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Abstract

The COVID-19 pandemy has created a radically new situation where most countries provide

raw measurements of their daily incidence and disclose them in real time. This enables new

machine learning forecast strategies where the prediction might no longer be based just on

the past values of the current incidence curve, but could take advantage of observations in

many countries. We present such a simple global machine learning procedure using all past

daily incidence trend curves. Each of the 27,418 COVID-19 incidence trend curves in our

database contains the values of 56 consecutive days extracted from observed incidence

curves across 61 world regions and countries. Given a current incidence trend curve

observed over the past four weeks, its forecast in the next four weeks is computed by match-

ing it with the first four weeks of all samples, and ranking them by their similarity to the query

curve. Then the 28 days forecast is obtained by a statistical estimation combining the values

of the 28 last observed days in those similar samples. Using comparison performed by the

European Covid-19 Forecast Hub with the current state of the art forecast methods, we ver-

ify that the proposed global learning method, EpiLearn, compares favorably to methods

forecasting from a single past curve.

Author summary

Forecasting the short time evolution of the COVID-19 daily incidence is a key issue in the

epidemic decision making policy. We propose a machine learning method which forecasts

the future values of the daily incidence trend based on the evolution of other incidence

trend curves that were similar to the current one in the past. Using comparison performed

by the European Covid-19 Forecast Hub with the current state of the art forecast methods,

we verify that the proposed global learning method, EpiLearn compares favorably to

methods that forecast from a single past curve.
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This is a PLOS Computational Biology Methods paper.

Introduction

The COVID-19 epidemic has provided us with information on the evolution of the daily inci-

dence in many different countries and epidemic scenarios. Given the enormous global impact

of COVID-19, a large number of researchers have studied the problem of predicting the inci-

dence curve. For example, the European Covid-19 Forecast Hub [1] gathers a variety of predic-

tion models based on many different techniques. These methods observe the past of daily

incidence in a given country and forecast its future evolution in the weeks to come. The pre-

diction is generally made for the next four weeks. Most of these methods base their forecast on

the observation of only the past values of the current incidence curve, that is, the one that they

want to extend towards the future.

The main objective of this paper is to introduce a prediction method that learns the future

of a given incidence trend curve from the past evolution of other many incidence trend curves.

Our method can be seen as an extension of the “method of analogues”, inspired from meteo-

rology and first introduced for epidemiologic forecasting in [2] in predicting influenza activity.

This method uses vectors selected from historical influenza time series that match current

activity. The authors applied it to forecasting the incidences of influenza in France and in the

country’s 21 administrative regions, using a series of data for 938 consecutive weeks of surveil-

lance between 1984 and 2002, and compared the results with those for autoregressive models.

They reported that for 1- to 10-week-ahead predictions, the correlation coefficients between

the observed and forecasted regional incidences was significantly superior with the method of

analogues than for autoregressive models. The method compares fixed incidence intervals to a

query interval by their Euclidean distance, and obtains a prediction as a weighted mean of the

incidences that follow the nearest neighbors. Nevertheless, a major difference of their method

with ours is that they restrict their comparison to the past history of each incidence curve.

Hence, their learning set is considerably smaller than the one that uses many regions or coun-

tries: It assumes the observation of a several years period and takes advantage of the periodicity

of influenza.

The sophisticated extension of the method of analogues proposed in [3] also uses historical

data (up to 20 years) to obtain predictive distributions for incidence in individual weeks using

a kernel conditional density estimation (KCDE). Then these individual distributions are tied

into joint distributions using copulas, to predict the timing of and incidence in the peak week

of the season. Like in [2], the method is applied to a single time series and therefore requires a

much longer observation period that the one that could be used for COVID-19 so far. Argu-

ably the closest method to our proposed one is the neural method of [4]. The authors introduce

a new neural forecasting model called Attention Crossing Time Series, that makes forecasts via

comparing patterns across time series obtained from multiple regions. It interprets the atten-

tion mechanism [5] as an application of the “method of analogues”. The model is demon-

strated to outperform many recent SEIR models.

In a nutshell, our proposed learning method uses all past incidence trend curves that are

similar on 28 consecutive days to the last 28 last days of the trend incidence curve that is to be

extended towards the future. To demonstrate the method, we use as learning database a collec-

tion of 27,418 COVID-19 past incidence trend curves across 61 world regions and countries.

These trend curves are computed by the EpiInvert method [6] from the original raw incidence

curves communicated by the governments. A raw incidence curve is not the adequate input
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EpiLearn is executed using the EpiInvertForecast R

function. A description of EpiInvertForecast usage

is presented with examples in the vignette https://

ctim.ulpgc.es/covid19/EpiInvertForecast.html The

incidence trend database has been built using the

daily incidence data, up to May 5, 2022, provided

by Our World in Data https://ourworldindata.org/

coronavirus for the following countries and

regions: Argentina, Austria, Bangladesh, Belgium,

Brazil, Canada, Chile, Colombia, Cuba, Czech

Republic, Denmark, Germany, France, Greece,

Hungary, India, Iraq, Iran, Ireland, Israel, Italy,

Japan, Jordan, Kazakhstan, Malaysia, Mexico,

Nepal, Netherlands, Peru, Philippines, Poland,

Romania, Russia, Serbia, Slovakia, South Africa,

South Korea, Spain, Sweden, Switzerland,

Thailand, Tunisia, Turkey, Ukraine, United Arab

Emirates, United Kingdom, USA, Vietnam, Africa,

South America, North America, Asia, Europe,

European Union, Oceania, and the world. The

database provided by Our World in Data includes

COVID-19 information about confirmed cases,

deaths, vaccinations, testing and government

responses. Confirmed cases and deaths are

collected by Johns Hopkins University by date of

report, rather than date of test/death. The

comparative results with other methods have been

obtained by using the weekly evaluation reports

published by the European Hub, in the repository

https://github.com/covid19-forecast-hub-europe/

covid19-forecast-hub-europe/tree/main/evaluation/

weekly-summary This information is given in the

material and methods section of the paper.
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for forecasting because of its high noise and weekly oscillation. The weekly seasonality depends

on each country, thus hindering comparison between raw incidence curves. Trend curves

instead, being freed from seasonality and noise, are much more suitable to forecasting. Never-

theless, as we will show later, a daily forecast of the raw incidence can be deduced from its fore-

casted trend using the estimated seasonality.

Let us denote by s = (s1, s2, . . ., s28), the last 28 values of the current incidence trend that we

want to extrapolate, and by sf ¼ ðsf1; s
f
2; :::; s

f
28Þ the forecast for the next 28 days proposed in

this work. Each of the 27,418 incidence trend curves in our database contains the values of 56

consecutive days extracted from observed past incidence curves. We predict the evolution of

the current incidence trend curve from the median of the 28 last days of the 27,418 database

curves, where the median is computed on the 121 most similar curves. The similarity to the

query of these candidate curves is measured on its first 28 days, which are matched to the 28

last observed days of the query curve s that we want to extrapolate. In summary, the 28 future

samples sf of the current curve s are obtained as the median of the corresponding days 29 to 56

of the most similar past curves. Alternatively, we also tested a weighted average of all curves

instead of the median, but it has a slightly inferior performance.

We also compute empirical confidence intervals for the incidence trend forecast by apply-

ing the proposed method to the incidence curves of our database and obtaining a distribution

of the forecast error as a function of the number of days passed from the current day (the last

day of the used incidence curve). In Fig 1 we illustrate the results of the proposed method for

four countries, using their incidence curves up to May 5, 2022. This figure displays in black the

raw input incidence curves, which show a strong weekly periodic bias. In the case of France

for example, there is a strong deficit on week-ends compensated by a peak on Mondays. For

our prediction, we therefore use a smooth incidence trend curve (in red), that is easier to

extend and forecast than the original raw incidence. The usual way to compute an incidence

trend curve is to apply a 7 or 14 days sliding average to the original raw incidence, which

reduces the weekly effects [7]. In our method, we use the more sophisticated EpiInvert method

introduced in [6, 8] and available as a CRAN R package [9]. This method is summarily

described in the Material and Methods section. Fig 1 shows in blue the forecast curve, that can

be compared to the magenta ground truth that became later available. In light blue, the figure

also displays the predicted raw incidence curve where the weekly bias learned by EpiInvert in

the immediate past is also applied. In these relatively favorable examples, picked from large

countries with large incidence and at a time of regular daily measurements, the error between

ground truth and prediction seems acceptable. Nevertheless, the error on the fourth week can

exceed 25%. This is not surprising, given the high variability of the possible futures depending

on human interventions. In this introduction we do not present the many alternative forecast-

ing methods. Instead, we review them in detail in the discussion section. The methods that

were publicly available through the European Covid-19 Forecast Hub are quantitatively com-

pared with our method through the unbiased metrics of the hub. Our learning technique is dif-

ferent in structure from most previous methods introduced in the literature. We involve no

parametric model for the incidence curve. Our method produces a daily forecast of the future,

whereas most COVID-19 incidence analysis methods [7, 10] aim to forecast the 7-day sliding

average of the daily incidence.

The particular significance of this study lies in the novelty of our machine learning

approach that provides a daily forecast of the current incidence curve based on its similarity

with many different incidence curves in the past. The unbiased comparison with other meth-

ods in the context of the European Covid-19 Forecast Hub confirms the good performance of

the proposed method.
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Material and methods

Data sources

The incidence trend database has been built using the daily incidence data, up to May 5, 2022,

provided by Our World in Data in [11] for the following countries and regions: Argentina,

Austria, Bangladesh, Belgium, Brazil, Canada, Chile, Colombia, Cuba, Czech Republic, Den-

mark, Germany, France, Greece, Hungary, India, Iraq, Iran, Ireland, Israel, Italy, Japan, Jor-

dan, Kazakhstan, Malaysia, Mexico, Nepal, Netherlands, Peru, Philippines, Poland, Romania,

Russia, Serbia, Slovakia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand,

Tunisia, Turkey, Ukraine, United Arab Emirates, United Kingdom, USA, Vietnam, Africa,

South America, North America, Asia, Europe, European Union, Oceania, and the world.

Fig 1. 28-day forecast of the daily incidence for four countries, using the data up to May 5, 2022. The current original raw incidence curve which suffers from

periodic weekly effects. In red the current incidence trend computed by EpiInvert [6], in blue the forecast of the incidence trend curve by EpiLearn, in magenta the

ground truth given by the incidence trend curve obtained 50 days later and in light blue the forecast of the raw incidence using Eq (8). The cyan shaded area

represents a 95% empirical confidence interval of the incidence trend forecast. The discontinuity at the past-future junction in Germany is due to a sharp drop of the

incidence after the last observed day. When recalculating the incidence trend curve, the values of the past days are also changed by smoothing, thus creating the

observed gap.

https://doi.org/10.1371/journal.pcbi.1010790.g001
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The database provided by Our World in Data in [11] includes COVID-19 information

about confirmed cases, deaths, vaccinations, testing and government responses. Confirmed

cases and deaths are collected by Johns Hopkins University by date of report, rather than date

of test/death. Therefore, the number they report on a given day does not necessarily represent

the actual number on that date, because of the long reporting chain that exists between a new

case/death and its inclusion in statistics. This also means that time series can show sudden

changes (negative or positive) when a country corrects historical data, because it had previ-

ously under-or -over estimated the number of cases/deaths. The comparative results with

other methods, presented in the comparative results part of the Results section, have been

obtained by using the raw evaluation scores published by the European Hub, [1], in the file

https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/tree/main/

evaluation/scores.csv. These results cannot be manipulated and they use the version of the data

that have been available in real time when producing forecasts.

Data preprocessing method

The infectiousness of individuals at time t is characterized by the reproduction number Rt,

defined as the average number of cases generated by an infected person at time t, and by the

(observable) serial interval Fs which represents the time distribution of the delay of the onset

of symptoms between primary and secondary cases. For Covid 19, this serial interval was mea-

sured accurately in [12] on nearly 1000 verified transmission pairs. We use this distribution in

the EpiInvert method.

Our forecast model uses the EpiInvert method, which aim it is to invert the fundamental

renewal equation [13, 14] linking Rt,F and the incidence it of new daily cases,

it¼
X

s

it� sRt� sFs for t ¼ 0; ::; tc; ð1Þ

where tc is the current time. The EpiInvert method introduced in [8] and extended in [6, 9] is a

deconvolution + denoising procedure to solve the functional Eq (1). EpiInvert estimates both

Rt and a restored it corrected for the weekend bias. To remove the weekend effect, it computes

a 7-day quasi-periodic multiplicative factor qt. From the observed incidence curve and the

serial interval, Rt and qt are jointly estimated by minimizing

EðR; qÞ¼
Xtc

t¼0

qti0t �
P

sqt� si0t� sRt� sFs

medianðt� t;t�ði0Þ

 !2

þ wR

Xtc

t¼1

ðRt � Rt� 1Þ
2
þ wq

Xtc

t¼7

ðqt � qt� 7Þ
2
; ð2Þ

where median(t−τ,t](i0) is the median of i0t in the interval (t − τ, t] used to normalize the energy

with respect to the size of it (the value of τ is fixed to 21 (3 weeks) in the experiments). The

total number of cases is preserved by adding to (2) the constraint on qt:

Xtc

t¼tc � Tþ1

i0t ¼
Xtc

t¼tc � Tþ1

qti
0

t ; ð3Þ

where T is a period of analysis empirically fixed to T = 56 days. The minimization of the above

energy yields estimates of Rt, and a quasi-periodic bias correction factor qt, as the third term in

the functional forces the values qt − qt−7 to be small. The parameters wR and wq are regulariza-

tion weights with default values wR = wq = 5. Their values were proven in [8] to be nearly opti-

mal for Covid-19 incidence curves.

By minimizing this energy (2) under the constraint (3), we obtain the reproduction number

Rt and the seasonality bias correction coefficients qt. An incidence î t corrected of the weekly
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bias is obtained as î t ¼ qti0t . The final restored incidence it that we use for forecasting is

obtained by applying the renewal Eq (1) to the bias corrected incidence qti0t , namely

it ≕
X

s

qt� si
0

t� sRt� sFs:

Forecasting method

Next, we present the proposed method, let us, first, to introduce the following notation to

manage the incidence curves and their forecast:

• so ¼ ðso
1
; . . . ; so

28
Þ : the current raw incidence curve in the last 28 days.

• so;f ¼ ðso;f1 ; . . . ; so;f28 Þ : the forecast of the current raw incidence curve for the next 28 days in

the future.

• s = (s1, . . ., s28) : the current trend curve in the last 28 days.

• sf ¼ ðsf1; . . . ; sf28Þ : the forecast of the incidence trend curve for the next 28 days in the future.

• fik ¼ ðik
1
; . . . ; ik

56
Þg

N
k¼1

: the collection of incidence trend curves in the database.

• fsk ¼ ðik
1
; . . . ; ik

28
Þg

N
k¼1

: the first 28 days of the database incidence trend curves that we use

for comparison purposes with the current curve s.

• fsf ;k ¼ ðsf ;k1 ; . . . ; sf ;k28 Þg
N
k¼1

: the forecast of the database curves for the last 28 days using as cur-

rent curve the first 28 days.

• Ed ¼ fed;k ¼
jsf ;kd � i

k
dþ28
j

sf ;kd

g
N
k¼1

: empirical distribution of the relative forecast error for the data-

base curves in the forecast day d = 1, . . ., 28.

Incidence trend curves database construction using EpiInvert
Our proposed method, EpiLearn, uses a world-wide database of raw incidence curves from 61

countries and regions up to May 5, 2022. For each country or region, and for each day, starting

150 days after the beginning of the epidemic, we take the raw incidence data up to that day.

Then, the resulting curve is further processed by applying the EpiInvert incidence decomposi-

tion algorithm [6] (see the Material and methods section) and we keep the last 56 values of the

estimated incidence trend curve. To add a curve of this type to the database, we impose that

the mean of the 56 values of the sequence must be larger than 1000. Taking into account that

we normalize all database curves, the magnitude of the curves therefore has no influence in the

forecast estimation. This amounts to making the assumption that the incidence curve evolu-

tion has the same behavior in large countries than in small countries. We impose this mini-

mum 1000 cases average condition because for very small averages the registered incidence

curves are often very noisy and unreliable. Indeed, small averages often correspond to non-

threatening or neglected stages of the epidemic.

Normalization of the database incidence curves

EpiInvert is magnitude-invariant, that is, multiplying the raw incidence values by a scalar fac-

tor multiplies the estimated EpinInvert incidence trend values by the same scalar factor. Our
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forecast method preserves this magnitude-invariance by normalizing the magnitude of the

incidence trend curves.

Let N be the number of incidence trend curves stored in the database (in our case

N = 27,418). For k = 1, 2, ‥, N, ik ¼ ðik
1
; ik

2
; :::; ik

56
Þ corresponds to the last 56 days of the inci-

dence trend curve computed by EpiInvert and stored in the database. Each ik has been normal-

ized by multiplying it by a scale factor so that the average of the first 28 values be equal to 1:

P28

j¼1
ikj

28
¼ 1: ð4Þ

Computing the distance between curves. We denote by ŝ the present-day incidence

trend curve for the country being predicted, that has been normalized in the same way, so that

ŝ ¼
28

P28

j¼1
sj
s: ð5Þ

We compare the normalized vectors ŝ and sk (the first 28 values of ik) through the following

magnitude-invariant distance average,

dðŝ; sk; mÞ ¼
P28

j¼1
e� mð28� jÞĵsj � skj j

28
; ð6Þ

where the parameter μ� 0 governs the exponentially weighted moving average. The larger the

value of μ, the lower this weight for the more remote days, as is classical in control theory [15]

and in epidemiological forecasting [16]. As shown below, by minimizing the forecast error, we

obtain the optimal value μ = 0.0475. Fig 2 shows the function f(x) = e−0.0475x which determines

the weight assigned to each day in the past in the distance estimation.

Forecasting using a median of the closest database curves

First, we select in the database the Nmedian, the curves fskngn¼1;::;Nmedian
that are closest to the cur-

rent one, using the similarity criterion (6). Nmedian is a parameter of the method. The median

Fig 2. Weighting function. Shape of the functions e−0.0475x which determines the weight assigned to each day in the

past in the distance estimation (6) for the proposed forecast method.

https://doi.org/10.1371/journal.pcbi.1010790.g002
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forecast of sf ¼ ðsf1; s
f
2; :::; s

f
28Þ for the next 28 days is defined by

sfd ¼ median
s28

skn28

ikndþ28

� �

n¼1;::;Nmedian

for d ¼ 1; ::; 28: ð7Þ

As EpiInvert also computes multiplicative weekly seasonality correction factors, qt, we addi-

tionally compute a forecast, so, f, of the raw incidence curve, so, by dividing the forecasted inci-

dence trend curve by the corresponding seasonality factors,

so;fd ¼
sfd

q22þd%7

for d ¼ 1; ::; 28: ð8Þ

where % is the modulus operator. By using q22+d%7 as future seasonality factors we are simply

making a 7-periodic extrapolation of the last seasonality factors estimated by EpiInvert.
Fig 3 illustrates the proposed learning procedure. For four countries, it shows the current

incidence trend by EpinInvert, its 5 closest curves in the database for their first four weeks, and

the forecast, computed as the median of the 121 closest curves in their last four weeks. For

France, the UK and the USA, we can observe that among the most similar curves there are

curves with a strong growth. These curves correspond to the first wave of the omicron variant

in Romania, Hungary and Italy that occurred by the end of 2021. These examples show that

very close curves in the past can evolve very differently in the future. In particular, the methods

studied in this paper, which forecast the evolution of the incidence only using past incidence

data, may be subject to large errors in forecasting.

Choice of the method parameters

We have to choose the parameters of the method, Nmedian and μ. For each curve ik ¼
ðik

1
; . . . ; ik

56
Þ in the database, we use as current incidence curve the first 28 days of ik, that is,

sk ¼ ðik
1
; . . . ; ik

28
Þ. The forecast of sk is given by

sf ;kd ¼ median
sk

28

skn28

ikndþ28

� �

n¼1;::;Nmedian

for d ¼ 1; ::; 28; ð9Þ

where fskngNmedian
n¼1

are the Nmedian closest curves, in the database, using the distance (6), to sk

(removing from the choice a neighborhood of k in the database). For each forecast day d = 1,

‥, 28, the relative forecast error is given by

ed;k ¼
jsf ;kd � ikdþ28

j

sf ;kd

: ð10Þ

We define the method’s median forecast error by

ForecastErrorðNmedian; mÞ ¼ median
1

14

X14

d¼1

ed;k

( )

k¼1;::;N

: ð11Þ

By minimizing this median error, we obtained the optimal values Nmedian = 121 and μ =

0.0475. We optimized the parameters Nmedian and μ using the first 14 forecast days because the

expected error in the next 14 days is so large that we prefer to focus on the optimization for the

first 14 days. We could also optimize the above parameters for the whole 28 forecast days. In

that case, we obtain as optimal values Nmedian = 128 and μ = 0.1075 which are slightly different

from the ones obtained for the first 14 days.
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Empirical confidence intervals

For each forecast day d, we compute empirical confidence intervals using the distribution of

relative errors for the database given by Ed ¼ fed;kg
N
k¼1

, using the estimated optimal values for

the parameters Nmedian and μ.

Assuming that the distribution of the relative forecast error for the current incidence trend

curve s is similar to the one obtained for the database and determined by Ed, we can empiri-

cally approximate the percentiles of the forecast distribution, Fd, of the current curve, using

the percentiles of Ed. Indeed, let us denote by Pp(X) the p-th percentile of a distribution X, then

PpðFdÞ � sfd þ sfdPpðEdÞ ð12Þ

Fig 3. Illustration of the variability of closest curves. For France, the USA, Germany and the United Kingdom: in black, the normalized curve ŝ of the last 28 values of

the incidence trend curve up to May 5, 2022, in red the normalized forecasting curve û obtained by EpiLearn. Are also displayed in a blue scale the five curves ik in the

database with the lowest distance dðŝ; ik;mÞ to the incidence trend curve ŝ. The lighter the blue, the larger the distance to the input curve.

https://doi.org/10.1371/journal.pcbi.1010790.g003
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where sfd is the forecast estimated by the proposed method. A 95% central confidence interval

for the incidence trend value is for example given by (P0.025(Fd), P0.975(Fd)). In Fig 4 we display

the confidence intervals of Ed for the proposed forecast method. As expected, the size of the

confidence intervals increases with the forecast day d and is quite large after 28 days. Notice

that the mean and the median (P0.50(Ed)) of Ed are very different due to the asymmetry of the

distribution Ed. The mean is closer to the upper end of the forecast interval than the median.

The fact that the median of the error is very close to zero confirms the consistency of the

method.

Results

Comparative results in the context of the European Covid-19 Forecast Hub

The question arises of how to compare all methods, in theory and in practice. For a practical

comparison, we take advantage of the fact that a wide variety of forecasts are submitted to the

European COVID-19 Forecast Hub [17] and to the COVID-19 Forecast Hub [18]. A study on

the methodology to evaluate and compare forecast has been proposed in [19], using the data of

this Hub. As developed in [1], the European Covid-19 Forecast Hub provides short-term fore-

casts of Covid-19 cases and deaths across Europe. It is supported by teams working on pan-

demic modeling and sharing their forecast of the weekly accumulated incidence with horizons

of 1 to 4 weeks. Each week starts on Sunday and ends on Saturday. At the time of writing,

many countries do not provide data during the week-end, and some countries only provide a

weekly estimate. This fact has no influence for method preprocessing the data by a 7 day slid-

ing average. Nevertheless, since we use daily estimates, a single weekly estimate has a negative

impact on the quality of our forecast. To address this issue, when a country provides data on a

day, but not on the previous days, we distribute equally the last accumulated value over the

previous uninformed days before applying EpiInvert.

Fig 4. Error statistics. Illustration of some statistics of the Ed = {ed,k} distribution defined by (10) for the entire

database: the red curve indicates the mean of the distribution that is greatly affected by the skewness of the

distribution, which justifies using the median (the curve in green) instead of the mean. The median is indeed very

close to zero, which proves the consistency of the approximation adopted in Eq (12). From the outside to the inside,

the shaded areas represent the estimated (1 − αk) × 100% central prediction intervals ðlak ; uak Þ for αk = 0.05, 0.1, 0.2, . . .,

0.9.

https://doi.org/10.1371/journal.pcbi.1010790.g004
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Since EpiLearn forecasts the daily incidence, the weekly forecast is obtained by summing

the forecasted raw daily incidence given by (8). The quantiles of the associated weekly distribu-

tions are computed on the registered database of incidence curves by extending the procedure

of the previous section which computes the confidence intervals of the forecasted incidence

curve. In this case, we aggregate to the weekly scale first and then compute quantiles.

The European Hub encourages teams to provide, for each model, m, each horizon week,

h = 1, 2, 3, 4, and each forecast target, n, the prediction of the weekly incidence, fm,h, n, and 23

quantiles of the associated distribution. These quantiles correspond to the predictive median,

M, and eleven (1 − αk) × 100% central prediction intervals ðlak ; uakÞ, with αk = 0.02, 0.05, 0.1,

0.2, . . ., 0.9, where lak and uak are (respectively) the αk/2 and (1 − αk/2) quantiles of F. The fol-

lowing weighted interval score, WISm,h,n (see [20]), is proposed to evaluate the distribution

accuracy:

WISm;h;n ¼

1

2
joh;n � Mj þ

P11

k¼1

ak
2
ðuak � lakÞ þ ðlak � oh;nÞþ þ ðoh;n � uakÞþ

11:5
ð13Þ

where oh,n is the observed outcome, (.)+ is defined as (x)+ = x if x> 0 and 0 otherwise. The

lower the value of WISm,h,n, the better the score associated to the forecast distribution deter-

mined by the quantiles of F.

The prediction accuracy of a model is measured using two indicators: the first one is |

fm,h,n − oh,n|, that is, the absolute value of the difference between the observed value oh,n

and the prediction fm,h,n. The second indicator measures the quality of the confidence

intervals and is given by WISm,h,n. To compare the prediction accuracy of different mod-

els, we have to take into account that, in general, each team provides a different number of

forecast targets. We started for example submitting forecast to the European Hub by

August 2022, but other teams started submitting up to 2 years earlier. Furthermore, not all

teams provide a forecast for all horizons and for all countries. Thus, defining a fair com-

parison of models requires some caution. To address this issue, the European Hub uses

the following procedure (we explain the procedure for the comparison of |fm,h,n − oh,n|,

but the comparison of WISm,h,n is equivalent). Consider two models m and m0, a week

horizon h 2 {1, 2, 3, 4} and fðfm;h;n; fm0 ;h;n; oh;nÞg
Nm;m0 ;h
k¼1 where Nm,m0,h is the number of forecast

targets that have been handled by both models. The pairwise comparison of both models

is then defined by the ratio

ym;m0 ;h ¼

PNm;m0 ;h
k¼1 jfm;h;n � oh;nj

PNm;m0 ;h
k¼1 jfm0 ;h;n � oh;nj

; ð14Þ

which is smaller than 1 if m0 is more accurate than m, and larger than 1 otherwise. Subse-

quently, we compute for each model m the geometric mean of the results achieved for all

different pairwise comparisons,

ym;h ¼

 
YM0

m0¼1

ym;m0;h

! 1

M0

; ð15Þ

where M0 is the number of models, m0 6¼m, which have forecast targets in common with

model m. It follows that θm,h is a measure of the relative skill of model m with respect to

the set of all other models in the week horizon h. The relative performance of model m is
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computed with respect to θb,h, the score of the baseline model, as

y
∗
m;h ¼

ym;h

yb;h
; ð16Þ

where the baseline model b is nothing but the constant prediction extending the last

observed weekly value [21].

The ratio y
∗
m;h is called the relative MAE, rel_ae, of model m in the week horizon h. A score

of 0< rel_ae< 1 means that model m is better than the baseline; a score of rel_ae> 1 means

that the baseline is better. In the case of WISm,h,n, we use the same procedure (replacing |fm,h,n

− oh,n| by WISm,h,n) and call rel_wis the associated indicator. Every week, the Hub publishes, in

the file scores.csv of the evaluation repository, information about the accuracy of the predic-

tions. In particular, it publishes, for each team m, horizon h and forecast target n, the values of

|fm,h,n − oh,n|, WISm,h,n, and the 50% and 95% prediction intervals coverage. We used this infor-

mation to compare EpiLearn with the other methods. To do a fair comparison, for all teams,

we used as comparison population the horizons and targets used by EpiLearn to provide fore-

cast between August 6, 2022 and March 6, 2023. In this way we used for all teams the same tar-

get population when computing the performance scores. Moreover, we only considered

models that provided forecasts for at least 50% of the target population. In Table 1 we present,

for each model, the values of rel_ae, rel_wis, the 50% and 95% interval coverage and the num-

ber of targets in common between EpiLearn and the model used to compute the indicators. In

Fig 5 we show the actual observed weekly disease incidence by country during the time span

evaluated in the comparative results from the European COVID-19 Forecast Hub, this period

showed challenging behaviors in disease incidence trends. The baseline value of rel_ae and

rel_wis equal to 1 is the constant prediction, which is expected to be beaten by all more sophis-

ticated methods. The lower the values of these indicators, the better the model performance.

The result of the ensemble model is usually considered as the best option as argued in [20]. In

the Hub, the proposed EpiLearn technique corresponds to the named AMM-EpiInvert team.

In Table 1 we observe that, except for the horizon of 4 weeks, EpiLearn obtains the best results

for rel_ae and rel_wis, specially for the horizons of 1 and 2 weeks. The value of the 50% confi-

dence interval coverage obtained by EpiLearn is not so good, but this indicator does not take

into account how far the estimation stands from the confidence interval. The low value of

rel_wis indicates that, globally, the estimation obtained by EpiLearn are quite close to the confi-

dence intervals. In Fig 6 we plot the values of rel_ae and rel_wis presented in Table 1.

The EpiInvert method performs a decomposition of the past incidence curve into a trend

and a noise component, after correction of the weekly bias. In the above error estimations, we

only used the trend curves, because what is forecast also is a trend. We did not compute the

additional error between prediction and ground truth that is caused by the noise component.

Our above error prediction therefore only addresses the method’s bias, namely the observed

variability of the future trends following a given past trend interval. A further refinement of

the method should take into account the noise residual computed by EpiInvert for a given inci-

dence curve, estimate its model, and deduce a noise variance for the prediction. This noise var-

iance should be added to the method bias variance.

A great advantage of using the scores published by the European Hub is that such scores

cannot be manipulated. They represent a fair quality comparison framework for the models

performance.
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Discussion

In this section we review and discuss the properties and assumptions of the most relevant fore-

casting methods, and link them when possible to methods and results published weekly in the

European Covid-19 Forecast Hub [17].

ARIMA

The ARMA (AutoRegressive Moving Average) and ARIMA (AutoRegressive Integrated Mov-

ing Average) models are the backbone of many forecasting methods and are implemented

through the popular R package [22]. In the European Hub Forecast initiative, the epiforecasts-
weeklygrowth team [23] uses a Bayesian ARIMA model on weekly incidence data. ARIMA is

arguably the most popular forecasting model for COVID-19, and has been applied with a

country-specific optimization of parameters. For example the MUNI-ARIMA [24] team par-

ticipating to the European Hub Forecast initiative uses an “ARIMA model with outlier

Table 1. Comparative results. In bold the best result of each column for each week for the main quality measurements promoted by the European hub: rel_ae and

rel_wis (for both quality criteria, the lower the better).

horizon model rel_ae rel_wis cov 50 cov 95 N. targets

1 week EuroCOVIDhub-baseline 1 1 0.604 1.000 728

1 week EuroCOVIDhub-ensemble 0.818 0.701 0.492 0.940 705

1 week AMM-EpiInvert (EpiLearn) 0.744 0.647 0.328 0.890 728

1 week ILM-EKF 7.354 7.618 0.387 0.846 688

1 week MUNI-ARIMA 1.005 0.947 0.484 0.952 649

1 week USC-SIkJalpha 1.856 2.002 0.162 0.478 696

1 week epiforecasts-weeklygrowth 4.839 4.342 0.747 0.964 501

1 week SDSC_ISG-TrendModel 0.984 1.033 0.602 0.883 703

2 weeks EuroCOVIDhub-baseline 1 1 0.730 0.999 697

2 weeks EuroCOVIDhub-ensemble 0.831 0.768 0.490 0.921 668

2 weeks AMM-EpiInvert (EpiLearn) 0.795 0.717 0.370 0.899 697

2 weeks ILM-EKF 8.374 10.817 0.355 0.803 656

2 weeks MUNI-ARIMA 1.020 0.988 0.557 0.960 618

2 weeks USC-SIkJalpha 2.655 2.882 0.123 0.374 660

2 weeks epiforecasts-weeklygrowth 3.764 4.291 0.712 0.973 479

3 weeks EuroCOVIDhub-baseline 1 1 0.751 0.996 668

3 weeks EuroCOVIDhub-ensemble 0.988 0.950 0.478 0.911 640

3 weeks AMM-EpiInvert (EpiLearn) 0.937 0.889 0.385 0.896 668

3 weeks ILM-EKF 8.860 12.046 0.322 0.763 628

3 weeks MUNI-ARIMA 1.001 0.943 0.581 0.950 585

3 weeks USC-SIkJalpha 5.339 5.158 0.117 0.340 633

3 weeks epiforecasts-weeklygrowth 2.209 2.103 0.676 0.974 457

4 weeks EuroCOVIDhub-baseline 1 1 0.777 0.994 633

4 weeks EuroCOVIDhub-ensemble 1.105 1.106 0.482 0.911 604

4 weeks AMM-EpiInvert (EpiLearn) 1.111 1.081 0.387 0.903 633

4 weeks ILM-EKF 8.618 12.049 0.317 0.755 596

4 weeks MUNI-ARIMA 0.952 0.912 0.565 0.964 549

4 weeks USC-SIkJalpha 4.684 5.185 0.107 0.323 598

4 weeks epiforecasts-weeklygrowth 2.059 2.613 0.685 0.980 454

https://doi.org/10.1371/journal.pcbi.1010790.t001
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Fig 5. Figure showing the actual observed weekly disease incidence by country during the time span evaluated in the comparative results from the

European COVID-19 Forecast Hub. This period showed challenging behaviors in disease incidence trends.

https://doi.org/10.1371/journal.pcbi.1010790.g005
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detection fitted to transformed weekly aggregated series”. This method is one of the best per-

forming methods as illustrated in Fig 6.

An extension of ARIMA, SARIMA (seasonal ARIMA) is a combination of two ARIMA

models. This method was tested for forecasting the global COVID-19 incidence in [25, 26]. It

has been used and compared to ARIMA for COVID-19 forecast in [27].

Compartmental epidemiological models (SIR, SEIR, SIRD, SEIARD and

SUIHTER)

Compartmental models are in silico simulation models that consider the population as a col-

lection of compartments, for example in the case of SEIARD : S susceptible, E exposed, I
infected, A asymptomatic, R recovered and D dead. Initially designed for epidemic modeling,

the SIR model and its variants have since been adapted to forecasting the future evolution of

the pandemic from an estimated starting point. The model’s parameters are estimated from

the past incidence, and the model is then applied forward to simulate the future. This method

has been developed for SIR [28, 29], SEIR [30, 31], SIRD [32], SEIARD [33] and SUIHTER

[34, 35].

Regression models

The Richards model [36] is a 2-parameter simple logistic growth model including a scaling

parameter. This model is used in [37] as a parametric regression model for the modeling of

incidence indicators. The incidence distribution is modeled by an appropriate Poisson or

Fig 6. Plot of the relative absolute error (rel_ae) and the relative weighted interval score (rel_wis) presented in Table 1 using the evaluation data provided by the

COVID-19 European Hub.

https://doi.org/10.1371/journal.pcbi.1010790.g006
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Negative Binomial. It is also used in [38] for estimating the regional propagation of COVID-19

in Italy and in [39] for recurrent forecasting in Europe. The Gompertz model was originally

proposed to explain human mortality curves and has been further employed in the description

of growth processes. Modeling the cumulative cases of Covid-19, it is used for COVID-19 fore-

cast in [40] and [41]. This model was implemented in the European Hub Forecast initiative

through the BIOCOMSC-Gompertz method [40]. The composite logistic growth model

(CLM) [42] is another regression model, a variant of which is used by the RobertWalraven-

ESG [43] team participating to the European Hub Forecast initiative. Its results are illustrated

in Fig 6. The sub-epidemic model is the most flexible extension of the previous models used

for forecasting [42] This sub-epidemic wave model supports complex epidemic trajectories

shaped by multiple underlying sub-epidemics modeled by the GLM.

Short term prediction by the renewal equation, linear extrapolation

The approach proposed in [44] to forecasting future COVID-19 cases involves 1) modeling the

incidence using a Poisson distribution for the daily incidence number, and a gamma distribu-

tion for the series interval; 2) estimating the effective reproduction number assuming its value

stays constant during a short time interval (by the EpiEstim method [7]); and 3) using the

renewal equation, drawing future incidence cases from their posterior distributions, assuming

that the current transmission rate will stay the same, or change by a certain degree. A similar

forecast method is involved in [45] which compares human and machine forecasts in Germany

and Poland. The authors use a Bayesian model from the EpiNow2 R package (version 1.3.3) to

predict reported cases. Epinow [10] estimates the effective reproduction number Rt. The future

infections are computed by the Fraser renewal equation as a weighted sum of past infection

multiplied by Rt. In the comparison, Rt is assumed to stay constant beyond the forecast date.

The conclusion of this paper is that an average of human experts’ forecasts performs better.

Similarly, the USC-SIkJalpha [16] and ILM-EKF [46] teams participating to the European Hub

Forecast initiative use the renewal equation (the second mentioned group also involves a Kal-

man filter in its prediction). Its results are illustrated in Fig 6. Lastly, the SDSC_ISG-TrendMo-

del [47] team, also participating to the European Hub Forecast initiative, is a trend

extrapolation which starts by decomposing the incidence curve into three components: the

trend, a seasonal component and noise. Then the model predicts daily cases using linear

extrapolation on the linear or log scale of the underlying trend estimated by a robust LOESS

seasonal-trend decomposition model. Its results are illustrated in Fig 6, where only the results

for the first two weeks are available.

Aggregation of estimators (ensemble methods)

The idea of agregation methods, sometimes also called ensemble methods is to build a predic-

tion model by combining the strengths of a collection of simpler base models called weak

learners [48]. In [49] the use of ensemble models was evaluated for influenza seasons and it

was concluded that the ensemble methods average performance is similar to the best of the

component models, but offers more consistent performance across seasons than the compo-

nent models. The European Covid-19 Forecast Hub [17] also proposes “an ensemble, or

model average, of submitted forecasts to the European COVID-19 Forecast Hub”, described in

[20]. In it, the teams submit weekly forecasts for COVID-19 cases and deaths in up to 32 coun-

tries for the next week and the three following weeks. The teams also submit standardized

quantiles of their predictive distribution. In the ensemble forecast, each predictive quantile is

calculated as the equally-weighted median of all individual models’ predictive quantiles. The

performance of each model is evaluated with the relative Weighted Interval Score (WIS),
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comparing a models’ forecast accuracy relative to all other models (see section for the formula

of WIS). In [20], the authors report that the ensemble performed better on relative WIS than

84% of participating models’ forecasts of incident cases (with a total N = 862), and 92% of par-

ticipating models’ forecasts of deaths (N = 746). In view of this, we shall pay a special attention

to the comparison of the model proposed here with the ensemble model, as illustrated on Fig

6.

Global learning

The idea of Global learning is to predict jointly an ensemble of time series with similar charac-

teristics [50]. Each time series is time-delay embedded and stacked together before fitting a sin-

gle linear autoregressive model. The dimension of the embedding is tuned by temporal

validation. The same method is used in [51], which proposes to estimate a time lag between

two countries after finding an optimal dynamic time warping between their incidence curves.

This procedure allows an elastic adjustment of the time axis to find similar but phase-shifted

sequences. Then the incidence curve of the leading country is used to extend toward future the

incidence curve of the other. This group of methods can be seen as a direct antecedent of the

method proposed here. Indeed, our method (implicitly) estimates time lags between past inci-

dence curves of different countries and the one that we want to extend before exploiting the

“future” samples of these time shifted incidence curves to predict the future of our target

incidence.

Conclusion

Given the large number of factors that can influence a future evolution, forecasting the evolu-

tion of the incidence curve is clearly difficult. We saw in the discussion section that most stan-

dard approaches estimate the parameters of an evolution model (ARIMA, SIR, a logistic

curve). In this work, we proposed EpiLearn, a method following a more empirical approach

that estimates the forecast by a learning procedure using many samples of past incidences evo-

lution in many countries. Using EpiInvert, an incidence decomposition method, we removed

first the strong administrative weekly bias from the original raw incidence to estimate a

smooth incidence trend curve. Using a large database of incidence trends, the forecast is com-

puted as the median of the closest curves, in the past, to the current incidence trend curve. We

observed that the size of the estimated empiric confidence interval grows quickly with the

number of forecast days. For a 28 days forecast the size of the confidence interval becomes

very large, and this is confirmed weekly by our results in the European hub [17]. These results

place EpiInvert among the very best methods in the period and regions analyzed. We observed

that the prediction of all methods may miss the forecast target by a large margin in the three

and four weeks horizon. Nevertheless, they seem to be reliable and useful to predict the pan-

demic in a two-week horizon.

The proposed method might be improved in several ways by taking into account additional

relevant factors before comparing time sequences. Indeed, our obtained confidence intervals

were based on a global distribution of relative errors. However, the size of relative errors might

vary depending on the trend and magnitude of the query curve. It might be interesting to

explore this by adding a distance of the average incidences as an additional term in the distance

between incidences given in equation (6). In addition, the forecasting could benefit from addi-

tional knowledge about implementation or changes of the social distancing policy and evolu-

tion of the virus’ contagiousness (as was observed with the emergence of Omicron). Digging

into these aspects requires a far ranging overhaul of our experimental protocol which belongs

to our future plans.
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