
HAL Id: hal-04544498
https://hal.science/hal-04544498v3

Preprint submitted on 18 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strengthened injectivity radius bounds for manifolds
with positive scalar curvature

Thomas Richard

To cite this version:
Thomas Richard. Strengthened injectivity radius bounds for manifolds with positive scalar curvature.
2024. �hal-04544498v3�

https://hal.science/hal-04544498v3
https://hal.archives-ouvertes.fr


STRENGTHENED INJECTIVITY RADIUS BOUNDS FOR

MANIFOLDS WITH POSITIVE SCALAR CURVATURE

THOMAS RICHARD

Abstract. Green’s inequality shows that a compact Riemannian man-
ifold with scalar curvature at least n(n−1) has injectivity radius at most
π, and that equality is achieved only for the radius 1 sphere. In this work
we show how extra topological assumptions can lead to stronger upper
bounds. The topologies we consider are S2 × Tn−k−2 × Rk for n ≤ 7
and 0 ≤ k ≤ 2 and 3-manifolds with positive scalar curvature except
lens spaces L(p, q) with p odd. We also prove a strengthened inequality
for 3-manifolds with positive scalar curvature and large diameter. Our
proof uses previous results of Gromov and Zhu.

In stark contrast with positive lower bounds on the sectional or Ricci cur-
vature, positive scalar curvature doesn’t provide any control on the volume
or diameter of a Riemannian manifold (Mn, g) of dimension at least 3 as is
already clear by considering product metrics on S2 × T1. However in 1963,
Leon Green proved the following result:

Theorem 0.1. [Gre63] Let (Mn, g) be a complete manifold with finite vol-
ume and Ricci curvature bounded from below. Assume

s̄ =
1

vol(Mn, g)

ˆ
M

scalg dvg > 0.

Then the conjugacy radius of (Mn, g) satisfies

conj(Mn, g) ≤ π

√
n(n− 1)

s̄
.

Moreover, if equality is achieved then (Mn, g) has constant sectional curva-
ture metric.

Since the injectivity radius is smaller than the conjugate radius and the
round sphere is the only spherical space form with injectivity radius π, a
straightforward corollary is:

Corollary 0.2. If a compact manifold (Mn, g) has scalg ≥ n(n − 1), then
injg ≤ π. Moreover if equality is achieved then (Mn, g) is isometric to the
round sphere.

As with other sharp geometric inequalities, it is natural to ask if some
form of stability occurs:

Question 0.3. If a compact (Mn, g) has scalg ≥ n(n − 1) and injectivity
radius close to π, is it close to the round sphere in some sense ?

A more precise (and less ambitious) version of this question is to look for
a purely topological answer:
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Question 0.4. If a compact (Mn, g) has scalg ≥ n(n − 1) and injectivity
radius close to π, is it homeomorphic to the sphere ?

Some progress has been made in this direction by Tuschmann andWiemeler
in [TW19] under additional Ricci curvature and volume bounds.

Another way to look at this problem is to ask to ask for a strenghening
of Green’s inequality in a given non trivial topological context, namely:

Question 0.5. Given a smooth n-manifold Mn which is not homeomorphic
to Sn and a metric g on Mn with scalg ≥ n(n−1), can one find ι = ι(Mn) <
π such that injg ≤ ι ?

To the knowledge of the author, the only known result of this kind follows
from [BBEN10], though the authors didn’t phrase it in this way, where it
is shown that if (RP3, g) has scalg ≥ 6 then its 1-systole is at most π and
hence its injectivity radius is at most π/2. Gromov’s [Gro23b] also contains
related conjecture and partial results.

To get a better feel of the problem we compile here the scalar curvature
and injectivity radius of some classical examples built from rank one sym-
metric spaces and products in Table 1, together with what the injectivity
radius would be after rescaling to have the same scalar curvature as the
sphere.

Manifold (Mn, g) scalg injg

√
scalg

n(n−1) injg
Sn n(n− 1) π π

Sn−1 × T1 (n− 1)(n− 2) π
√

n−2
n π

Sn−2 × S2, n ≥ 4 n2 − 5n+ 10 π
√

n2−5n+10
n(n−1) π

RPn n(n− 1) π/2 π
2

S2 × Tn−2 2 π
√

2
n(n−1)π(

S2
)n/2

, n even 2n π
√

2
n−1π

CPn/2, n even n(n+ 2) π/2
√

n+2
n−1

π
2

HPn/4, n ≡ 0 [4] n(n+ 8) π/2
√

n+8
n−1

π
2

OP2, n = 16 576 π/2
√

12
5

π
2

Table 1. Injectivity radius of some classical examples of n-
manifolds.

Of all the examples we have tested, Sn−1×T1 always achieves the biggest
injectivity radius for a given scalar curvature bound for a given n, though in
dimension 4 it is tied with the Fubini-Study metric on CP2. For instance in
dimension 3, this gives an example of manifold non homeomorphic to S2×T1

with a product metric of scalar curvature 6 has injectivity radius π/
√
3.

We here prove some results in this direction.
In dimension 3 we get:

Theorem 0.6. Let (M3, g) be a compact 3-manifold with scalg ≥ 6 and
injg > 2π

3 , then M3 is diffeomorphic to a lens space L(p, q) with p odd.
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Recall that the lens space L(p, q) (defined for coprime integers p and q)
is the quotient of S3 ⊂ C2 by the action of Z/pZ generated by the diffeo-
morphism:

(0.1) (z, w) 7→
(
e
i
2π
p z, e

i
2πq
p w

)
.

The occurence of the odd lens spaces in the conclusion of the theorem is
probably not necessary and one could hope to conclude that Mn is actually
diffeomorphic to S3.

Compactness of M is actually not necessary since we will also show:

Theorem 0.7. Let (M3, g) be a complete non-compact 3-manifold with
scalg ≥ 6, then injg ≤ 2π

3 .

Note that since no volume assumption is made, Green’s upper bound of π
does not apply here. However Gromov indicates in [Gro23b] that a (possibly
huge) upper bound can be derived for complete n-manifolds with uniformly
positive scalar curvature with n ≤ 5 by quantifying the contractibility argu-
ment in [CL23].

The proof of Theorem 0.7 can be adapted to yield an improvement of
Green’s bound for manifolds with big diameter. For convenience we set:

D̄ : (2π/3, π) → R

r 7→ 2r +
2π

3
√
1− 4π2

9r2

.

and include a plot of D̄ as Figure 1.

Theorem 0.8. Let (M3, g) be a compact Riemannian 3-manifold with scalg ≥
6 and let r ∈ (2π3 , π). If:

diam(M3, g) > D̄(r),

then:

injg ≤ r.

Since

D̄(r)
r→2π/3−−−−−→ +∞,

one consequence of this result is that a manifold (M3, g) with scalg ≥ 6 and
very big diameter cannot have injectivity radius much bigger than 2π

3 . On
the other hand the smallest diameter for which the theorem applies can be
found by minimizing D̄ on (2π/3, π). Unfortunately studying the sign of D̄′

leads to a cubic equation in r whose solutions are not pretty. However this
minimum of D̄ is close to r = 5π

6 for which we get D̄(r) = 25π
9 . Hence we

have that if (M3, g) has scalg ≥ 6 and diam(M3, g) > 25π
9 ≃ 2.777π then

injg ≤ 5π
6 ≃ 0.833π. Numerically D̄ attains its minimum of approximately

2.775π at r ≃ 0.851π.
Note that given our previous result, this last theorem is only interesting

if M3 is an odd-order lens space, otherwise Theorem 0.6 gives a better
estimate.

In dimension less than 7 we obtain:
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Figure 1. Plot of D̄ on (2π/3, π).

Theorem 0.9. Let 3 ≤ n ≤ 7, k ∈ {0, 1, 2} and let Mn be a manifold
such that there exists a proper map F : Mn → S2 × Tn−k−2 × Rk, of non-
vanishing degree. Let g be a complete metric on Mn with scalg ≥ n(n− 1),
then injg ≤ 2π

n .

For k = 0, this result can be found in [Gro23b, 1.1 (b)] at least if Mn is
assumed to be homeomorphic to a product S2 × Tn−2, however the proof is
only sketched so we include it here.

When k is not 0, we say that F : Mn → S2 × Tn−k−2 × Rk has non-
vanishing degree if the induced map on compactly supported n-dimensional
de Rahm cohomology F ∗ : Hn

c (S2 × Tn−k−2 × Rk) → Hn
c (M

n) is not zero.
Both proofs use a Bonnet-Myers type inequality by Gromov for Tn−2-

invariant positive scalar curvature metrics on S2×Tn−2. In dimension 3, this
inequality is used to give a diameter estimate for stable immersed minimal
spheres. In higher dimension, we use a construction by Zhu [Zhu20]. Our
quantitative result (Theorem 0.8) and our results for complete non compact
manifolds (Theorem 0.7 and Theorem 0.9 for k ̸= 0) rely on the use of
Gromov’s µ-bubbles (see Theorem 1.2).

It is at present unclear if this 2π
n bound is optimal, it obtained by the diam-

eter estimate from Theorem 2.2. One could believe that suitably rescaled
product metrics on S2 × Tn−2 are optimal: these have injectivity radius√

2
n(n−1)π. However we show in our appendix that product metrics are not

optimal for Gromov’s Bonnet-Myers type inequality, which shows that our
method of proof cannot be used to yield optimality of products if it holds, we
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also explain in the appendix why this doesn’t rule out optimality of products
for Theorem 0.9.

We now outline the rest of the paper. In section 1 we state the sym-
metrization results by Gromov and Zhu that we will need, in section 2 we
spend some time discussing Gromov’s toroidal band inequality and Bonnet-
Myers type inequality, in section 3 we prove Theorem 0.9 for k = 0, in sec-
tion 4 we prove Theorem 0.6 and explain why it is not obvious to strengthen
Theorem 0.6 by removing the remaining lens spaces from its conclusion. We
then treat the case of 3-manifolds with big diameter in section 5 and the case
of open 3-manifolds in section 5 section 6. Theorem 0.9 for k ̸= 0 is treated
in section 7. The non optimality of products for Gromov’s Theorem 2.2 is
proved in Appendix A.

Acknowledgment. This work was carried out during the author’s stay at
PIMS-CNRS IRL. I thank W. Tuschmann for telling me about Question 0.4
and L. Bessières and A. Fraser for useful discussions.

1. Gromov’s and Zhu’s symmetrizations

We state two symmetrization results based on the stable minimal hy-
persurface method. The first is Zhu’s construction, which is an elegant
application of Fischer-Colbrie–Schoen symmetrization to S2 × Tn−2.

Theorem 1.1. [Zhu20, Prop. 2.2] Let 3 ≤ n ≤ 7 and let Mn such that there
exists a non-zero degree map F : Mn → S2 × Tn−2. Let g be a riemannian
metric on Mn such that scalg ≥ n(n−1), then there exists a genus 0 surface
Σ2 ⊂ Mn such that:

•
´
Σ F ∗σ ̸= 0 where σ is the fundamental cohomology class of S2 ⊂
S2 × Tn−2.

• there are n − 2 smooth positive functions f1, . . . , fn−2 : Σ2 → R
such that Σ2 ×Tn−2 endowed with the metric g̃ = g|Σ +

∑n−2
i=1 f2

i dθ
2
i

satisfies scalg̃ ≥ n(n− 1).

Σ is such that there exists nested k-dimensional submanifolds Mk for
2 ≤ k ≤ n with:

• Σ2 = M2 ⊂ M3 ⊂ · · · ⊂ Mn = M ,
• Mk−1 × Tn−k is a stable minimal surface in (Mk × Tn−k, g|Mk

+∑n−k
i=1 f2

i,kdθ
2
i ) for some positive smooth functions fi,k : Mk → R.

• If πk denotes the projection S2 × Tn−2 → S2 × Tk−2 then Fk =
πk ◦ F|Mk

: Mk → S2 × Tk−2 has non zero degree.
• Mk−1 ⊂ Mk is Poincaré dual to F ∗

k dθk where θk is a coordinate on

the last factor of S2 × Tk−2

Moreover, each metric g|Mk
+
∑n−k

i=1 f2
i,kdθ

2
i has scalar curvature at least

n(n− 1).
We now state a symmetrization theorem obtained by Gromov using µ-

bubbles for manifolds with positive scalar curvature with two well separated
boundary components.
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Theorem 1.2. [Gro23a, Section 3.7] Let (Mn, ∂±, g) (n ≤ 7) be a Riemann-
ian band. Assume that

scalg ≥ 4(n− 1)π2

ndg(∂−, ∂+)2
+ δ

for some δ > 0. Then there exists

• an hypersurface Σ which separates ∂− and ∂+,
• a positive function u : Σ → R,

such that the metric h = g|Σ + u2dt2 on Σ× R has scalh ≥ δ.

2. Gromov’s toroidal band inequality and stabilized
Bonnet–Myers theorem

We first present Gromov’s inequality on positive scalar curvature metrics
on [−1, 1]× Tn−1 :

Theorem 2.1. Let n ≥ 2 and g be a metric on [−1, 1]× Tn−1 with scalg ≥
n(n− 1) then:

dg
(
{−1} × Tn−1, {+1} × Tn−1

)
≤ 2π

n

Note that if dx2 is a flat metric on Tn−1 then the metric dt2+
(
cos nt

2

)4/n
dx2

on (−π
n ,

π
n)×Tn−1 has constant scalar curvature equal to n(n− 1) while its

boundary components are 2π
n apart, hence the inequality is optimal.

This inequality was first proved in dimension n ≤ 7 using the stable hy-
persurface method and Fischer-Colbrie–Schoen symmetrization in [Gro18],
and was subsequently expanded to higher dimension by Cecchini [Cec20] us-
ing Dirac operators methods. It can also be proved using µ-bubbles, which
was Gromov’s original use of Theorem 1.2. For an in-depth discussion of this
inequality and its various generalizations, see sections 3.6 to 3.8 of [Gro23a].

We now state (and prove for convenience of the reader) Gromov’s Bonnet-
Myers theorem on Tn−2-invariant positive scalar curvature metrics on S2 ×
Tn−2 and make some remarks on its optimality.

Theorem 2.2 ([Gro23a, 2.8]). Let g be a metric on S2 and f1, . . . , fn−2 :

S2 → R be smooth positive functions such that the metric g̃ = g+
∑n−2

i=1 f2
i dθ

2
i

on S2 × Tn−2 has scalg̃ ≥ n(n− 1). Then:

diam(S2, g) ≤ 2π

n
.

Proof. Consider two points p−, p+ ∈ S2 such that dg(p−, p+) = diam(S2, g)
and set B+ = Bg(p+, ε) and B− = Bg(p−, ε) for some positive ε less than
half the diameter.

Set Mn = S2\(B+ ∪ B−) × Tn−2. Since S2\(B+ ∪ B−) is diffeomorphic
to [−1, 1]× T1, Mn is diffeomorphic to [−1, 1]× Tn−1, where the boundary
component {±1}×Tn−1 corresponds to C± ×Tn−2 (where C± = ∂B±). By
assumption (Mn, g̃) has scalg̃ ≥ n(n− 1) hence Theorem 2.1 gives that:

dg̃(C− × Tn−2, C+ × Tn−2) ≤ 2π

n
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We have that dg̃(C− × Tn−2, C+ × Tn−2) = dg(C−, C+). To see this
consider points x± ∈ C± × Tn−2 and any curve c : [a, b] → Mn from x− to
x+ and write it as c = (γ, θ1, . . . , θn−2) where γ : [a, b] → S2\(B+ ∪ B−),
then estimate the length of c by:

Lg̃(c) =

ˆ b

a

√√√√g(γ̇, γ̇) +
n−2∑
i=1

(fi ◦ γ)2θ̇2i dt

≥
ˆ b

a

√
g(γ̇, γ̇)dt = Lg(γ)

which shows after taking infimums that

dg(C−, C+) ≤ dg̃
(
C− × Tn−2, C− × Tn−2

)
.

Equality follows from taking c with S2 component a minimizing geodesic
and constant Tn−2 component.

This shows that diam(S2, g)−2ε = dg(C−, C+) ≤ 2π
n for any small enough

ε, hence the Theorem is proved. □

The optimality of this inequality is an open problem. Note that the
product of a round metric on S2 and a flat metric on Tn−2 gives a diameter
for S of π√

n(n−1)
. If one looks at the optimal example for Theorem 2.1, a

candidate for an optimal g on S2 would be g = dr2 + f(r)2dϕ2 where (r, ϕ)

denote latitude and longitude on the sphere and f(r) =
(
cos nt

2

)2/n
, which is

badly singular at the north and south pole: for instance while g has positive
Gauss curvature Kg outside of the poles, it can be seen that Kg blows up in
a non integrable fashion at the poles, hence the underlying distance cannot
be approximated uniformly by positive Gauss curvature metrics. Moreover,
the corresponding metric on S2 ×Tn−2 would be g̃ = g + f(r)2dx2 for some
flat metric on Tn−2, which completely shrinks the Tn−2 fibers above the
poles of S2.

To get a genuine near optimal example from this, one should desingularize
this metric dr2 + f(r)2dϕ2 + f(r)2dx2 into some metric dr2 + a(r)2dϕ2 +
b(r)2dx2 with:

• a, b : [−π
n + δ, πn − δ] → R,

• b > 0,
• b′(−π

n + δ) = b′(πn − δ) = 0
• a > 0 on (−π

n + δ, πn − δ),
• a(−π

n + δ) = a(πn − δ) = 0,
• a′(−π

n + δ) = 1, a′(πn − δ) = −1,
• scal ≥ n(n− 1).

My attempts to do so were inconclusive, however I managed to show that
product metrics are not optimal, the details are included in the appendix.

3. Injectivity radius bound for S2 × Tn−2

We now prove Theorem 0.9 for k = 0.



8 THOMAS RICHARD

Proof. Let Mn be an n-manifold with a nonvanishing degree map Mn →
S2 × Tn−2 endowed with a metric g with scalg ≥ n(n − 1). We use Theo-
rem 1.1 to get an homologically non-trivial Σ2 ⊂ Mn and positive smooth
functions f1, f2, . . . , fn−2 such that Σ2 × Tn−2 endowed with the metric
g̃ = g|Σ +

∑n−2
i=1 f2

i dθ
2
i satisfies scalg̃ ≥ n(n − 1). Note that since (Σ2, g|Σ2)

is isometrically immersed in (Mn), the extrinsic diameter of Σ2 as a sub-
set of (Mn, g) denoted by diamg(Σ

2) is smaller than its intrinsic diameter
diamg|Σ2 (Σ

2). In short:

(3.1) diamg(Σ
2) ≤ diamg|Σ2 (Σ

2).

Applying Theorem 2.2 to (Σ2 × Tn−2, g̃) gives that

(3.2) diamg|Σ2 (Σ
2) ≤ 2π

n .

Hence by (3.1) and (3.2) we get:

(3.3) diamg(Σ
2) ≤ 2π

n .

Now assume (Mn, g) has injectivity radius bigger than 2π
n . Then for any

p ∈ Σ2, BM (p, 2πn ) is contractible. The diameter estimate (3.3) implies

that Σ2 ⊂ BM (p, 2πn ) thus Σ2 is trivial in homology which contradicts the

definition of Σ2. □

4. Injectivity radius bounds for 3-manifolds with rich
topology

Before proving Theorem 0.6, we first state a diameter estimate for stable
minimal immersions of 2-spheres in manifolds with positive scalar curvature
initially observed by Schoen and Yau (see Lemma 16 in [CL23]). We in-
clude here a proof to show how this can be obtained directly from Gromov’s
Theorem 2.2.

Lemma 4.1. Let (M3, g) be a 3-manifold with scalg ≥ 6 and let ι : S2 → Mn

be a stable minimal immersion, then:

diam(S2, ι∗g) ≤ 2π

3
.

Proof. As in Gromov’s first proof of Theorem 2.1 in [Gro18], we will use
Fischer-Colbrie–Schoen symmetrization. The stability of ι means that the
Jacobi operator J = −∆ι∗g − 1

2

(
scalg − scalι∗g +|A|2

)
is nonnegative.

Let f be the first eigenfunction of J (which doesn’t vanish since J is a
Schrödinger operator) and consider the metric g̃ = ι∗g + f2dθ2 on S2 × T1.
A classical computation shows that:

scalg̃ = scalι∗g −
2∆ι∗gf

f
≥ 6.

Now, as in the proof of Theorem 0.9, we can apply Gromov’s Theorem
2.2 to (S2 × T1, g̃) to show that (S2, ι∗g) has diameter at most 2π

3 . □

We are now ready to prove Theorem 0.6.
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Proof of Theorem 0.6. First, we note that by going to the orientation cover
if needed we can assume that M3 is orientable.

Let (M3, g) be a compact 3-manifold with scalg ≥ 6 and:

(4.1) injg > 2π
3 .

Since (M3, g) has positive scalar curvature, it follows from Perelman’s
solution to the Geometrization conjecture ([Per03]) thatM3 is diffeomorphic
to a connected sum:

M3 ≃ P1# · · ·#Pk

where the Pi are either non simply connected spherical 3-manifolds or S2 ×
T1, note that we can have k = 0 in which case M3 is a 3-sphere and there
is nothing to prove.

If one of the Pi’s is S2 × T1, then by collapsing all the other factors we
can build a non zero degree map M3 → S2 ×T1. Thus Theorem 0.9 applies
and injg ≤ 2π

3 . This contradicts (4.1).
Hence all the Pi’s are non simply connected spherical manifolds.
We will now prove that there is only one summand in the connected sum

(4). To see this note that if k ≥ 2 then inside a neck S2 × [−1, 1] used to
perform the connected sum one can find an embedded 2-sphere which does
not bound a 3-ball. Now by Theorem 4.1 of [HS88], we can minimize area
among all such embedded spheres to obtain a stable minimal immersion
ι : S2 → (M3, g) (though it is not useful for our purpose, Hass and Scott
actually prove that ι is either an embedding or a double cover of a 1-sided
projective plane).

We can now apply Lemma 4.1 to show that diam(S2, ι∗g) ≤ 2π
3 . Thus

the image of ι : S2 → M3 is contained in a ball of radius 2π
3 . Since ι is

homotopically non trivial this implies that the injectivity radius of (M, g) is
less than 2π

3 . This contradicts (4.1) and proves that k = 1.

We now have that M3 is a spherical 3-manifold, and we can write it as a
quotient M3 = S3/Γ for some finite subgroup Γ ⊂ SO(4) of fixed point free
isometries of the round S3.

We will now show that Γ has odd order. Assume to the contrary that
Γ has even order, then a classical exercise in group theory show¡s that Γ
contains an element σ of order 2. Since in SO(4) we have σ2 = I4, the
eigenvalues of σ are all equal to ±1. Since σ acts on S3 without fixed points,
1 cannot be an eigenvalue of σ. Hence σ = −I4.

This shows that if Γ has even order then {±I4} ⊂ Γ. This gives rise
to a covering Π : RP3 → M3. Thus g̃ = Π∗g is a metric on RP3 with
scalar curvature at least 6. By [BBEN10, Theorem 1], this implies that
the 1-systole of (RP3, g̃) is at most π, and thus that its injectivity radius
is at most π/2. Since the injectivity radius can only increase by coverings,
injg ≤ π/2 which contradicts (4.1). Thus Γ has odd order.

All that needs to be shown now is that M3 = S3/Γ is a lens space, this
follows from the classification of spherical 3-manifolds. Inspecting section 7.5
of [Wol11] we see that all spherical 3-manifolds which are not lens spaces have
fundamental group which contain binary dihedral, tetrahedral, octahedral
or icosahedral groups as subgroups, thus all those non lens space spherical
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3-manifolds will have even order fundamental group. Thus the only possible
spherical 3-manifolds with odd order fundamental group are lens spaces.

□

Remark 4.2. It is a bit unsatisfying that the statement of Theorem 0.6 is
not “If (M3, g) has scalg ≥ 6 and injg > 2π/3 then M3 is homeomorphic to

S3” however my attempts at removing the non-trivial lens spaces from the
statement have been inconclusive. One could try to use an index 1 minimal
Clifford torus T ⊂ L(p, q), whose area is less than 16π/3 by [MN12]. This
gives an upper bound on the systole of T by Loewner’s inequality however
since T ⊂ L(p, q) is not injective at the level of π1 this doesn’t bound the
systole of L(p, q). Another approach could be to notice that if the injectivity
radius of L(p, q) is bigger than 2π/3 then this gives a metric with diameter
at least 4π/3 on its universal cover, however Theorem 0.8 is not tight enough
to be used there.

5. Injectivity radius bounds for 3-manifolds with large
diameter

In this section we prove Theorem 0.8.
We first state an elementary topological lemma, certainly well known,

whose simple proof is only included because of our inability to locate it
somewhere in the literature:

Lemma 5.1. Let (Mn, g) be a compact manifold and p, q ∈ Mn. Let r <
injg. Then [S(p, r)] ̸= 0 ∈ H2(M\{p, q}).

Proof. Since r < injg, all balls of radius r are diffeomorphic to euclidean ball
and all spheres of radius r are diffeomorphic to standard spheres.

Let M̂ = M\{p, q} et U = B(p, r) ∪ B(q, r). We will show that [Σ] ̸= 0

in Hn−1(M̂). The Mayer Vietoris exact sequence for the decomposition

M = M̂ ∪ U gives:

· · · → Hn(M) → Hn−1(M̂ ∩ U) → Hn−1(M̂)⊕Hn−1(U) → · · ·

Note that M ∩ U is homotopy equivalent to Σ× {−1, 1} and that the map

Hn(M) → Hn−1(M̂ ∩ U) sends the fundamental class [Mn] to [(Σ, 1)] −
[(Σ,−1)].

Since the sequence is exact this implies that the image of [(Σ, 1)]+[(Σ,−1)]

by Hn−1(M̂ ∩ U) → Hn−1(M̂) ⊕Hn−1(U) is not zero. Since Hn−1(U) = 0

this implies that [Σ] is not zero in Hn−1(M̂). □

We can now move to the proof of Theorem 0.8.

Proof of Theorem 0.8. Let D = diam(M3, g) and let p, q ∈ M3 be such that

dg(p, q) = D. For r < injg, we set M̂ = M\{p, q} and M̃ = M\{B(p, r) ∪
B(q, r)}.

M̃ has two spherical boundary components ∂+M̃ = S(p, r) and ∂−M̃ =

S(q, r) which satisfy: dg(∂−M̃, ∂+M̃) = D − 2r.

Assume that D − 2r > 2π/3, then δ = 6 − 8π2

3(D−2r)2
> 0 and we can

apply Theorem 1.2 to (M̃, g) to get a compact surface Σ ⊂ M̃ homologous
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to S(p, r) in M̂ and a positive function f : Σ → R such that g̃ = g|Σ+ f2dθ2

has scalg̃ ≥ δ and Σ ∈ [∂−M ].
We can now apply Theorem 2.1 (after proper rescaling) to show that:

(5.1) diam(Σ, g) ≤ 2π

3
√
δ/6

=
2π

3
√

1− 4π2

9(D−2r)2

Since Σ ⊂ M̃ , for any x ∈ Σ, dg(x, {p, q}) > r and thus B(x, r) ⊂ M̂ .
Assume r ≥ diam(Σ, g) then for any x ∈ Σ, Σ is included in B(x, r) which

is a topological ball contained in M̂ since r is smaller than the injectivity
radius. Hence Σ is contractible in M̂ , which contradicts Lemma 5.1. Thus :

r < diam(Σ, g) ≤ 2π

3
√
1− 4π2

9(D−2r)2

Solving for D we get the inequality:

(5.2) D < 2r +
2π

3
√
1− 4π2

9r2

.

We have proved that if r < injg and D > 2r + 2π
3 then (5.2) holds.

Hence by contraposition ifD ≥ 2r+ 2π

3

√
1−4π2

9r2

then r ≥ injg orD ≤ 2r+ 2π
3 .

Since for r ∈ (2π/3, π), 2π

3

√
1−4π2

9r2

> 2π
3 , we get that injg ≤ r. □

6. Injectivity radius of open 3-manifolds

In this section we will prove Theorem 0.7. Like in the previous section
we start with a topological lemma:

Lemma 6.1. Let (Mn, g) be an open manifold, p ∈ Mn and r < injg. The
the [S(p, r)] ̸= 0 ∈ H2(M\{p, q}).

Proof. The proof is very similar to the proof of Lemma 5.1. Since r < injg,
all balls of radius r are diffeomorphic to euclidean ball and all spheres of
radius r are diffeomorphic to standard spheres. We set M̂ = M\{p} and

U = B(p, r). We will show that [S(p, r)] ̸= 0 in Hn−1(M̂). Once again the

Mayer Vietoris exact sequence for the decomposition M = M̂ ∪ U gives:

· · · → Hn(M) → Hn−1(M̂ ∩ U) → Hn−1(M̂)⊕Hn−1(U) → · · ·

Now since M is not compact, Hn(M) = 0 and thus Hn−1(M̂ ∩ U) →
Hn−1(M̂) ⊕ Hn−1(U) ≃ Hn−1(M̂) is an injection. Now M ∩ U is homo-

topy equivalent to S(p, r) and thus [S(p, r)] generates Hn−1(M̂ ∩ U). This

shows that [S(p, r)] is not zero in Hn−1(M̂). □

We can now prove Theorem 0.7.

Proof of Theorem 0.7. Fix a point p in our open (M3, g) with scalg ≥ 6.
Consider a smooth proper 1-Lipschitz function ρ such that |ρ− d(p, ·)| < 1.
For R > 2 + 2π

3 such that R and 2R are regular values of ρ we set:

M̃ = ρ−1([R, 2R]).
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Then ∂M = ρ−1(R)∪ ρ−1(2R) and [ρ−1(R)] = [S(p, r)] in H2(M\{p}) for r
small enough. Moreover we have:

dg(ρ
−1(2R), ρ−1(R)) ≥ R− 2 > 2π/3.

Thus we can apply Theorem 1.2 to (M̃, g) with δ = 6 − 8π2

3(R−2)2
to get

Σ2 ⊂ M̃ in the homology class of ρ−1({R}) (and thus of S(p, r)) and a
function f : Σ2 → R such that g|Σ + f2dθ2 has scalar curvature at least δ.
As in section 5, we get that:

diam(Σ2, g) ≤ 2π

3
√

1− 4π2

9(R−2)2

.

We now argue that injg ≤ diam(Σ2, g). Let x ∈ Σ2 ⊂ M̃ . Then Σ2 ⊂
B(x,diam(Σ2, g)) ⊂ M\{p} and, since Σ2 is not contractible in M\{p},
B(x,diam(Σ2, g)) is not contractible, hence:

injg ≤ diam(Σ2, g) ≤ 2π

3
√
1− 4π2

9(R−2)2

.

Picking R as big as we want we get that:

injg ≤ 2π

3
.

□

7. Injectivity radius of S2 × Tn−3 × R and S2 × Tn−4 × R2

Once again we start with a topological lemma:

Lemma 7.1. Let M be a smooth n-manifold, X be a compact (n − 1)-
manifold and F : M → X × R be smooth proper non zero-degree map. For
any p ∈ M , set F (p) = (x(p), r(p)) ∈ X × R. Let r0 be a regular value of
r : M → R, then for any Σ ∈ [r−1(r0)], x|Σ : Σ → X has non-zero degree.

Proof. Since F has non-zero degree there exists k ̸= 0 such for any compactly
supported n-form ω on X × R:

(7.1)

ˆ
M

F ∗ω = k

ˆ
X×R

ω.

Let Σ0 = r−1(r0), Σ0 is a compact smooth hypersurface. Since r0 is a regular
value of r, F is a submersion fromMε = r−1((r0−ε, r0+ε)) for some positive
ε, hence we can assume that Mε is diffeomorphic to Σ0× (r0− ε, r0+ ε) and
that in these coordinates, F can be written as:

F : Mε ≃ Σ0 × (r0 − ε, r0 + ε) → X × R
(s, ρ) 7→ (x(s, ρ), ρ).

Now let χ : (r0 − ε, r0 + ε) → R be a compactly supported function.
Let ξ be an n − 1-form on X which is not zero in Hn−1(X). Then, then
writing t for the coordinate on the R factor we set ω = χ(t)(ξ ∧ dt). Then´
M F ∗ω = k

´
X×R ω by (7.1). We can compute:ˆ

X×R
ω =

ˆ
X×R

χ(t)(ξ ∧ dt) =

ˆ
R
χ(t)dt

ˆ
X
ξ
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and:ˆ
M

F ∗ω =

ˆ
Mε

F ∗(χ(t)(ξ ∧ dt)) =

ˆ
(r0−ε,r0+ε)

χ(ρ)

(ˆ
Σ0

x∗ξ(s, ρ)

)
dρ.

This shows that for any χ ∈ C∞
0 ((r0 − ε, r0 + ε)):ˆ

(r0−ε,r0+ε)
χ(t)

(
k

ˆ
X
ξ −
ˆ
Σ0

x∗ξ(s, t)

)
dt

and thus for any t ∈ (r0 − ε, r0 + ε):ˆ
Σ0

x∗ξ(s, t) = k

ˆ
X
ξ ̸= 0.

For t = r0, we get that
´
Σ0

x∗ξ = k
´
X ξ ̸= 0 which proves that x|Σ0 : Σ0 →

X has nonzero degree.
Now for any Σ ∈ [Σ0],

´
Σ x∗ξ =

´
Σ0

x∗ξ ̸= 0 hence x|Σ : Σ → X has
non-zero degree. □

We can now prove Theorem 0.9 for k = 1 or 2.

Proof of Theorem 0.9 for k=1,2. For k = 1, consider a proper non zerop
degree map F : (Mn, g) → S2 × Tn−1 × R and let r : Mn → R be the last
coordinate of f . Let L > 0 and setML = r−1([−L,L]). ThenML is compact
with boundary components ∂+ML = r−1(L) and ∂−ML = r−1(−L). Since
r is proper and g is complete:

dg (∂−ML, ∂+ML)
L→+∞−−−−−→ +∞.

By Sard’s theorem, we can find an increasing sequence (Lk) diverging to
+∞ such that Lk and −Lk are regular values of r.

We now apply Theorem 1.2 to (MLk
, g) to find an hypersurface Σk ∈

[∂+MLk
] such that:

• By Lemma 7.1, π ◦F|Σk
: Σk → S2×Tn−1 has non-zero degree where

π : S2 × Tn−1 × R → S2 × Tn−1 is the natural projection.
• there exists a smooth function fk : Σ → (0,+∞) such that (M̃k, g̃k) =
(Σk × T1, g|Σk

+ f2
kdθ

2) has scalg̃k ≥ δk where:

δk
k→+∞−−−−→ n(n− 1).

Note that F̃ = (π ◦ F|Σk
, idT1) : M̃k → S2 × Tn has non zero degree.

We then apply Zhu’s Theorem 1.1 to (M̃k, g̃k) to get a 2-sphere Sk ⊂ M̃k

and n− 2 positive functions f1,k, . . . , fn−2,k : Sk → R such that:

•
´
Sk

F̃ ∗σ ̸= 0 where [σ] ∈ H2(S2 × Tn−2) is the fundamental class of

the S2 factor.
• (M̂k, ĝk) = (Sk × Tn−2, g̃|Sk

+
∑n−2

i=1 f2
i,kdθ

2
i ) has scalĝk ≥ δk.

Moreover it follows from Zhu’s proof of Theorem 1.1 that the construction
of Sk respects the T1 symmetry of (M̃k, g̃k), which implies that Sk ⊂ Σk and
g̃|Sk

= (gΣk
)|Sk

= g|Sk
.

By Theorem 2.2 applied to (M̂k, ĝk) , we have that the diameter of

(Sk, g|Sk
) is at most Dk where Dk

k→+∞−−−−→ 2π
n . Since Sk is not contractible
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in M , this implies that injg ≤ Dk. Letting k go to infinity we get that

injg ≤ 2π
n .

We now turn to the case of k = 2 and assume that F : (M, g) → S2 ×
Tn−4 × R2 is proper and has nonzero degree. Let (x, y) denote cartesian
coordinates of R2 and set:

r : M → R
p 7→ x(F (p))2 + y(F (p))2.

r is smooth and proper. Let η ∈ (0, 1) be a regular value of r. For L > 1
we set ML = r−1((η, L)), ∂−ML = r−1(η) and ∂+ML = r−1(L) . Since r is
proper and g is complete:

dg (∂−ML, ∂+ML)
L→+∞−−−−−→ +∞.

Moreover if one set Ṁ = F−1
(
S2 × Tn−4 × (R2\{0})

)
. Then F|Ṁ has

nonzero degree as a map valued in S2 × Tn−4 × (R2\{0}) ≃ S2 × Tn−3 × R.
We thus can argue as in the k = 1 case. □

Appendix A. Non optimality of products for Gromov’s
diameter estimate

We will show here that one can deform the product metric on S2 × Tn−2

in a way which increase the scalar curvature while keeping the diameter of
the S2 factor, which shows that Theorem 2.1 cannot be improved to show
that product metrics are optimal.

More precisely, we will build metrics g = gs on S2 and functions b = bs :
S2 → (0,∞) for s ≥ 0 such that:

(1) g0 is the round metric on S2 and f0 = 1.
(2) diam(S2, gs) = π.
(3) the metric g̃ = g̃s = gs + b2sdx

2 on S2 × Tn−2 (where dx2 is a flat
metric on Tn−2) has scalg̃ > 2 for s > 0 small enough.

We will choose normal coordinates (r, ϕ) on S2 in which the round metric
is written as g0 = dr2 + sin2(r)dϕ2 for r ∈ (0, π) and ϕ ∈ (−π, π]. We will
look at metrics of the form g̃ = dr2 + a2(r)dϕ2 + b(r)2dx2.

We will add to our functions a and b the next Fourier mode while ensuring
smoothness of g̃ by setting:

• a(r) = sin r+α sin 3r
1+3α ,

• b(r) = 1 + β sin2 r,

for α, β to be determined later. Note that for α ∈ (−1
3 , 1) and β ∈ (−1,+∞),

g̃s = dr2 + a2(r)dθ2 + b(r)2dx2 is a smooth metric on S2 × Tn−2 and that
since (S2, dr2 + a2(r)dθ2) has diameter at least π. The scalar curvature of g̃
is given by:

scalg̃ =− 2

(
a′

a
+ (n− 2)

b′

b

)′

−

((
a′

a

)2

+ (n− 2)

(
b′

b

)2
)

−
(
a′

a
+ (n− 2)

b′

b

)2

.
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Figure 2. Example plots of the scalar curvature of g̃ as a
function of r for various choices of the α and β parameters,
for n = 6, see [Ric24] for interactive plots with adjustable
(α, β, n) values.

This can be computed for instance with Cartan’s method of moving coframes
applied to the orthonormal coframe (dr, a(r)dϕ, b(r)dx3, . . . , b(r)dxn).

With the help of a computer algebra system1, we can plug our expressions
a and b inside the expression above for the scalar curvature. We get a lengthy
formula depending on r, α, β and n.

In Figure 2, we plotted the scalar curvature of g̃ for various choices of our
parameters α, β and n, see also [Ric24]. From this plot we can guess that
r 7→ scalg̃ attains its minimum at either r = 0 or r = π/2. We can then use
our CAS to compute those values:

• scalg̃(0) =
2−4β(n−2)(6α+2)+54α

1+3α

• scalg̃(π/2) =
2(1−9α−3β−5αβ+2n(1−α)β)

(1−α)(1+β)

To find candidates for counter examples, we plotted for various values of
n the regions R0 = {scalg̃(π/2) ≥ 2} and Rπ/2 = {scalg̃(0) ≥ 2} in the
(α, β) plane. Luckily enough the two regions seem to always intersect in
what looks like a tiny convex region of the plane as seen on Figure 3.

In [Ric24] we solved the system:{
scalg̃(π/2) = 2

scalg̃(0) = 2

1this computation and the subsequent computations and plots have been carried on Sage-
Math 10.4, the reader can find these in the sage notebook [Ric24] which can be downloaded
at https://doi.org/10.5281/zenodo.13933633.

https://doi.org/10.5281/zenodo.13933633
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Figure 3. Plot of the R0 (blue) and Rπ/2 (pink) regions in
the (α, β)-plane for n = 4, see [Ric24] for other values of n.

for α and β, and obtained two solutions (0, 0) and ( n−2
3(3n−2) ,

1
2(n−1)). Since we

have observed that our counterexample set Rπ/2 ∩ R0 should be convex in
the (α, β) plane, the whole segment between these two points should consist
of counterexamples. Hence we set

(α, β) = s( n−2
3(3n−2) ,

1
2(n−1))

What remains to be shown is that at least for s small enough, we actually
have scalg̃s > 2.

In order to see this we can compute [Ric24]

∂ scalg̃s
∂s

∣∣∣∣
s=0

=
(n− 2)((7n− 10) + (5n− 14) cos 2r)

3(n− 1)(3n− 2)
≥ (n− 2)(2n+ 4)

3(n− 1)(3n− 2)

which is strictly positive since n ≥ 3. Hence for s > 0 small enough, scalg̃s >
scalg̃0 = 2.

Remark A.1. While this shows that products are not optimal (even lo-
cally) for the diameter estimate given by Theorem 2.2, this doesn’t rule out
optimality of products for the injectivity radius estimate of Theorem 0.9.
This follows from the fact that while the length of the meridians of S2 re-
mains fixed at π for our counterexamples, the equator is shrunk when s > 0
which lowers the injectivity radius too fast with respect to the increase in
minimal scalar curvature.
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[MN12] Fernando C. Marques and André Neves. Rigidity of min-max minimal spheres

in three-manifolds. Duke Mathematical Journal, 161(14):2725 – 2752, 2012.
[Per03] Grisha Perelman. Ricci flow with surgery on three-manifolds. arXiv e-print

service, 2003:22, 2003. Id/No 0303109.
[Ric24] Thomas Richard. Increasing the scalar curvature of S2×Tn−2 while keeping the

diameter of the S2 factor fixed. https://doi.org/10.5281/zenodo.13933633,
October 2024. SageMath 10.4 notebook.

[TW19] Wilderich Tuschmann and Michael Wiemeler. Smooth stability and sphere the-
orems for manifolds and Einstein manifolds with positive scalar curvature.
Commun. Anal. Geom., 27(2):491–509, 2019.

[Wol11] Joseph A. Wolf. Spaces of constant curvature. Providence, RI: AMS Chelsea
Publishing, 6th ed. edition, 2011.

[Zhu20] Jintian Zhu. Rigidity of area-minimizing 2-spheres in n-manifolds with positive
scalar curvature. Proc. Am. Math. Soc., 148(8):3479–3489, 2020.

LAMA, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, F-94010, Créteil,
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