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Abstract: Bisphosphonates are therapeutic agents that have been used for almost five decades
in the treatment of various bone diseases, such as osteoporosis, Paget disease and prevention of
osseous complications in cancer patients. In nuclear medicine, simple bisphosphonates such as
99mTc-radiolabelled oxidronate and medronate remain first-line bone scintigraphic imaging agents
for both oncology and non-oncology indications. In line with the growing interest in theranos-
tic molecules, bifunctional bisphosphonates bearing a chelating moiety capable of complexing a
variety of radiometals were designed. Among them, DOTA-conjugated zoledronate (DOTAZOL)
emerged as an ideal derivative for both PET imaging (when radiolabeled with 68Ga) and man-
agement of bone metastases from various types of cancer (when radiolabeled with 177Lu). In this
context, this report provides an overview of the main medicinal chemistry aspects concerning bis-
phosphonates, discussing their roles in molecular oncology imaging and targeted radionuclide
therapy with a particular focus on bifunctional bisphosphonates. Particular attention is also paid
to the development of DOTAZOL, with emphasis on the radiochemistry and quality control as-
pects of its preparation, before outlining the preclinical and clinical data obtained so far with this
radiopharmaceutical candidate.

Keywords: DOTAZOL; bisphosphonates; bone metastases; theranostics; nuclear medicine; 68Ga;
177Lu

1. Introduction

Breast, prostate and lung are the solid cancers with the highest incidence of bone
metastases [1], which can lead to complications such as severe bone pain, pathological
fractures, nerve compression, hypercalcemia and overall morbidity [2]. Since the 1970s,
nuclear medicine has played a key role in the diagnosis of bone metastases with high-
sensitivity molecular imaging approaches such as whole-body bone scintigraphy [3–6].
Furthermore, the discipline is well-suited to the concept of theranostics, which refers to
the convergence of diagnostic and therapeutic procedures by using the same molecular
platform combined with either a photon-emitting radioelement (diagnostic) or a particle-
emitting radioelement (therapeutic) [7]. In this context, the most appropriate molecules
for bone matrix targeting tend to be bisphosphonates; as a matter of fact, the simplest
99mTc-labeled derivatives of this chemical family, i.e., medronate and oxidronate, have been
extensively used as bone single-photon emission computed tomography (SPECT) imaging
agents for over 40 years [8]. Therapeutic counterparts to these SPECT tracers have been
designed and studied in humans, such as [188Re]Re-etidronate, which showed some poten-
tial in terms of efficacy [9–21] and improvement of patients’ quality of life [22]. However,
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rhenium’s complex redox chemistry hampered the expansion of this therapeutic option,
as it is challenging to implement in a conventional radiopharmaceutical environment [23].
Likewise, rhenium-188 can be obtained from a 188W/188Re radioelement generator, but no
fully pharmaceutical-grade generator is currently available [24], causing preference to be
given to “simpler-to-use” radioelements.

In connection with the ever-growing development of a wide variety of radiotracer can-
didates for PET imaging, the use of 68Ga has recently become increasingly popular, owing
to its availability via GMP-grade 68Ge/68Ga generators [25] and to its rich yet sufficiently
straightforward radiochemistry [26]. With regard to therapy, 177Lu has lately emerged as
a key radioelement, with a 6.7 day half-life (allowing the easier logistics of production
and supply of either the radioisotope alone or radiolabeled molecules); low-energy beta
particles (Eβ(max) = 497 keV [78.6%], 384 keV [9.1%] and 176 keV [12.2%], theoretically
allowing the irradiation of small lesions and decreased damages to non-target tissues
because of the short beta particles range); and radiochemical properties that are now largely
documented and mastered [27]. To date, the 68Ga/177Lu theranostic pair has demonstrated
its clinical reliability with FDA-approved radiopharmaceuticals in the management of neu-
roendocrine tumors (DOTATOC and DOTATATE vector molecules) [28,29] and metastatic
prostate cancer (PSMA ligands vector molecules) [30,31]. This 68Ga/177Lu approach was
then transposed to bone targeting with the use of chelator-bearing bisphosphonates, ei-
ther originally conceived as MRI contrast agents or directly designed as nuclear medicine
theranostic agents. Depending on the nature of the chelating agent functionalizing the bis-
phosphonate, several radioelements could be complexed by these bifunctional molecules,
either for diagnostic or therapeutic purposes (Figure 1) [32]. Among these chelator-bearing
bisphosphonate, DOTAZOL is one of the most recent derivatives to have been used on hu-
mans, for both PET imaging with [68Ga]Ga-DOTAZOL and targeted radionuclide therapy
(TRT) with [177Lu]Lu-DOTAZOL.
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Figure 1. General principle of a theranostic approach in nuclear medicine, applied to bifunctional
bisphosphonate derivatives.

After an initial overview of the main chemistry and biology aspects of bisphosphonates
and their use as radiopharmaceutical agents, this review will provide a summary of the
preclinical development of several chelate-conjugated bisphosphonates to finally focus
on DOTAZOL, with a particular emphasis on the chemical and radiochemical aspects.
DOTAZOL’s evaluation and use on humans, for both diagnostic and therapeutic indications,
will be discussed with a view to defining the current and possible future roles of this
radiopharmaceutical in PET diagnostics and the TRT of bone metastases.
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2. Bisphosphonates: From Conventional Drugs to Radiopharmaceuticals
2.1. Development and Pharmacology Basics of Bisphosphonates

Before their use as medicinal products for treating bone or calcium metabolism disor-
ders, bisphosphonates were originally designed as softeners and complexing agents for
textile, food and oil industries [33] dating from their first synthesis in 1865 [34]. Initial
biological applications of bisphosphonates were related to their structural analogy with
inorganic pyrophosphate, which confer in vitro and in vivo inhibitory properties on bone
resorption, combined with resistance to acid- or phosphatase-catalyzed hydrolysis [35,36].
These effects on bone were mainly mediated by the inhibition of the hydroxyapatite crys-
tal dissolution but were associated, for the earliest bisphosphonates derivatives, to the
inhibitory properties of skeletal mineralization [37]. This was therefore one of the charac-
teristics to be controlled as successive bisphosphonate analogs were developed.

The chemical structure of bisphosphonates is centered on the P-C-P pharmacophore,
which is responsible for inhibiting bone resorption, whereas several analogs such as
ethilenediphosphonates (P-C-C-P) or iminodiphosphonates (P-N-P) are inactive. This chem-
ical motif is responsible for high affinity and strong binding to hydroxyapatite crystals in
the bone mineral matrix; in addition, the central sp3 carbon offers numerous pharmacomod-
ulation possibilities by introducing a variety of substituents in this position. The natures
of the residues on this central carbon (referred as R1 and R2) allow the identification of
several groups of molecules, the first being the non-hydroxy- and non-nitrogen-containing
bisphosphonates groups, originally headed by clodronate [38]. Since the late 1960s, it has
been demonstrated that derivatives containing a R1 hydroxy group on the central carbon
exhibited improved hydroxyapatite binding, with better blockage of hydroxyapatite crystal
dissolution and growth, combined with a greater affinity for calcium (particularly in the
bone mineral matrix) [39]. The first hydroxylated bisphosphonate to be used on humans
was etidronate, which was originally synthesized in the late 19th century [40] and first used
as a calcification inhibitor in the mid-1970s to treat patients with fibrodysplasia ossificans
progressiva [41]. In addition to their binding to the mineral components of the bone, an
intracellular action of bisphosphonates related to etidronate and clodronate has been iden-
tified, based on their structural homology with inorganic pyrophosphate. Such molecules
could be incorporated in nucleotide precursors to form non-hydrolysable analogs [42–45],
which could then accumulate in osteoclasts and lead to cell death (Figure 2) [46–48]. It
was then evidenced that, with R2 being a basic primary alkylamine as in pamidronate
and alendronate [49,50], antiresorptive effects were 10 to 100 times higher than with the
non-nitrogen-containing derivatives. This suggested alternative specific intracellular effects
associated with the R2 nitrogen chemical moiety [51]. Notably, N-containing bisphospho-
nates displayed inhibitory properties against several enzymes involved in the mevalonate
biosynthesis pathway, contributing to sterol production, especially farnesyl-pyrophosphate
synthase [52,53]. Thus, because of the critical role of the mevalonate pathway for osteoclas-
tic functions, this mechanistic aspect of nitrogen-containing bisphosphonates is of major
relevance for this cell type (Figure 2) [54–58]. The importance of the nitrogen atom in
the R2 side chain appeared to be even greater as a tertiary amine motif further increases
potency (e.g., in ibandronate) as well as the inclusion of the nitrogen in an aromatic ring
(e.g., a pyridine in risedronate or an imidazole in zoledronate) [59]. In addition to their
effect on osteoclasts, some bisphosphonate derivatives appear to have a beneficial effect
on osteoblasts, enhancing their inhibitory properties on osteoclastogenesis [60,61] and
inducing proliferative [62–65] or anti-apoptotic effects [66].
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and farnesyl-PP synthase were adapted from schematic 2-D features of protein-ligand complexes
from the Protein Data Bank (PDB) [67]. BP: bisphosphonate; HA: hydroxyapatite; PP: pyrophosphate.

Overall, thorough investigations of bisphosphonates structure-activity relationships,
with the significant contribution of crystallographic studies [68], have led to a better un-
derstanding of the main mechanistic aspects of these compounds [69] and has opened
the way to potential novel utilizations [70–72]. Figure 3 summarizes the key medicinal
chemistry elements outlined in bisphosphonate series. To date, depending on the country,
around 10 bisphosphonates for pharmacological uses have been approved for clinical indi-
cations in humans (almost all being hydroxy- and nitrogen-containing compounds). Their
main applications are the treatment of post-menopausal osteoporosis, the management of
osteolysis and hypercalcemia of malignant origin, the prevention of bone complications
(fractures and spinal cord compression) in cancer patients and the treatment of Paget’s
disease. The safety profile of bisphosphonates is well-defined and the most serious ad-
verse affects are either rare or predictable, including gastrointestinal (nausea, vomiting,
epigastric pain, esophagitis, gastric ulcer and dyspepsia), kidney (renal failure if given
in IV), musculoskeletal (pain, atypical femoral fractures and osteonecrosis of the jaw) or
cutaneous side effects. Some of the most recent drugs, such as zoledronate, tend to be
positioned as first- or second-line therapies, given their efficacy and convenient treatment
regimens (injectable drugs are characterized by 12- or 18-month dosing intervals, which
ensures compliance). Their use as adjuvant therapy in selected malignancies such as breast
cancer [73–76] shows positive effects, although small, on bone recurrence, fracture rates,
cancer mortality and overall survival [77], possibly via their ancillary effects on cancer cells
including immunomodulation and synergy with anticancer agents [78]. Moreover, beyond
their pharmacological utility, selected bisphosphonates are currently used or investigated
as bone molecular targeting agents for nuclear medicine applications.
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2.2. Bone Metastases Molecular Targeting and Early Bisphosphonate-Based Radiopharmaceuticals

Bone microenvironments provide a privileged metastatic niche, especially when tu-
mor cells display a particular affinity for bone tissue [79]. In several diseases such as lung
cancer, bone metastases are associated with predominant osteoclast-mediated bone resorp-
tion lesions which are described as lytic. Conversely, prostate cancer patients with bone
metastases often exhibit dense osteosclerotic lesions with increased osteoblast activity [80].
Mixed lesions are prevalent across various tumor types but are especially frequent among
patients with metastatic breast cancer [81]. In nuclear medicine, several bone-addressed ra-
diopharmaceuticals have therefore been developed for diagnostic or therapeutic purposes,
exploiting two main principles for targeting bone metastases (Figure 4):
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• Specific bone targeting based on the electronic properties of a free radioactive atom:
two isotopes of the same atom do not differ in their electronic structure and
therefore have identical chemical properties, which allows skeletal targeting by the
isotopes of atoms with natural affinities for bone. This applies to [18F]fluoride ions,
which replace hydroxide anions in hydroxyapatite crystals to form fluoroapatite in the
bone mineral [82]. The [18F]NaF PET imaging agent tends to be more accurate than
bone scintigraphy for the detection of skeletal metastatic lesions in several types of
cancer [83–86]. In therapy, [32P]orthophosphate (t1/2 = 14.3 days; Eβ-max = 1.71 MeV)
is also incorporated into hydroxyapatite crystals [87] and was historically used to treat
painful osteoblastic metastases [88]. This treatment showed moderate efficacy with the
disappearance of pain symptoms in almost half of patients [89] but caused common bone
marrow toxicity, especially in patients with renal impairment. Likewise, the chemical
elements in the same group/column of the periodic table of elements are characterized
by the same number of valence electrons, and therefore, by usually comparable chemical
reactivity. Part of the same group as calcium, 89Sr (t1/2 = 50.5 days; Eβ-max = 1.49 MeV) is
an alkaline earth metal that accumulates in lesions with high osteoblastic activity and has
been used under its dichloride salt form in the palliative treatment of pain associated with
bone metastases [90], especially in prostate cancer. The initial clinical trials with this ra-
diopharmaceutical in monotherapy showed modest effects on pain control in bone metas-
tases associated with substantial bone marrow toxicity [91–93], while its use in patients
treated with doxorubicin [94] or docetaxel [95] tended to improve both the symptoms
associated with bone metastases and survival. Similarly, alpha-emitting radionuclide
223Ra (t1/2 = 11.4 days; Eα = 5.0 to 7.5 MeV [95.3%]; Eβ-max = 1.37 MeV and 1.42 MeV
[3.6%]) showed an overall survival benefit in patients with metastatic prostate can-
cer, with a significant 9-month delay in bone-related events when associated with a
bone-protecting agent (e.g., denosumab) [96]. To date, radium-223 dichloride (Xofigo®,
Bayer, Leverkusen, Germany) is the only FDA- and EMA-approved targeted alpha
therapy available.

• Specific targeting based on a vector molecule with bone tropism: in scintigraphic
imaging, medronate (MDP) [97] and oxidronate (HMDP) [98,99] were among the
first bisphosphonates to be used as bone scintigraphy imaging vectors on humans
after the pioneering application of [99mTc]Tc-etidronate [100–103] (Figure 5). These
two compounds are characterized by their simple chemical structures, which do not
contain dedicated chelation sites. Although their formulation in single-vial cold kits
for radiopharmaceutical preparation makes 99mTc radiolabeling simple and ensures
high radiochemical purity levels, [99mTc]Tc-MDP and [99mTc]Tc-HMDP complexes do
not form a single defined chemical entity but are rather structured into a mixture of
monomers, oxo-bridged dimers and oligomeric clusters of varying sizes, featuring
diverse technetium-oxo core arrangements, oxidation states and ligand coordination
numbers [104] with a composition that varies according to pH, technetium concentra-
tion and oxygen amount [105]. Lastly, the phosphonate groups of MDP and HMDP (as
well as the hydroxyl group of HMDP) serve both as coordination sites with 99mTc and
as recognition sites for the bone mineral matrix. Consequently, the bone affinity of the
corresponding 99mTc complexes is intrinsically reduced [106]. Even so, these radiophar-
maceuticals remain reference bone scintigraphy agents, either in oncology for cancer
staging [107,108] and therapeutic response evaluation [109–111] or in benign bone dis-
orders such as Paget disease [112,113] or primary hyperparathyroidism [114,115]. In-
terestingly, 99mTc-radiolabeled butedronate (2,3-dicarboxypropane-1,1-diphosphonate,
DPD, Figure 5) [116] is another SPECT imaging agent with the same indications
as [99mTc]Tc-MDP and [99mTc]Tc-HMDP but also has a particular role in the detec-
tion of cardiac amyloidosis [117–119]. Concerning therapy, a bisphosphonate-related
derivative with an ethylenediamine tetraphosphonate structure (EDTMP, also named
lexidronam) radiolabeled with 153Sm (t1/2 = 1.9 days; Eβ-max = 0.81 MeV) has also been
used since the late 1980s [120,121] for the relief of pain resulting from bone metastases;
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two clinical trials demonstrated its efficacy in this indication versus the placebo and
its improved toxicity profile compared to 89Sr and 32P [122,123]. Notably, etidronate
was also selected for radionuclide therapy applications after radiolabeling with beta
minus-emitting rhenium isotopes, either 186Re or 188Re [9–21], but with rather limited
clinical use.
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2.3. From Standard Bisphosphonates to Bifunctional Derivatives Optimized for Nuclear Medicine

Beyond the simple, monofunctional bisphosphonate vector molecules mentioned
above, other radiopharmaceutical candidates have been designed on the concept of bifunc-
tional agents, dissociating the radiophore part of the molecule that binds to the radioactive
atom from the vector part responsible for tropism specificities [106] (Figure 6). In particular,
acyclic complexing moieties were used to enable undemanding radiolabeling conditions.
Thus, numerous agents for 99mTc radiolabeling were designed, with a chemical variety
based on the selected chelating agent. Notably, aminoalkyl derivatives such as pamidronate
and alendronate are particularly well-suited to conjugation with a bifunctional chelator
because the alkyl chain serves as a spacer and the primary amine serves as an anchoring
site for the chelating group. Bisphosphonates bearing an ethylenedicysteine [124], a mer-
captoacetyltriglycine (MAG3) [125,126], a hydrazinonicotinamide (HYNIC) [125,127], an
imidazole- [128], a pyrazole- [129,130] or a pyridine-containing chelator [131] were reported
in the literature but were not studied in humans. More recently, a pamidronate derivative
with a tris(3,4-hydroxypyridinone) (THP) ligand was reported to allow quantitative 68Ga
radiolabeling at room temperature and to promise in vivo properties (high bone/muscle
and bone/blood ratios and fast blood clearance) comparable to [18F]NaF [132]. Lastly,
a non-hydroxylated bisphosphonate derivative called P15-041, conjugated to the linear
chelator HBED-CC, displayed excellent 68Ga labeling properties (>95% radiochemical yield
(RCY) at room temperature in 5 min, with a single-vial cold kit formulation developed
later [133]), good stability and high bone uptake in normal mice [134]. It was evaluated on
humans in early-phase clinical trials for imaging bone metastases in prostate cancer, show-
ing high accumulation in bone lesions and rapid clearance from the blood, soft tissues and
normal bone, with tumor-to-normal bone ratios up to 8 at 90 min and reasonable dosimetry
estimates [135,136]. A larger clinical study on 51 cancer patients with bone metastases
from various types of primary cancers showed the superiority of [68Ga]Ga-P15-041 over
[99mTc]Tc-MDP in terms of sensitivity, positive predictive value, negative predictive value
and accuracy, making P15-041 a valuable PET radiotracer candidate for a wider use in
the detection of skeletal metastases [137]. Nevertheless, a direct comparison with another
bone-targeting PET radiotracer would be necessary to confirm its efficiency.

To access other radiometals and to form complexes with high thermodynamic sta-
bility, the functionalization of the bisphosphonate derivatives with cyclic chelators was
also studied. More specifically, compounds containing a nine-membered cyclic chelator
related to NOTA or NODA were designed for easy radiolabeling with 68Ga and were
used as PET imaging agents (Figure 7). These include NODAGA-Alendronate [138],
NODAGA-Pamidronate [139] and NO2AP-Bisphosphonate [140], which has demonstrated
high diagnostic efficiency in humans, with bone metastasis detection properties comparable
to [18F]NaF [141]. Another compound, NODAGA-Zoledronate, also achieved quantitative
yields when radiolabeled with 68Ga [142] and demonstrated its clinical value in the de-
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tection of bone metastases in prostate cancer patients who experienced PSA progression
on PSMA-based radioligand therapy or in the setting of restaging [143,144]. NODAGA-
Zoledronate also displayed an important uptake in atherosclerotic plaques, which could
make it suitable for risk assessment by PET/CT imaging in patients with atherosclerotic
cardiovascular disease [145,146]. Lastly, from a radiochemical point of view, it is interesting
to note that derivatives with a nine-membered cyclic chelator can be labeled with 18F via
a non-covalent radiofluorination approach that relies on the formation of [18F]aluminum
fluoride [147], as exemplified with [18F]AlF-NOTA-Pamidronate [148]. Aside from NOTA
and NODA derivatives, mesocyclic chelators are a recent group of complexing moieties
suitable for 68Ga labeling [149]. Derived from 6-amino-1,4-diazepine-triacetic acid, these
AAZTA-derived chelators allow fast 68Ga radiolabeling under mild conditions. Such a
chelator was used to functionalize several bisphosphonate derivatives which could of-
fer promising diagnostic potential, although they have only been evaluated in mice up
until now [150].
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The functionalization of bisphosphonates with a DOTA chelator has also been in-
vestigated, with a view to developing theranostic approaches based on a unique vector
molecule for both diagnostic purposes and therapy (Figure 8). DOTA is a 12-membered
macrocyclic chelator characterized by its ability to form thermodynamically and kinetically
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stable complexes with a variety of radiometals including 111In and 68Ga for imaging pur-
poses, or 90Y and 177Lu for TRT applications [32]. One of the simplest DOTA-containing
bisphosphonates is the bisphosphonate monoamide analogue of DOTA, BPAMD, which
can be prepared via a rather convenient synthesis route [151] and radiolabeled with 68Ga
in fairly straightforward conditions. It initially demonstrated promising potential for high
bone accumulation in mice PET imaging studies [152]. Subsequently, it showed positive
results in its first-in-human application, with significantly high target-to-soft tissue ratios
and rapid renal clearance [153]. Its standardized uptake values (SUVs) were comparable
to [18F]NaF, and some metastases even displayed higher bisphosphonate accumulations.
These encouraging diagnostic outcomes paved the way for the first therapeutic applications
of BPAMD, replacing 68Ga with β-emitter 177Lu. In this way, the in-house preparation
protocols of [177Lu]Lu-BPAMD were developed for routine production to treat patients with
skeletal metastases [154,155]. After conclusive preclinical evaluation against other simple
DOTA-bisphosphonate derivatives (including original dimeric molecules bearing bisphos-
phonate groups on two of the four acetate arms of the DOTA core) [156], [177Lu]Lu-BPAMD
was successfully administered to a number of patients, showing a biodistribution similar to
its 68Ga-labeled counterpart [157,158]. The prolonged contact time of [177Lu]Lu-BPAMD
with bone metastases resulted in high tumor doses, leading to a significant reduction in
osteoblastic activity in bone lesions. Moreover, the therapy did not cause any significant
adverse events. In comparison with [177Lu]Lu-EDTMP, [177Lu]Lu-BPAMD demonstrated
higher bone uptake and a higher target-to-background ratio; however, this could be due
to the much higher amount of ligand used in the synthesis of [177Lu]Lu-EDTMP and its
potential target blocking [159]. Although BPAMD displayed good results in both diagnostic
and therapeutic applications in humans, the further chemical optimization (potentially
requiring a more demanding synthesis route) of such a bisphosphonate-based probe could
still be considered. For example, a BPAMD analog bearing a reversible albumin-binding
domain was designed to delay body elimination and enhance target accumulation for
TRT purposes [160]. More practically, a hydroxy derivative could be used to improve its
affinity for the bone matrix, or a nitrogen-containing substituent might be introduced as a
spacer, because close proximity of the chelating group to the vector moiety could impair
target recognition [161]. The very recent DOTA-ibandronate (DOTA-IBA) was designed
on these criteria and displayed both good in vitro characteristics (stability > 91% over
4h after 68Ga radiolabeling, high hydrophilicity and 80% plasma protein binding) and
in vivo properties (no tissue or organ toxicity in mice, rapid blood clearance with high bone
uptake and accurate bone PET/CT images in mice and rabbits); a first-in-patient study of
[68Ga]Ga-DOTA-IBA also showed comparable results to [99mTc]Tc-MDP in the identifica-
tion of skeletal lesions, with a higher sensitivity for showing small lesions and a higher
target-to-non-target ratio for [68Ga]Ga-DOTA-IBA compared to [99mTc]Tc-MDP [162]. In
addition, a dosimetry study confirmed its high activity uptake and long retention in bone,
with absorbed doses to the whole body and critical organs (red marrow and drug-excretion
organs such as kidneys and bladder) within the safety limit [163]. The therapeutic pendant
[177Lu]Lu-DOTA-IBA was logically developed and could be efficiently radiolabeled after
15 min at 95 ◦C in a 0.25 M sodium acetate buffer pH 10.4 [164]. The early clinical evaluation
of [177Lu]Lu-DOTA-IBA (370–1110 MBq) in five patients with bone metastases of malignant
diseases showed fast and long-lasting bone pain palliation in three patients, with no de-
tectable hematological or organ toxicity. Subsequently, a phase 0/1 trial on 18 patients with
bone metastases first provided dosimetry data consistent with those of [68Ga]Ga-DOTA-
IBA [165]. Next, the single administration of 891.5 ± 301.3 MBq of [177Lu]Lu-DOTA-IBA
caused bone pain palliation in 82% of patients and was associated with partial responses in
three patients, disease progression in one patient, and stable disease in 14 patients according
to the [68Ga]Ga-DOTA-IBA PET/CT follow-up at 8 weeks. The highly promising effects of
this DOTA-bisphosphonate, radiolabeled with either 68Ga for PET imaging or 177Lu for TRT,
should be confirmed in a larger population but already suggest the theranostic potential
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of this molecule. Several case reports support these data [166], some even reporting the
efficacy of DOTA-IBA radiolabeled with alpha emitter actinium-225 [167].
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Overall, although the newly developed candidate DOTA-IBA offers undeniable advan-
tages, its use in humans is still scarcely reported. To date, other molecules have been developed
on the same model such as DOTA-Pamidronate [168] and DOTA-Alendronate [169–172]; how-
ever, the optimized theranostic DOTA-bisphosphonate that is most widely used in humans
remains DOTAZOL.

3. DOTAZOL: Chemistry and Radiochemistry Considerations

DOTAZOL is based on the structure of third-generation hydroxylated amino-bisphosphonate
zoledronate, functionalized at position four of the imidazole ring by an ethyl-monoamide-DOTA
moiety [173].

3.1. Chemical Synthesis of DOTAZOL

The first synthesis of DOTAZOL was reported by Meckel et al. in 2017, who pre-
sented this macrocyclic bisphosphonate as a promising potential theranostic tool in the
management of skeletal metastases [168]. The first step of the synthesis sequence (Scheme 1)
consisted of the functionalization of ω-N-acetylhistamine with an acetic arm on the imi-
dazole nitrogen. The use of benzyl bromoacetate with cesium carbonate in DMF formed
the desired compound in the average yield via a N-alkylation reaction, followed by a
deprotection step catalyzed by palladium on carbon in methanol under hydrogen atmo-
sphere. The hydroxybisphosphonate core was then obtained in a modest yield by reacting a
mixture of phosphorus trichloride and phosphorus acid (probably to increase reaction yield
compared to PCl3 alone [174]) in methanesulfonic acid with the latter 1H-imidazole-1-acetic
acid derivative. Interestingly, cleavage of the acetamide to form the primary amine was
achieved during the same step, based on the strong acidic condition after the hydroly-
sis of phosphorus trichloride. Finally, functionalization with the chelating moiety was
achieved through the nucleophilic substitution of activated DOTA-NHS-ester in water in
the presence of sodium carbonate [169].

The overall yield of this synthesis sequence is 2.5%, the most limiting steps being the
formation of the bisphosphonate motif (28%) and, most importantly, the anchoring of the
DOTA group (16%). Regarding this final step, because unprotected bisphosphonates have
poor solubility in organic solvents and dissolve only in aqueous buffers, an amide bond
formation is not an appropriate strategy because most active esters tend to hydrolyze in
aqueous buffers. Thus, the solution proposed here is to use DOTA-NHS-ester; however, it
was reported that this compound led to an increased amount of free DOTA as a hydrolysis
product of the NHS ester, resulting in successive, laborious final purification cycles. In 2022,
Greifenstein et al. proposed a practical and efficient alternative coupling method between
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the 12-membered macrocycle and the bisphosphonate moiety. This ligation method, which
relies on the pH-sensitive reactivity of diethyl squarate, is progressively gaining prominence
in the development of novel radiopharmaceuticals [175]. Although the compound that
was ultimately obtained was not DOTAZOL (the squaric acid replacing the imidazole
ring), the stability of squaric acid esters in aqueous buffers would provide a much more
straightforward coupling reaction method (Scheme 2), with no significant formation of
side products.
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Scheme 2. Synthesis sequence of DOTAGA.SA.PAM, a DOTAZOL-related bisphosphonate, as
described by Greifenstein et al. [176].

3.2. DOTAZOL Radiolabeling with 68Ga or 177Lu

The initial 68Ga radiolabeling of DOTAZOL was performed manually, involving
sodium acetate buffer 0.5 M pH 4 and post-processed 68Ga in acetone/HCl and 25 nmol lig-
and; the mixture was heated at 98 ◦C for 15 min. After terminal purification on a weak anion
exchange cartridge, the radiochemical purity (RCP) of [68Ga]Ga-DOTAZOL was >98% with
the RCY between 80 and 95% [168]. The same method was reported for the preparation of
68Ga-labeled DOTAZOL for clinical use [177]. Meisenheimer et al. proposed an alternate
68Ga radiolabeling protocol using ammonium acetate 0.08 M with ethanol as a cosolvent,
concentrated 68Ga in NaCl 5 M pH 1, and heated at 95 ◦C for 10 min [178]. A thorough study
of the reaction conditions was carried out simultaneously and showed that, interestingly,
the nature of the reaction vial had a significant influence on the overall reaction outcome.
Several polyvalent cations present in the glass could interact with the bisphosphonate
molecules, leading to their precipitation and/or adsorption on the reaction vessel. This
issue has apparently not been reported in the literature for other DOTA-bisphosphonates;
however, it should be considered in the context of unsatisfactory radiolabeling results
involving the ionic molecules likely to form this type of interaction [179]. The terminal
purification step via solid phase extraction (SPE) was also identified as critical in the
[68Ga]Ga-DOTAZOL preparation process. The use of a weak anion exchange cartridge to
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trap the product and then elute it with phosphate buffer saline could be considered [168];
however, the screening of dozens of SPE cartridges did not identify any fully suitable
model as thecartridges showed either no retention, the retention of all chemical species, or
e thpartial/imperfect retention of one or other species [178]. This parameter therefore re-
quires in-depth study and adaptation to each DOTA-Bisphosphonate used. Indeed, similar
issues have been reported with other compounds such as BPAMD, although apparently
reliable solutions have been found for this derivative [152,180]. Finally, the automation
of the 68Ga radiolabeling of DOTAZOL was reported to be quite challenging (notably
due to the influence of the reaction vial and to the SPE purification step) [178], which
could complicate its use in humans on a larger scale. Thus, the optimized conditions for
the automated preparation of [68Ga]Ga-DOTAZOL have yet to be identified and adapted
to the various GMP-compliant synthesis modules available at present [181]. The ideal
scenario for successful and lasting integration into routine clinical practice would probably
be the industrial development of DOTAZOL, formulated in a single-vial cold kit for 68Ga
radiolabeling, which would guarantee the easy preparation of the radiopharmaceutical.

The original 177Lu radiolabeling protocol was in line with the usual conditions for this
type of reaction [27], involving sodium acetate buffer 0.25 M, [177Lu]LuCl3 (1 GBq) in 0.04 M
HCl and only 20 nmol (~14 µg) DOTAZOL, which were heated at 98 ◦C for 30 min [168]. In
comparison, the 177Lu radiolabeling of DOTA-IBA employed the exact same reaction conditions,
with a heating time of 15 min. The quantitative complexation yields were reached with this
method, exempting it from a final purification step. Khawar et al. later described a modified
radiolabeling protocol replacing sodium acetate with ascorbate buffer 1.3 M plus gentisic acid
0.3 M as an anti-radiolysis compound [182]. Although the 177Lu activity used was higher
(~6 GBq was added to the reaction medium and heated at 95 ◦C for 30 min), excellent RCP
and RCY values were reached (≥98% and ≥95%, respectively); the radiopharmaceutical thus
prepared was subsequently administered to humans. This protocol was also applied by both
Yadav et al. [183] and Kreppel et al. [184], who gave details of the quantities of the vector
used for 177Lu radiolabeling (60 µg), which was logically higher than that used for 68Ga
radiolabeling. Regardless of the radiolabeling conditions, the pH of the reaction medium should
be carefully controlled to be around 5, which is ideal for lutetium-177 complexation [27]. It is
worth mentioning that these preparations were carried out manually, again raising the issue of
the need for pharmacotechnical works aimed at developing efficient and reliable automated
synthesis routes in accordance with GMP guidelines. Additionally, although all reported clinical
uses of [177Lu]Lu-DOTAZOL mention in-house preparation, the industrialized production of
this radiopharmaceutical would be a further step toward wider clinical applications.

3.3. Quality Controls of Radiolabeled DOTAZOL: A Critical Step

As well as several parameters involved in the radiolabeling of DOTAZOL, the quality
control methods for determining th RCP of this 68Ga/177Lu-labeled bisphosphonate proved
to be critical points in the preparation process of such investigational radiopharmaceuticals.

The initial radio-TLC conditions for controlling the RCP of [68Ga]Ga-DOTAZOL used
an acetone/acetylacetone/HCl mixture (10/10/1) as the mobile phase and silica 60 F254
TLC plates as the stationary phase [168]. With this eluent composition, the unbound 68Ga is
chelated by acetylacetone to form gallium(III) tris(acetylacetonate), migrating to the solvent
front. Colloidal gallium-68 should also convert to ionic [68Ga]Ga3+ due to its extremely low
pH, facilitating its subsequent chelation by acetylacetone and its migration to the solvent
front. Notably, slightly adapted analytical conditions (e.g., using acetonitrile instead of
acetone) have been reported for other 68Ga-labeled bifunctional bisphosphonates [146].
To guarantee the reliability of the results obtained by this analysis and to verify that part
of the free gallium identified in radio-TLC does not come from the dissociation of the
DOTA-complex [185,186], a threeplate TLC system was later proposed in order to more
formally identify all the chemical species potentially present [178]. Table 1 summarizes the
migration profiles expected under the different analytical conditions. Interestingly, these
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conditions were also used to control the RCP of the [68Ga]Ga-DOTAZOL used in humans,
but only partially, with the single acetylacetone/acetone (1:1) system [177].

Table 1. Radio-TLC conditions proposed by Meisenheimer et al. for [68Ga]Ga-DOTAZOL analysis [178]. The
green-colored cells indicate the chemical species identified in each condition, potentially by cross-referencing
with other radio-TLC analyses.

Mobile Phase Rf [68Ga]Ga-DOTAZOL Rf [68Ga]Ga3+ Rf
68Ga-Colloids

TBAP 60 mM/MeOH (9:1) 0.7–0.8 0.1–0.3 0.1–0.2
Citrate buffer pH 4 0–0.1 0.7–1 0.1–0.2

Acetylacetone/acetone (1:1) 0–0.1 0.7–0.8 0–0.1/0.5–0.9
TBAP: tetrabutylammonium phosphate.

Radio-TLC analytical conditions for [177Lu]Lu-DOTAZOL tended to be much more
straightforward and relied on iTLC plates with the citrate buffer 0.1 M pH 4 [168,183], al-
though a three-plate protocol similar to the one for [68Ga]Ga-DOTAZOL was proposed [182].
Overall, in view of the difficulty of discriminating by TLC between two highly hydrophilic
chemical entities such as free 68Ga3+/177Lu3+ and radiolabeled bisphosphonates, particular
attention should be paid to the rigorous validation of the RCP control conditions for each
of these different radiopharmaceuticals. In addition, special consideration should be given
to the redaction of the experimental protocols provided in scientific publications to ensure
maximum reproducibility of such analytical processes.

The HPLC methods for the RCP determination of radiolabeled DOTA-bisphosphonates
are considered difficult to implement [176]. For some derivatives, the use of an anion-
exchange stationary phase is preferred in order to properly discriminate free radiometal
from radiolabeled bisphosphonate [152,180]. Nevertheless, in order to take advantage
of the reverse-phase radio-HPLC configuration usually employed for radiopharmaceuti-
cal quality controls, several protocols relying on reverse-phase columns were proposed.
The original HPLC analysis method of [68Ga]Ga-DOTAZOL used a water/acetonitrile
gradient and required sample incubation in 0.25 M desferoxamine for 1 min to complex
free 68Ga3+ and discriminate it from the radiolabeled bisphosphonate [168]. However,
these conditions made [68Ga]Ga-DOTAZOL pass through the column without retention
and were therefore unsuitable for the formal identification of the radiolabeling product.
An alternative method using an isocratic mixture of tetrabutylammonium phosphate
59 mM and methanol (9:1) as the mobile phase allowed the slight retention of the [68Ga]Ga-
DOTAZOL complex on the reverse stationary phase [178]. This method was also used
for quality control of the 68Ga-labeled DOTAZOL evaluated in humans [182]. Finally, an
HPLC analysis method for [177Lu]Lu-DOTAZOL that is transposable to other phosphonate-
containing radiopharmaceuticals was developed by Eryilmaz et al., based on a disodium
hydrogen phosphate mobile phase adjusted at pH 1.5–1.8 with orthophosphoric acid and
containing N,N-dimethyltetradecylamine [187]. This latter reagent can form ion pairs
with phosphonate groups and increase the retention of bisphosphonates via the lipophilic
moiety of the alkylamine. In summary, similar to radio-TLC methods, particular attention
should be given to the validation of a reliable and efficient radio-HPLC method for the RCP
determination of radiolabeled bisphosphonates to guarantee the accurate analysis of the
radiopharmaceutical preparation and to avoid either false positive or false negative results.

4. Preclinical Investigations on DOTAZOL

4.1. [68Ga]Ga-DOTAZOL

Only limited data on the non-clinical evaluation of DOTAZOL are available in the
literature, reflecting its rapid transfer to clinical use. Initial works on DOTAZOL relate
its extremely high in vitro adsorption on hydroxyapatite when radiolabeled with 68Ga,
which is slightly better than [68Ga]Ga-DOTA-Pamidronate and its dehydroxylated analog
[68Ga]Ga-BPAPD (92.7 ± 1.3% vs. 91.2 ± 2.7% and 83.0 ± 0.8%, respectively) [168]. An ex
vivo organ biodistribution study on healthy rats showed high accumulation in bone and
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low uptake in soft tissues, with 40 to 50% of the injected doses detected in the skeletons at
60 min post-injection (p.i.). Notably, [68Ga]DOTAZOL displayed the highest bone-to-blood
ratio in comparison with [68Ga]Ga-DOTA-Pamidronate and [68Ga]Ga-BPAPD (11.5 vs.
7.6 and 3.7, respectively). The in vivo biodistribution experiments were in line with the
above results, showing the rapid bone accumulation of [68Ga]Ga-DOTAZOL with a plateau
level at 45 min p.i. and a fast blood clearance. Interestingly, t hepreclinical evaluation
of [68Ga]Ga-NODAGAZOL highlighted, in comparison with [68Ga]Ga-DOTAZOL, its
higher femur accumulation (SUV = 4.53 ± 0.28 vs. 3.67 ± 0.37 at 60 min p.i., respectively).
[68Ga]Ga-NODAGAZOL also displayed higher tumor-to-background ratios than [68Ga]Ga-
DOTAZOL (femur-to-blood = 57.5 ± 5 vs. 8.4 ± 1.4 at 60 min p.i. respectively), making it
even more suitable than DOTAZOL for diagnostic use. However, this molecule cannot be
used for therapy applications, as the NODAGA chelator is not suitable for large radiometals
such as 177Lu [142].

4.2. [177Lu]Lu-DOTAZOL

Similar to its 68Ga-labeled counterpart, [177Lu]Lu-DOTAZOL displayed fast and
high uptake in bones and low accumulation in soft tissues, according to the ex vivo
biodistribution studies in male Wistar rats [168]. Importantly, the 177Lu complex showed
longer renal clearance and higher accumulation in the kidneys than [68Ga]Ga-DOTAZOL
(1.70 ± 0.13% ID/g vs. 0.53 ± 0.04% ID/g at 60 min p.i., respectively), suggesting the im-
portance of close monitoring of the renal function before and during treatment (particularly
in the case of high and/or repeated doses). The in vivo evaluation of [177Lu]Lu-DOTAZOL
was consistent with ex vivo experiments, positioning this investigational radiopharmaceu-
tical as a good candidate for TRT approach in view of its high skeletal accumulation and
good target-to-soft tissues ratio.

In the perspective of a potential 68Ga/177Lu/225Ac theranostic triplet, the early pre-
clinical evaluation of DOTAZOL labeled with actinium-225 evidenced high bone uptake
in healthy Wistar rats, which was comparable to the 68Ga and 177Lu-containing deriva-
tives [188]. No clinical signs of toxicity were evidenced over a 2-month observation period;
however, the microscopic histopathological analysis of the kidneys 3 months after a single
dose of ~400 kBq [225Ac]Ac-DOTAZOL revealed significant tubular damage in most of the
seven animals studied. As suspected with the 177Lu-radiolabeled derivative, DOTAZOL
complexed with radiometals for TRT purposes may present a renal toxicity that should be
considered and may require concomitant strategies to reduce these adverse effects [189].

5. Clinical Uses of DOTAZOL

5.1. PET Imaging with [68Ga]Ga-DOTAZOL

An early experience with [68Ga]Ga-DOTAZOL imaging in humans was reported by
Zhang et al. [190], particularly in prostate cancer patients for whom DOTAZOL showed
an approximately threefold higher uptake in skeletal lesions than [68Ga]Ga-PSMA-11. The
introduction of this second-generation bifunctional bisphosphonate follows from the initial
use of [68Ga]Ga-BPAMD in the same indications and was associated with a perfectible
radiosynthesis process, suboptimal accumulation in bone metastases (possibly due to its
non-hydroxylated chemical structure) and significant uptake in healthy tissues [191].

The initial observation of [68Ga]Ga-DOTAZOL biodistribution in a single patient with
prostate cancer evidenced, in comparison with [68Ga]Ga-PSMA-11, a more intense uptake
in the bone metastases associated with lower activity in background and in non-target
organs (Figure 9) [158]. In this context, in order to better characterize the fate of [68Ga]Ga-
DOTAZOL in the human body, a larger biodistribution study was carried out on five
patients with metastatic breast, bronchial or prostate carcinoma [177]. After the injection of
2.15 ± 0.17 MBq/kg of [68Ga]Ga-DOTAZOL, the initial rapid uptake of the tracer in bone
could be observed until 30 min p.i., followed by a further gradual rise. The comparison of
PET/CT images in the same bronchial carcinoma patient showed a 2.56-fold higher uptake
for [68Ga]Ga-DOTAZOL than [18F]FDG. In addition, a greater number of apparent lesions
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was found in each patient with the 68Ga-labeled bisphosphonate than with the [18F]FDG
in bronchial carcinoma, the [68Ga]Ga-PSMA-617 in prostate cancer and th [99mTc]Tc-MDP
in breast cancer, respectively. Dosimetric analysis showed that [68Ga]Ga-DOTAZOL, like
other bone-seeking agents, delivered the highest radiation-absorbed dose to the blad-
der (0.368 mSv/MBq), followed by the osteogenic cells (0.040 mSv/MBq), the kidneys
(0.031 mSv/MBq) and red marrow (0.027 mSv/MBq). In a theranostic perspective, these
high bladder- and kidney-absorbed doses have to be considered but should be easily
reduced by proper hydration and rapid diuresis [189].
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Figure 9. Whole-body PET/CT images acquired 60 min p.i. 170 MBq [68Ga]Ga-PSMA-11 and
155 MBq [68Ga]Ga-DOTAZOL, respectively, in a single prostate cancer patient (71-years-old, Gleason
4 + 4), as reported by Pfannkuchen et al. [158].

Aside from this specific study, the clinical use of [68Ga]Ga-DOTAZOL is also re-
ported for the selection and follow-up of patients considered for TRT with [177Lu]Lu-
DOTAZOL [182–184].

5.2. Targeted Radionuclide Therapy with [177Lu]Lu-DOTAZOL

The initial assessment of biodistribution and normal organ-absorbed doses after ther-
apeutic doses of [177Lu]Lu-DOTAZOL was performed by Khawar et al. in patients with
either metastatic prostate cancer (n = 2) or bronchial carcinoma (n = 2) (Figure 10) [182].
After a single mean injected dose of 5968 ± 64 MBq, qualitative SPECT analysis evidenced
early and high uptake in the bladder, followed by the kidneys and soft tissues. Con-
sistent with preclinical data, the kidneys showed a rapid decrease in activity at 3 h p.i.,
concomitantly with an intense and continuous skeletal uptake. Interestingly, despite the
small sample size, the skeletal-to-soft tissue contrast values appeared better in bronchial
carcinoma patients than in prostate cancer patients. The mean organ-absorbed doses
were the highest for the osteogenic cells (3.33 ± 0.35 mSv/MBq), followed by the kidneys
(0.49 ± 0.16 mSv/MBq), red marrow (0.46 ± 0.06 mSv/MBq) and the urinary bladder wall
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(0.32 ± 0.02 mSv/MBq). As a comparison, the dose delivered to the kidneys by [177Lu]Lu-
DOTAZOL ranged from 1.2 to 1.88 times lower than that of [177Lu]Lu-PSMA-617 [192,193].
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Figure 10. Planar scintigraphy (anterior and posterior views) after the infusion of [177Lu]Lu-
DOTAZOL at (A) 20 min, (B) 3 h, (C) 24 h and (D) 168 h, and (E) PET/CT after injection of [68Ga]Ga-
DOTAZOL in a patient with bone metastases secondary to bronchial carcinoma, as reported by
Khawar et al. [182].

The early safety data on the clinical use of [177Lu]Lu-DOTAZOL were collected by
Fernández et al. [194]. After a single mean injected dose of 5780 ± 329 MBq in bone
metastatic prostate cancer patients (n = 9), the normalized absorbed doses ranged from
0.206 to 0.564 Gy/GBq for red marrow, from 0.053 to 0.691 Gy/GBq for the kidneys and
from 0.635 to 1.980 Gy/GBq for bone surfaces. Assuming a maximum tolerated dose of 2,
23 and 10 Gy for red marrow, kidneys and bone surfaces, red marrow was identified as the
dose-limiting organ for all patients, with maximum safely injectable activity ranging from
3.5 to 9.7 GBq (median 6.0 GBq). Regarding the hematological and biochemical parameters,
a significant, transitory reduction was observed for leukocytes at 4 and 10 weeks p.i. and for
platelets at 4 weeks p.i., with recovery from weeks 4 to 10. Conversely, the treatment had no
significant effect on lactate dehydrogenase, alkaline phosphatase, creatinine, hemoglobin
or hematocrit levels. No other relevant adverse events such as xerostomia, fatigue, nausea,
loss of appetite, nephrotoxicity or hepatotoxicity was experienced by any patient.

The therapeutic safety and efficacy of [177Lu]Lu-DOTAZOL was further documented
by Yadav et al., who conducted a prospective, single-arm study in 40 patients experiencing
bone pain due to skeletal metastases of either prostate (n = 11), breast (n = 23) or lung
cancer (n = 6) [183]. Notably, a fixed activity of 1295 MBq (i.e., 2.7 times lower than the most
conservative activity of 3.5 GBq recommended by Fernández et al. [194]) was administered
as a single-dose treatment in 15 patients, whereas 25 patients received two cycles with
a 3-month interval. Overall, 27.5% patients experienced a >70% reduction in the visual
analogue scale (VAS) for pain intensity measurement, 50% had a 40–70% decrease in VAS,
12.5% had a 20–40% decrease in VAS and 10% had a <20% decrease in VAS or an increase
in pain. In addition, significant improvement was identified in the Karnofski performance
scale (pre-therapy = 60 vs. post-therapy = 80) and in the ECOG performance status (pre-
therapy = 3 vs. post-therapy = 2). The median time for the initiation of pain relief was
≤7 days and the median duration of sustained response after the last treatment cycle
was 3 months. As patients were not treated by any other anticancer treatment during
[177Lu]Lu-DOTAZOL evaluation (except for eight patients with prostate cancer having
hormonal therapy), the median survival from TRT was 13 months (95% CI 10–14 months)
and the 1-year survival probability was 55.4%. Regarding toxicity, none of the patients
experienced hematologically serious adverse events and only two patients showed grade II
transient anemia after [177Lu]Lu-DOTAZOL therapy. No adverse renal or biochemical side
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effects were recorded. In summary, although this cohort study was not randomized and
had no comparative arm, it provided more detailed information on [177Lu]Lu-DOTAZOL
safety and efficacy in the management of metastatic bone pain in several types of cancers.
In future similar studies, it would be of interest to investigate other key parameters, such
as metastatic burden reduction or the possibility of more retreatment cycles.

Aside from the previously presented studies involving [177Lu]Lu-DOTAZOL, a few
case reports also exemplify the use of this radioligand therapy in single patients. For
instance, a 50-year-old woman with breast cancer previously treated with chemotherapy,
radiotherapy and antihormone therapy and displaying extensive bone metastases, was
first treated with five cycles of [177Lu]Lu-BPAMD (~3.2 GBq/cycle) that led to a partial
remission of the disease [190]. Approximately 15 months later, the patient was treated
with three cycles of [177Lu]Lu-DOTAZOL (~11.5 GBq/cycle with ~5 months between
each cycle) that achieved a partial remission of the disease after treatment. Comparably,
a 64-year-old man with a poorly differentiated, osseous metastatic adenocarcinoma of
the lung who had been previously treated with radiation therapy of bone metastases,
systemic chemotherapy and immunotherapy (checkpoint inhibitor nivolumab) received
two cycles of ~5.5 GBq [177Lu]Lu-DOTAZOL [184]. As expected, the radiopharmaceutical
showed intense accumulation in the bone metastases and caused a decrease in osteoblastic
activity with no apparent side effects. These two case reports combined with the previously
discussed studies suggest that, similarl to the radium-223 that is available for the treatment
of prostate cancer bone metastases, [177Lu]Lu-DOTAZOL could be an acceptable alternative
for the management of skeletal metastases from other types of cancer, e.g., breast or
bronchial carcinoma.

6. Conclusions

The early diagnosis and management of skeletal metastases can significantly improve
patients quality of life as the disease is considered a common cause of morbidity and
mortality with a high socio-economic impact. Among the radionuclide therapy alternatives
available in nuclear medicine, several options are reserved for the management of prostate
cancer bone metastases, as is the case for 223Ra and, non-specific for bone metastases,
[177Lu]Lu-PSMA-617. Combining diagnostic and therapeutic dimensions, the 99mTc-labeled
bisphosphonate and the [153Sm]Sm-lexidronam pair are currently available. However, the
samarium-tetramethylenephosphonate complex presents significant drawbacks, including
a moderate clinical impact and the instability of the coordination compound, associated
with delivery and storage constraints (freezing between −10 ◦C and −20 ◦C). In this con-
text, second-generation bifunctional bisphosphonates such as DOTAZOL offer promising
prospects for the diagnosis and treatment—at present, as a last-line, palliative approach—of
skeletal lesions in a variety of cancer diseases. Functionalized by a DOTA-chelating group
with versatile features, DOTAZOL even offers compatibility with the theranostic triplet
68Ga/177Lu/225Ac, similar to somatostatin analogs [195]. To date, the few results available
on the use of DOTAZOL in humans, particularly in relation to its therapeutic aspects, are
encouraging regarding both efficacy (especially in the reduction of pain associated with
bone metastases) and safety. Other promising DOTA-bisphosphonates such as DOTA-IBA
seem to follow a similar trend. Nevertheless, the 68Ga/177Lu-labeled DOTAZOL theranos-
tic combination will have to find its place among the therapeutic alternatives available to
date. In addition, further prospective patient studies would be needed to reliably validate
the optimal dosing and frequency of cures and assess the potential of DOTAZOL for the
diagnosis and treatment of bone metastases in selected types of cancer.
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