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Abstract

Consider the global optimisation of a function U defined on a finite set V endowed with an irreducible and reversible
Markov generator. By integration, we extend U to the set P(V ) of probability distributions on V and we penalise
it with a time-dependent generalised entropy functional. Endowing P(V ) with a Maas’ Wasserstein-type Riemannian
structure, enables us to consider an associated time-inhomogeneous gradient descent algorithm. There are several ways
to interpret this P(V )-valued dynamical system as the time-marginal laws of a time-inhomogeneous non-linear Markov
process taking values in V , each of them allowing for interacting particle approximations. This procedure extends to the
discrete framework the continuous state space swarm algorithm approach of Bolte, Miclo and Villeneuve [4], but here we
go further by considering more general generalised entropy functionals for which functional inequalities can be proven.
Thus in the full generality of the above finite framework, we give conditions on the underlying time dependence ensuring
the convergence of the algorithm toward laws supported by the set of global minima of U . Numerical simulations illustrate
that one has to be careful about the choice of the time-inhomogeneous non-linear Markov process interpretation.
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1 Introduction
The global minimization of a function U given on a set V is in general an important but difficult task. When V is a
compact and connected manifold and U is smooth function, a time-inhomogeneous swarm algorithm was proposed in [4]
to approach the set of global minimizers. Our purpose here is to deal with discrete optimisation problems and second to
go beyond some technical restrictions that have appeared in [4], in particular concerning some functional inequalities.

Let us begin by recalling the swarm algorithm presented in [4]. We start by up-lifting through integrations the function
U on V to the functional U defined on the set P(V ) of probability measures on V via

∀ρ ∈ P(V ), U(ρ) B

∫
V

U(x)ρ(dx).

Next, we penalise this functional by a ϕ-entropy term. Let ϕ : R+ → R+ (R+ B [0,+∞)) be a convex function satisfying
ϕ(1) = ϕ′(1) = 0 and consider the functional

H : P(V ) 3 ρ 7→

{ ∫
ϕ(ρ(x))`(dx) , when ρ«`

+∞ , otherwise
(1.1)

where ` is the Riemannian probability measure on V and where we denoted in the same way a probability measure and
its Radon-Nikodym density with respect to the reference measure `.

For any β ≥ 0, seen as an inverse temperature, consider the functional

Uβ B βU +H. (1.2)

When β is large, the global optimisation of Uβ/β on P(V ) is to some degree equivalent to the global optimisation of U
on V. We endow P(V ), or rather its subset D+(V ) consisting of probability measures admitting a positive and smooth
density, with the Wasserstein structure. Then under the additional assumption that ϕ′(0) = −∞ and starting from
an initial probability measure ρ0 ∈ D+(V ), we can consider the gradient descent associated to Uβ to come close to the
unique stationary probability measure, which is almost concentrated onM(U), the set of global minima of U . To really
concentrate onM(U), we have to let β depends on time in some way, with in particular limt→+∞ βt = +∞. The resulting
evolution (ρt)t≥0 has in the weak sense the non-linear Markov representation

∀t ≥ 0, ρ̇t = ρtLβt,ρt , (1.3)

where for any β ≥ 0 and ρ ∈ D+(V ), Lβ,ρ is the diffusion generator on V defined by

Lβ,ρ[·] = α(ρ)∆ · −β〈∇,∇·〉,

where ∆, 〈·, ·〉 and ∇ are the Laplace-Beltrami operator, the Riemannian scalar product and the gradient operator, and
with

∀r > 0, α(r) B
1

r

∫ r

0

sϕ′′(s)ds,

assuming that ϕ is C2 on (0,+∞).
In [4], convex functions ϕ of the following forms were considered. For any m ∈ R \ {0, 1} define ϕm by

∀r ≥ 0, ϕm(r) B
rm − 1−m(r − 1)

m(m− 1)
.

Observe that ϕm(0) = +∞ for m < 0 and this situation was not taken into account in [4].
The function ϕ0 and ϕ1 are obtained as limits (respectively for m→ 0 and m→ 1) and are given by

∀r ≥ 0,

{
ϕ0(r) B −ln(r) + r − 1,

ϕ1(r) B r ln(r)− r + 1,
(1.4)

(in particular ϕm(0) = +∞ iff m ≤ 0).
We deduce a family of convex functions parametrized by m1,m2 ∈ R (respectively controlling the behavior at 0 and

+∞) via

∀r ≥ 0, ϕm1,m2 =

{
ϕm1(r) if r ∈ (0, 1],

ϕm2(r) if r ∈ (1,+∞),

and note that these functions ϕm1,m2 are C2 on (0,+∞).
It was proven in [4] that if V is the circle, if ϕ := ϕm,2 with m ∈ (0, 1/2) and if the inverse temperature schedule is

given by

∀t ≥ 0, βt B kt1/γ , with k > 0 and γ =
3(2−m)

1− 2m
∈ [6,+∞),
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then the solution of (1.3) concentrates around the set of global minima of U for large times. We expect that a variant of
this result holds for any compact connected manifold V , but we restricted to the case of the circle to get the underlying
functional inequality.

As mentioned previously, here one of our goals is to transpose the above considerations to the situation of a finite set
V , in particular to get around the difficulty of the underlying functional inequality. As illustrated by the two papers of
Holley and Stroock [7] and Holley, Kusuoka and Stroock [8], such inequalities can be easier to obtain in the finite context
than in the continuous one.

Let us describe how the previous objects have to be modified. The compact and connected Riemannian manifold is
replaced by a finite set V endowed with a Markov generator L B (L(x, y))x,t∈V plays the role of the Beltrami-Laplacian ∆
(which encapsulates the whole Riemannian structure), so we assume that it is irreducible and reversible with a probability
distribution still denoted ` := (`(x))x∈V (which necessarily gives a positive weight to all points of V ). Let P(V ) be the set
of probability measures on V . To any µ := (µ(x))x∈V ∈ P(V ), we associate its density ρ with respect to `:

∀x ∈ V, ρ(x) B
µ(x)

`(x)
. (1.5)

The set of such densities is denoted by D(V ), we will often move back and forth between P(V ) and D(V ), which
somewhat respectively corresponds to probabilist and analyst points of view.

Similar to (1.1), the functional H is given by

∀µ ∈ P(V ), H(µ) B
∑
x∈V

ϕ(ρ(x))`(x),

where ϕ is a convex function as above, except that we furthermore allow ϕ(0) = +∞ (in this case we assume that
limr→0+ ϕ(r) = +∞).

Given a mapping U : V → R, as above we can then extend it into the functionals U and Uβ , for any β ≥ 0, defined on
P(V ).

To go further, we have to endow P(V ) with a Riemannian structure (with boundary), an ersatz of the Wasserstein
distance, to be able to consider gradient descent for Uβ . To do so, we follow Erbar and Maas [9]. Choosing a particular
metric among those they propose, see the next section for details, and starting from a positive probability µ0, the gradient
descent evolution (µt)t≥0 satisfies the equation

∀t > 0, µ̇t = µtLβt,ρt , (1.6)

(recall that for t ≥ 0, µt is the probability admitting ρt as density with respect to `), with the mapping

R+ ×D+(V ) 3 (β, ρ) 7→ Lβ,ρ := (Lβ,ρ(x, y))x,y∈V ∈ G(V ),

where L(V ) is the set of Markov generators on V ,

D+(V ) := {ρ ∈ D(V ) : ∀x ∈ V, ρ(x) > 0},

and where

∀x 6= y, Lβ,ρ B

(
ρ(y)− ρ(x)

ρ(x)(ϕ′(ρ(y))− ϕ′(ρ(x))
β(U(y)− U(x)) +

ρ(y)

ρ(x)
− 1

)
−
L(x, y),

where (x)− = max(0,−x) and with the convention that ∀x, y ∈ V such that ρ(y) = ρ(x),

ρ(y)− ρ(x)

ϕ′(ρ(y))− ϕ′(ρ(x))
=

1

ϕ′′(ρ(x))
.

Since Lβ,ρ is a Markov generator, we don’t need to specify it’s diagonal entries, they are given by

∀x ∈ V, Lβ,ρ(x, x) = −
∑

y∈V \{x}

Lβ,ρ(x, y).

Inspired by (1.3), we then consider time-inhomogeneous inverse temperature schemes (βt)t≥0 and the associated evolution
equations

∀t > 0, µ̇t = µtLβt,ρt , µ0 ∈ P+(V ), (1.7)

where P+(V ) B {µ ∈ P(V ) : ρ ∈ D+(V )}.
The main result of this paper is then:
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Theorem 1.1. For any m < 0, consider the function ϕ = ϕm,2 as well as the time-inhomogeneous inverse temperature
scheme

∀t ≥ 0, βt = (t0 + t)κ(m) − 1,

where t0 ≥ 1 and
κ(m) =

−m
2(1−m)

∈ (0,
1

2
). (1.8)

For the corresponding (1.7), we have

lim
t→+∞

µt[M(U)] = 1, (1.9)

whereM(U) is the set of global minimizers of U .
This is a discrete analogue to the corresponding result of [4], with the improvement that there is no more restriction

on the “geometry" of the energy landscape (L, `, U).
In practice it is often difficult to compute the evolution (1.7), so one traditionally resorts to interacting particle

approximations. An numerical illustration is given at the end of the paper.
The paper is constructed according to the following plan. In the following section, we recall the metric constructions

of Erbar and Maas on P+(V ) and our particular choice. In Section 3, we present the details of the adaptation to the finite
setting of the program described at the beginning of this introduction, in particular we extend the penalized cost (1.2) for
a specific family of convex functions. In Section 4 we consider the convergence to the equilibrium of the time-homogeneous
and non-linear Markov evolution (1.6). Since it is a representation of the gradient descent with respect to Uβ , we use this
functional as a Lyapunov function and are led to a functional inequality which is investigated in Section 5. The proof of
Theorem 1.1 is given in Section 5 by adapting the same approach. The last section contains the numerical illustration.
A first appendix explains why the traditional Metropolis algorithm is not included into our framework based on Maas’
formalism [9] and how to extend it. The second appendix recalls some facts relative to linear and non-linear Markov
samplings.

Acknowledgments:
We would particularly like to thank Stéphane Villeneuve for the discussions we had about this paper.

2 Riemannian structures on D+(V )

In this section, we revisit certain Riemannian structures on D+(V ) and the concept of gradient flow for a smooth functional
on (D+(V ),Wθ) as introduced in Maas [9], where Wθ denotes a a Riemannian metric. Throughout the paper, we endow
the set V with an irreducible Markov generator L = (L(x, y))x,y∈V , i.e.,

∀x 6= y, L(x, y) ≥ 0 and ∀x ∈ V,
∑
y∈V

L(x, y) = 0.

Irreducibility means that for any x 6= y ∈ V , there is a path x = x0, x1, ..., xn = y such that L(xi, xi+1) > 0 for all
i = 0, 1, ..., n − 1. It is well-known that such a generator possesses a unique positive invariant measure ` = (`(x))x∈V by
Perron-Frobenius theorem and we assume further that ` is reversible for L, i.e.,

`(x)L(x, y) = `(y)L(y, x) ∀x, y ∈ V.

2.1 Geometric notions
Definition 2.1 (Discrete gradient and divergence)
For any function ψ ∈ RV , the discrete gradient of ψ, denoted as ∇ψ, is defined by

∇ψ : V × V → R, ∇ψ(x, y) B ψ(y)− ψ(x). (2.1)

For any function Ψ ∈ RV×V , the discrete divergence of Ψ, denoted as div Ψ, is defined by

div Ψ : S → R, div Ψ(x) B
1

2

∑
y∈V

L(x, y)(Ψ(x, y)−Ψ(y, x)). (2.2)

Definition 2.2 (Inner products)
For φ, ψ ∈ RV , the inner product with respect to ` is defined by

〈φ, ψ〉L2(`) B
∑
x∈V

`(x)φ(x)ψ(x). (2.3)

For Φ,Ψ ∈ RV×V , the inner product with respect to `n L is defined by

〈Φ,Ψ〉`nL B
1

2

∑
x,y∈V
x 6=y

`(x)L(x, y)Φ(x, y)Ψ(x, y). (2.4)
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From the definitions provided above, it can be readily verified that the “integration by parts" formula holds.

〈∇ψ,Φ〉`nL = −〈ψ,div Φ〉L2(`). (2.5)

Another crucial notion is the definition of tangent spaces over ρ ∈ D+(V ), which serves as a fundamental component for
the Riemannian structures on on D+(V ).

Definition 2.3 (Tangent space and inner product)
Let ρ ∈ D+(V ), the tangent space over ρ is defined by

Tρ B {∇ψ ∈ RS×S : ψ ∈ RS}. (2.6)

Note that Tρ does not depend on ρ, but we endow it with a inner product that does:

∀∇φ,∇ψ ∈ Tρ, 〈∇φ,∇ψ〉ρ B
1

2

∑
x,y∈V

∇φ(x, y)∇ψ(x, y)L(x, y)θ(ρ(x), ρ(y))`(x), (2.7)

where θ : R+ × R+ → R+ is a suitable nonnegative function of two variables, chosen carefully in Maas [9] to make Tρ a
Hilbert space. We will give more details on the function θ in the next section.

2.2 Maas’ metric
In [9], Maas introduced a notion of Wasserstein-like metric on P(V ), for which he closely followed Brenier-Benamou’s
interpretation of the 2-Wasserstein metric on P2(Rn) in Benamou and Brenier [2], the space of probability measures on
Rn with finite second moment. Initially, Maas used a Markov kernel to define the metric, but later in Erbar and Maas [6],
they replaced the Markov kernel with a Markov generator, which is the one presented here. The key aspect is that Maas
employed a function of two variables θ : R+ × R+ → R+ satisfying the following collection of assumptions.

Assumption 2.1. The function θ : R+ × R+ → R+ satisfies

• (A1): θ is continuous and is symmetric on R+ × R+, i.e., θ(s, t) = θ(t, s), ∀s, t ≥ 0.

• (A2): θ is C∞ on (0,+∞)× (0,+∞).

• (A3): θ(s, t) > 0, ∀s, t > 0, and vanishes at the boundary: θ(0, t) = 0, ∀t ≥ 0.

• (A4): θ(r, t) ≤ θ(s, t), for all 0 ≤ r ≤ s and t ≥ 0.

• (A5): For any T > 0, there exists a constant CT > 0 such that θ(2s, 2t) ≤ 2CT θ(s, t), whenever s, t ≤ T .

Definition 2.4 (Maas metric)
Let θ be a function as described in Assumption 2.1. For ρ̄0, ρ̄1 ∈ D(V ), we set

W2
θ (ρ̄0, ρ̄1) B inf

ρ,ψ

{
1

2

∫ 1

0

∑
x,y∈V

`(x)L(x, y)θ(ρt(x), ρt(y))(∇ψt(x, y))2 dt

}
= inf
ρ,ψ

{∫ 1

0

‖∇ψt‖2ρtdt
}
, (2.8)

where the infimum runs over all pairs (ρ, ψ) such that ρ : [0, 1]→ D(V ) is a piecewise C1 curve in D(V ) and ψ : [0, 1]→ RS
is a measurable function, the pair satisfies, for a.e. t ∈ [0, 1],{

ρ̇t(x) +
∑
y∈V ∇ψt(x, y)L(x, y)θ(ρt(x), ρt(y)) = 0, ∀x ∈ V,

ρ0 = ρ̄0, ρ1 = ρ̄1.
(2.9)

We have the following summarized result by Maas, the proof of which can be found in the proofs of Theorems 3.12,
3.19, and Lemma 3.30 in Maas [9].

Theorem 2.2. Suppose that

Cθ B

∫ 1

0

1√
θ(1− r, 1 + r)

dr < +∞ (2.10)

then Wθ is a metric on P(V ). Additionally, if θ is concave, then for any ρ̄0, ρ̄1 ∈ D+(V ), we can restrict the set in the
infimum in (2.8) to curves ρ = (ρt)t∈[0,1] ⊂ D+(V ). As a consequence, (D+(V ),Wθ) is a Riemannian manifold (i.e., Wθ

can be intepreted as a Riemannian distance).
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2.3 Gradient flows of functionals
Definition 2.5 (Tangent vector field of a curve)
Let ρ = (ρt)t≥0 ⊂ D+(V ) be a smooth curve. The tangent vector field along ρ is denoted by Dtρ ∈ Tρt . At any time t ≥ 0,
Dtρ is the unique element ∇gt of Tρt such that

ρ̇t + div(ρ̂t �∇gt) = 0, (2.11)

where ρ̂t(x, y) B θ(ρt(x), ρt(y)) and the notation � represents the entrywise product, i.e., if H,K ∈ RV×V then H �K B
(H(x, y)K(x, y))x,y∈V .

In view of Maas [9], we shall consider two special types of functionals:

• For a function R : S → R we consider the potential energy functional V1 : D+(V )→ R defined by

V1(ρ) B
∑
x∈V

R(x)ρ(x)`(x). (2.12)

• For a differentiable function f : (0,+∞)→ R, we consider the generalized entropy V2 : D+(V )→ R defined by

V2(ρ) B
∑
x∈V

f(ρ(x))`(x). (2.13)

Definition 2.6 (Gradient of a smooth functional)
The gradient of a smooth functional V : D+(V ) → R at ρ ∈ D+(V ) with respect to the metric Wθ, denoted by grad V, is
the unique element of Tρ such that, for any smooth curve (ρt)t∈(−ε,ε) ⊂ D+(V ) with ρ0 = ρ,

d

dt
V(ρt)

∣∣∣
t=0

= 〈grad V(ρ), Dtρ|t=0〉ρnL.

Theorem 2.3. For the functionals V1 and V2 introduced in (2.12), (2.13), their gradients at ρ ∈ D+(V ) are

grad V1(ρ) = ∇R, grad V2(ρ) = ∇[f ′ ◦ ρ].

Proof. See proofs of Propositions 4.1 and 4.2 in Maas [9].

Definition 2.7 (Gradient flow)
Given a metric Wθ, a smooth curve ρ = (ρt)t≥0 ⊂ D+(V ) is called a gradient flow of a functional V if

Dtρ = −grad V(ρt), ∀t ≥ 0.

In particular, given a functional of the form V B βV1 + V2, β ≥ 0, Theorem 2.3 gives

grad V(ρ) = β∇R+∇[f ′ ◦ ρ].

Such an example of the functional V is the penalized cost

Uβ(ρ) B β
∑
x∈V

U(x)ρ(x)`(x) +
∑
x∈V

ϕ(ρ(x))`(x), β ≥ 0,

where ϕ ∈ C2(0,+∞) is strictly convex. We will study in detail this functional together with its associated gradient flow
in the next section.

3 Presentation of the problem

3.1 The choice of family of relaxations on P(V )

Let V be the finite set mentioned in the introduction and U : V → R be a function on V . As previously mentioned in
the introduction, our goal is to minimize the function U over V . To achieve this, we first up-lift through integration the
function U on V to the functional U defined on the set P(V ) of probability measures on V via

∀µ ∈ P(V ), U(µ) B
∑
x∈V

U(x)µ(x).

Recall that in the previous section, we endowed V with an irreducible Markov generator L. Its positive invariant probability
measure ` allows us to identify each µ ∈ P(V ) with its density with respect to `:

∀x ∈ V, ρ(x) B
µ(x)

`(x)
.
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Therefore, we will often write U(ρ) instead of U(µ):

∀ρ ∈ D(V ), U(ρ) B
∑
x∈V

U(x)ρ(x)`(x). (3.1)

We turn to the choice of the C2, convex function ϕ mentioned in the introduction that we are going to use throughout this
paper. Let m < 0 be a negative real number, define the function ϕ : (0,+∞)→ R+ as follows

∀r > 0, ϕ(r) B ϕm,2(r) =


rm − 1−m(r − 1)

m(m− 1)
, r ∈ (0, 1)

(r − 1)2

2
, r ∈ [1,+∞)

(3.2)

It can be easily verified that ϕ is C2 with its first derivative given by

∀r > 0, ϕ′(r) =


rm−1 − 1

m− 1
, r ∈ (0, 1)

r − 1 , r ∈ [1,+∞)

and its second derivative is given by

∀r > 0, ϕ′′(r) =

{
rm−2 , r ∈ (0, 1)

1 , r ∈ [1,+∞)

so that limr→0+ ϕ(r) = +∞, ϕ(1) = ϕ′(1) = 0. The second derivative ϕ′′ is decreasing on (0,+∞) and ∀r > 0, ϕ′′(r) ≥ 1,
implying that its first derivative ϕ′ is strictly increasing and concave. Consequently, ϕ is strictly convex. Additionally,
we have limr→0+ ϕ

′(r) = −∞ and ϕ′(0,+∞) = R, thus ϕ′ has an inverse (ϕ′)−1 : R → (0,+∞) which we denote by
g = (ϕ′)−1. A standard result in real analysis shows that the function g : R→ (0,+∞) is strictly positive and increasing,
with the first derivative

g′(x) =
1

ϕ′′(g(x))
∈ (0, 1].

We can think of the function ϕ defined in (3.2) as a family of convex functions indexed by m < 0. The negativity of m
forces limr→0+ ϕ(r) = +∞, which will be crucial in the proofs of existence, uniqueness and convergence theorems of the
gradient flows associated with the penalized cost Uβ (given in the next subsection) and its time-dependent version later.
We would like to emphasize that from now on, whenever we write ϕ, we implicitly refer to the one defined in (3.2) unless
explicitly stated otherwise.

3.2 Penalized cost functional and stationary measure
Using function ϕ in (3.2), we define the a ϕ-entropy term H by

∀ρ ∈ D(V ), H(ρ) B
∑
x∈V

ϕ(ρ(x))`(x),

and use this term to penalize U(ρ). For β ≥ 0, seen as an inverse temperature, consider the penalized-cost functional

∀ρ ∈ D(V ), Uβ(ρ) B βU(ρ) +H(ρ)

= β
∑
x∈V

U(x)ρ(x)`(x) +
∑
x∈V

ϕ(ρ(x))`(x).

From the choice of ϕ in (3.2), we have the following result.

Theorem 3.1. Let β ≥ 0, and ϕ be given in (3.2). The functional ρ 7→ Uβ(ρ) is strictly convex and admits a unique
minimizer ηβ ∈ D+(V ).

Proof. The functional ρ 7→ Uβ(ρ) is strictly convex because it is a sum of a linear functional and a strictly convex functional.
Hence, if such a minimizer ηβ exists, it is necessarily unique. To show the existence of ηβ ∈ D(V ), we define ηβ to be the
(unique) solution of the equation

ρ ∈ D+(V ), ∀x ∈ V, βU(x) + ϕ′(ρ(x)) = c(β), (3.3)

where c(β) solves the equation

c ∈ R,
∑
x∈V

`(x)g(c− βU(x)) = 1, (3.4)
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with g = (ϕ′)−1, the inverse function of ϕ′. To show ηβ is well-defined, consider

f : R→ (0,+∞), c 7→ f(c) =
∑
x∈V

`(x)g(c− βU(x)).

The first derivative of f is

f ′(c) =
∑
x∈V

`(x)

ϕ′′(g(c− βU(x)))
> 0, (since ϕ′′ > 0)

and note that limc→−∞ f(c) = 0, limc→+∞ f(c) = +∞, so (3.4) has a unique solution c(β). If we let ∀x ∈ V, ηβ(x) B
g(c(β) − βU(x)) then ηβ > 0 and satisfies

∑
x∈V `(x)ηβ(x) = 1, thus ηβ ∈ D+(V ). Also, ηβ satisfies (3.3), i.e., βU(x) +

ϕ′(ηβ(x)) = c(β). Finally, to show ηβ is the unique minimizer, write

Uβ(ρ)− Uβ(ηβ) =
∑
x∈V

βU(x)(ρ(x)− ηβ(x))`(x) +
∑
x∈V

(
ϕ(ρ(x))− ϕ(ηβ(x))

)
`(x)

=
∑
x∈V

(−ϕ′(ηβ(x)) + c(β))(ρ(x)− ηβ(x))`(x) +
∑
x∈V

(
ϕ(ρ(x))− ϕ(ηβ(x))

)
`(x)

= −
∑
x∈V

ϕ′(ηβ(x))(ρ(x)− ηβ(x))`(x) +
∑
x∈V

(
ϕ(ρ(x))− ϕ(ηβ(x))

)
`(x)

=
∑
x∈V

`(x)
(
ϕ(ρ(x))− ϕ(ηβ(x))− ϕ′(ηβ(x))(ρ(x)− ηβ(x))

)
≥ 0,

where the last inequality follows from the convexity of ϕ.

The next result shows the limiting behavior of ηβ as β → +∞. Recall thatM(U) is the set of global minimizers of U .

Theorem 3.2. Under the hypothesis of Theorem 3.1, the following statements hold

(i) ∀x, y ∈ V such that U(x) = U(y), ηβ(x) = ηβ(y) (in particular x, y ∈M(U)).

(ii) ∀x /∈M(U), limβ→+∞ ηβ(x) = 0. More precisely, we have

∀x /∈M(U), lim
β→+∞

β[ηβ(x)]1−m =
1

(1−m)(U(x)−minU)
,

where m < 0 is fixed in (3.2).

(iii) ∀x ∈M(U), ηβ(x) ≥ 1 and
∂ηβ(x)

∂β
≥ 0, where the equality holds iff U is constant on V .

(iv) ∀x ∈ M(U), limβ→+∞ ηβ(x) =
1∑

y∈M(U) `(y)
. In other words, if ζβ is the probability measure with density ηβ and

V 3 x 7→ 1M(U)(x) is the function on V which equals 1 if x ∈M(U) and 0 otherwise, then limβ→+∞ ζβ(x) = ζ∞(x),
where

∀x ∈ V, ζ∞(x) B
`(x)∑

y∈M(U) `(y)
1M(U)(x). (3.5)

Proof. The first statement (i) is a consequence of (3.3). For (ii), we let x /∈ M(U) and x0 ∈ M(U) then from (3.3) and
the fact that ρ(x0)`(x0) ≤ 1,

ϕ′(ηβ(x)) = −β(U(x)−minU)) + ϕ′(ηβ(x0))

≤ −β(U(x)−minU)) + ϕ′(`(x0)−1)

−→ −∞ as β → +∞,

which in turn gives ηβ(x) → 0 as β → +∞ and ηβ(x0) is bounded away from 0 by a positive constant (in fact the lower
bound is 1 by statement (iii), which we will show later). So for β big enough, such that ηβ(x) < 1, we have

−β(U(x)−minU)) + ϕ′(ηβ(x0)) = ϕ′(ηβ(x)) =
[ηβ(x)]m−1 − 1

m− 1
,

or

β[ηβ(x)]1−m =
(

(1−m)(U(x)−minU) +
(m− 1)ϕ′(ηβ(x0)) + 1

β

)−1

−→ 1

(1−m)(U(x)−minU)
as β → +∞.
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Let us prove (iii). As in the proof of (ii)

ϕ′(ηβ(x))− ϕ′(ηβ(x0)) = −β(U(x)−minU) < 0,

so ηβ(x) < ηβ(x0) by monotonicity of ϕ′. Since x0 ∈M(U) and x /∈M(U) are arbitrary, from (i),

ηβ(x0) = ηβ(x0)
∑

y∈M(U)

`(y) + ηβ(x0)
∑

y/∈M(U)

`(y)

=
∑

y∈M(U)

ηβ(y)`(y) + ηβ(x0)
∑

y/∈M(U)

`(y)

= 1 +
∑

y/∈M(U)

(ηβ(x0)− ηβ(y))`(y)

≥ 1.

Consider the function of two variables

R+ × R 3 (β, c) 7→ Z(β, c) B
∑
x∈V

g(c− βU(x))`(x), g = (ϕ′)−1.

From the proof of Theorem 3.1, for each β ≥ 0 there exists a constant c(β) such that Z(β, c(β)) = 1. By the implicit
function theorem,

∂c

∂β
= −∂Z

∂β

(
∂Z

∂c

)−1

=

∑
x∈V g

′(c− βU(x))U(x)`(x)∑
x∈V g

′(c− βU(x))`(x)

≥ minU.

The last inequality follows from the fact that g′ > 0. Note that ηβ(x0) = g(c(β)− βU(x0)), hence

∂ηβ(x0)

∂β
= g′(c(β)− βU(x0))

(
∂c

∂β
−minU

)
≥ 0,

where the last inequality becomes equality if and only if U is constant on V . Finally, from (i), (ii) and (iii) we deduce

ηβ(x0) =
1−

∑
y/∈M(U) ηβ(y)`(y)∑
y∈M(U) `(y)

β→+∞−→ 1∑
y∈M(U) `(y)

,

which establishes (iv) and finishes the proof.

Remark 3.3. (a) The limit measure (3.5) is independent of the choice of m < 0 in the definition of ϕ = ϕm,2, it only
depends on the invariant measure ` = (`(x))x∈V .

(b) In the theory of simulated algorithms on finite state spaces, see e.g. Holley and Stroock [7], one also gets a convergence
in law toward a measure such as (3.5), where ` is the reversible measure of the underlying exploration kernel. It appears
as the small temperature limit 1/β → 0+ of the Gibbs distribution given by

∀ x ∈ V, ζβ(x) B
`(x)e−βU(x)∑
y∈V `(y)e−βU(y)

Note that the latter corresponds to our stationary measure when we take ϕ = ϕ1 in (1.4). But the time-inhomogeneous
evolution of probability measures (ρt(x) `(dx))t≥0 we will construct in Section 5 do not correspond to the evolution of the
Simulated Annealing algorithm considered in Holley and Stroock [7]. This a departure with the continuous space situation
of of [4], where we recover the Simulated Annealing algorithm of Holley, Kusuoka and Stroock [8] by taking ϕ = ϕ1. For
other classical references to the Simulated Annealing algorithms on finite states space, see [12, 1], where ` is rather taken
to be the uniform distribution on V .

4 The time-homogeneous situation

4.1 Gradient flow of Uβ
We define the function θ : R+ × R+ → R+ by

θ(s, t) B


s−t

ϕ′(s)−ϕ′(t) , ∀s, t > 0, t 6= s
1

ϕ′′(s) , s = t > 0

0, t = 0 or s = 0.

(4.1)
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It will be shown below that θ satisfies Assumption 2.1 except (A2) because θ is not differentiable (e.g., at (1,1)). Even
without the smoothness of θ, suppose that Cθ < ∞ in (2.10) then (D(V ),Wθ) remains a complete metric space by a
slight modification of the proof of Theorem 2.2 in Maas [9] (to the best of our understanding, Maas did not rely on the
smoothness of θ to prove Wθ is a metric on D(V )). However, (D+(V ),Wθ) ceases to be a Riemannian manifold due to
the lack of smoothness in θ. Since we will not investigate curvature notions in this paper, smoothness of the Riemannian
metric 〈·, ·〉ρ is not needed for our purposes. The continuity of θ will suffice for a notion of C1 gradient flow dynamic of
the penalized cost Uβ . We give some properties of the function θ defined in (4.1).

Lemma 4.1. The function θ in (4.1) satisfies Assumption (2.1) except (A2). Moreover, we have the following inequality

∀s, t > 0, (t− s)(ϕ′(t)− ϕ′(s)) ≥ ϕ(t)− ϕ(s)− ϕ′(s)(t− s). (4.2)

Proof. From the definition of θ, (A1) and (A3) follow from the fact that ϕ ∈ C2, limr→0+ ϕ
′(r) = −∞ and limr→0+ ϕ

′′(r) =
+∞. To prove (A4), we note that ϕ′ is concave because ϕ′′ is positive and nonincreasing. For fixed r ≤ s, consider the
function k given on t ∈ [0, r] ∪ [s,+∞) by

∀t ∈ [0, r] ∪ [s,+∞), k(t) B (s− t)(ϕ′(r)− ϕ′(t))− (r − t)(ϕ′(s)− ϕ′(t)), .

Its first derivative is

k′(t) = ϕ′(s)− ϕ′(r)− ϕ′′(t)(s− r).

If t ∈ [0, r], then ϕ′′(t) ≥ ϕ′′(r) (recall that ϕ′′ is decreasing) and

k′(t) ≤ ϕ′(s)− ϕ′(r)− ϕ′′(r)(s− r) ≤ 0

by the concavity of ϕ′. Similarly, if t ≥ s, then ϕ′′(s) ≥ ϕ′′(t) and

k′(t) ≥ ϕ′(s)− ϕ′(r)− ϕ′′(s)(s− r)
= −(ϕ′(r)− ϕ′(s)− ϕ′′(s)(r − s))
≥ 0

again by the concavity of ϕ′. We obtain t 7→ k(t) is decreasing on [0, r] and increasing on [s,∞). Hence, k(t) ≥ k(r) = 0
on [0, r] and k(t) ≥ k(s) = 0 on [s,+∞). Thus, for t ∈ [0, r) ∪ (s,+∞),

θ(s, t)− θ(r, t) =
(s− t)(ϕ′(r)− ϕ′(t))− (r − t)(ϕ′(s)− ϕ′(t))

(ϕ′(s)− ϕ′(t))(ϕ′(r)− ϕ′(t)) ≥ 0 (4.3)

because the numerator is just k(t) ≥ 0 and the denominator is always positive due to the fact that ϕ′ is strictly increasing
on (0,+∞). If t ∈ (r, s),

θ(s, t)− θ(t, t) =
ϕ′(s)− ϕ′(t)− ϕ′′(t)(s− t)

(ϕ′(t)− ϕ′(s))ϕ′′(t) ≥ 0

since the numerator and the denominator are both negative because ϕ′ is concave and strictly increasing. In the same
manner, θ(t, t) ≥ θ(r, t) and hence θ(s, t) ≥ θ(r, t). Since r, s, t are arbitrary, thus we have established (A4). For the last
inequality (4.2), we rewrite it as

ϕ(s)− ϕ(t)− ϕ′(t)(s− t) ≥ 0,

but this is obviously true from the convexity of ϕ.

Lemma 4.2. The function θ given in (4.1) is locally Lipschitz on (0,+∞)× (0,+∞), i.e., ∀(s0, t0) ∈ (0,+∞)× (0,+∞),
there exist δ > 0 and K = K(s0, t0, δ) such that

∀(s′, t′), (s′′, t′′) ∈ B((s0, t0), δ), |θ(s′, t′)− θ(s′′, t′′)| ≤ K‖(s′, t′)− (s′′, t′′)‖∞,

where ‖(s′, t′)− (s′′, t′′)‖∞ B max{|s′ − s′′|, |t′ − t′′|} and B((s0, t0), δ) B {(s, t) : ‖(s, t)− (s0, t0)‖∞ < δ}.

Proof. We first prove that the function (0,+∞) 3 r 7→ ϕ′′(r) is Lipschitz on any compact intervals. It is clear that ϕ′′ is
continuously differentiable on any compact interval that does not contains 1 and thus Lipschitz continuous there. Suppose
[a, b] is an interval that contains 1, and let s, t ∈ [a, b] be such that a ≤ s ≤ 1 ≤ t ≤ b then,

∣∣ϕ′′(s)− ϕ′′(t)∣∣ = |sm−2 − 1| = 1− s2−m

s2−m

≤ 2−m
a2−m

(1− s)

≤ 2−m
a2−m

(t− s),
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and so ϕ′′ is Lipschitz continuous on compacts that contain 1 too. Now we fixed a point (s0, t0) ∈ (0,+∞)× (0,+∞) and
let δ > 0 be such that min{s0 − δ, t0 − δ} > 0. Consider two points (s′, t′), (s′′, t′′) ∈ B((s0, t0), δ). By symmetry of θ, we
assume without loss of generality s0 ≤ t0, s′ < t′, s′′ < t′′ and t′ ≤ t′′. Note that s′, t′, s′′, t′′ ∈ [s0 − δ, t0 + δ]. If t′ ≤ s′′,
then by the monotonicity in each variable of θ in Lemma 4.1, θ(s′′, t′′) ≥ θ(t′, t′′) ≥ θ(t′, s′). So

0 ≤ θ(s′′, t′′)− θ(s′, t′) ≤ θ(t′′, t′′)− θ(s′, s′)

=

∣∣∣∣ 1

ϕ′′(t′′)
− 1

ϕ′′(s′)

∣∣∣∣
≤
∣∣ϕ′′(t′′)− ϕ′′(s′)∣∣ (since ϕ′′ ≥ 1)

≤ K(s0, t0, δ)(t
′′ − s′)

= K(s0, t0, δ)(t
′′ − t′ + s′′ − s′ + t′ − s′′)

≤ 2K(s0, t0, δ)‖(s′, t′)− (s′′, t′′)‖∞,

where K(s0, t0, δ) is the Lipschitz constant of ϕ′′ on [s0 − δ, t0 + δ]. If t′ > s′′, let x ∈ [s0 − δ, t0 + δ] and consider the
function [x, t0 + δ] 3 r 7→ px(r) B θ(r, x). It’s derivative is given by

∀r ∈ (x, t0 + δ), p′x(r) =
−(ϕ′(x)− ϕ′(r)− ϕ′′(r)(x− r))

(ϕ′(x)− ϕ′(r))2 ≥ 0.

We will prove that p′x is bounded by some constant depending on s0, t0 and δ. Indeed, by the mean value theorem, there
is r∗ ∈ (x, r) such that ϕ′(x)− ϕ′(r) = (x− r)ϕ′′(r∗), hence

p′x(r) =
(r − x)(ϕ′′(r∗)− ϕ′′(r))

(r − x)2ϕ′′(r∗)2

≤ ϕ′′(r∗)− ϕ′′(r)
r − x (since ϕ′′ ≥ 1)

≤ ϕ′′(x)− ϕ′′(r)
r − x (r∗ > x, ϕ′′ is decreasing)

≤ K(s0, t0, δ) (x, r ∈ [s0 − δ, t0 + δ]). (4.4)

Similarly, we have the same estimate for the derivative of the function [s0 − δ, y] 3 r 7→ hy(r) B θ(y, r), i.e.,

h′y(r) ≤ K(s0, t0, δ) (4.5)

Hence, we have

|θ(s′, t′)− θ(s′′, t′′)| ≤ |θ(s′, t′)− θ(s′′, t′)|+ |θ(s′′, t′)− θ(s′′, t′′)|

≤

∣∣∣∣∣
∫ s′′

s′
h′t′(r)dr

∣∣∣∣∣+

∣∣∣∣∣
∫ t′′

t′
p′s′′(r)dr

∣∣∣∣∣ (set x = s′′, y = t′ in (4.4), (4.5))

≤ K(s0, t0, δ)(|s′ − s′′|+ |t′ − t′′|)
≤ 2K(s0, t0, δ)‖(s′, t′)− (s′′, t′′)‖∞.

which finishes the proof.

Following Definition 2.7, but restricting to C1 curves, we define the gradient flow of Uβ(ρ) is any C1 curve (ρt)t≥0 ⊂
D+(V ) satisfying

∀t > 0, Dtρ = −grad Uβ(ρ) = −(β∇U +∇[ϕ′ ◦ ρ]), (4.6)

where the second equation follows from Theorem 2.3. We can rewrite (4.6) in terms of each coordinate as

∀x ∈ V, ∀t > 0, ρ̇t(x) =
∑
y∈V

L(x, y)θ(ρt(x), ρt(y))
(
β∇U(x, y) +∇[ϕ′ ◦ ρt](x, y)

)
, (4.7)

with the notation ∇[ϕ′ ◦ ρt](x, y) = ϕ′(ρt(y)) − ϕ′(ρt(x)). We shall often write the last quantity in (4.7) compactly as
∇[βU + ϕ′ ◦ ρ](x, y). The existence and uniqueness of (4.7) is guaranteed by the following proposition.

Proposition 4.3. For any initial condition ρ0 ∈ D+(V ), there is a unique solution (ρt)t≥0 ⊂ D+(V ), which exists for all
time t ≥ 0 and satisfies (4.7).

Proof. For notational convenience, we define the functional

∀ρ ∈ D+(V ), ∀x ∈ V, F(ρ)(x) B
∑
y∈V

L(x, y)θ(ρ(x), ρ(y))
(
∇[βU + ϕ′ ◦ ρ](x, y)

)
,
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then the map ρ 7→ F(ρ) is clearly continuous and is also locally Lipschitz. Indeed, fix ρ∗ ∈ D+(V ), and consider δ > 0
such that B(ρ∗, δ) B {ρ ∈ D(V ) : ‖ρ − ρ∗‖∞ B maxx∈V |ρ(x) − ρ∗(x)| < δ} lies in D+(V ). Let ρ1, ρ2 ∈ B(ρ∗, δ), and fix
one x ∈ V , denote ‖L‖∞ B maxy∈V |L(y, y)|, osc U := maxU −minU . Due to the particular choice of θ, for ρ ∈ D+(V ),∑

y∈V

L(x, y)θ(ρ(x), ρ(y))
(
∇[ϕ′ ◦ ρ](x, y)

)
=
∑
y∈V

L(x, y)(ρ(y)− ρ(x)) =
∑
y∈V

L(x, y)ρ(y),

hence
1

‖L‖∞
|F(ρ1)(x)−F(ρ2)(x)| ≤ βosc U

∑
y∈V

∣∣∣θ(ρ1(x), ρ1(y))− θ(ρ2(x), ρ2(y))
∣∣∣+

∑
y∈V

|ρ1(y)− ρ2(y)|

≤ Kβosc U
∑
y∈V

max{|ρ1(x)− ρ2(x)|, |ρ1(y)− ρ2(y)|}+
∑
y∈V

|ρ1(y)− ρ2(y)|

≤ (Kβosc U + 1)|V |‖ρ1 − ρ2‖∞,

where |V | is the cardinality of V , K is the local Lipschitz constant of θ in Lemma 4.2. Therefore, there is a constant K′

such that

∀ρ1, ρ2 ∈ B(ρ∗, δ), |F(ρ1)−F(ρ2)|∞ ≤ K′‖ρ1 − ρ2‖∞.

By Cauchy-Picard and extensibility theorems, we have the existence and uniqueness of a solution (ρt)t∈[0,T ) on some
maximal interval [0, T ). By differentiating in time the function t 7→ Uβ(ρt),

d

dt
Uβ(ρt) =

∑
x∈V

(
βU(x) + ϕ′(ρt(x))

)
ρ̇t(x)`(x)

=
∑
x∈V

(
βU(x) + ϕ′(ρt(x))

)
`(x)

∑
y∈V

L(x, y)θ(ρt(x), ρt(y))
(
∇[βU + ϕ′ ◦ ρt](x, y)

)
=
∑
x∈V

∑
y∈V

(
βU(x) + ϕ′(ρt(x))

)
`(x)L(x, y)θ(ρt(x), ρt(y))

(
∇[βU + ϕ′ ◦ ρt](x, y)

)
=
∑
y∈V

∑
x∈V

(
βU(y) + ϕ′(ρt(y))

)
`(y)L(y, x)θ(ρt(y), ρt(x))

(
∇[βU + ϕ′ ◦ ρt](y, x)

)
=
∑
y∈V

∑
x∈V

(
βU(y) + ϕ′(ρt(y))

)
`(x)L(x, y)θ(ρt(x), ρt(y))

(
∇[βU + ϕ′ ◦ ρt](y, x)

)
=

1

2

∑
y∈V

∑
x∈V

(
∇[βU + ϕ′ ◦ ρt](x, y))

)
`(x)L(x, y)θ(ρt(x), ρt(y))

(
∇[βU + ϕ′ ◦ ρt](y, x))

)
= −1

2

∑
y∈V

∑
x∈V

`(x)L(x, y)θ(ρt(x), ρt(y))
(
∇[βU + ϕ′ ◦ ρt](x, y)

)2
(4.8)

≤ 0,

so Uβ is decreasing along (ρt)t∈[0,T ). If T < +∞ then ρt must go to the boundary of D+(V ), as t → T−. However, this
is not possible since ρ 7→ Uβ(ρ) explodes at the boundary by the fact that limr→0+ ϕ(r) = +∞. Therefore, T = +∞ and
the solution exists for all time t ≥ 0.

4.2 A functional inequality for β ≥ 0 fixed
Proposition 4.4. Let β ≥ 0, we consider the functionals

I(β, ρ) B Uβ(ρ)− Uβ(ηβ)

=
∑
x∈V

`(x)
(
ϕ(ρ(x))− ϕ(ηβ(x))− ϕ′(ηβ(x))(ρ(x)− ηβ(x))

)
, (4.9)

G(β, ρ) B
1

2

∑
x∈V

∑
y∈V

`(x)L(x, y)θ(ρ(x), ρ(y))
(
β∇U(x, y) +∇[ϕ′ ◦ ρ](x, y)

)2
. (4.10)

Then

χ(β) B inf
ρ∈D+(V )\{ηβ}

G(β, ρ)

I(β, ρ)
> 0.

Before giving the proof, we need the following lemmas.

Lemma 4.5. Fix β ≥ 0 For any sequence (ρn)n≥1 ⊂ D+(V ) such that ‖ρn − ηβ‖∞ → 0, we have

lim inf
n→+∞

G(β, ρn)

I(β, ρn)
> 0.
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Proof. Assume the statement in Lemma 4.5 does not hold, then there exists a subsequence, still denoted by (ρn)n≥1 that

lim
n→+∞

G(β, ρn)

I(β, ρn)
= 0.

Denote an = ‖ρn − ηβ‖∞, and hn =
ρn−ηβ
an

, so ‖hn‖∞ = 1. Recall from (3.3) that ϕ′(ηβ) + βU is constant, which gives
β∇U(x, y) = −∇[ϕ′ ◦ ηβ ](x, y). We have,

G(β, ρn)

a2n
=

1

2a2n

∑
x,y∈V

`(x)L(x, y)θ(ρn(x), ρn(y))
(
ϕ′(ρn(x))− ϕ′(ηβ(x))− [ϕ′(ρn(y))− ϕ′(ηβ(y))]

)2
and by mean value theorem, for some vector λn ∈ [0, 1]V , we have

1

a2n

(
ϕ′(ρn(x))− ϕ′(ηβ(x))− (ϕ′(ρn(y))− ϕ′(ηβ(y)))

)2
=

1

a2n

(
ϕ′(ηβ(x) + anhn(x))− ϕ′(ηβ(x))− (ϕ′(ηβ(y) + anhn(y))− ϕ′(ηβ(y)))

)2
=
(
ϕ′′
(
ηβ(x) + anλn(x)hn(x)

)
hn(x)− ϕ′′

(
ηβ(y) + anλn(y)hn(y)

)
hn(y)

)2
.

Also, by Taylor’s theorem for second derivative (see e.g. Wolfe [13]), for some vector λ′n ∈ [0, 1]V , we have

I(β, ρn) =
1

2

∑
x∈V

`(x)ϕ′′
(
ηβ(x) + anλ

′
n(x)hn(x)

)
a2nh

2
n(x), (4.11)

or

I(β, ρn)

a2n
=

1

2

∑
x∈V

`(x)ϕ′′
(
ηβ(x) + anλ

′
n(x)hn(x)

)
h2
n(x).

Observe that the set H0,1 := {h : `[h] = 0, ‖h‖∞ = 1} is compact so there is a subsequence (hnk )k≥1 converging to
h0 ∈ H0,1. Furthermore, because ank → 0, we have

lim
k→+∞

I(β, ρnk )

a2nk
=

1

2

∑
x∈V

`(x)ϕ′′(ηβ(x))h2
0(x) > 0, (4.12)

lim
k→+∞

G(β, ρnk )

a2nk
=

1

2

∑
x,y

`(x)L(x, y)θ(ηβ(x), ηβ(y))
(
ϕ′′(ηβ(x))h0(x)− ϕ′′(ηβ(y))h0(y)

)2
. (4.13)

Since limn→+∞
G(β,ρn)
I(β,ρn) = 0, the subsequence

(
G(β,ρnk )

I(β,ρnk )

)
k≥1

converges to 0 and hence

∑
x,y∈V

`(x)L(x, y)θ(ηβ(x), ηβ(y))
(
ϕ′′(ηβ(x))h0(x)− ϕ′′(ηβ(y))h0(y)

)2
= 0.

This, together with irreducibility of L and ηβ ∈ D+(V ) imply ∀x ∈ V, ϕ′′(ηβ(x))h0(x) = C for some constant C. If C = 0,
then h0 = 0 /∈ H0,1 (because ϕ′′ > 0), which is impossible. If C 6= 0 then `[h0] 6= 0 since the sign of h is equal to that of
C, a contradiction.

Lemma 4.6. Denote

∂D+(V ) B D(V ) \ D+(V ) = {ρ ∈ D(V ) : ρ(x) = 0 for some x ∈ V }.

Let ρ∗ ∈ ∂D+(V ) and (ρn)n≥0 ⊂ D+(V ) be a sequence such that ρn → ρ∗, i.e. ‖ρn − ρ‖∞ → 0, then

lim
n→0

G(β, ρn)

I(β, ρn)
= +∞.

Proof. For any f ∈ RV we will use the notations f∧ B minx∈V f(x), f∨ B maxx∈V f(x), {ρ∗ = 0} B {x ∈ V : ρ∗(x) = 0}
and we call a state x ∈ V a minimizer of ρ ∈ D(V ) if ρ(x) = ρ∧. Since the set {ρ∗ = 0} is finite and ρn → ρ∗, there is
N > 0 such that for all n ≥ N , the minimizers of ρn must lie in {ρ∗ = 0}. Up to taking a subsequence, we can assume
that for all n ≥ 0, ρn admits some x0 ∈ {ρ∗ = 0} as a minimizer, i.e., ρn(x0) = ρn,∧ .

For every ρ ∈ D+(V ) set Mρ B {x ∈ V : ρ(x) ≤ 1}. We have

∀ρ ∈ D+(V ), I(β, ρ) =
∑
x∈V

`(x)ρ(x)βU(x) +
∑
x∈V

ϕ(ρ(x))`(x)− Uβ(ηβ) (4.14)

≤ βmaxU − Uβ(ηβ) + `∨
∑
x∈V

ϕ(ρ(x))
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= βmaxU − Uβ(ηβ) + `∨
( ∑
x∈Mρ

ϕ(ρ(x)) +
∑
x/∈Mρ

ϕ(ρ(x))
)

≤ βmaxU − Uβ(ηβ) + `∨
( ∑
x∈Mρ

ϕ(ρ∧) +
∑
x/∈Mρ

ϕ(1/`∧)
)

≤ βmaxU − Uβ(ηβ) + `∨|V |
(
ϕ(ρ∧) + ϕ(1/`∧)

)
,

where |V | is the cardinality of V and we have used the fact that `(x) ≤ `∨, ρ(x) ≤ 1/`(x) ≤ 1/`∧, ϕ is decreasing on (0, 1)
and increasing on [1,∞). In short, there is a constant K > 0 such that I(β, ρ) ≤ K(ϕ(ρ∧) + 1

m(m−1)
), ∀ρ ∈ D+(V ). Also,

from (4.14), we have

∀ρ ∈ D+(V ), I(β, ρ) ≥ βminU − Uβ(ηβ) + `∧
∑
x∈V

ϕ(ρ(x))

≥ βminU − Uβ(ηβ) + `∧ϕ(ρ∧),

thus if ρn → ρ∗ ∈ ∂D+(V ) then I(β, ρn) → +∞ (recall limr→0+ ϕ(r) = +∞). Next, we decompose G(β, ρ) = G1(β, ρ) +
G2(ρ), where

G1(β, ρ) B
1

2

∑
x,y∈V

`(x)L(x, y)θ(ρ(x), ρ(y))
(

[β∇U(x, y)]2 + 2β∇U(x, y)∇[ϕ′ ◦ ρ](x, y)
)

G2(ρ) B
1

2

∑
x,y∈V

`(x)L(x, y)θ(ρ(x), ρ(y))
(
∇[ϕ′ ◦ ρ](x, y)

)2
.

Observe that ∀t, s > 0, θ(s, t)(ϕ′(t) − ϕ′(s)) = t − s and ∀x 6= y ∈ V , |ρ(y) − ρ(x)| ≤ 2
`∧

, |U(y) − U(x)| ≤ osc U B
maxU −minU . We define

G1(β, ρ) =
1

2

∑
x6=y∈V

`(x)L(x, y)θ(ρ(x), ρ(y))
(

[β∇U(x, y)]2 + 2β∇U(x, y)∇[ϕ′ ◦ ρ](x, y)
)

≤ 1

2
`∨‖L‖∞

∑
x 6=y∈V

θ(1/`∧, 1/`∧)β2(osc U)2 + β
∑

x 6=y∈V

`(x)L(x, y)(ρ(y)− ρ(x))(U(y)− U(x))

≤ 1

2
`∨‖L‖∞|V |2β2(osc U)2 + βosc U

∑
x 6=y∈V

`∨‖L‖∞
2

`∧

≤ 1

2
`∨‖L‖∞|V |2β2(osc U)2 + βosc U |V |2`∨‖L‖∞

2

`∧
,

where ‖L‖∞ = maxx∈V |L(x, x)|. Hence, G1 is bounded above for all ρ ∈ D+(V ) and since ρn → ρ∗ ∈ ∂D+(V ), we have
G1(β, ρn)

I(β, ρn)
→ 0. Observe that ρn,∧ ≤ 1, so (recall that m < 0)

ϕ(ρn,∧) = ϕ(ρn(x0)) =
ρn(x0)m − 1−m(ρn(x0)− 1)

m(m− 1)
≤ ρn(x0)m − 1

m(m− 1)

Therefore, the conclusion of the lemma will follow if we can show G2(β,ρn)
ρmn,∧

→ +∞ because

G2(ρn)

I(β, ρn)
≥ G2(ρn)

K(ϕ(ρn,∧) + 1
m(m−1)

)
≥ m(m− 1)

K

G2(ρn)

(ρn,∧)m
.

By the irreducibility of L, we can find y0 /∈ {ρ∗ = 0} and a path x0, x1, ..., xq = y0 in a way such that xi ∈ {ρ∗ = 0} for
all i = 0, 1, ..., q − 1 and L(x0, x1)L(x1, x2)...L(xq−1, xq) > 0. Denote

Υ B min{`(x)L(x, y) : x, y ∈ V such that `(x)L(x, y) > 0},

then

∀ρ ∈ D+(V ), G2(ρ) =
1

2

∑
x,y∈V

`(x)L(x, y)θ(ρ(x), ρ(y))
(
ϕ′(ρ(y))− ϕ′(ρ(x))

)2
=

1

2

∑
x,y∈V

`(x)L(x, y)(ρ(y)− ρ(x))
(
ϕ′(ρ(y))− ϕ′(ρ(x))

)

≥ Υ

q−1∑
i=0

(ρ(xi+1)− ρ(xi))
(
ϕ′(ρ(xi+1))− ϕ′(ρ(xi))

)
. (4.15)
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Suppose for now that ρ(xi) ≤ 1 ∀i = 0, 1, ..., q − 1 and denote for i = 1, ..., q, ti B ρ(xi)
ρ(xi−1)

, ri = t1...ti, r0 B 1 then from
(4.15),

G2(ρ)

ρ(x0)m
≥ Υ

q−1∑
i=0

ρ(xi)
m

ρ(x0)m
(ρ(xi+1)− ρ(xi))

ρ(xi)

(
ϕ′(ρ(xi+1))− ϕ′(ρ(xi))

)
ρ(xi)m−1

= Υ

q−1∑
i=0

ρ(xi)
m

ρ(x0)m
(ρ(xi+1)− ρ(xi))

ρ(xi)

(
ρ(xi+1)m−1 − ρ(xi)

m−1
)

(m− 1)ρ(xi)m−1
(4.16)

=
Υ

1−m

q−1∑
i=0

rmi (ti+1 − 1)(1− tm−1
i+1 ). (4.17)

Consider the following family of functions indexed by k ∈ [0,+∞)

∀t > 0, p(k, t) B (t− 1)(1− tm−1) + ktm.

Observe that p(0, t) ≥ 0, p(k, t) = p(0, t) + ktm and limt→+∞ p(0, t) = +∞. For t ∈ (0, k
1

1−m ), we have p(k, t) ≥ ktm ≥
k

1
1−m . Let k ≥ 1, for t ≥ k

1
1−m we have 1− tm−1 ≥ 1− 1/k and t− 1 ≥ k

1
m−1 − 1 ≥ 0. Thus, we have

w(k) B min
t>0

p(k, t) ≥ min

{
k

1
1−m , (k

1
1−m − 1)(1− 1

k
)

}
→ +∞, as k → +∞.

We regard w as a function of k ∈ [0,+∞) and introduce the notation wj := w ◦ ... ◦ w as the convolution of j times the
function w for j ≥ 1. Note that limk→+∞ wj(k) = +∞ for all j ≥ 1. We deduce that the sum in (4.17)

q−1∑
i=0

rmi (ti+1 − 1)(1− tm−1
i+1 ) ≥ wq−1(p(0, tq)). (4.18)

For example, if q = 2 then the sum in the expression (4.17) is

p(0, t1) + tm1 p(0, t2) + tm1 t
m
2 p(0, t3) = p(0, t1) + tm1 (p(0, t2) + tm2 p(0, t3))

= p(0, t1) + tm1 p(p(0, t3), t2)

≥ p(0, t1) + tm1 w(p(0, t3))

= p(w(p(0, t3)), t1)

≥ w(w(p(0, t3)))

= w2(p(0, t3)).

Now, we consider three cases: ρ∗(y0) < 1 and ρ∗(y0) > 1 and ρ∗(y0) = 1. If ρ∗(y0) < 1, then for n big enough ρn(y0) < 1.
Using the expression (4.16) and the estimate (4.18) evaluated at ρ = ρn, we get

G2(ρ)

ρn(x0)m
≥ Υ

1−mwq−1

(
p(0,

ρn(y0)

ρn(xq−1)
)
)
→ +∞ (4.19)

because ρn(xq−1)→ 0, ρn(y0)→ ρ∗(y0) > 0 (recall that xq−1 ∈ {ρ∗ = 0}, y0 /∈ {ρ∗ = 0}). If ρ∗(y0) > 1, for n big enough
ρn(y0) ≥ 1 then the equality in (4.16) does not hold when evaluated at ρ = ρn because ϕ′(ρn(y0)) = ρn(y0)− 1. Instead,
the last term i = q − 1 in the sum in (4.16), ignoring the multiplicative term

(
ρn(xq−1)

ρn(x0)

)m
, is replaced by(

ρn(xq)

ρn(xq−1)
− 1

)(
ρn(xq)ρn(xq−1)1−m − 1

m− 1
+ ρn(xq−1)1−m(

1

m− 1
− 1)

)
=: kn,

which tends to infinity because the first term ρn(xq)

ρn(xq−1)
− 1 tends to infinity while the second term converges to 1

1−m > 0.

Therefore, we can use the inequality (4.19) with p(0, ρn(y0)
ρn(xq−1)

) replaced by kn →∞. For the last case ρ∗(y0) = 1, if ρn(x0)

is either eventually less than 1 (< 1) or eventually no less than 1 (≥ 1) then we can use the same arguments just above.
If this is not the case, (ρn)n≥0 can be split into two subsequences (ρ

(1)
n )n≥0, (ρ

(2)
n )n≥0 such that ∀n ≥ 0, ρ(1)n (y0) ≥ 1 and

ρ
(2)
n (y0) < 1 then the same arguments apply for these subsequences. We end our proof of this lemma here.

Proof. (Of Proposition 4.4) Let (ρn)≥0 be a minimizing sequence. Since D(V ) is compact, there exists a subsequence, still
denoted by (ρn)n≥0, converging to some ρ∗ ∈ D(V ). If ρ∗ = ηβ then from Lemma 4.5,

χ(β) = lim
n→+∞

G(β, ρn)

I(β, ρn)
= lim inf

n→+∞

G(β, ρn)

I(β, ρn)
> 0.

If ρ∗ ∈ ∂D+(V ), then Lemma 4.6 shows

χ(β) = lim
n→+∞

G(β, ρn)

I(β, ρn)
= +∞,

which is impossible. If ρ∗ ∈ D+(V ) \ {ηβ} then clearly χ(β) = G(β,ρ∗)
I(β,ρ∗) > 0. Hence, χ(β) > 0.

15



Corollary 4.7. Let β ≥ 0 fixed and (ρt)t≥0 be the associated gradient flow of Uβ with the initial condition ρ0 ∈ D+(V ),
then we have the following inequalities,

∀t > 0,
1

2
‖ρt − ηβ‖2L2(`) ≤ I(β, ρt) ≤ e−χ(β)tI(β, ρ0). (4.20)

As a consequence, limt→+∞ Uβ(ρt) = Uβ(ηβ) and limt→+∞ ρt = ηβ.

Proof. By differentiating with respect to time and using the identities in (4.9), (4.10),

∀t > 0, ∂tI(β, ρt) B
∂

∂t
I(β, ρt) =

∂

∂t
Uβ(ρt)

= −G(β, ρt)

≤ −χ(β)I(β, ρt),

and by a Gronwall Inequality (see e.g. Pachpatte [11]), we have the second inequality in (4.20). For the first inequality in
(4.20), we use the identity (4.9), together with Taylor’s theorem (or mean value theorem) for second derivatives,

∀t > 0, I(β, ρt) =
∑
x∈V

`(x)
(
ϕ(ρt(x))− ϕ(ηβ(x))− ϕ′(ηβ(x))(ρt(x)− ηβ(x))

)
=

1

2

∑
x∈V

`(x)ϕ′′(λt(x))(ρt(x)− ηβ(x))2

≥ 1

2

∑
x∈V

`(x)(ρt(x)− ηβ(x))2

=
1

2
‖ρt − ηβ‖2L2(`),

where in the second equality, λt : V → R+ is some vector in the Taylor’s theorem satisfying λt(x) ∈ (ρt(x)∧ ηβ(x), ρt(x)∨
ηβ(x)), ∀x ∈ V , where x ∧ y B min{x, y}, x ∨ y B max{x, y}.

Proposition 4.8 (An upper bound for χ(β)). Define the Markov generator Qβ as follows

∀x 6= y ∈ V, Qβ(x, y) B ϕ′′(ηβ(x))L(x, y)θ(ηβ(x), ηβ(y)).

We can easily check that Qβ is irreducible and the probability measure `β = (`β(x))x∈V , defined by

∀x ∈ V, `β(x) B
`(x)[ϕ′′(ηβ(x))]−1∑
y∈V `(y)[ϕ′′(ηβ(y))]−1

,

is reversible for Qβ. Then we have

χ(β) ≤ λ(Qβ),

where λ(Qβ) is the spectral gap of (Qβ , `β).

Proof. Let h ∈ RV be such that `[h] = 0. Then from the proof of Lemma 4.5, we have

lim
ε→0

G(β, ηβ + εh)

I(β, ηβ + εh)
=

∑
x,y∈V `(x)L(x, y)θ(ηβ(x), ηβ(y))

(
ϕ′′(ηβ(x))h(x)− ϕ′′(ηβ(y))h(y)

)2∑
x∈V `(x)ϕ′′(ηβ(x))h2(x)

=

∑
x,y∈V `β(x)Qβ(x, y)

(
ϕ′′(ηβ(x))h(x)− ϕ′′(ηβ(y))h(y)

)2∑
x∈V `β(x)[ϕ′′(ηβ(x))h(x)]2

.

Set f(x) B ϕ′′(ηβ(x))h(x), ∀x ∈ V . Then

`β [f ] =

∑
x∈V `(x)[ϕ′′(ηβ(x))]−1ϕ′′(ηβ(x))h(x)∑

x∈V `(x)[ϕ′′(ηβ(x))]−1

=
`[h]∑

x∈V `(x)[ϕ′′(ηβ(x))]−1

= 0.

Hence,

lim
ε→0

G(β, ηβ + εh)

I(β, ηβ + εh)
=

∑
x∈V `β(x)Qβ(x, y)(f(y)− f(x))2

`β [f2]
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=
−〈f,Qβ [f ]〉L2(`β)

2Var`β [f ]
= − `β [fQβ [f ]]

2Var`β [f ]

≥ λ(Qβ).

As h varies over the set {h ∈ RV : `[h] = 0}, f takes all values in {f ∈ RV : `β [f ] = 0}: take f ′ ∈ {f ∈ RV : `β [f ] = 0},
define h′(x) B f ′(x)[ϕ′′(ηβ(x)]−1 then `[h′] = `β [f ′] = 0. By the variational characterization of λ(Qβ),

λ(Qβ) = inf
f :f /∈Vect(1),`β [f ]=0

− `β [fQβ [f ]]

2Var`β [f ]

= inf
h:`[h]=0

lim
ε→0

G(β, ηβ + εh)

I(β, ηβ + εh)

≥ χ(β)

by the definition of χ(β), which shows the announced result.

4.3 Nonlinear Markov representation
For β ≥ 0 fixed, the dynamic (4.7) can be reinterpreted as a nonlinear Markov dynamic satisfying

∀t > 0, µ̇t = µtLβ,ρt , (4.21)

where µt ∈ P+(V ) is the probability measure on V admitting ρt as its density with respect to `. The generator in (4.21)
is given by

∀ρ ∈ D+(V ), ∀x 6= y, Lβ,ρ(x, y) = L(x, y)
θ(ρ(x), ρ(y))

ρ(x)

(
∇[βU + ϕ′ ◦ ρ](x, y)

)
−
, (4.22)

where ρ is the density with respect to ` of µ and x− = max{0,−x}. We can write (4.22) more explicitly as follows

∀ρ ∈ D+(V ), ∀x 6= y, Lβ,ρ(x, y) = L(x, y)

(
ρ(y)− ρ(x)

ρ(x)[ϕ′(ρ(y))− ϕ′(ρ(x))]
β(U(y)− U(x)) +

ρ(y)

ρ(x)
− 1

)
−
. (4.23)

Using the formula (4.23), we can therefore simulate a Markov process that has its law satisfying (4.21). Our algorithm is
then an approximation of this Markov process through particle systems. The details can be found in the appendix. We
now show that the nonlinear interpretation 4.21 holds.

Theorem 4.9. Let G be an irreducible Markov generator on V with reversible measure π > 0 and H = (H(x, y))x,y∈V be
a function with the property ∀x 6= y, H(x, y) = −H(y, x). Define the divergence operator divG : RV×V → RV by

∀F ∈ RV×V ,∀x ∈ V divG[F ](x) B
1

2

∑
y∈V

G(x, y)(F (x, y)− F (y, x))

Denote H−(x, y) B −min{H(x, y), 0} and similarly H+(x, y) B max{H(x, y), 0}, then for any test function f ∈ RV we
have

π[fdivGH] = π[GH− [f ]], (4.24)

where GH− is the Markov generator defined by

∀x 6= y, GH−(x, y) B G(x, y)H−(x, y). (4.25)

Proof. We have

π[fdivGH] =
∑
x∈V

π(x)f(x)divGH(x)

=
∑
x∈V

π(x)f(x)
∑
y∈V

1

2
G(x, y)(H(x, y)−H(y, x))

=
∑

x6=y∈V

π(x)G(x, y)H(x, y)f(x)

=
∑

x6=y∈V

π(x)G(x, y)H+(x, y)f(x)−
∑

x 6=y∈V

π(x)G(x, y)H−(x, y)f(x).

Recall that π is reversible for G and from the assumptions on H, it holds that H−(y, x) = H+(x, y). We then have

π[fGH− [f ]] =
∑
x∈V

π(x)GH−f(x)
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=
∑
x∈V

∑
y∈V

π(x)GH−(x, y)f(y)

=
∑

x 6=y∈V

π(x)GH−(x, y)f(y) +
∑
x∈V

π(x)GH−(x, x)f(x)

=
∑

x 6=y∈V

π(x)G(x, y)H−(x, y)f(y)−
∑
x∈V

π(x)f(x)
∑

y∈V \{x}

G(x, y)H−(x, y)

=
∑

x 6=y∈V

π(y)G(y, x)H−(y, x)f(x)−
∑

x 6=y∈V

π(x)G(x, y)H−(x, y)f(x)

=
∑

x 6=y∈V

π(x)G(x, y)H+(x, y)f(x)−
∑

x 6=y∈V

π(x)G(x, y)H−(x, y)f(x),

and hence π[fdivGH] = π[fGH− [f ]].

Now we can apply Theorem 4.9 to the curve of generator

∀x 6= y ∈ V, ∀t ≥ 0, Gρt(x, y) B L(x, y)
θ(ρt(x), ρt(y))

ρt(x)

and the curve

∀x, y ∈ V, ∀t ≥ 0, Hρt(x, y) B ∇[βU + ϕ′ ◦ ρt](x, y)

= β(U(y)− U(x)) + ϕ′(ρt(y))− ϕ′(ρt(x)).

Observe that µt is reversible for Gρt :

µt(x)Gρt(x, y) = `(x)ρt(x)× L(x, y)
θ(ρt(x), ρt(y))

ρt(x)

= `(x)L(x, y)θ(ρt(x), ρt(y))

= µt(y)Gρt(y, x)

by the symmetry of θ and the fact that ` is reversible for L. We have for any test function f ∈ RV ,

µ̇t[f ] =
∑
x∈V

π(x)ρ̇t(x)f(x)

=
∑
x∈V

π(x)f(x)
∑
y∈V

L(x, y)θ(ρt(x), ρt(y))∇[βU + ϕ′ ◦ ρt](x, y)

=
∑
x,y∈V

π(x)ρt(x)f(x)L(x, y)
θ(ρt(x), ρt(y))

ρt(x)
∇[βU + ϕ′ ◦ ρt](x, y)

=
∑
x,y∈V

µtf(x)Gρt(x, y)Hρt(x, y)

= µt[fdivGρtHρt ]

= µt[Lβ,ρt [f ]], (4.26)

where we used Theorem 4.9 with the triple (π,G,H) = (µt, Gρt , Hρt) and Lβ,ρt in (4.22) plays the role of the generator
GH− . Hence, we have transformed the dynamic (4.7) to a nonlinear Markov representation as announced in (4.21), which
is useful for a simulation.

Observe that the generator given in (4.23) is not irreducible for all ρ ∈ D+(V ). For example, it may happen that
for a fixed x, β∇U(x, y) > −∇[ϕ′ ◦ ρ](x, y) for all y 6= x, and hence Lβ,ρ(x, y) = 0. In fact, there is another Markov
interpretation such that the nonlinear generator is irreducible for all ρ ∈ D+(V ). We can replace the generator Lβ,ρ by
Qβ,ρ defined by

∀ρ ∈ D+(V ), ∀x 6= y, Qβ,ρ(x, y) B L(x, y)
(

1 +
θ(ρ(x), ρ(y))

ρ(x)
β(U(y)− U(x))−

)
, (4.27)

or more explicitly

∀ρ ∈ D+(V ), ∀x 6= y, Qβ,ρ(x, y) B L(x, y)
(

1 +
ρ(y)− ρ(x)

ρ(x)(ϕ′(ρ(y))− ϕ′(ρ(x))
β(U(y)− U(x))−

)
. (4.28)

Clearly ∀x 6= y, Qβ,ρ(x, y) ≥ L(x, y) hence Qβ,ρ(x, y) is irreducible. The generator Qβ,ρ is obtained by the following
computations. We have

µ̇t[f ] =
∑
x∈V

`(x)ρ̇t(x)f(x)
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=
∑
x∈V

`(x)f(x)
∑
y∈V

L(x, y)θ(ρt(x), ρt(y))∇[βU + ϕ′ ◦ ρt](x, y)

=
∑
x∈V

`(x)f(x)
∑
y∈V

L(x, y)θ(ρt(x), ρt(y))β∇U(x, y) +
∑
x∈V

`(x)f(x)
∑
y∈V

L(x, y)θ(ρt(x), ρt(y))∇[ϕ′ ◦ ρt](x, y)

=
∑
x∈V

`(x)f(x)
∑
y∈V

L(x, y)θ(ρt(x), ρt(y))β∇U(x, y) +
∑
x∈V

`(x)f(x)
∑
y∈V

L(x, y)(ρt(y)− ρt(x))

=
∑
x∈V

µt(x)f(x)
∑
y∈V

L(x, y)
θ(ρt(x), ρt(y))

ρt(x)
β∇U(x, y) +

∑
x∈V

`(x)f(x)
∑
y∈V

L(x, y)ρt(y)

=
∑
x∈V

µt(x)f(x)
∑
y∈V

L(x, y)
θ(ρt(x), ρt(y))

ρt(x)
β∇U(x, y) +

∑
x∈V

`(x)f(x)
∑
y∈V

L(x, y)ρt(y)

= µt[fdivGρt [β∇U ]] + `[fL[ρt]],

where the generator Gρ is defined by

∀ρ ∈ D+(V ), ∀x 6= y, Gρ(x, y) B L(x, y)
θ(ρ(x), ρ(y))

ρ(x)

Since ` is reversible for L, the last expression is equal to `[fL[ρt]] = `[ρtL[f ]] = µt[L[f ]]. Applying Theorem 4.9, we get

µt[fdivGρt [β∇U ]] = µt[Gρt,β∇U− [f ]],

where Gρ,β∇U− is the Markov generator defined by

∀ρ ∈ D+(V ), ∀x 6= y, Gρt,β∇U−(x, y) B L(x, y)
θ(ρ(x), ρ(y))

ρ(x)
β(U(y)− U(x))−.

Observe that Qβ,ρt = L+Gρt,β∇U− , putting together these computations we get

µ̇t[f ] = µt[(L+Gρt,β∇U−)[f ]] = µt[Qβ,ρt [f ]],

which leads to the non-linear interpretation in (4.27), (4.28).
So far, we have two generators that give rise to two different nonlinear Markov processes, both admitting (µt)t≥0 as

their time-marginal laws. Clearly, we can also replace these generators with any convex combination of these two generators
and still get a new Markov process with the same time-marginal laws. For the density ηβ in Theorem 3.1, the probability
measure associated with this density, denoted ζβ , is the unique invariant measure of Qβ,ηβ , in the sense that ζβQβ,ηβ = 0,
while Lβ,ηβ = 0. Indeed, recall that ϕ′(ηβ(x)) + βU(x) = ϕ′(ηβ(y)) + βU(y) for any x, y ∈ V , putting this back in (4.23),
we see Lβ,ηβ (x, y) = 0. Fix one x ∈ V , we have

ζβQβ,ηβ (x) =
∑
y∈V

ζβ(y)Qβ,ηβ (y, x)

=
∑

y∈V \{x}

`(y)ηβ(y)L(y, x)
(

1 +
θ(ηβ(x), ηβ(y))

ηβ(y)
β(U(x)− U(y))−

)
+ `(x)ηβ(x)Qβ,ηβ (x, x)

= `(x)
∑

y∈V \{x}

L(x, y)
(
ηβ(y) + (ηβ(y)− ηβ(x))−

)
− `(x)ηβ(x)

∑
y∈V \{x}

L(x, y)
(

1 +
θ(ηβ(x), ηβ(y))

ηβ(x)
β(U(y)− U(x))−

)
= `(x)

∑
y∈V \{x}

L(x, y)
(
ηβ(y)− ηβ(x) + (ηβ(y)− ηβ(x))− − (ηβ(x)− ηβ(y))−

)
= 0,

where we have used the fact that

θ(ηβ(x), ηβ(y))β(U(x)− U(y))− =
( ηβ(y)− ηβ(x)

ϕ′(ηβ(y))− ϕ′(ηβ(x))
× (ϕ′(ηβ(y))− ϕ′(ηβ(x)))

)
−

= (ηβ(y)− ηβ(x))−.

We will compare the simulations of particle systems using these two different generators (4.22) and (4.27) in Section 6.
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5 The time-inhomogeneous situation
In this section, we will consider the case when β depends on time, i.e., β = (βt)t≥0 is an inverse temperature schedule.
Inspired by the gradient flow dynamic of Uβ (4.7) and its homogeneous nonlinear Markov representation (4.21), we consider
the time-inhomogeneous dynamic

∀x ∈ V, ∀t > 0, ρ̇t(x) =
∑
y∈V

L(x, y)θ(ρt(x), ρt(y))
(
∇[βtU + ϕ′ ◦ ρt](x, y)

)
, ρ0 ∈ D+(V ). (5.1)

As we shall see, for some appropriate choices of the temperature schedule β = (βt)t≥0 such that t 7→ βt increases slowly
enough to infinity, a unique solution to (5.1) will exist. Moreover, µt (the measure with density ρt) will converge to a
measure concentrated on M(U), the set of global minimizers of U . In the meantime, we will always assume that the
temperature schedule β = (βt)t≥0 satisfies

Assumption 5.1. limt→+∞ βt = +∞ and t 7→ βt is continuously differentiable with β̇t B ∂β/∂t > 0, ∀t > 0 and β0 ≥ 0.

The crucial aspect of this section is a functional inequality that provides a lower bound of ρt,∧ B minx∈V ρt(x) for
a solution (ρt)t∈[0,T ) of (5.1) on some interval [0, T ) (the existence and uniqueness on a small interval is guaranteed by
Cauchy-Picard theorem) in terms of βt. Consequently, it facilitates proving the existence and uniqueness of such a solution
on the entire half-real line [0,+∞) as well as the convergence of (µt)t≥0 (µt being the measure with density ρt) to the
measure µ∞ in (3.5).

5.1 A functional inequality
For any t ≥ 0, we let νt be the global mimimizer of the function Uβt , i.e., νt is the density satisfying

∀x ∈ V, ϕ′(νt(x)) + βtU(x) = c(βt),

where c(βt) is the unique number that solves the equation (recall that g = (ϕ′)−1 in (3.4))

c ∈ R,
∑
x∈V

`(x)g(c− βtU(x)) = 1.

In other words, νt = ηβt , where β 7→ ηβ is given in Theorem 3.1. The following properties of ν = (νt)t≥0 are consequences
of Theorem 3.2.

Theorem 5.2. Let β = (βt)t≥0 satisfy Assumption 5.1

(i) ∀x, y ∈ V such that U(x) = U(y), νt(x) = νt(y) (in particular x, y ∈M(U), the set of global minimizers of U defined
in Theorem 1.1).

(ii) ∀x /∈M(U), limt→+∞ νt(x) = 0. More precisely, we have

∀x /∈M(U), lim
t→+∞

βt[νt(x)]1−m =
1

(1−m)(U(x)−minU)
,

where m < 0 is fixed in (3.2).

(iii) ∀x /∈M(U), we have the inequalities

∀t ≥ 0, νt(x)1−m ≥ 1

βt(1−m)osc U + 1
, where osc U = maxU −minU.

(iv) ∀x ∈M(U), νt(x) ≥ 1 and ν̇t B
∂νt(x)

∂t
≥ 0, where the equality holds iff U is constant on V .

(v) ∀x ∈M(U), limt→+∞ νt(x) =
1∑

y∈M(U) `(y)
and so limt→+∞ `(x)νt(x) = ζ∞(x), where ζ∞ is given in (3.5).

Proof. We prove (iii) because the rest are just restatements of Theorem 3.2. Indeed, from the proof of (ii) of Theorem
3.2, we have

βt[νt(x)]1−m =
1

(1−m)(U(x)−minU) + (m−1)ϕ′(νt(x0))+1
βt

, (5.2)

where x /∈ M(U) and x0 ∈ M(U) and observe that νt(x0) ≥ 0 so ϕ′(νt(x0)) ≥ 0. Therefore the denominator of (5.2) is
smaller than (1−m)(U(x)−minU) + β−1

t , so after dividing both sides with βt, the denominator of the left hand side is
βt(1−m)osc U + 1, which is the desired result.
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Having defined ν = (νt)t≥0, we can interpret its as a curve of “instantaneous invariant density" in the sense that
∀t ≥ 0, vtQβt,νt = 0, where vt is the probability measure admitting νt as its density and Qβ,ρ is the generator given in
(4.27), (4.28). Also, note that ∀t ≥ 0, Lβt,νt = 0, where Lβ,ρ is given in (4.22), (4.23), because∇βtU(x, y) = −∇ϕ′◦νt(x, y),
∀x 6= y. We move on to the definition of the functionals that are concerned in this section. Given ϕ defined in (3.2),
consider

∀t ≥ 0, ∀ρ ∈ D+(V ), I(t, ρ) B
∑
x∈V

`(x)
(
ϕ(ρ(x))− ϕ(νt(x))− ϕ′(νt(x))(ρ(x)− νt(x))

)
, (5.3)

∀t ≥ 0, ∀ρ ∈ D+(V ), G(t, ρ) B
1

2

∑
x∈V

∑
y∈V

`(x)L(x, y)θ(ρ(x), ρ(y))
(
∇[βtU + ϕ′ ◦ ρ](x, y)

)2
, (5.4)

where we recall the notation ∇[βtU +ϕ′ ◦ρ](x, y) = βt(U(y)−U(x))+ϕ′(ρ(y))−ϕ′(ρ(x)). Observe that I(t, ρ) and G(t, ρ)
are exactly I(βt, ρ) and G(βt, ρ) in (4.9),(4.10) evaluated at β = βt, respectively. Below is a functional inequality that will
be crucial in the proofs of convergence theorems of the dynamic (5.1).

Theorem 5.3. Let ϕ and θ be given in (3.2) and (4.1), and fix a ρ∗ ∈ D+(V ) we consider the following functionals

∀ρ ∈ D+(V ), I∗(ρ) B
∑
x∈V

`(x)
(
ϕ(ρ(x))− ϕ(ρ∗(x))− ϕ′(ρ∗(x))(ρ(x)− ρ∗(x))

)
,

G∗(ρ) B
1

2

∑
x,y∈V

`(x)L(x, y)θ(ρ(x), ρ(y))
(
ϕ′(ρ(x))− ϕ′(ρ∗(x))− ϕ′(ρ(y)) + ϕ′(ρ∗(y))

)2
.

Then it holds that

G∗(ρ) ≥ Λ(ρ)I∗(ρ),

where Λ(ρ) is the spectral gap of the generator Kρ given by

∀x 6= y, Kρ(x, y) B L(x, y)
θ(ρ(x), ρ(y))

θ(ρ(x), ρ∗(y))
,

which has the reversible invariant measure µρ defined by

∀x ∈ V, µρ(x) B `(x)θ(ρ(x), ρ∗(x)).

Proof. We will prove that for all ρ ∈ D+(V ), we have

G∗(ρ) ≥ Λ(ρ)
∑
x∈V

(
ϕ′(ρ(x))− ϕ′(ρ∗(x))

)
(ρ(x)− ρ∗(x))`(x).

Let f defined on V by

∀x ∈ V, f(x) B ϕ′(ρ(x))− ϕ′(ρ∗(x)),

so that

G∗(ρ) =
1

2

∑
x,y∈V

µρ(x)Kρ(x, y)
(
f(y)− f(x)

)2
= −µρ[fKρ[f ]].

Note that

µρ[f ] =
∑
x∈V

`(x)θ(ρ(x), ρ∗(x))
(
ϕ′(ρ(x))− ϕ′(ρ∗(x))

)
=

∑
x∈V :ϕ′(ρ(x))6=ϕ(ρ∗(x))

`(x)θ(ρ(x), ρ∗(x))
(
ϕ′(ρ(x))− ϕ′(ρ∗(x))

)
=

∑
x∈V :ϕ′(ρ(x))6=ϕ(ρ∗(x))

`(x)
ρ(x)− ρ∗(x)

ϕ′(ρ(x))− ϕ′(ρ∗(x))

(
ϕ′(ρ(x))− ϕ′(ρ∗(x))

)
=

∑
x∈V :ϕ′(ρ(x))6=ϕ(ρ∗(x))

`(x)(ρ(x)− ρ∗(x))

=
∑
x∈V

`(x)(ρ(x)− ρ∗(x))

= 0.
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It follows that

−µρ[fKρ[f ]] ≥ Λ(ρ)µρ[f
2]

= Λ(ρ)
∑
x∈V

`(x)θ(ρ(x), ρ∗(x))
(
ϕ′(ρ(x))− ϕ′(ρ∗(x))

)2
= Λ(ρ)

∑
x∈V

`(x)(ρ(x)− ρ∗(x))
(
ϕ′(ρ(x))− ϕ′(ρ∗(x))

)
,

which is the announced result. Now using Lemma 4.1, we have

G∗(ρ) ≥ Λ(ρ)
∑
x∈V

`(x)(ρ(x)− ρ∗(x))
(
ϕ′(ρ(x))− ϕ′(ρ∗(x))

)
,

≥ Λ(ρ)
∑
x∈V

`(x)
(
ϕ(ρ(x))− ϕ(ρ∗(x))− ϕ′(ρ∗(x))(ρ(x)− ρ∗(x))

)
= Λ(ρ)I∗(ρ).

The dependence of Λ(ρ) on ρ can be problematic if we have little infomation on ρ. The following observation will be
useful in this respect.

Proposition 5.4. With the settings in Theorem 5.3, we have for all ρ ∈ D+(V ),

Λ(ρ) ≥ λϕ
′′(1/`∧)

ϕ′′(ρ∧)
,

where λ is the spectral gap of L, ρ∧ B minx∈V ρ(x), `∧ B minx∈V `(x).

Proof. Due to the variational principle and monotonicity in each argument of θ, we have for any ρ ∈ D+(V ),

Λ(ρ) =
1

2
inf

f∈RV \Vect(1)

∑
x,y∈V `(x)L(x, y)θ(ρ(x), ρ(y))(f(y)− f(x))2

infc∈R
∑
x∈V `(x)θ(ρ(x), ρ∗(y))(f(x)− c)2

≥ θ(ρ∧, ρ∧)

θ(ρ∨, ρ∗,∨)
× 1

2
inf

f∈RV \Vect(1)

∑
x,y∈V `(x)L(x, y))(f(y)− f(x))2

infc∈R
∑
x∈V `(x)(f(x)− c)2

= λ
θ(ρ∧, ρ∧)

θ(ρ∨, ρ∗,∨)

where we denote ρ∧ B minx∈V ρ(x) and ρ∨ B maxx∈V ρ(x). We also note that ρ∨ ≤ 1/`∧, thus θ(ρ∨, ρ∗,∨) ≤ θ(1/`∧, 1/`∧)
and so

Λ(ρ) ≥ λ θ(ρ∧, ρ∧)

θ(1/`∧, 1/`∧)
=
ϕ′′(1/`∧)

ϕ′′(ρ∧)
.

5.2 Existence, uniqueness and convergence of (ρt)t≥0
Apply Theorem 5.3 and Proposition 5.4, we have the following estimate

G(t, ρ) ≥ λϕ
′′(1/`∧)

ϕ′′(ρ∧)
I(t, ρ), (5.5)

We now come the the main result of this paper

Theorem 5.5. For any m < 0, consider the function ϕ = ϕm,2 in (3.2), as well as the time-inhomogeneous inverse
temperature scheme

∀t ≥ 0, βt = (t0 + t)α − 1,

where t0 ≥ 1 and

0 < α ≤ κ(m) B
−m

2(1−m)
∈
(

0,
1

2

)
.

Then there exists a unique solution to the equation (5.1), which exists for all time t ≥ 0 and satisfies

lim
t→+∞

µt[M(U)] = 1.
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The proof is decomposed into several intermediate results.

Lemma 5.6. There exists a unique solution (ρt)t∈[0,T ) on a maximal interval [0, T ) to the equation (5.1) and a constant
K > 0 such that

∀t ∈ [0, T ), ρ−mt,∧ ≥
1

K(βt + 1)
.

Proof. Similarly to Proposition 4.3, the existence and uniqueness on a maximal interval [0, T ) of the dynamic (5.1) is
guaranteed by Cauchy-Picard Theorem. Indeed, it can be easily checked that the mapping

[0,+∞)×D+(V ) 3 (t, ρ) 7→ F(t, ρ)(x) :=
∑
y∈V

L(x, y)θ(ρ(x), ρ(y))
(
∇βtU(x, y) +∇[ϕ′ ◦ ρ](x, y)

)
satisfies a locally Lipschitz condition in ρ, uniformly in t on any compact interval t ∈ [a, b] like in the proof of Proposition
4.3. Let us differentiate with respect to time (recall that ϕ′(νt(x)) + βtU(x) = c(βt))

∂tI(t, ρt) =
∑
x

ρ̇t(x)
(
βtU(x) + ϕ′(ρt(x))

)
`(x)−

∑
x

ν̇t(x)
(
βtU(x) + ϕ′(νt(x)

)
`(x)

+ β̇t
∑
x∈V

U(x)(ρt(x)− νt(x))`(x)

=
∑
x

ρ̇t(x)
(
βtU(x) + ϕ′(ρt(x))

)
`(x)− c(βt)

∑
x

ν̇t(x)`(x) + β̇t
∑
x∈V

U(x)(ρt(x)− νt(x))`(x)

= −G(t, ρt) + β̇t
∑
x∈V

U(x)(ρt(x)− νt(x))`(x) (5.6)

≤ −λϕ
′′(1/`∧)

ϕ′′(ρt,∧)
I(t, ρt) + β̇tosc U, (5.7)

where we have used the computation (4.8) in (5.6) for G(t, ρt) and the fact that
∑
x∈V ν̇t(x)`(x) = ∂

∂t
(
∑
x∈V νt(x)`(x)) =

∂
∂t

1 = 0. By the time-homogeneous version of Gronwall inequality, we obtain ∀t ∈ [0, T ),

I(t, ρt) ≤ oscU
∫ t

0

β̇s exp

(
−
∫ t

s

λ
ϕ′′(1/`∧)

ϕ′′(ρu,∧)
du

)
ds+ exp

(
−
∫ t

0

λ
ϕ′′(1/`∧)

ϕ′′(ρs,∧)
ds

)
I(0, ρ0) (5.8)

≤ osc U(βt − β0) + I(0, ρ0)

≤ C0(βt + 1),

where C0 = max{oscU ; I(0, ρ0)− oscUβ0}. Using this, we express I(t, ρt) as∑
x∈V

βtU(x)
(
ρt(x)− νt(x)

)
`(x) +

∑
x∈V

(
ϕ(ρt(x))− ϕ(νt(x))

)
`(x) ≤ C0(βt + 1),

so ∑
x∈V

ϕ(ρt(x))`(x) ≤ C0(βt + 1) +
∑
x∈V

ϕ(νt(x))`(x)−
∑
x∈V

βtU(x)
(
ρt(x)− νt(x)

)
`(x)

≤ C1(βt + 1) +
∑
x∈V

ϕ(νt(x))`(x),

where C1 = C0 + oscU . Observe that from Theorem 5.2, νt(x) ≥ 1 if x ∈M(U) and recall that m < 0, we have∑
x∈V

ϕ(νt(x))`(x) ≤
∑
x∈V

(
ϕm(νt(x)) + ϕ2(νt(x))

)
`(x)

=
∑
x∈V

(νt(x)− 1)2

2
`(x) +

∑
x∈V

(νt(x)m − 1−m(νt(x)− 1)

m(m− 1)

)
`(x)

=
1

2

∑
x∈V

νt(x)2`(x)− 1

2
+

∑
x∈M(U)

νt(x)m

m(m− 1)
`(x) +

∑
x/∈M(U)

νt(x)m

m(m− 1)
`(x)− 1

m(m− 1)

≤ 1

2
νt,∨

∑
x∈V

νt(x)`(x) +
∑

x∈M(U)

νt(x)`(x)

m(m− 1)
+

∑
x/∈M(U)

νt(x)`(x)

m(m− 1)νt(x)1−m
−
(

1

2
+

1

m(m− 1)

)

≤ 1

2
νt,∨ +

∑
x∈M(U)

νt(x)`(x)

m(m− 1)
+

∑
x/∈M(U)

νt(x)(βt(1−m)osc U + 1)

m(m− 1)
`(x)−

(
1

2
+

1

m(m− 1)

)

≤ 1

2
(νt,∨ − 1) + βt(1−m)osc U

∑
x/∈M(U)

νt(x)

m(m− 1)
`(x)
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≤ 1

2
(

1

`∧
− 1) +

βtosc U
−m

≤ C2(βt + 1),

where νt,∨ B maxx∈V νt(x), `∧ B minx∈V `(x), C2 B max{ 1
2
( 1
`∧
− 1), oscU

−m }. Also write ρt,∧ B minx∈V ρt(x), and note
that ρt,∧ ≤ 1, we have for all t ∈ [0, T )

`∧ϕ(ρt,∧) ≤
∑
x∈V

ϕ(νt(x))`(x) + C1(βt + 1)

≤ C3(βt + 1),

where C3 = C1 + C2. Since ϕ(ρt,∧) =
ρmt,∧−1−m(ρt,∧−1)

m(m−1)
, we get for all t ∈ [0, T )

ρmt,∧ ≤
1

`∧
m(m− 1)C3(βt + 1) + 1 +m(ρt,∧ − 1)

≤ 1

`∧
m(m− 1)C3(βt + 1) + 1−m (since mρt,∧ < 0)

≤ C4(βt + 1),

where C4 = 1
`∧
m(m− 1)C3 + 1−m, and we arrive at

ρ−mt,∧ ≥
1

C4(βt + 1)
.

Hence, choosing K = C4 finishes the proof of the lemma.

Lemma 5.7. There is a constant I0 such that, for all t ∈ [0, T ), I(t, ρt) ≤ I0.

Proof. Using the previous lower bound on ρt,∧ in the proof of Lemma 5.6, we deduce for s ≤ t < T (recall that ϕ′′(r) = rm−2

if r ∈ (0, 1))

exp

(
−λϕ′′(1/`∧)

∫ t

s

1

ϕ′′(ρu,∧)
du

)
= exp

(
−λϕ′′(1/`∧)

∫ t

s

ρ2−mu,∧ du

)
≤ exp

(
−λϕ′′(1/`∧)

∫ t

s

[C4(βu + 1)]−
2−m
−m du

)
= exp

(
−λϕ′′(1/`∧)C

2−m
m

4

∫ t

s

(t0 + u)α×
2−m
m du

)
= exp

(
−C5

[
(t0 + t)1+

(2−m)α
m − (t0 + s)1+

(2−m)α
m

])
=

exp(C5(t0 + s)1+
(2−m)α

m )

exp(C5(t0 + t)1+
(2−m)α

m )
,

where C5 B λϕ′′(1/`∧)C
2−m
m

4 . Putting this back to the inequality (5.8), we have ∀t ∈ [0, T ),

I(t, ρt) ≤ osc U
∫ t

0

α(t0 + s)α−1 exp(C5(t0 + s)1+
(2−m)α

m )

exp(C5(t0 + t)1+
(2−m)α

m )
ds+

exp(C5t
1+

(2−m)α
m

0 )

exp(C5(t0 + t)1+
(2−m)α

m )
I(0, ρ0).

Let

p(t) B
1

C5

(
1 + (2−m)α

m

) (t0 + t)α−1− (2−m)α
m =

1

C5

(
1 + (2−m)α

m

) (t0 + t)
α

κ(m)
−1
,

q(t) B exp(C5(t0 + t)1+
(2−m)α

m ),

=⇒ p′(t) =
1

C5

(
1 + (2−m)α

m

) ( α

κ(m)
− 1

)
(t0 + t)

α
κ(m)

−2
,

q′(t) = C5

(
1 +

(2−m)α

m

)
(t0 + t)

(2−m)α
m exp(C5(t0 + t)1+

(2−m)α
m ).

We have as t→ +∞

p′(t)

p(t)

q(t)

q′(t)
=

1

C5

(
1 + (2−m)α

m

) ( α

κ(m)
− 1

)
(t0 + t)−1− (2−m)α

m → 0
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because −1− (2−m)α
m

≤ −1 + 2−m
−m ×

−m
2(1−m)

= m
2(1−m)

< 0 (recall m < 0). Note that p′ < 0 and

lim
t→+∞

p(t)q(t) = +∞

lim
t→+∞

∫ t

0

p(s)q′(s)ds = lim
t→+∞

(
p(t)q(t)− p(0)q(0) +

∫ t

0

[−p′(s)]q(s)ds
)

= +∞.

By L’Hopital’s rule, we have

lim
t→+∞

∫ t
0
p(s)q′(s)ds

p(t)q(t)
= lim
t→+∞

p(t)q′(t)

p′(t)q(t) + p(t)q′(t)
= lim
t→+∞

1

1 + p′(t)q(t)
p(t)q′(t)

= 1.

Hence, there exists a constant KI such that∫ t
0

(t0 + s)α−1 exp(C5(t0 + s)1+
(2−m)α

m )ds

exp(C5(t0 + t)1+
(2−m)α

m )
=

∫ t
0
p(s)q′(s)ds

q(t)
≤ KIp(t). (5.9)

The condition 0 < α ≤ κ(m) forces p(t) to be constant or goes to 0. In either case, we have (recall that (t0 + t)
α

κ(m)
−1 ≤ 1

since t0 ≥ 1)

∀t ∈ [0, T ), I(t, ρt) ≤
KIosc U

C5(1 + (2−m)α
m

)
+ I(0, ρ0) =: I0,

which ends the proof of the lemma.

Now we prove Theorem 5.5.

Proof. (of Theorem 5.5.) Suppose T < +∞ then ρt is going to the boundary of D+(V ) as t→ T−, but then I(t, ρt) will
go to infinity since

I(t, ρt) = Uβt(ρt)− Uβt(νt),

and

[0, T ] 3 t 7→ Uβt(νt) =
∑
x∈V

βtU(x)νt(x)`(x) +
∑
x∈V

ϕ(νt(x))`(x)

is continuous and bounded, while Uβt(ρt) is going to infinity because limr→0+ ϕ(r) = +∞. Therefore, T = +∞ and we
have established the existence and uniqueness of a solution (ρt)t≥0 of (5.1). Now using (5.3) together with ϕ = ϕm,2 ≥ ϕm,
for large t > 0 such that νt(x) ≤ 1 for x /∈M(U), we have

∀x /∈M(U),
I0
`(x)

≥ ϕ(ρt(x))− ϕ(νt(x))− ϕ′(νt(x))(ρt(x)− νt(x))

≥ ϕm(ρt(x))− ϕm(νt(x))− ϕ′m(νt(x))(ρt(x)− νt(x))

= νt(x)mϕm
(ρt(x)

νt(x)

)
because

ϕm(t)− ϕm(s)− ϕ′m(s)(t− s) =
tm − 1−m(t− 1)

m(m− 1)
− sm − 1−m(s− 1)

m(m− 1)
− sm−1 − 1

m− 1
(t− s)

=
tm − sm −m(t− s)−m(sm−1 − 1)(t− s)

m(m− 1)

=
tm − sm −msm−1(t− s)

m(m− 1)

=
sm
(

(t/s)m − 1−m(t/s− 1)
)

m(m− 1)

= smϕm(t/s).

Thus ϕm
(
ρt(x)
νt(x)

)
≤ I0νt(x)

−m

`(x)
→ 0, which implies ρt(x)

νt(x)
→ 1 for x /∈ M(U) as t → +∞. Since νt(x) → 0 for x /∈ M(U) it

follows that µt[V \M(U)]→ 0 or µt[M(U)]→ 1 as t→ +∞, which finishes the proof of Theorem 5.5.

Corollary 5.8. Given then settings in Theorem 5.5, let (ρt)t≥0 be the unique solution to (5.1), then we have

|µt[M(U)]− 1| = O(t−
α

1−m ). (5.10)

Moreover, the choice m = −1 and α = 1
4
give the “best" rate for the upperbound

|µt[M(U)]− 1| = O(t−
1
8 ). (5.11)
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Proof. From the proof of Theorem 5.5, we know that for any x /∈M(U) we have lim ρt(x)
νt(x)

= 1. From Theorem 5.2 (ii), we

have νt(x) = O(β
1

m−1
t ), so our choice of βt = (t0 + t)α − 1 ≈ tα leads to ρt(x) = O(t

α
m−1 ), and therefore

|µt[M(U)]− 1| = µt[V \M(U)] =
∑

x/∈M(U)

`(x)ρt(x) = O(t−
α

1−m ),

which shows (5.10). Since α ≤ κ(m) = −m
2(1−m)

, we have α
1−m ≤

−m
2(1−m)2

≤ 1
8
(use (1 + x)2 ≥ 4x for x = −m > 0). The

bound is obtained with the choice m = −1 and α = κ(−1) = 1
4
(corresponds to the choice βt = (t0 + t)1/4 − 1 ≈ t1/4),

then we have (5.11).

Corollary 5.9. Given then settings in Theorem 5.5, let (ρt)t≥0 be the unique solution to (5.1). Suppose in addition
α < κ(m) then it holds as t→ +∞ that

1

2
‖ρt − νt‖2L2(`) ≤ I(t, ρt) ≤

osc U(t0 + t)
α

κ(m)
−1

C5(1 + (2−m)α
m

)
+

exp(C5t
1+

(2−m)α
m

0 )

exp(C5(t0 + t)1+
(2−m)α

m )
I(0, ρ0) −→ 0. (5.12)

From (5.12), we have I(t, ρt) = O(t
α

κ(m)
−1

) but in fact, we have a better rate, that is I(t, ρt) = O(t
2α
κ(m)

−2
).

Proof. The first inequality in (5.12) follows from Corollary 4.7, while the second is already shown in (5.9). We prove the
last statement. Since the second term on the right handside of the second inequality in (5.12) is going to 0 at exponential
rate, the first term governs the convergence speed to 0 of I(t, ρt), which is proportional to t

α
κ(m)

−1. Denote It B
√
I(t, ρt).

From (5.6), we have

∂tI(t, ρt) = −G(t, ρt) + β̇t
∑
x∈V

U(x)(ρt(x)− νt(x))`(x)

= −G(t, ρt) + β̇t
∑
x∈V

(U(x)− `[U ])(ρt(x)− νt(x))`(x)

≤ −G(t, ρt) + β̇t

√∑
x∈V

`(x)(U(x)− `[U ])2 ×
∑
x∈V

`(x)(ρt(x)− νt(x))2

= −G(t, ρt) + β̇t
√

Var[U ]‖ρt − νt‖L2(`)

≤ −λϕ
′′(1/`∧)

ϕ′′(ρt,∧)
I(t, ρt) + β̇t

√
2Var[U ]I(t, ρt).

Dividing the last quantity by
√
I(t, ρt), we arrive at

2∂tIt ≤ −λ
ϕ′′(1/`∧)

ϕ′′(ρt,∧)
It + β̇t

√
2Var[U ],

which looks exactly like (5.7) except osc U is replaced by
√

2Var[U ] and note that
√

2Var[U ] ≤
√

2osc U . Hence, following

the same lines of proof in Theorem 5.5, we have that It = O(t
α

κ(m)
−1

) which implies I(t, ρt) = O(t
2α
κ(m)

−2
).

5.3 Nonlinear Markov interpretation
Similar to Section 4.3, we can reinterpret the dynamic (5.1) in terms of a time-inhomogeneous nonlinear Markov dynamic
satisfying

∀t > 0, µ̇t = µtLt,ρt = µtQt,ρt , (5.13)

where the generator Lt,ρ is defined by

∀t > 0, ∀ρ ∈ D+(V ), ∀x 6= y, Lt,ρ(x, y) B L(x, y)
θ(ρ(x), ρ(y))

ρ(x)

(
∇[βtU + ϕ′ ◦ ρ](x, y)

)
−
, (5.14)

or more explicitly

∀t > 0, ∀ρ ∈ D+(V ), ∀x 6= y, Lt,ρ(x, y) = L(x, y)

(
ρ(y)− ρ(x)

ρ(x)[ϕ′(ρ(y))− ϕ′(ρ(x))]
βt(U(y)− U(x)) +

ρ(y)

ρ(x)
− 1

)
−
, (5.15)

and the generator Qt,ρ is defined by

∀t > 0, ∀ρ ∈ D+(V ), ∀x 6= y, Qt,ρ(x, y) B L(x, y)
(

1 +
ρ(y)− ρ(x)

ρ(x)[ϕ′(ρ(y))− ϕ′(ρ(x))]
βt(U(y)− U(x))−

)
(5.16)

26



Observe that Lt,ρ = Lβt,ρ and Qt,ρ = Qβt,ρ , where Lβ,ρ and Qβ,ρ are given in (4.22) and (4.28), and therefore the
dependence on t of Lt,ρ and Qt,ρ is through βt namely on the choice of the temperature schedule.

With access to these Markov interpretations, we can effectively utilize an interacting particle system to approximate
a Markov process denoted as X = (Xt)t≥0, taking values in V and satisfying ∀t ≥ 0, Law(Xt) ≡ µt, where µt is the
unique solution to (5.13) (recall that the existence and uniqueness of (µt)t≥0 has been established in Section 5.2). We
call it Swarm algorithm since the process X = (Xt)t≥0 evolves and interacts with its law µt at all times t ≥ 0 in (5.13)
through the generator Lt,ρ or Qt,ρ. An additional rationale behind the chosen name lies in the essence of our algorithm
itself. As an approximation method outlined previously, our algorithm relies on the interaction of particles to approximate
the behavior of the Markov process X. This interaction goes through the closest neighbors as it is observed in biological
systems of birds or fish. This inherent similarity provides further validation for the designation “Swarm algorithm". The
details of sampling techniques, including the homogeneous case, can be found in the appendix.

We now delve into investigating the behavior of the Markov generators t 7→ Qt,ρt and t 7→ Lt,ρt as t becomes large.
Specifically, let us fix two states x 6= y in V and suppose we are at the state x. The following observations will shed
some lights on the behavior of the values Qt,ρt(x, y) and Lt,ρt(x, y) for large time t. If minU < U(y) ≤ U(x) then
(U(y) − U(x))− = U(x) − U(y) and recall from the end of the proof of Theorem 5.5 that limt→∞ ρt(z)/νt(z) = 1 if
z /∈M(U). Since for t large enough ρt(x), ρt(y) < 1, we have from Theorem 5.2

lim
t→∞

ρt(y)m−1

ρt(x)m−1
= lim
t→∞

νt(x)1−mβt
νt(y)1−mβt

=
U(y)−minU

U(x)−minU
,

thus,

ρt(y)− ρt(x)

ρt(x)[ϕ′(ρt(y))− ϕ′(ρt(x))]
βt(U(y)− U(x))− = (m− 1)

ρt(y)
ρt(x)

− 1

ρt(y)m−1

ρt(x)m−1 − 1
ρt(x)1−mβt(U(x)− U(y))

−→
(
U(y)−minU

U(x)−minU

) 1
m−1

− 1 (5.17)

by Theorem 5.2 too and so Qt,ρt(x, y) → L(x, y)
(
U(y)−minU
U(x)−minU

) 1
m−1 as t → ∞. The same analysis shows Lt,ρt(x, y) → 0

as t → ∞. If U(x) > U(y) = minU then the above limit in (5.17) is +∞ because ρt(y)/ρt(x) → +∞ and (m −
1)ρ(x)1−mβt(U(x) − U(y)) → −1 while the denominator goes to −1. Thus if L(x, y) > 0, Qt,ρt(x, y) → +∞, which
indicates that for large time t, the probability of transitioning from x to y in the next jump approaches 1 when y is
the unique state in M(U) that is a neighbor of x. If among the neighbors of x there are more than one state in M(U)
then the process jumps very fast to one of them. However, in this case, we cannot ascertain whether Lt,ρt(x, y) → 0 or
Lt,ρt(x, y) → +∞ based solely on the asymptotic behavior of (ρt)t≥0 from the proof of Theorem 5.5. In contrast, if we
replace ρt by νt then it holds that Lt,νt = 0 for all times t ≥ 0. Now if minU = U(x) < U(y), for large time t, we have

ρt(y)− ρt(x)

ρt(x)[ϕ′(ρt(y))− ϕ′(ρt(x))]
βt(U(y)− U(x)) = (1−m)

(
ρt(y)
ρt(x)

− 1
)
ρt(y)1−mβt(U(y)−minU)

ρt(y)1−m − 1− (1−m)ρt(y)1−m(ρt(x)− 1)

−→ 1

because ρt(y) → 0 (so the denominator goes to 0), ρt(x) → ζ∞(x)
`(x)

= (
∑
z∈M(U) `(z))

−1 by Theorem 5.2 i) and ii) and

limt→+∞
ρt(y)
νt(y)

= 1 so that

lim
t→+∞

ρt(y)1−mβt = lim
t→+∞

νt(y)1−mβt =
1

(1−m)(U(y)−minU)
.

Thus, Lt,ρt(x, y)→ 0 while Qt,ρt(x, y)→ L(x, y) as t→∞ in this case. In conclusion, the two generators behave differently
for large time t. Driven by Qt,ρt , the process can escape outsideM(U) but have tendency to return immediately toM(U)
while it is uncertain if the same phenomena happens for Lt,ρt . Lastly, if the process under the generator Qt,ρt is currently
outside M(U), it can move more freely around than the process under the reducible generator Lt,ρt because Qt,ρt is
irreducible.
Remark 5.10. In practice, we can employ the following hybrid generator

∀t ≥ 0, ∀ρ ∈ D+(V ), At,ρ := (1− at)Lt,ρ + atQt,ρ,

where a : R+ 7→ (0, 1) is a continuous function properly chosen. For instance, a can be a constant in (0, 1) or be such
that atQt,ρt(x, y) → +∞ if U(x) > U(y) = minU as t → +∞. In this manner, it still holds that µ̇t = µtAt,ρt . The first
advantage of using this hybrid generator is that it gives us the option of tuning the parameter a in computer simulations,
which could enhance performance. Secondly, it preserves a crucial property of Qt,ρt : if x ∈ M(U), y /∈ M(U) with
L(x, y) > 0 then At,ρt(x, y) → 0 and At,ρt(y, x) → +∞. Thus the probability that the process jumps from y to a global
minimizer from its neighborhood is converging to 1 just like under Qt,ρt for large time t. Lastly, as we expect Lt,ρt → 0,
the time spent at x ∈ M(U) is longer because |At,ρt(x, x)| ≈ at|Qt,ρt(x, x)| ≤ |Qt,ρt(x, x)| = |L(x, x)|, which is helpful for
computer simulations. However, it is uncertain if the irreduciblity of At,ρt would bring about better performance in practice
at all.
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6 Simulation
In this section we present some simulations of our algorithm in both homogeneous and inhomogeneous cases and compare
the generators given in Sections 4.3 and 5.3. Consider the state space V := {0, 1, ..., 19} and endow V with the irreducible
generator L given by

∀i ∈ V, L(i, i+ 1) = L(i, i− 1) = 1, and ∀j /∈ V \ {i− 1, i, i+ 1}, L(i, j) = 0,

with the convention that 19 + 1 ≡ 0 and 0− 1 ≡ 19. L then admits the uniform distribution on V as its unique invariant
distribution `. Let

∀x ∈ R, u(x) B
x2

10
+ 2(cos(3x) + sin(7x)),

we choose the function U : V 7→ R to be minimized as follows:

∀i ∈ V, U(i) B u(−0.6 + i/5.5).

The graph of U is given in Figure 1. Observe that U has four local minima and only one global minimum with i = 7 is
the unique global minimizer. Finally, in both homogeneous and inhomogeneous cases, we use 50 particles in the system.

The details of the codes can be found in this link: https://github.com/nhatthangle/Swarm-Algorithm.git. The strange
picks in the following pictures are possibly explained by the fact that the evaluations are made after random jump times
and not deterministic fixed times.

Figure 1: Function U

6.1 Homogenenous case
We will refer to the generators given in (4.23) and (4.28) as the first generator and the second generator, respectively.
Recall that the first generator is not irreducible while the second generator is. To facilitate a comparison of the generators,
we select a specific time interval, which we shall choose to be 5 minutes, and allow the particle system to evolve until this
interval elapses. Initializing with a uniform distribution, we opt for β = 5 as our chosen parameter. With this value of β,
the invariant measure ηβ has ηβ({6, 7, 8}) ≈ 0.65 (recall that 7 = arg mini∈V U).

Figure 2 depicts the graph illustrating the L2(`)-distance between the empirical measure of the particle system and
the invariant measure ηβ at each transition (with the x-axis representing the number of transitions), utilizing the first
generator. Note that each jump time is random, but we care more about the transitions than time. Meanwhile, Figure 3
presents the analogous graph employing the second generator. Notably, we observe that the distance over time using the
second generator exhibits greater fluctuation, attributed to the irreducible nature of this generator.
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Figure 2: L2(`)-distance using first generator Figure 3: L2(`)-distance using second generator

Figures 4, 5 depict the evolution of histograms representing the empirical measures (progressing from left to right), with
each picture generated after 1/16 of the chosen time interval (which amounts to 5 minutes); the initial and final pictures
correspond to the start and ending of the simulation, respectively. The two figures look relatively similar, contrary to
Figures 2 and 3.

Figure 4: Empirical measure over time (1st generator) Figure 5: Empirical measure over time (2nd generator)

6.2 Inhomogeneous case
In this subsection, we perform the Swarm algorithm introduced in Section 5.3. Once more, we undertake a comparative
analysis of the generators (5.15) and (5.16), which we will refer to as the first and the second inhomogeneous families of
generators, respectively. We choose α = 1/4 and t0 = 1, so that βt = (1 + t)

1
4 − 1. We denote the empirical measure by

µ̂t, which is given by

µ̂t(·) =

50∑
i=1

1{Xi(t)}(·),

where X(t) = (X1(t), ..., X50(t)) is the particle system we are using and for all i ∈ V and A ⊂ V , 1{i}(A) = 1 if i ∈ A and
0 otherwise. We denote ρ̂t as the empirical density of µ̂t with respect to `. In what follows, we fix a 2-hour period for our
simulations.
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Figures 6 and 7 illustrate the L2(`) distance between the empirical density ρ̂t and the “instantaneous" density νt at each
transition (with the x-axis representing the number of transitions) over a 2-hour duration. It is worth noting that within
an equivalent time frame, the system governed by the second generator experiences more than eight times the number of
transitions compared to that governed by the first generator. This is due to the asymptotic behavior of Lt,ρt and Qt,ρt
discussed in Section 5.3. Also, due to the random nature of the particle system, at some point, a particle will move outside
M(U) and causes a few upward spikes as shown in the pictures.

Figure 6: ‖ρ̂t − νt‖L2(`) (1st generator) Figure 7: ‖ρ̂t − νt‖L2(`) (2nd generator)

Figures 8 and 9 show the L2(`)-distance between the empirical density and the density of Dirac measure at state
7 = arg mini∈V U . With a slight abuse of notation, we employ 1{7} to represent both the Dirac probability measure and
its density with respect to `. It is evident from these figures that the particle system stemming from the second generator
displays more pronounced fluctuations, indicative of its irreducible nature. Conversely, the particle system originating
from the first generator appears more stable, with comparatively smaller variance.

Figures 10 and 11 display the histograms illustrating the evolution over time of the empirical distribution µ̂t. Each
histogram, progressing from left to right, represents a snapshot taken after 1/16 of the total time, which equates to 2
hours. The initial frames in both figures portray a sample of 50 particles drawn from the uniform distribution over V .
The final frames in both figures depict the terminal positions of the particle systems emerging from the two generators.

Figure 8: ‖ρ̂t − 1{7}‖L2(`) (1st generator) Figure 9: ‖ρ̂t − 1{7}‖L2(`) (2nd generator)
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Figure 10: ‖ρ̂t − 1{7}‖L2(`) (1st generator) Figure 11: ‖ρ̂t − 1{7}‖L2(`) (2nd generator)

From figures presented above, it appears that the algorithm employing the first generator outperforms the one utilizing
the second generator over a fixed time period, particularly concerning variance and convergence characteristics. This is
notable despite the fact that the particle system governed by the first generator undergoes fewer transitions. However, it
is imperative to note that in practical terms, the number of computations often outweighs the consideration of time alone.

7 Conclusion
To globally minimize a function U given on a finite set V , we extended it into a penalized functional Uβ on the set P(V )
of probability measures on V , where β is a non-negative parameter. The larger β is, the more concentrated on the global
minimizers of U is the unique global minimizer ηβ of Uβ . Another ingredient entering in the functional Uβ is a strictly
convex function ϕ : (0,+∞)→ R+. Following Erbar and Maas [6], we endow P(V ) with a Riemannian structure (except
for the regularity), strongly related to ϕ. It enables us to consider the gradient descent associated to Uβ , and as it can
be expected, the probability measure-valued dynamical system obtained in this way is converging to ηβ as time goes
to infinity. This result leads us to consider a time-inhomogeneous version (µt)t≥0 of this dynamical system, where the
parameter β evolves with time, with βt growing to infinity as the time t becomes larger and larger. Our main result gives
conditions on the evolution (βt)t≥0 insuring that for large time t ≥ 0, µt concentrates on the global minimizers of U . The
proof is based on a new functional inequality. So while the above considerations are an adaption to the finite setting of
the general method described in [4] for the global minimization of Morse functions U on compact Riemannian manifolds
M , we are able to go much further by relaxing the disappointing geometric restriction imposed in [4] that M should be a
circle. Another interesting feature of this approach is that the dynamical system (µt)t≥0 can be interpreted as the time-
marginal distributions of a non-linear and time-inhomogeneous Markov process on V , which can thus be approximated by
interacting particle systems. The paper ends with an example of such a numerical implementation. We hope to investigate
quantitatively the quality of this particle approximation in future works.

A On Markov-Riemann structures
Our purpose here is to see why the Maas framework [9] based on the introduction of a function θ is too restrictive to
recover the traditional Metropolis algorithm as a gradient descent flow.

Let us extend the Maas framework following [10]. On the finite set V , consider P+(V ) and Li(V ), respectively the set
of positive probability measures on V and the set of irreducible Markov generators on V . Assume we are given a locally
Lipschitz (with respect to the total variation) mapping

K : P+(V ) 3 µ 7→ Kµ ∈ Li(V ) (A.1)

such that for any µ ∈ P+(V ), Kµ is reversible with respect to µ.
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A form (here we implement Remark 5 of [10], replacing in the terminology “vector fields” by “forms”) on V is an
anti-symmetric mapping F : V × V 3 (x, y) 7→ F (x, y) ∈ R, i.e. satisfying

∀ (x, y) ∈ V × V, F (x, y) = −F (y, x)

Denote V(V ) the set of forms on V . We endow it with the following scalar products, one for each given µ ∈ P+(V ):

∀ F1, F2 ∈ V(V ), 〈F1, F2〉µnKµ B
1

2

∑
(x,y)∈V×V

F1(x, y)F2(x, y)µ(x)Kµ(x, y)

(the corresponding Euclidean norm will be denoted ‖ · ‖µnLµ).
Let F(V ) be the set of real functions defined on V . We equally endow it with the family of scalar products corresponding

to the L2(µ) space, namely for any µ ∈ P+(V ):

∀ f1, f2 ∈ F(V ), 〈f1, f2〉µ B
∑
x∈V

f1(x)f2(x)µ(x)

(the corresponding Euclidean norm will be denoted ‖·‖µ).
Consider the mapping d defined by

F(V ) 3 f 7→ d[f ] B (f(y)− f(x))(x,y)∈V 2 ∈ V(V )

(it will play the role of the exterior derivative in differential geometry).
The image d(F(V )) is denoted E(V ) (it corresponds to the set of exact forms in differential geometry and was called

the set of gradient fields in [10]).
For any fixed µ ∈ P+(V ), let d∗µ (called the µ-divergence in [10]) be the dual operator to −d with respect to the

Euclidean structures associated to the scalar products 〈·, ·〉µ and 〈·, ·〉µnKµ . More explicitly, we compute that

∀ F ∈ V(E), ∀ x ∈ V, d∗µ[F ](x) =
∑
y∈V

Kµ(x, y)F (x, y)

and it appears that

∀ µ ∈ P+(V ), Kµ = d∗µ ◦ d

To any µ ∈ P+(V ) and F ∈ V(V ), we associate the Markov generator Kµ,F given by

∀ x 6= y ∈ V, Kµ,F (x, y) B Kµ(x, y)F+(x, y)

where F+(x, y) stands for the positive part of F (x, y).
According to (15) in [10], Kµ,F and d∗µ are related through

∀ f ∈ F(V ), µ[Kµ,F [f ]] = −µ[fd∗µ[F ]]

= 〈df, F 〉µnKµ (A.2)

To any F ∈ V(V ) and µ ∈ P+(V ), we associate the semi-flow (SF (µ, t))t∈[0,τ(F,µ)) solution of

∀ t ∈ [0, τ(F, µ)), µ̇t = µtKµt,F (A.3)

starting with µ0 = µ. The time τ(F, µ) > 0 is assumed to be the explosion time of the above evolution equation, in the
sense that limt→τ(F,µ)− µt does not exists in P+(V ).

Remark A.1. Note that if the mapping defined in (A.1) is globally Lipschitz (and in particular bounded), then we get
τ(F, µ) = +∞ for any µ ∈ P+(V ) and F ∈ V(V ). It follows that SF can be seen as a semi-group acting on P+(V ), in the
sense that for any F ∈ V(V ) and µ ∈ P+(V ),

∀ t, s ≥ 0, SF (SF (µ, t), s) = SF (µ, t+ s)

Let us explain the interest in our finite setting of (SF (δx, t))t≥0, where δx is the Dirac mass at x ∈ V . Consider M a
compact Riemannian manifold and let ω be a differential form on M . The Riemannian structure enables us to transform
it into a vector field v. For any x ∈M , we can consider the flow (x(t))t∈R generated by v, i.e. the solution of the ordinary
differential equation {

x(0) = x

ẋ(t) = v(x(t)), ∀ t ∈ R

Then (SF (δx, t))t≥0 for x ∈ V is an analogue of (δx(t))t≥0 for x ∈M , when ω is replaced by F . There are two important
differences between these continuous and finite settings. First the flow has to be replaced by a semi-flow, only defined for
non-negative times. Secondly, our semi-flow (SF (δx, t))t≥0 does not stay in the set of Dirac masses but has to spread,
taking values in P+(V ) (the only exception being the case of the zero form).
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In fact we are more interested in the time-inhomogeneous version of (A.3). Let µ, ν ∈ P+(V ) be given. We denote
D(µ, ν) (respectively DE(V )(µ, ν)) the set of continuous paths F B (F (t))t∈[0,1] from [0, 1] to V(V ) (resp. E(V )) such that
the solution of

µ̇t = µtKµt,F (t) (A.4)

starting with µ0 = µ is defined for all t ∈ [0, 1] and satisfies µ(1) = ν.

Remark A.2. It was shown in [10] that for any F B (F (t))t∈[0,1] as above, there exists a unique continuous path
G B (G(t))t∈[0,1] from [0, 1] to E(V ) such that (A.4) is equivalent to

µ̇t = µtKµt,G(t)

Define

D(µ, ν) B inf
F∈D(µ,ν)

∫ 1

0

‖F (t)‖µtnKµt dt

where (µt)t∈[0,1] is the solution of (A.4) starting from µ. By convention, the above infimum should be +∞ whenD(µ, ν) = ∅.
But this does not happen, as it was shown in [10]. Thus, up to a regularity assumption on the mapping K of (A.1), D is
a Riemannian metric on P+(V ). Furthermore from Remark A.2, we have

D(µ, ν) = inf
F∈DE(V )(µ,ν)

∫ 1

0

‖F (t)‖µtnKµt dt

This Riemannian structure enables to consider gradient of regular functionals Hϕ defined on P+(V ). Indeed, according
to the usual procedure, ∇KHϕ(µ) is defined at any µ ∈ P+(V ) as the unique element from E(V ) such that for any
F ∈ V(V ),

d

dt
Hϕ(µt)

∣∣∣∣
t=0

= 〈∇KHϕ(µ), F 〉µnKµ (A.5)

where (µt)t≥0 starts with µ0 = µ and satisfies (A.3). In fact it is sufficient that (A.5) is satisfied for all F ∈ E(V ), see [10],
also for the existence and uniqueness of ∇KHϕ(µ) ∈ E(V ).

Once this gradient ∇KHϕ has been defined from P+(V ) to E(V ), for any µ ∈ P+(V ), we can consider the gradient
descent dynamical system (µt)t∈[0,τ) starting with µ0 = µ and satisfying

∀ t ∈ [0, τ), µ̇(t) = µtKµt,−∇KHϕ(µt) (A.6)

where τ is the explosion time of this P+(V )-valued flow. The interest of this evolution is that it corresponds to the
time-marginal distributions of a non-linear Markov process and thus in principe it can be approximated by interacting
particle systems, see e.g. the book of Del Moral [5]. It justifies the consideration of Riemannian structures on P+(V )
derived from mappings of the form (A.1), called Markov-Riemann structures in [10]. It was checked there that not all
Riemannian structures on P+(V ) are of this form.

Let us give a family of examples that leads to the same traditional Metropolis algorithm. We begin by recalling the
latter. The two ingredients are a generator L ∈ Li(V ) reversible with respect to a probability `, as well as a probability
π ∈ P+(V ). The associated Metropolis generator Lπ is defined by

∀ x 6= y ∈ V, Lπ(x, y) B L(x, y)

(
π(y)`(x)

π(x)`(y)
∧ 1

)
Given an initial probability µ ∈ P+(V ), the Metropolis flow (µt)t∈R+ starting with µ0 = µ is the solution of the linear

evolution equation

∀ t ≥ 0, µ̇(t) = µtLπ (A.7)

which is defined for all times and satisfies limt→+∞ µt = π.
In addition, let us be given a smooth and strictly function ϕ : R+ → R+ satisfying ϕ(1) = 0 and consider the functional

Hϕ defined on P+(V ) via

∀ µ ∈ P+(V ), Hϕ(µ) B
∑
x∈V

ϕ

(
µ(x)

π(x)

)
π(x)

Due to Jensen’s inequality and its case of equality, the unique global minimizer of Hϕ is π.
Let us associate to (L, π, ϕ) a Markov-Riemann structure on P+(V ). Consider the function θ : R2

+ → R+ defined by

∀ t, s ∈ R+, θ(t, s) B


t− s

ϕ′(t)− ϕ′(s) , if t 6= s

1

ϕ′′(t)
, if t = s

(A.8)
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and the mapping (A.1) given by

∀ µ ∈ P+(V ), ∀ x 6= y ∈ V, Kµ(x, y) B
`(x)

µ(x)
L(x, y)

(π
`

(x) ∧ π
`

(y)
)
θ

(
µ(x)

π(x)
,
µ(y)

π(y)

)
(A.9)

Its interest is:
Proposition A.3. Whatever the choice of the convex function ϕ, the gradient descent associated to Hϕ in the Markov-
Riemann structure coming from (A.9) is the Metropolis flow (A.7).

Thus the global minimization of the functional Hϕ via a gradient descent in the Riemannian structure coming from
(A.9) does not enable us to deduce a new stochastic algorithm. On the other side, it appears that all the above Hϕ serve as
Liapounov functions for the Metropolis algorithm and their investigations can be performed as part of the general theory
of gradient descent and Łojasiewicz’ inequalities, see e.g. Blanchet and Bolte [3]. It would be interesting to study more
thoroughly the role of the Riemannian metric, for instance what can be said when in (A.8) when one chooses another
convex function than ϕ? Are there Riemannian structures insuring a faster convergence?
Proof. We begin by computing ∇KHϕ(µ) for any given µ ∈ P+(V ). Let F be a form and consider (µt)t∈[0,τ(F,µ)) the
solution of (A.3) starting from µ. We compute

d

dt
Hϕ(µt)

∣∣∣∣
t=0

=
∑
x∈V

ϕ′
(
µt(x)

π(x)

)
dµt
dt

(x)

∣∣∣∣
t=0

= µ0

[
Kµ0,F

[
ϕ′
(µ0

π

)]]
=

〈
d
[
ϕ′
(µ
π

)]
, F
〉
µnKµ

where we used (A.2), showing that

∇KHϕ(µ) = d
[
ϕ′
(µ
π

)]
We deduce that for any µ ∈ P+(V ), and any x, y ∈ V ,

Kµ,−∇KHϕ(µ)(x, y) = Kµ(x, y)
(
−ϕ′

(µ
π

(y)
)

+ ϕ′
(µ
π

(x)
))

+

=
`(x)

µ(x)
L(x, y)

(π
`

(x) ∧ π
`

(y)
)
θ

(
µ(x)

π(x)
,
µ(y)

π(y)

)(
ϕ′
(µ
π

(y)
)
− ϕ′

(µ
π

(x)
))
−

=
`(x)

µ(x)
L(x, y)

(π
`

(x) ∧ π
`

(y)
)(µ

π
(y)− µ

π
(x)
)
−

=
π(x)

µ(x)
Lπ(x, y)

(µ
π

(y)− µ

π
(x)
)
−

=
π(x)

µ(x)
Lπ,−d[µ/π](x, y)

It follows that for any test function f ∈ F(V ),

µ[Kµ,−∇KHϕ(µ)[f ]] = µ

[
π

µ
Lπ,−d[µ/π][f ]

]
= π

[
Lπ,−d[µ/π][f ]

]
= −〈df,d[µ/π]〉πnLπ

= −1

2

∑
x,y∈V

(f(y)− f(x))
(µ
π

(y)− µ

π
(x)
)
π(x)Lπ(x, y)

=
∑
x,y∈V

(f(y)− f(x))
µ

π
(x)π(x)Lπ(x, y)

= µ[Lπ[f ]]

where in the second equality we used (A.2), but with the irreducible generator Lπ reversible with respect to π instead of
Kµ and µ.

These computations show that (A.6) reduces to (A.7) as desired. �

Note that when ϕ = ϕ1 and π is the Gibbs distribution given by

∀ x ∈ V, π(x) =
exp(−βU(x))

Zβ
`(x)

where Zβ is the normalizing constant, then Hϕ = Uβ , the functional considered in (1.2). Nevertheless in this case we
don’t recover the non-linear flow investigated in the main text, because the Riemannian structure is different: there the
mapping (A.1) is rather given by

∀ µ ∈ P+(V ), ∀ x 6= y ∈ V, Kµ(x, y) B
1

µ(x)
L(x, y)θ (µ(x), µ(y))
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B Sampling finite Markov processes
Our purpose here is to recall how to sample time-homogeneous and time-inhomogeneous Markov processes, as well as
sample in an approximate manner time-homogenous and time-inhomogeneous non-linear Markov processes.

B.1 Time-homogeneous cases
Let L B (L(x, y))x,y∈S be a Markov generator on the finite set S and m0 B (m0(x))x∈S be a probability distribution on
S. A Markov process X B (X(t))t≥0 with initial law m0 and whose generator is L can be sampled in the following way.

• Sample X(0) according to m0.

• Sample an exponential random variable E1 of parameter 1 and define τ1 B E1/|L(X(0), X(0))|. For t ∈ (0, τ1), take
X(t) B X(0). If L(X(0), X(0)) = 0, we have τ1 = +∞ and the construction stops here. Otherwise we proceed to
the next step.

• Sample X(τ1) according to the probability L(X(0), ·)/|L(X(0), X(0))|.
• Sample an exponential random variable E2 of parameter 1 and define τ2 B τ1+E2/|L(X(τ1), X(τ1))|. For t ∈ (τ1, τ2),

take X(t) B X(τ1). If L(X(τ1), X(τ2)) = 0, we have τ2 = +∞ and the construction stop here. Otherwise we proceed
to the next step.

• Sample X(τ2) according to the probability L(X(τ1), ·)/|L(X(τ1), X(τ1))|.

In these constructions the samplings are implicitly independent from the previous steps (this will also be so in the following
constructions).

The construction proceeds iteratively, to get τ3,X(τ3), τ4,X(τ4), ... If it happens that for some n ∈ N, L(X(τn), X(τn)) =
0, then we get τn+1 = +∞ and the construction stops there. Otherwise, we obtain an infinite sequence of jump times
(τn)n∈N with

lim
n→∞

τn = +∞

For t > 0, let mt be the law of X(t). It is the solution of the evolution equation (starting from m0)

∀ t ≥ 0, ∂tmt = mtL

(where mt is seen as a row vector).

B.2 Time-inhomogeneous cases
The Markov generator L is replaced by a (measurable and locally integrable) family (Lt)t≥0. A time-inhomogenous Markov
process X B (X(t))t≥0 with initial law m0 and whose generators are given by (Lt)t≥0 can be sampled in the following way.

• Sample X(0) according to m0.

• Sample an exponential random variable E1 of parameter 1 and define τ1 as

τ1 B inf

{
t > 0 :

∫ t

0

|Ls(X(0), X(0))| ds = E1

}
For t ∈ (0, τ1), take X(t) B X(0). If τ1 = +∞ the construction stops here. Otherwise we proceed to the next step.

• Sample X(τ1) according to the probability Lτ1(X(0), ·)/|Lτ1((X(0), X(0))|.
• Sample an exponential random variable E2 of parameter 1 and define τ2 as

τ2 B inf

{
t > 0 :

∫ τ1+t

τ1

|Ls(X(0), X(0))| ds = E2

}
For t ∈ (τ1, τ2), take X(t) B X(τ1). If τ2 = +∞ the construction stop here. Otherwise we proceed to the next step.

• Sample X(τ2) according to the probability Lτ2(X(τ1), ·)/|Lτ2(X(τ1), X(τ1))|.

The construction proceeds iteratively, to get τ3, X(τ3), τ4, X(τ4), ... This procedure may end in a finite number of
steps if it happens that for some n ∈ N we get τn = +∞. On the contrary when the whole sequence (τn)n∈N of (finite)
jump times is defined, consider

τ∞ B lim
n→∞

τn

definition which is extended to the case where there are only a finite number of jumps by taking τ∞ = +∞.
It can be shown that under our local integrability assumption, namely

∀ t ≥ 0,

∫ t

0

max(|Ls(x, x)| : x ∈ S) ds < +∞ (B.1)
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we have τ∞ = +∞ (a.s.). In particular this is satisfied if the mapping R+ 3 t 7→ Lt is bounded.
If Condition (B.1) is removed (but keeping the mesurability assumption), it may happen that τ∞ < +∞, in which case

τ∞ is called an explosion time. Then X B (X(t))t∈[0,τ∞) is only defined on the (random) interval [0, τ∞).
For t > 0, let mt be the law of X(t). It is the solution of the time-inhomogeneous evolution equation (starting from

m0)

∀ t ≥ 0, ∂tmt = mtLt

Note that the above construction coincides with that of Section B.1, in the time-homogeneous cases where Lt does not
depend on t ∈ R+. In truly time-inhomogeneous cases, one should be able to compute the inverse of the mapping

(0,+∞) 3 t 7→
∫ s+t

s

|Lu(x, x)| du

(where s ≥ 0 and x ∈ S are given), which suggests to rather consider simple mappings R+ 3 t 7→ Lt.

B.3 Non-linear cases
Let P(S) be the set of probability measures on S and G(S) be the set of Markov generators on S. Consider a Lipschitzian
mapping

P(S) 3 m 7→ Lm ∈ G(S)

Given an initial probability distributionm0 ∈ P(S), we are interested in the solution (mt)t≥0 of the non-linear evolution

∀ t ≥ 0, ∂tmt = mtLmt

It is not easy in general to sample directly a Markov process X B (X(t))t≥0 such that at any time t ≥ 0, mt is the
law of X(t) and the instantaneous generator is Lmt . A probabilistic approximation goes through systems of interacting
particles.

Let N ∈ N be a number of evolving particles, denoted XN B (XN,l)l∈JNK B (XN,l(t))l∈JNK,t≥0. The process XN is
Markovian on SN and its generator LN is such that

LN B
∑
l∈JNK

LN,l

where for any l ∈ JNK, LN,l is the Markov generator on SN given by

∀ x B (xk)k∈JNK 6= y B (yk)k∈JNK ∈ SN ,

LN,l(x, y) B

{
Lη(x)(xl, yl) , if xk = yk for all k ∈ JNK \ {l}
0 , otherwise

where for any x B (xk)k∈JNK ∈ SN , η(x) stands for the empirical measure

η(x) B
1

N

∑
l∈JNK

δxl ∈ P(S) (B.2)

Assume furthermore that the law of XN (0) is m⊗N0 .
For large N , the process XN,1 (or any XN,l with l ∈ JNK) is an approximation of X and (η(XN (t)))t≥0 is a random

approximation of (mt)t≥0.
The Markov process XN can be sampled as described in Section B.1. Taking into account that if E1, E2, ..., EN are

N independent exponential random variables of respective parameters λ1, λ2, ..., λN ≥ 0, then min(El, l ∈ JNK) is an
exponential random variable of parameter λ1 +λ2 + · · ·+λN , we get the following alternative description of the procedure:

• Sample XN (0) according to m⊗N0 .

• Sample N independent exponential random variables E1,1, E1,2, ..., E1,N of parameter 1, define τ1 as

τ1 B min

(
E1,l

|Lη(XN (0))(XN,l(0), XN,l(0))| : l ∈ JNK
)

and call I1 the index where the minimum is attained (which is a.s. unique if τ1 < +∞). For t ∈ (0, τ1), take
XN (t) B XN (0). If τ1 = +∞ the construction stops here. Otherwise we proceed to the next step.

• Sample XN,I1(τ1) according to the probability Lη(XN (0))(XN,I1(0), ·)/|Lη(XN (0))(XN,I1(0), XN,I1(0))|.
• Keep the other coordinates: for l 6= I1, take XN,l(τ1) B XN,l(0), this ends the construction of XN (τ1).
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• Sample N independent exponential random variables E2,1, E2,2, ..., E2,N of parameter 1, define τ2 as

τ2 B τ1 + min

(
E1,l

|Lη(XN (τ1))(XN,l(τ1), XN,l(τ1))| : l ∈ JNK
)

and call I2 the index where the minimum is attained (which is a.s. unique if τ2 < +∞). For t ∈ (τ1, τ2), take
XN (t) B XN (τ1). If τ2 = +∞ the construction stops here. Otherwise we proceed to the next step.

• Sample XN,I2(τ2) according to the probability Lη(XN (τ1))(XN,I1(τ1), ·)/|Lη(XN (τ1))(XN,I1(τ1),
XN,I1(τ1))|.

• Keep the other coordinates: for l 6= I2, take XN,l(τ2) B XN,l(τ1), this ends the construction of XN (τ2).

The construction proceeds iteratively, to get τ3, XN (τ3), τ4, XN (τ4), ... The construction may stop in a finite number
of iteration(s), if it happens that τn = +∞ for some n ∈ N. Otherwise, we obtain an infinite sequence of jump times
(τn)n∈N with

lim
n→∞

τn = +∞

B.4 Non-linear and time-inhomogeneous cases
Consider a mapping

R+ × P(S) 3 (t,m) 7→ Lt,m ∈ G(S)

which is locally integrable in the first variable (uniformly with respect to the second) and Lipschitzian in the second
variable (locally uniformly with respect to the first variable).

Given an initial probability distributionm0 ∈ P(S), we are interested in the solution (mt)t≥0 of the non-linear evolution

∀ t ≥ 0, ∂tmt = mtLt,mt

It is not easy in general to sample directly a Markov process X B (X(t))t≥0 such that at any time t ≥ 0, mt is the
law of X(t) and the instantaneous generator is Lt,mt . A probabilistic approximation goes through systems of interacting
particles.

Let N ∈ N be a number of evolving particles, denoted XN B (XN,l)l∈JNK B (XN,l(t))l∈JNK,t≥0. The process XN is
Markovian on SN , but time-inhomogeneous, and its instantaneous generator Lt,N at time t ≥ 0 is such that

Lt,N B
∑
l∈JNK

Lt,N,l

where for any l ∈ JNK, Lt,N,l is the Markov generator on SN given by

∀ x B (xk)k∈JNK 6= y B (yk)k∈JNK ∈ SN , Lt,N,l(x, y) B

{
Lt,η(x)(xl, yl) , if xk = yk for all k ∈ JNK \ {l}
0 , otherwise

and where for any x B (xk)k∈JNK ∈ SN , η(x) is still given by (B.2).
Assume furthermore that the law of XN (0) is m⊗N0 .
For large N , the process XN,1 (or any XN,l with l ∈ JNK) is an approximation of X and (η(XN (t)))t≥0 is a random

approximation of (mt)t≥0.
The Markov process XN can be sampled as described in Section B.2. Here is an alternative description of the procedure:

• Sample XN (0) according to m⊗N0 .

• Sample N independent exponential random variables E1,1, E1,2, ..., E1,N of parameter 1, define τ1 as

τ1 B min(τ1,l : l ∈ JNK) (B.3)

with

∀ l ∈ JNK, τ1,l B inf

{
t > 0 :

∫ t

0

|Ls,η(XN (0))(XN,l(0), XN,l(0))| ds = E1,l

}
and call I1 the index where the minimum is attained in (B.3) (which is a.s. unique if τ1 < +∞). For t ∈ (0, τ1), take
XN (t) B XN (0). If τ1 = +∞ the construction stops here. Otherwise we proceed to the next step.

• Sample XN,I1(τ1) according to the probability Lτ1,η(XN (0))(XN,I1(0), ·)/|Lτ1,η(XN (0))(XN,I1(0),
XN,I1(0))|.

• Keep the other coordinates: for l 6= I1, take XN,l(τ1) B XN,l(0), this ends the construction of XN (τ1).
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• Sample N independent exponential random variables E2,1, E2,2, ..., E2,N of parameter 1, define τ2 as

τ2 B min(τ2,l : l ∈ JNK) (B.4)

with

∀ l ∈ JNK, τ2,l B inf

{
t > 0 :

∫ τ1+t

τ1

|Ls(XN,l(τ1), XN,l(τ1))| ds = E2,l

}
and call I2 the index where the minimum is attained in (B.4) (which is a.s. unique if τ2 < +∞). For t ∈ (τ1, τ2), take
XN (t) B XN (τ1). If τ2 = +∞ the construction stops here. Otherwise we proceed to the next step.

• Sample XN,I2(τ2) according to the probability Lτ2,η(XN (τ1))(XN,I2(τ1), ·)/|Lτ2,η(XN (τ1))(XN,I2(τ1),
XN,I2(τ1))|.

• Keep the other coordinates: for l 6= I2, take XN,l(τ2) B XN,l(τ1), this ends the construction of XN (τ2).

The construction proceeds iteratively, to get τ3, XN (τ3), τ4, XN (τ4), ... The construction may stop in a finite number
of iteration(s), if it happens that τn = +∞ for some n ∈ N. Otherwise, we obtain an infinite sequence of jump times
(τn)n∈N with

lim
n→∞

τn = +∞
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