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ADAPTING PITCH-BASED SELF SUPERVISED LEARNING MODELS
FOR TEMPO ESTIMATION

Antonin Gagneré, Slim Essid, Geoffroy Peeters

LTCI - Telécom Paris, Institut Polytechnique de Paris, France

ABSTRACT
Tempo estimation is the task of estimating the periodicity of the
dominant rhythm pulse of a music audio signal. It has therefore
a close relationship with dominant pitch estimation. Recently, both
tasks have been addressed in a Self-Supervised Learning (SSL) fash-
ion so as to leverage unlabelled data for training. In this work, we
study the applicability of two successful pitch-based SSL models,
SPICE and PESTO, for the purpose of tempo estimation. Both suc-
cessfully exploit Siamese networks with a pitch-shifting view gen-
eration between the two branches. To apply these models for tempo
estimation, we represent the audio signal by the Constant-Q trans-
form (CQT) of its onset-strength-function and adapt their view gen-
eration using time-stretching (instead of pitch shifting), which is ef-
ficiently implemented by shifting the CQT. In a large experiment,
we show that simply adapting PESTO in this way yields superior re-
sults than the previous SSL approach to tempo estimation for most
datasets used in the reference benchmark. Further, since PESTO
is light-weight, requiring only a few training data, we study a new
learning scheme where the downstream datasets are processed di-
rectly in a SSL fashion (without access to labels) showing that this
is an interesting alternative further improving the performance for
some datasets.

Index Terms— tempo estimation, self-supervised-learning

1. INTRODUCTION

Given its wide range of applications (recommendation, playlist gen-
eration, synchronization, dj-ing, audio or audio/video editing, beat-
synchronous analysis), tempo estimation remains a major tasks in
Music Information Retrieval (MIR). At its core, tempo estimation
seeks to estimate the periodicity of the dominant rhythm pulse of a
music audio signal, often expressed in beat per minute (BPM). For-
mulated in such a manner it has a strong resemblance to the task of
pitch estimation. Recently, there has been a notable shift in the task
of pitch estimation towards the adoption of Self-Supervised Learn-
ing (SSL). This has shown superiority over the conventional super-
vised models [1, 2]. In this work we explore the adaptation of such
pitch-based SSL systems to the task of tempo estimation.
Works related to SSL in MIR. In recent years, the field of ma-
chine learning has been significantly reshaped with the emergence
of SSL. Unlike supervised learning, which relies on vast amounts
of labeled data, SSL leverages unlabeled data to learn meaningful
representations. By designing tasks where the data itself provides
the supervision, SSL methods have shown potential in reducing the
need for expensive annotations while still capturing the underlying
structures and patterns inherent in the data. A traditional technique
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employs a Siamese network [3, 4, 5, 6, 7] in which two different
views of an input are fed to a neural network which is trained by
applying a criterion (invariance or equivariance) between the two
corresponding output embeddings.

Recently, the equivariance-based approach has been used for
the development of MIR systems for pitch and tempo. Among
those SPICE (Self-supervised PItCh Estimation) [1] defines the two
views by pitch-shifting a given signal of one view to obtain the
other, observing that within the Constant-Q transform (CQT) do-
main this simply maps to a translation. They trained the network
such that the difference between the two embeddings is proportional
to the known pitch-shifting factor applied. They add an extra de-
coder to ensure regularization. PESTO (Pitch Estimation with Self-
Supervised Transposition-Equivariant Objective) [2] tackles pitch
estimation with a much lighter network (without the need for a de-
coder) and formulate the equivariance following a classification ap-
proach. PESTO has been shown to have superior performances than
SPICE. As for tempo estimation, to our knowledge only one attempt
has been made: Quinton [8] defines the two views by time-stretching
a given music signal. Those are fed to a TCN encoder which is
trained solely based on an equivariant loss, that does not admit triv-
ial solutions, hence avoids collapse.
Works related to tempo estimation. The task of tempo estimation
traditionally relied on hand-crafted signal processing and statistical
models. With the rise of datasets annotated into tempo, data-driven
approaches became prevalent in the field. [9] pioneered the use of
deep learning techniques for tempo estimation. Their pipeline em-
ployed a Bi-LSTM to predict beat position in a signal which is then
processed by a bank of resonating comb filters to output a tempo
estimation. Later on, [10] proposed the first deep learning only sys-
tem. They used a CNN that directly predicts the local tempo (defined
as tempo classes) from a Mel-spectrogram, alleviating the need to
create mid level features. The current state-of-the-art in tempo es-
timation is obtained using a smartly designed TCN system [11, 12]
that is trained to jointly estimate beat, downbeat and tempo [13].
Hybrid systems that use both domain-knowledge and deep-learning
have also been proposed. [14] uses explicitly the harmonic series
representation of periodic signals (proposed by [15, 16] to represent
tempo and rhythm) through a Harmonic-Constant-Q-Modulation as
input to a CNN. We use a similar (but simplified) representation here.

Close to our work, is the work of [17] which explores the adapta-
tion of SPICE for the task of tempo estimation. The authors studied
the relationship between the learned representation and the data rep-
resentation by using synthetic data. However they did not apply it to
the task of tempo estimation which is our main objective here.
Paper objective and organization. The objective of this work is to
show that pitch-based SSL models can be effectively adapted to the
task of tempo estimation. For this we study the adaptation of two
state-of-the-art SSL pitch-estimation models, SPICE and PESTO,
for the task of tempo estimation. We first detail their process (section
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Fig. 1: Training routines for PESTO (top left) and SPICE (top right),
with the proposed audio front-end for their adaptation to tempo esti-
mation (bottom).

2) and explain how we adapt them (section 3) to our needs. We
then perform a large-scale evaluation (section 4) comparing SPICE
and PESTO, studying the influence of the dataset used for the SSL
training, comparing our results to Quinton’s SSL model using the
same protocol [8] and to the results of fully-supervised systems.

With consideration to reproducibility we release the training
code and annotations used for evaluation.1

2. SSL APPROACHES TO PITCH ESTIMATION

In both SPICE and PESTO, the encoders are fed with two different
views x

(1)
t and x

(2)
t which represent pitch-shifted versions of the

same signal frame around time t. Those are CQT slices with differ-
ent vertical offsets. From these inputs the models are forced to learn
pitch-equivariant representation y

(1)
t and y

(2)
t . This equivariance is

formulated differently for SPICE and PESTO. We illustrate this in
Figure 1. We denote by z

(1,2)
t the outputs of the encoders.

In SPICE, z(1)t and z
(2)
t are projected using the same “pitch-

head” (a 2 hidden-layer MLP) to two scalars y
(1)
t and y

(2)
t . They

represent relative pitches. SPICE is trained to predict the known
amount k(1)

t − k
(2)
t of pitch-shifting between x

(1)
t and x

(2)
t . To do

so, SPICE minimizes the following loss:

LSPICE = h
(∣∣∣(y(1)

t − y
(2)
t

)
− σ

(
k
(1)
t − k

(2)
t

)∣∣∣) (1)

where h is a proposed Huber loss function and σ a scaling factor to
force the model to capture a given pitch range.

In PESTO, y(1,2)
t are vectors which present the probability dis-

tribution over the pitch classes. The equivariance loss is derived

1https://github.com/antoningagnere/sstempo

from the following: if x(2)
t is a pitch-shifted version of x(1)

t , then
their pitch probability distributions, y(1)

t and y
(2)
t , should be shifted

accordingly. To capture such information the authors define the fol-
lowing linear form : ϕ : Rd → R, y 7→ (α, ..., αd)⊤y and in-
troduce the concept of k-transposition. Observing that if y(2)

t if a
k-transposition of y(1)

t then ϕ(y
(2)
t ) = αkϕ(y

(1)
t ). The equivari-

ance loss is then defined as follows:

LPESTO = h

(
ϕ(y

(1)
t )

ϕ(y
(2)
t )

− αk

)
(2)

SPICE and PESTO follow a similar approach, involving an
equivariant loss and a regularization loss. For the regularization
SPICE relies on a reconstruction task (LRecon) by adding a decoder
directly connected to the scalars y

(∗
t ); while PESTO applies a pro-

posed Shifted Cross Entropy (LSCE) between the two shifted distri-
butions y(∗)

t . In the case of pitch estimation, it has been shown in [2]
that while PESTO’s performance is only slightly affected when the
regularization component is removed, SPICE strongly relies on its
decoder, not only increasing the number of parameters to be learnt,
but also hurting its adaptation to other tasks. Indeed, while a sin-
gle scalar (such as yt) can accurately encode the simple harmonic
structure of a pitched sound, it cannot encode the one of a complex
rhythm pattern.

3. PROPOSAL

To be able to apply SPICE or PESTO for tempo estimation, we re-
place the CQT of the audio signal by the low-frequency (frequen-
cies are chosen to represent the periodicity of the tempo) of its onset
strength function. Figure 1 illustrates our overall pipeline.

3.1. Audio front-end

We use audio sampled at 22050 Hz and estimate its Onset Strength
Function (OSF) using the Superflux algorithm [18]. Following stan-
dard recommendations, we use a window size of 512 and a hop size
of 128. The initial spectrogram is filtered using 24 filters per oc-
tave and enhanced with a frequency-axis maximum filtering of size
3. The resulting OSF, oτ , has a sampling rate of 172Hz.

We then represent the periodicity of oτ using a CQT, denoted by
xt We use the nnAudio [19] implementation with a hop size of 128
(which corresponds approximately to 0.7 s). For SPICE we used
Q = 64 bins per octave and a minimal frequency of 1Hz. For
PESTO we used Q = 48 bins per octave and a minimum frequency
of 0.8Hz, resulting in 320 bins up to the Nyquist-frequency.

3.2. Architecture overview

The SPICE encoder is composed of six 1D convolutional layers,
each of them being followed by batch normalization, ReLU acti-
vation and a max pooling operation. The output is then flattened in a
1024 embedding zt which is projected into a scalar yt by the tempo
head (2 linear layers and a sigmoid output activation). The output of
the tempo head yt is fed to the decoder, whose architecture mirrors
the encoder, in order to reconstruct the input slice x̂t ≈ xt.

PESTO only has an encoder. Its architecture is designed to pre-
serve transposition. Such property is ensured by wisely setting the
kernel size and padding of each layer in order to preserve the fre-
quency resolution along the convolutional layers. The input xt is
first layer-normalized and preprocessed by two 1D convolutions with
skip connections followed by four 1D convolutions after each a non



linear leaky ReLU activation and dropout are applied. The output zt
is then flattened and fed to a Toeplitz fully connected layer [2] and
normalized by a softmax layer to give the vector yt.

3.3. Training Details

To train SPICE and PESTO we used a batch size of 256 and the
ADAM optimizer with an initial learning rate of 10−4. Like in [1]
the CQT frames are shuffled so that within a batch they likely come
from different tracks. For PESTO, we schedule the learning rate us-
ing a cosine. Also, as PESTO employs a gradient-based loss weight-
ing method, adapting its training to the task of tempo estimation gets
simplified. In contrast, finding suitable loss weighting parameters for
SPICE was challenging, we performed an extensive hyper-parameter
search to find the best setting. We set the weights to 0.01 and 1000
for the tempo and reconstruction losses, respectively. For SSL train-
ing, we performed 50 epochs.

SPICE and PESTO use two different processes to create the
views x

(1)
t and x

(2)
t (the transposed CQT). SPICE samples two

offsets from a uniform distribution ki ∼ U(kmin, kmax) and ex-
tracts, from the CQT, slices spanning the range : [ki, ki + F ]. In
the case of tempo estimation our hyperparameter search leads us to
set kmin = 0, kmax = 32 and F = 256. PESTO creates two
views by only sampling one integer k ∼ U(−kmax, kmax) and
cropping the original frame from the range [kmax,K − kmax − 1]
and [kmax − k,K − kmax − k − 1]. We set kmax = 16.

Upon the completion of the SSL training the model can infer rel-
ative tempo estimation. To map its output to absolute tempo values
we consider two strategies: (a) calibration using synthetic data (sec-
tion 3.4), or (b) supervised fine-tuning using real data (section 3.5).

3.4. Calibration using synthetic data

In the first strategy, we perform a calibration step using synthetic
data as proposed in [1]. For this, we created a dataset of synthetic
signals following the process described in [17]: we generated 300
tracks, each consisting of a 30-second long signal with a periodic
click according to tempi drawn randomly in [60, 240] BPM. To pre-
vent any boundary effect, we only consider the central CQT frame of
each track. In SPICE [1], they observe a linear relationship between
the ground-truth pitch v and SPICE output y, we did not observe
such a linearity in the case of tempo. We therefore learn the map-
ping between y and the tempo v using a simple 1-Nearest-Neighbor
classifier: for each synthetic track i of tempo vi we associate its out-
put yi. For a given y we then simply look at the closest (according
to the Euclidean distance) yi and return the corresponding vi. The
same process is used for PESTO, but y is then a vector.

3.5. Supervised fine-tuning using real data

In the second strategy, we fine-tuned the model using real annotated
data; hence in a supervised way. Since SPICE’s output yt is a scalar,
we strip away the final layer and consider zt. We then add on top of
zt a linear classifier with 300 output units (corresponding to tempo
classes {0, ..., 299} BPM), followed by a softmax. For PESTO, we
directly add on top of yt a linear classifier with 300 output units and
a softmax. To enhance the robustness of our model, we incorpo-
rate data augmentation techniques. At the beginning of each epoch,
audio excerpts are randomly time-stretched using a factor drawn uni-
formly from the interval [0.8, 1.2]. We only train the linear classifier
(the encoder remains frozen) minimizing cross entropy. We used the
ADAM optimizer with a learning rate of 10−3 during 100 epochs.

4. EXPERIMENTS

4.1. Evaluation metrics

To evaluate the performance of ours models we report the standard
Accuracy 1 and Accuracy 2 metrics, applying a ±4% tolerance in
line with [20]. While Accuracy 1 assesses the model’s capability
to pinpoint the exact tempo against the ground truth, Accuracy 2
expands this scope by accounting for common “octave errors”, in-
corporating tempo variations of

{
1
3
, 1
2
, 2, 3

}
.

Tempo annotations are provided at the track level while our two
models output a prediction at each time frame t (one prediction every
∼ 0.7s). To derive a single (global) tempo estimation, we choose
the tempo prediction that occurs the most frequently over the track
duration.

4.2. Datasets

In the following we will use the following datasets either for SSL
training, supervised fine-tuning or testing: - FMA-medium [21] (the
medium-size subset of the Free Music Archive (FMA) dataset gath-
ering 25.000 excerpts of 30-s duration, without any annotation.) -
Hainsworth [22], - GTZAN-rhythm [23], - Giantsteps [24] and -
ACM Mirum [25]. The use of these datasets differ according to the
three experimental protocols described in the following.
Experiment 1⃝. The goal here is to compare SPICE and PESTO
for tempo estimation. Both are trained in a SSL way using FMA-
medium and then calibrated using synthetic data. We test them on
the individual datasets Hainsworth, GTZAN-rhythm, Giantsteps and
ACM -Mirum.
Experiment 2⃝. Here we check if PESTO can be trained with a
very small dataset. We train it in a SSL way using in turn one of
the individual annotated datasets and test on the same datasets. In
all cases, the calibration is performed on synthetic data so that there
is no over-fitting (but only the knowledge of the domain of the test
data). In any case, the test ground-truth labels are obviously never
seen during training.
Experiment 3⃝. The goal of this experiment is to replicate the eval-
uation protocol proposed by Quinton in [8]: systems are trained in a
SSL way on a large dataset (here FMA-medium) and then a super-
vised fine-tuning is done using a Leave-One-Dataset-Out (LODO)
paradigm, i.e. all datasets except the one used for the test are used for
supervised fine-tuning (e.g., if the test is on Hainsworth, fine-tuning
is done using GTZAN-rhythm, Giantsteps and ACM -Mirum). The
finetuning protocol is detailed in 3.5.

4.3. Results and discussions

Results of all experiments are given in Table 1. The lowest
part presents previously published results using fully-supervised
approaches.

Experiment 1⃝. PESTO consistently outperforms SPICE across all
test datasets in both Accuracy 1 and 2. Particularly, the performance
on ACM Mirum (0.713/ 0.961) demonstrates its capability to adapt
and generalize well, even on unseen or diverse musical data. For all
datasets, the difference between the two accuracy values is smaller
for PESTO than for SPICE. This suggests that PESTO is less prone
to octave errors than SPICE. The decoder might play a crucial role
being responsible of a high number of octave errors. Our insight
is the following: while struggling with the reconstruction task, the
decoder might encourage the encoder to fall in the trap of ”octave”



Table 1: Performance metrics of our models in different experimental settings in comparison to both SSL and supervised baselines. Higher
overall performance for each metric and dataset is indicated with the † symbol. Highest performance for an SSL-based approach is shown in
bold. Finally highest performance within an experiment is underlined.

Exp Method SSL trained on Hainsworth GTZAN Giantsteps ACM Mirum

Acc 1 Acc 2 Acc 1 Acc 2 Acc 1 Acc 2 Acc 1 Acc 2

SSL training with calibration step

1⃝ PESTO FMA 0.658 0.842 0.668 0.903 0.714 0.875 0.713 0.961
SPICE FMA 0.509 0.811 0.494 0.865 0.465 0.699 0.436 0.898

2⃝
PESTO Hainsworth 0.626 0.779 0.593 0.839 0.684 0.797 0.540 0.816
PESTO GTZAN 0.595 0.806 0.661 0.873 0.384 0.604 0.622 0.859
PESTO Giantsteps 0.568 0.847 0.564 0.904 0.797 0.907 0.407 0.891
PESTO ACM Mirum 0.540 0.720 0.551 0.819 0.602 0.718 0.668 0.810

SSL training with supervised finetuning using LODO

3⃝
PESTO FMA 0.743 0.896† 0.738 0.942 0.706 0.958 0.668 0.971
SPICE FMA 0.784 0.883 0.745 0.887 0.730 0.898 0.632 0.933
Quinton MTT 0.518 0.856 0.741 0.919 0.470 0.886 0.747 0.965

Supervised baselines

Schreiber [10] - 0.770 0.842 0.694 0.926 0.730 0.893 0.795 0.974
Foroughmand [14] - 0.734 0.829 0.697 0.891 0.836 0.979† 0.733 0.965
Böck 1 [9] - 0.806† 0.892 0.697 0.950 0.589 0.864 0.741 0.976
Böck 2 [13] - 0.830† 0.950† 0.870† 0.965 0.841† 0.990†

errors to facilitate the reconstruction task. In such situation it can
focus on reconstructing only a sub range of the seen tempo.
Experiment 2⃝. We only indicate here the results for the PESTO
model since the SPICE model did not perform well under this con-
dition. This may be due to the large number of parameters of
SPICE (2.3M) which prevents its training using only small datasets
(Hainsworth has only 220 tracks). Providing few but diverse tracks
seems to greatly harm SPICE’s ability to learn meaningful represen-
tations. We did not explore if adding data augmentation could help
but we do not expect it to radically change the outcome. On the
contrary, the small number of parameters of PESTO (70k) allows
training it with such small datasets. Interestingly, PESTO leads to
a higher Accuracy 1 (0.797) when trained in a SSL way using Gi-
antsteps (664 tracks) than when using FMA (0.714) or the LODO
fine-tuning (0.706). Training using only Giantsteps also produces
the highest Accuracy 2 for all the test-set (i.e. to recognize tempi
of Hainsworth it is better to perform the SSL training on Giantsetps
than on Hainsworth). However, for all datasets, it leads to an Ac-
curacy 1 lower than in any other scenarios considered in this ex-
periment. Giantsteps is composed of electronic dance music, which
often has more pronounced beat patterns, as opposed to the other
datasets which contain more diversity of genres. As PESTO per-
forms very well in such setting, this suggests to explore a special use
case, in which a user can pre-train PESTO solely relying on their
specific music library without necessarily trying to generalize to a
very large music collection.
Experiment 3⃝. In terms of Accuracy 2, PESTO outperforms
SPICE and Quinton’s SSL approach for all datasets. For Accuracy 2,
the supervised fine-tuning on real data also outperforms the calibra-
tion using synthetic data. This is not the case when considering Ac-
curacy 1. Compared to calibration, the supervised fine-tuning only
increases Accuracy 1 for Hainsworth and GTZAN (but decreases it
for Giansteps and ACM Mirum). In contrast, supervised fine-tuning
is beneficial to SPICE for all datasets. Both PESTO and SPICE

models outperform Quinton’s SSL approach [8] in all metrics and
datasets, except for Accuracy 1 on ACM Mirum.

We also explored adding the Extended Ballroom [26] dataset
for fine-tuning, i.e. using LODO + Extended Ballroom. For PESTO,
this lead to an increase of Accuracy 1 for Giansteps (from 0.706 to
0.831) and for ACM Mirum (from 0.668 to 0.725). To remain fair
with Quinton [8] protocol, we did not report these results in Table 1.
Benchmarking vs. supervised baselines. Overall, the method that
performs the best is the one proposed by [13], which obtained the
highest score for all datasets except Hainsworth, on which it was
not tested, and Accuracy 2 on Giantsteps. On Hainsworth, PESTO
surpassed all the other supervised systems in Accuracy 2 (0.896).
Except for Accuracy 1 on ACM Mirum, our models surpassed at
least one of the supervised baselines. This observation remains true
concerning PESTO solely relying on a calibration step, highlighting
the potential of SSL applied to tempo estimation.

5. CONCLUSION

In this work, we studied the adaptation of two successfull pitch-
based SSL models, SPICE and PESTO, for the task of tempo estima-
tion. In a large-scale evaluation, we demonstrate that these adapted
models outperform previously proposed tempo-based SSL models,
and reach Accuracy 1 and 2 close to fully supervised approaches.
Among the two models, PESTO leads to the best Accuracy 2 for
all datasets while SPICE does for Accuracy 1. We also demonstrate
that supervised fine-tuning of the models leads to superior perfor-
mance than calibration on synthetic data. Finally, we propose a new
paradigm in which the model is trained in a SSL way directly on the
test-data which constitutes a sort of zero-shot learning in a domain
adaptated fashion. For the Giantsteps dataset this paradigm leads to
the best Accuracy 1 overall. Future works will therefore concentrate
on studying more in depth and extending this paradigm.
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[18] Sebastian Böck and Widmer Gerhard, “Maximum filter vi-
brato suppression for onset detection,” in Proc. of DAFx (In-
ternational Conference on Digital Audio Effects), Maynooth,
Ireland, 2013.

[19] K. W. Cheuk, H. Anderson, K. Agres, and D. Herremans,
“nnaudio: An on-the-fly gpu audio to spectrogram conversion
toolbox using 1d convolutional neural networks,” IEEE Ac-
cess, vol. 8, pp. 161981–162003, 2020.

[20] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis,
C. Uhle, and P. Cano, “An experimental comparison of audio
tempo induction algorithms,” Audio, Speech and Language
Processing, IEEE Transactions on, vol. 14, no. 5, pp. 1832–
1844, 2006.
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