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Figure 7. Experimental setup used. Simulated follower visualization through
the VTK environment using the physical leader side of the STRAS robotic
system.

γ are set as in Table I. When the arm is in an unsafe position

the values of γ3 and γ4 are increased to 0.15; and γ1,γ2 are

decreased to 0.4 and 0.3 in order to return the arm into the

safe zone. Safe image bounds in the image λ+,−
x and λ+,−

y are

set by the normalized coordinates of the screen from 0.1 to

0.9 in both coordinated axes, with a 1920x1080 px resolution.

The bounds λ−,+
trans are set within the 0-72mm range of motion

for the arms.

Table I
PARAMETERS USED IN THE EXPERIMENTAL SETUP. VALUES OF THE

WEIGHTS γ AND THE PROPORTIONAL GAINS k FOR EACH OBJECTIVE

ACTIVE DURING SEMI-AUTONOMOUS CONTROL MODE.

Variable γ1 γ2 γ3 γ4 k1,2,3,4

Value 0.5 0.4 0.05 0.05 0.25

B. Experimental task

A trial consists of the user sequentially reaching the three

targets wp
l
d, wp

r
d1 and wp

r
d2, which emulates the dissection

stage of ESD, as described in Section III.

Starting from a given reference position, the user first

reaches target wp
l
d with the non-dominant arm. This first stage,

which will be referred to as Segment I in the following,

simulates tissue grabbing. It is considered successful when the

user keeps the non-dominant arm tip within a ball of radius

3 mm centred on wp
l
d for two seconds. Deviating too far from

wp
l
d resets the timer to 0.

Segment II of the experiment simulates the dissection. The

user is required to reach wp
r
d1 and wp

r
d2 with the dominant arm

while staying on wp
l
d with the non-dominant arm. Similarly

to Segment I, a 2s threshold is used to validate a target being

reached. In practice, wp
r
d1 is displayed when Segment I is

finished, and wp
r
d2 is displayed only when wp

r
d1 is validated. If

the user deviates significantly (more than 5mm) from wp
l
d , the

user will need to reach wp
l
d again and stay for two seconds

before being able to validate the current target (wp
r
d1 or wp

r
d2 ).

Once the sequence of three targets is fulfilled, the trial

is considered finished. New positions of the three targets

are then randomly drawn to start a new trial. Positions are

uniformly randomly generated, such that reaching target wp
l
d

by the dominant arm and reaching wp
r
d1 by the non-dominant

arm require moving the body. Reaching target wp
r
d1 could be

within reach of the dominant arm or require moving the body,

depending on the current body position. The positions mimic

the difficulty of performing real dissection during an ESD.

C. Protocol

The experimental protocol is constructed to last between 30

and 40 minutes. The user is first introduced to the platform,

task, and control modes for 5-10 minutes, and then performs

a 15 minutes training. During this training time, the user

receives instructions regarding the manual teleoperation and

semi-autonomous control mode, as well as specific instructions

to perform the task correctly. The user is also instructed to

perform smooth and effective movements, avoiding abrupt

changes of direction and/or speed that could be detrimental

to the patient in the real surgical scenario. Furthermore, the

user is instructed to avoid placing the tools out of sight or

too close to the camera. The user then performs as many

trials as possible during the 15 minutes training time, with

the possibility to ask questions to the investigator.

During the experiments, after the training stage has been

finished, the user alternates 5 trials with the semi-autonomous

arm-body control mode and 5 trials with the manual telema-

nipulation mode (using the same target positions in both) until

the time (10 minutes) runs out, without any interference from

the investigator.

After the experiment is finished, the user fills out a NASA

TLX [32] questionnaire. The NASA TLX questionnaire eval-

uates the subjective opinion of users for both control modes.

Afterwards, the user is asked for a general opinion of both

control modes and is allowed to give feedback for further

improvement of the setup or the proposed control mode.

D. Quantitative evaluation metrics

Three categories of performance metrics are considered:

time, kinematics and surgical task. Metrics are adapted from

[33], [34] considering the architecture of the FSIR platforms,

especially the STRAS system.

The time performance metrics measure the raw duration

of Segment I TsI , of Segment II TsII , and of the complete
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trial Ts. Kinematic metrics measure how the STRAS system is

controlled. For the kinematics category, the first set of metrics

relates to body movements. A body movement starts when the

speed ‖q̇e ‖ goes from 0 to a positive value and stops when

‖q̇e ‖ < ǫ, with ǫ denoting a small body motion threshold.

Nmvt
b measures the number of independent movements of

the body per trial. Tmvt
b,sI measures the total duration of body

movements in Segment I (respectively Tmvt
b,sII for Segment

II) and Tmvt
b during the complete trial. The total travelled

distance by the body for the complete trial is measured by

db. Finally, fb = Nmvt
b /Tmvt

b is the frequency of body

movements (i.e. number of body movements per second)

during a given trial. T idle
b is the amount of time the body

is idle (i.e. ‖q̇e ‖ < ǫ). Similarly, dl and fl measure the total

distance travelled and frequency of movements of the non-

dominant arm. Such metrics are not computed for the dom-

inant arm, because the triggering of body movements during

semi-autonomous arm-body control mode would interfere and

not provide meaningful output.

A second set of metrics relates to the smoothness of the

movements. We use the spectral arc length w to quantify the

smoothness [35], which was shown to be correlated with sur-

gical skill and smooth operation [36] and was used in several

studies with similar design [37]. We compute the smoothness

wb,sII of the body (resp. wl,sII of the non-dominant arm)

during Segment II. Note here that the numbers we compute are

the opposite of the number computed classically and defined

in [35]. This operation is done to obtain a positive number

which increases as the smoothness diminishes (i.e. the lower

the better, as for most of the other metrics, aside from the

T idle
b and Nmvt

b ). Again, metrics relating to the dominant arm

are not considered for the reasons exposed above.

Surgical performance metrics measure how well the surgical

task was performed. The distance between the non-dominant

arm and its objective wp
l
d at a given time t is given by:

dl (t) =
∥

∥

wp
l
d −w pl(t)

∥

∥

2
(25)

and should be maintained to the minimum during Segment II.

Since deviating too much from wp
l
d will require to perform

extra surgical gestures, the maximum recorded distance for

each trial is of interest. Maximum recorded distance is set as:

dmax = max
t=t1..t2

dl(t), (26)

where t1 and t2 are the starting and ending times of Segment

II for a given trial, respectively. Tv , measures the time extent

during which the non-dominant arm is deviating from wp
l
d

during Segment II:

Tv =

∫ t2

t1

(dl (t) > dthr) dt, (27)

where dthr is a distance threshold set to 5 mm. Finally, we

measure the time during which the arms are outside of the

field of view during a trial by Tr,o and Tl,o for the dominant

and non-dominant arms respectively.

VI. RESULTS

After obtaining the ethical approval from our competent

local notified body (Comité d’Ethique de la Recherche from

Table II
SUMMARY OF THE RESULTS OF THE EXPERIMENTS. THE EXPERIMENTS

COMPARE THE MANUAL (MAN) AND SEMI-AUTONOMOUS (SEM) MODES

IN A MULTIPLE-REACHING TASK. METRICS ARE SEPARATED BY DASHED

LINES, FIRST GROUP OF METRICS ARE TIME-RELATED, FOLLOWED BY

KINEMATIC AND SURGICAL TASK METRICS. STATISTICALLY SIGNIFICANT

DIFFERENCES WHERE SEMI-AUTONOMOUS ARM-BODY CONTROL MODE

OUTPERFORMS MANUAL MODE ARE MARKED WITH ‘*’ (p ≤ 0.05).
P-VALUES MARKED WITH ⊳ (p ≥ 0.95) INDICATE THAT MANUAL MODE

OUTPERFORMS SEMI-AUTONOMOUS ARM-BODY CONTROL MODE.

metric Aw
p-

value

median

MAN

IQR

MAN

median

SEM

IQR

SEM

Ts small 1.0000⊳ 25.23 17.22 31.00 21.69

TsI small 0.9924⊳ 16.78 8.40 18.18 12.34

TsII small 1.0000⊳ 7.58 5.45 11.43 13.56

Nmvt
b small 0.0000* 2.00 6.50 2.00 2.00

db small 1.0000⊳ 46.36 29.60 57.71 39.89

fb small 0.0000* 0.19 0.33 0.00 0.16

Tmvt
b small 0.9260 4.01 5.81 4.12 6.14

Tmvt
b,sI small 0.4977 1.47 3.26 0.00 3.36

Tmvt
b,sII small 0.9334 1.92 2.42 2.12 2.64

T idle
b small 1.0000⊳ 22.04 14.60 25.02 21.85

dl small 1.0000⊳ 12.37 8.57 14.88 10.87

fl small 0.9016 0.83 0.85 1.03 0.99

Tmvt
l large 0.0000* 40.00 34.50 4.00 6.25

wl,sII mod. 0.0078* 8.46 15.69 4.59 7.95

wb,sII mod. 0.0091* 5.54 12.39 4.03 3.18

Tv large 0.0000* 3.30 5.25 0.00 0.00

dmax large 0.0000* 7.17 9.45 1.65 1.34

Tr,o small 0.1435 0.00 0.10 0.00 0.00

Tl,o small 0.8435 0.00 0.00 0.00 0.00

University of Strasbourg, agreement CER 2022-56) the exper-

imental protocol was tested with a group of eight users. All

users were novice users in the sense that they had no prior

experience with an FSIR system or with ESD surgery. Two

users had clinical background.

Preliminary experiments showed a non-gaussian distribu-

tion for most cases. Therefore, we report the median and

interquartile range (IQR) of each metric per control mode.

For the same reason, statistical significance was analyzed

using a one-sided Wilcoxon signed-rank test, with the null

hypothesis being that the medians of both modes are equal and

the alternate hypothesis being that the median of the manual

mode is greater than that of the semi-autonomous arm-body

control mode. In this context, a p-value of p < 0.05 indicates

a statistically significant advantage of the semi-autonomous

arm-body control mode for a given metric (i.e. smaller value

in the proposed approach). Alternatively, if p > 0.95, the

manual mode is statistically significantly better. The p-value

is an indicator of statistically significant differences between

two distributions, but does not say anything about the size of

the difference. In order to quantify this, we report the effect

size using the non-parametric estimator for common language

effect size Aw [38], which is an effect size metric adapted

to non-parametric distributions. Values of 0.56, 0.64, 0.71
depict small, moderate and large effect sizes, respectively [39].
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of the physical system [30]. Translating our proposed approach

on the physical system suffers from one major hurdle: state

estimation of the robot follower, which is impacted by non-

linear frictional and backlash behaviour as well as by forces on

the arms when interacting with the tissue. This problem could

be tackled using endoscopic vision as a sensing input. When

coupled with the model of the robotic system, it was shown to

be sufficient for state/shape detection using marker-based [44],

[45] or markerless [46] solutions. To enhance the robustness of

the controller, coupling such vision-based approaches with our

proposed semi-autonomous control approaches would likely

require reformulating some of the objectives in the image

space, using visual servo control. Such developments are

beyond the scope of the present study.

Fourth, one should note that our results show an im-

provement in the kinematic (smoothness of movements) and

task-related metrics (performing the reaching tasks with the

dominant arm without violating the positional task –traction–

on the non-dominant arm) with the proposed control mode,

but with longer operating times. This increase in duration is

potentially linked to the limited duration of the experiments.

Users spend 40 minutes –at most– to get familiar with the

platform, receive instructions, and perform the training and

the experiments. We decided for such a short duration due

to the availability of users and to avoid stress and/or fatigue.

During this short period reaching a plateau in the learning

curve [47] is challenging [48], and duration is not expected to

be heavily improved –similarly to experiments in laparoscopy

[49]. In fact, in laparoscopic robotic surgery learning curves

are reported to be between 20 and 40 cases [50], [51]. Future

work could involve a longitudinal study [52] with more users

under the simulated scenario and the usage of the physical

STRAS system, as to validate the gained skills and the fidelity

of the proposed simulation with novice users. It would also

be interesting to evaluate the proposed control approach with

both novice and expert users.

Finally, one should also note that our study specifically

focused on the STRAS system for practical reasons (the leader

and follower systems being available for testing in our lab).

The tree-like architecture of the STRAS system is however

common to many FSIR platforms [5], [8], [26]. Therefore,

results are very likely to transfer easily to such platforms.

The same limitation could be formulated for the specific

dissection stage considered in this work. Dissection being the

most difficult part of one of the main procedures targeted by

FSIR platforms, it is natural to focus on it. The proposed

control formulation, however, could be extended beyond ESD

and dissection, since many surgical scenarios feature grasping

[17], tissue tensioning [16], and body or camera movements.

Future work could therefore consider extending our proposed

approach to multi-arm continuum robotic structures for uro-

logy [53], fetal [7], or brain surgery [54].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a semi-autonomous control

approach for handling the complex multi-DOF coordination

required to perform ESD using FSIR. This task is particularly

challenging, as it requires performing movements with the

arms while considering the coupled arm-body relationship

of FSIR platforms. Our proposed control approach leaves

the user free to focus on fulfilling the task, while body

repositioning movements are handled automatically by a QP-

based controller. The controller is formulated by considering

specific features of the task itself. Specifically, we keep one

or both arms static with respect to the surgical targets while

moving the body, depending on the surgical step being per-

formed, which is extremely complex to achieve using manual

telemanipulation.

The approach has been validated in a simulated environ-

ment using the STRAS system, showing a strong increase in

performance of the surgical task at the expense of a slight

increase in time. Validation tests with the physical STRAS

system will be performed in future work.
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