our algorithm, the
trajectories may slightly differ between successive runs.
As a consequence, we run our algorithm 100 times and
average the outputs of interest (e.g., computational time,
trajectory cost, maximal distance between waypoints and
the position at the desired time) in Table IV. The results
corresponding to one of the 100 simulations are shown
in Fig. 1 for the resulted trajectory and Fig. 2 for the
associated constraints. The average over 100 simulations
of the maximal distance between waypoints and the
position at the desired time is 0.28m with a standard
deviation of 0.07m.
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Fig. 1. Trajectories generated with the parameters in Table I.
We show the planned trajectory (continuous black) along with the
waypoints (red spheres) and the control points (dashed connected,
blue circles).

This average value may be decreased by increasing the
number of particles and iterations but the computation
time would increase as well, or by increasing the waypoint
criteria’s weight γ6 associated to (11g), but it would
give less relative importance to the other constraints.
Although the degree and the number of control points
are fewer in our implementation, notice that the ve-
locity, thrust, angle and angular velocity profiles are
very similar to the ones obtained by [6] (see Fig. 4,
Fig. 6). Moreover, our B-spline approach is giving the
opportunity to formulate additional constraints of any
type (in particular non convex constraints for obstacle
avoidance).

B. Experiment
The trajectory obtained with our PSO-spline approach

is followed by a nanodrone in our Esisarium platform.
To keep the comparison with [6], we used the same
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Fig. 2. Constraints satisfaction for the planned trajectory.

CBF-QP (Control Barrier Functions based Quadratic
Program) with δ = 0.1, a1 = 6 and a2 = 8, associated
to a LQR (Linear Quadratic Regulator) with Q =
diag(500I3, 250I3) and R = 10I3) to track the trajectory.
The following quadratic program (QP) is solved online
every 0.1s in order to restrict the tracking error on each
axis q ∈ {x, y, z} to [−δ,+δ]:

min
µ

∥Ψ(π(z))− µ∥22 (19)

s.t.
∣∣µq − q̈ref − a1(q̇ref − q̇)− a2(qref − q)

∣∣ ≤ a2δ
(20)

A video of the experiment is available at https://tinyurl.
com/icuas2024lcis. To avoid the observed ground effect,
we added an offset of 0.8m in the z-axis. To do so,
the trajectory that we obtained with our PSO-spline
approach (lasting 30s) is starting after a period of take
off (5s) and hovering (3s) and ending before a period of
hovering (3s) and landing (3s). The results during the
whole experiment are presented in the Fig. 3 to 7. We
marked in blue areas the added parts that are not the
focus of this paper and in red dashed lines the allowed
bounds for the experiments, listed in Table II. As all the
curves in Fig. 3 are positive between 8 and 38s, the actual
trajectory of our nanodrone is staying inside the corridor
of lower and upper margin δ = 0.1m centered in the
planned trajectory. We clearly see that the constraints
imposed on the position, thrust, roll angle, pitch angle,
velocity and angular velocities are satisfied in the Fig. 5,
6 and 7. The average of the distance between the actual
trajectory and the waypoints is 0.07m and the maximum
value is 0.17m. This result is satisfying the waypoint
constraint as all the distances are inferior to the limit
imposed of 0.3m. To conclude on the experiment, the
nanodrone has followed its trajectory while satisfying all
the constraints of the scenario.

V. Conclusion
This paper presented a PSO-spline approach to solve

a constrained optimisation problem for a quadcopter
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Fig. 3. Experiment: Tracking performance on each axis.
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trajectory generation. Using the benefits of B-spline
properties, various constraints such as position, velocity,
angles, angular velocities, thrust and waypoint passing
are expressed and converted into penalties added to
the cost function corresponding to the input effort.
The capability of the provided algorithm compared to
traditional solvers lies in the fact that there is no
restriction to formulate the constraints and that the user
is able to tune the parameters to give more importance
to a given criteria by refining the weights associated to
each penalty. Furthermore, the user is able to tilt the
balance between fast computational time and optimality

TABLE IV
Simulations parameters and computational analysis associated

(mean over 100 simulations).

niter npart n Penalty Time [s]
200 500 20 3.81× 104 28.0
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of the solution by playing with the number of particles
and iterations. The paper also provided experimental
results with a video to confirm that the scenario has
been satisfied with a nanodrone tracking the planned
trajectory in our indoor platform.

Future work concentrates on adding obstacle avoid-
ance constraints, as well as generating trajectories for a
group of quadcopters taking into account communication
constraints while ensuring a certain formation configu-
ration.

Appendix I
A less conservative expression for the angular constraint

These constraints
∥Aϵr̈(t)∥2 ≤ z⊤w r̈(t) + g (21)

are expressed in terms of control points in [6] as∥∥∥AϵP̈k

∥∥∥
2
≤ z⊤wP̈k + g ∀k = 0, . . . , n− 3, (22)

where1 Aϵ = diag(cot ϵ, cot ϵ, 0) and g is the gravitational
acceleration. A less conservative expression is obtained
if we replace in (21) the term r̈(t) with its corresponding
B-spline curve representation∥∥∥∥∥Aϵ

n−3∑
k=0

P̈kBk,d−2,ξ(t)

∥∥∥∥∥
2

≤ z⊤w

n−3∑
k=0

P̈kBk,d−2,ξ(t) + g,

(23)
which, after squaring and regrouping the lhs and rhs
terms, leads to

cot2 ϵ

n−3∑
k=0

n−3∑
i=0

P̈⊤
i P̈kBk,d−2,ξ(t)Bi,d−2,ξ(t)

≤ (1 + cot2 ϵ)

n−3∑
k=0

n−3∑
i=0

P̈⊤
i zwz

⊤
wP̈kBk,d−2,ξ(t)Bi,d−2,ξ(t)

+ 2gz⊤w

n−3∑
k=0

P̈kBk,d−2,ξ(t) + g2. (24)

Next, using the unit partitioning property we may group
the rhs of (24) to arrive at

cot2 ϵ

n−3∑
k=0

n−3∑
i=0

P̈⊤
i P̈kBk,d−2,ξ(t)Bi,d−2,ξ(t)

≤
n−3∑
k=0

n−3∑
i=0

[
(1 + cot2 ϵ)P̈⊤

i zwz
⊤
wP̈k

+ 2gz⊤wP̈k + g2
]
Bk,d−2,ξ(t)Bi,d−2,ξ(t) (25)

which, with notation (12), may be written compactly as
n−3∑
k=0

n−3∑
i=0

G(ϵ, i, k,P)Bk,d−2,ξ(t)Bi,d−2,ξ(t) ≤ 0. (26)

Since the B-spline basis functions are positive (as per
Property P2)), a sufficient condition for (21) to hold is
that

G(ϵ, i, k,P) ≤ 0, ∀i, k = 0, . . . , n− 3. (27)
1cot is the notation for the cotangent



Appendix II
A less conservative expression

for the angular velocity constraint
The angular velocity constraints are expressed in terms

of control points in [6] as
z⊤wP̈k ≥ ζℓ−d+1 − g, ∀k = ℓ− d+ 2, . . . , ℓ, (28a)∥∥ ...
Pk

∥∥
2
≤ ζℓ−d+1ωmax, ∀k = ℓ− d+ 3, . . . , ℓ. (28b)

with ζ1, . . . , ζn−d+1 positive constants. A less conserva-
tive expression is obtained with the following steps:

Recall the initial inequality from [6]

∥hω∥2 ≤
∥ ...
r (t)∥2
T (t)

=
∥ ...
r (t)∥2

∥r̈(t) + zwg∥2
≤ ωmax, (29)

where, since all terms are positive, we may put it into
form

∥ ...
r (t)∥22 ≤ ω

2
max ∥r̈(t) + zwg∥22 . (30)

Replacing with the B-spline curves associated with
r̈(t),

...
r (t) we arrive at∥∥ ...
PBd−3,ξ(t)

∥∥2
2
≤ ω2

max

∥∥∥P̈Bd−2,ξ(t) + zwg
∥∥∥2
2
. (31)

Further applying the partition of unity property P2), we
have∥∥ ...
PBd−3,ξ(t)

∥∥2
2
≤ ω2

max

∥∥∥(P̈+ zwg11×(n−1)

)
Bd−2,ξ(t)

∥∥∥2
2

(32)
Since the lhs and lrs of (32) have different orders of the

B-splines (d− 3 and, respectively, d− 2), we analyze the
inequality over each knot vector sub-interval and make
use of property P5) which allows to express any d− 3 -
order B-spline curve in terms of d − 2 - order B-spline
functions:

...
PBd−3,ξ(t) =

...
PD

ℓ
d−3,d−2Bd−2,ξ(t). (33)

Thus, on each knot sub-interval ℓ, the following relation
holds∥∥∥ ...

PD
ℓ
d−3,d−2Bd−2,ξ(t)

∥∥∥2
2

≤ ω2
max

∥∥∥(P̈+ zwg11×(n−1)

)
Bd−2,ξ(t)

∥∥∥2
2
. (34)

Via the local support property P1), (34) simplifies to
involve only the non-zero (on the ℓ-th sub-interval basis
functions):∥∥∥∥∥

ℓ+d∑
k=ℓ+d−2

(
...
PD

ℓ
d−3,d−2)kBk,d−2,ξ(t)

∥∥∥∥∥
2

2

≤ ω2
max

∥∥∥∥∥
ℓ+d∑

k=ℓ+d−2

(
P̈k + zwg

)
Bk,d−2,ξ

∥∥∥∥∥
2

2

. (35)

With notation (13), (35) becomes
ℓ+d∑

k=ℓ+d−2

ℓ+d∑
i=ℓ+d−2

S(ℓ, i, k,P)B⊤
i,d−2,ξ(t)Bk,d−2,ξ(t) ≤ 0.

(36)

Since the B-spline basis functions are positive (as per
property P2)), a sufficient condition for (29) to hold on
the sub-interval [τℓ, τℓ+1) is that

S(ℓ, i, k,P) ≤ 0, ∀i, k = ℓ+ d− 2, . . . , ℓ+ d. (37)
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