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In this article, we present direct numerical simulation results for the expansion of spherical
cap bubbles attached to a rigid wall due to a sudden drop in the ambient pressure.
The critical pressure drop beyond which the bubble growth becomes unstable is found
to match well with the predictions from classical theory of heterogeneous nucleation
imposing a quasi-static bubble evolution. When the pressure drop is significantly higher
than the critical value, a liquid microlayer appears between the bubble and the wall. In
this regime, the interface outside the microlayer grows at an asymptotic velocity that
can be predicted from the Rayleigh–Plesset equation, while the contact line evolves with
another asymptotic velocity that scales with a visco-capillary velocity that obeys the Cox–
Voinov law. In general, three distinctive regions can be distinguished: the region very close
to the contact line where dynamics is governed by visco-capillary effects, an intermediate
region controlled by inertio-viscous effects away from the contact line yet inside the
viscous boundary layer, and the region outside the boundary layer dominated by inertial
effects. The microlayer forms in a regime where the capillary effects are confined in a
region much smaller than the viscous boundary layer thickness. In this regime, the global
capillary number takes values much larger then the critical capillary number for bubble
nucleation, and the microlayer height is controlled by viscous effects and not surface
tension.

1. Introduction

The study of bubble nucleation and the factors controlling the process of bubbles
formation began with the influential work of Harvey (1945, 1946), who hypothesized
that small amounts of gas (nuclei) could adhere to hydrophobic surfaces or surface
impurities and become unstable when the pressure difference exceeded the Laplace
pressure. Thereafter, many researchers (Galloway 1954; Strasberg 1959; Greenspan &
Tschiegg 1967) have tried to measure the threshold beyond which observable cavitation
occurs. A unified view for the theory of heterogeneous bubble nucleation was provided
by Apfel (1970) and then by Atchley & Prosperetti (1989) who proposed a theoretical
model to predict cavitation thresholds for spherical cap-shaped nuclei adhered in a conical
crevice during quasi-static bubble evolution. In relatively recent studies, Borkent et al.
(2009) experimentally validated the predictions of quasi-static theories for nucleation
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threshold by etching well-controlled micron-sized pits on silicon wafers, and reducing
the pressure using tension waves generated by transducer. Fuster et al. (2014) discussed
the stability of bubbly liquids from a free energy perspective and extended these ideas
to clusters of bubbles. Saini et al. (2021) and Saini (2022) discussed the effect of wall
boundary condition on the stability of spherical cap shaped nuclei attached to a rigid
wall and showed that pinning can stabilize the bubble nuclei.
The decrease in pressure beyond the nucleation threshold results in an unstable

expansion of the small gas nuclei. During the bubble expansion, a liquid layer (few microns
thick) can get trapped between the solid and the bubble, referred to as a microlayer. The
formation of a microlayer was studied for the laser-generated bubbles near the solid
boundaries by Hupfeld et al. (2020). The microlayer formation is crucial in the boiling
heat transfer applications as it significantly enhances the heat transfer rates (see Judd &
Hwang (1976)). Yet, little is known about the hydrodynamics of microlayer formation at
early stages. Mikic et al. (1970); Lien (1969) and Sullivan et al. (2022) demonstrated that
at short times, and for high Jacob numbers, the growth of the bubbles in boiling is similar
to that in cavitation because of strong inertial effects. Guion et al. (2018) performed
numerical simulations of microlayer formation using a two-phase incompressible solver
by modelling the bubble expansion with a uniformly distributed source. Urbano et al.
(2018) and Huber et al. (2017) performed the direct numerical simulations with mass
transfer effects for studying the formation of a microlayer. Bureš & Sato (2022) studied
the formation of microlayer using a thin-film based sub-grid model for the velocity of
the contact line. Pandey et al. (2018) studied the bubble nucleation in boiling using
a subgrid microlayer model for microlayer. There are several other studies available in
the literature, but there is no common consensus for the structure and the growth of
the microlayer (Sinha et al. 2022; Jung & Kim 2018; Zou et al. 2018). In the cavitation
process, microlayer formation influences the bubble shape at the maximum volume, which
is an important parameter that afterwards governs the collapse dynamics (Saini et al.
2022).
The process of microlayer formation is similar to the process of dewetting transition

and the deposition of a thin liquid film on the solid surface, well known as the Landau–
Levich–Derjaguin (LLD) film (Landau & Levich 1988; Derjaguin 1993). This has been
extensively studied in the past for setups where a plate is suddenly pushed into or pulled
out of the liquid (Wilson 1982; Eggers 2004; Bonn et al. 2009). More recently, there
have been various numerical studies for these problems by Afkhami et al. (2018); Kamal
et al. (2019); Ming et al. (2023) and Zhang & Nikolayev (2023). A clear understanding
of the relationship between LLD film deposition and microlayer formation has not
been established yet. A particular problem relevant for microlayer formation is the one
considered by Bretherton (1961) who discussed the motion of bubbles in capillary tubes.
A striking difference between Bretherton’s problem and the microlayer formation is that
the capillary numbers in the former case are much smaller then unity whereas they are
comparable to unity for the latter case. Aussillous & Quéré (2000) analysed the film
deposition for large capillary numbers and showed that the film height can exhibit a
non-monotonic behaviour.
In this article, we use direct numerical simulations to gain insights into the process

of heterogeneous bubble nucleation and the formation of a microlayer during the bubble
growth. Section 2 gives the details of our numerical method and setup. In Section 3 the
nucleation thresholds are discussed for transition from stable bubble oscillations regime
to the unstable growth regime. In Section 4, the dynamics of microlayer formation is
examined and the transition from no microlayer to microlayer formation regimes is
analyzed. In section 5, the structure of the microlayer is described and the scaling
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Figure 1. A simplified schematic of the problem.

arguments are presented for the height of the microlayer to compare it with our numerical
results.

2. Problem set-up

We numerically study the response of a spherical cap nucleus to a sudden drop
in system pressure using the set-up shown in figure 1. We restrict ourselves to an
axisymmetric configuration where the initial bubble pressure pg,0 is uniform inside the
bubble and the liquid, initially at rest, is suddenly exposed to a lower pressure far from
the bubble p∞ < pg,0. This problem corresponds to a regime where the bubble growth
is predominantly controlled by the inertial effects as the heat and the mass diffusion
effects are neglected. Consequently, our study is valid at short times after the bubble
nucleation, particularly t < L2

D/D, where LD is a characteristic length for diffusion and
D is the Fickian constant for the diffusion law of heat/mass transfer process (Bergamasco
& Fuster 2017; Sullivan et al. 2022). To render the problem dimensionless, we define the
initial bubble radius of curvature as a characteristic length Lc = Rc,0, the liquid density
as a characteristic density ρc = ρl and the asymptotic Rayleigh–Plesset velocity as a

characteristic velocity of the problem Uc =
√

2
3
∆p
ρ . The dynamics of these bubbles is

governed by compressible Navier-Stokes equations which, for a two-phase (i ∈ {l, g})
system in a dimensionless form, reads

∂ρ̃i

∂t̃
+∇ · (ρ̃iũi) = 0, (2.1)

∂ρ̃iũi

∂t̃
+∇ · (ρ̃iũiũi) +∇p̃i =

Oh2

Ca
∇ · (2µ̃iD̃i), (2.2)

∂(ρ̃iẼi)

∂t̃
+∇ · (ρ̃iẼiũi) +∇ · (ũip̃i) =

Oh2

Ca
∇ · (2µ̃iD̃i)ũi, (2.3)

where the subscript ‘i’ represents the value of a particular variable for the ith component,
Ca = µlUc/σ is the capillary number, σ is the surface-tension between the liquid and gas
phase, µl is the liquid viscosity, Oh = µl/

√
ρlσRc,0 is the Ohnesorge number, ũ is the

dimensionless velocity vector field, ρ̃ is the dimensionless density, p̃ is the dimensionless
pressure field, Ẽ is the dimensionless total energy per unit volume which is defined as
the sum of the internal energy and the kinetic energy (ρ̃iẽi +

1
2 ρ̃iũi · ũi), and D̃i is the

strain rate tensor.

The system of equations is closed by an equation of state for each component. We use
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a stiffened gas equation of state (EOS) similar to that of Cocchi et al. (1996), given as

ρ̃iẽi =
p̃i + Γ̃iΠ̃i

Γ̃i − 1
, (2.4)

where Γ̃i and Π̃i are empirical constants taken from Johnsen & Colonius (2006) to
replicate the speeds of sound in water and ideal gas. The interface between the two
immiscible fluids is mathematically represented with the Heaviside function (H) which
takes the value 1 in the reference component and 0 in the non-reference component
(Tryggvason et al. 2011). The evolution of the interface is described by an advection
equation

∂H
∂t̃

+ ũ ·∇H = 0, (2.5)

where ũ is the average local velocity of the interface which is imposed to be equal to local
fluid velocity. The interface conditions are required to couple the motion of fluids in each
component. In the absence of mass transfer effects, these conditions are as follows: the
velocity is continuous across the interface such that [[ũ]] = 0, where [[·]] represents the
jump in the particular quantity across the interface. The pressure in both the components
is related by the Laplace equation

1

Oh2
[[p̃]] = − 1

Ca2
κ̃+

1

Ca
[[nI · 2µ̃D̃ · nI ]], (2.6)

where κ̃ is the dimensionless curvature of the interface and nI is the unit vector normal
to the interface. We also assume that there is no heat transfer across the interface, so
the normal derivative of internal energy remains continuous across the interface i.e.
[[∂ẽ/∂n]] = 0.

We integrate (2.1)-(2.3) and (2.5) (satisfying Equation (2.4) and (2.6)) on the finite
volume grids using the numerical method discussed by Fuster & Popinet (2018) also
used by Fan et al. (2020); Saini (2022); Saini et al. (2022, 2024) and extended to
include thermal effects by Saade et al. (2023). This method is implemented in the free
software program called Basilisk (Popinet 2015). In this implementation, a geometric
volume of fluid (VoF) method with piece-wise linear constructions in the discrete cells
is used for the interface representation (Tryggvason et al. 2011). In the VoF method,
the phase characteristic function is represented with the colour function Ci which is
1 in the reference phase, 0 in non-reference phase and in the cells containing both
phases, Ci takes fractional value between 0 and 1. The conserved quantities (density
Ciρ̃i, momentum Ciρ̃iũi, total energy Ciρ̃iẼi) are advected consistently with the colour
function (see (Arrufat et al. 2021)).

The capillary forces are added as continuum surface forces (CSF) where the delta
function is approximated as the gradient of colour function |∇C| (Brackbill et al. (1992);
Popinet (2009, 2018)). The primitive variables are density, momentum, total energy and
the colour function leading to a density-based formulation where an auxiliary equation
is solved to obtain a provisional value of the volume-averaged pressure p̃avg required to
reconstruct the pressure of the individual phases required to compute the fluxes of the
primitive quantities (Kwatra et al. 2009)

1

ρ̃avgc̃e
2

(
∂p̃avg

∂t̃
+ ũ · ∇p̃avg

)
= ∇·ũ, (2.7)
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where the subindex “avg” stands for a volume-averaged quantity and c̃e is the effective
speed of sound of the mixture. Note that generalized expressions of the equation above
accounting for full viscous and thermal effects can be found from Saade et al. (2023)
and Urbano et al. (2022). For more details about the details of the specific numerical
method used here, the reader is referred to the work of Fuster & Popinet (2018).

Similar to the work of Afkhami et al. (2018); Guion et al. (2018); Kamal et al. (2019)
and Ming et al. (2023), the motion of the contact line is regularized by the Navier-slip
model

ũT =
λnum

Rc,0

∂ũT

∂T
(2.8)

where ũT is the tangential velocity vector at the wall, T is unit vector tangent to the
wall and λnum is the slip length. In this article, the slip length is fixed to λnum =
0.01Rc,0 unless mentioned otherwise. This choice is limited by the minimum grid size
which is ∆min = 0.003Rc,0 in our case. Some results especially in the region very close to
contact line can depend on this choice, however, the results in the microlayer region are
independent (see the supplementary materials). We also use a static contact angle model
implemented using the approach of Afkhami & Bussmann (2008). For other boundaries,
we have used reflective boundary conditions: ũn = 0, ∂ũT/∂n = 0, n ·∇p̃ = 0, where ũn

is the velocity vector normal to the wall and n is the unit vector normal to the wall. The
numerical domain is made large enough (100Rc,0 × 100Rc,0) and the numerical grid is
coarsened near the boundary to prevent any reflected waves from influencing the bubble
dynamics.

3. Nucleation threshold

The nucleation threshold for the growth of a cavitation bubble from a small nuclei
(air pocket) is the critical pressure beyond which this nuclei becomes unstable and grows
explosively. This critical pressure can be predicted by quasi-static theory for bubble
expansion, as shown by Atchley & Prosperetti (1989); Crum (1979); Fuster et al. (2014)
and many others. In the case of a hemispherical cap bubble attached to a flat wall, the
critical pressure (pcr) is

pcr
pL,0

= −
(
3

2

pL,0Rc,0

σ
γ

(
1 + 2

σ

pL,0Rc,0

)) 1
1−3γ

2
σ

pL,0Rc,0

(
1− 1

3γ

)
. (3.1)

where pL,0 is the initial liquid pressure just outside the interface and γ = 1.4 is the ratio
of specific heats for air. For deriving this relation, we have assumed that the bubble
contact angle remains 90 degrees and that the contact line can freely move on the solid
boundary. In a previous study (see Saini et al. (2021) and Saini (2022)), we have shown
that the change in contact angle and contact line motion imposes secondary effects on
the nucleation threshold. Equation (3.1) can be converted to the Ca-Oh plane where it
imposes a region of stability such that for given Oh (function of bubble size), there is a
critical capillary number (function of critical pressure) beyond which a nuclei will become
unstable. This critical capillary number is

Cac = Oh

√√√√2

(
1− 1

3γ

)[
3

2

(
Ca0
Oh

)2

γ

(
1 + 2

(
Oh

Ca0

)2
)]1/(1−3γ)

, (3.2)
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Figure 2. (a) Stability diagram of the cavitation bubbles in the Oh − Ca plane (3.2) and the
location of three representative points: (i)−(Oh = 0.17,Ca = 0.08); (ii)−(Oh = 0.11,Ca = 0.26)
and (iii) - (Oh = 0.03,Ca = 0.57) in the stable bubble regime, unstable bubble without
microlayer and unstable bubble with microlayer regime, respectively. (b) The evolution of the
equivalent radius for three representative cases as obtained from DNS. The dotted line (with
slope 1) is predicted from Rayleigh–Plesset model with negligible acceleration. (c) The evolution
of bubble shapes is shown for three representative cases where the colour map corresponds to
different dimensionless times. For each case, tUc/Rc,0 ∈ {0, 0.2, 0.5, 0.7, 0.8, 0.9, 1.2, 1.3}.

where Ca0 is defined as Ca0 = µl

σ

√
pL,0/ρl. In figure 2(a), we show the stable region

predicted from (3.2) (Ca ⩽ Cac) by shading it with hatched lines. The nucleation
threshold predicted from the quasi-static theory (3.2) is also verified with the direct
numerical simulations. To discuss the stability of nuclei, we limit ourselves to show two
representative cases: a simulation in the stable region (i; Oh = 0.17,Ca = 0.08) and
another one in the unstable regime (ii; Oh = 0.11,Ca = 0.26). For a detailed discussion
on bubble stability using the current numerical method, the reader is referred to section
3.1 of Saini (2022). The evolution of the bubble equivalent radius in figure 2(b) shows that
in the former case, the bubble reaches a new equilibrium position, while in the latter case,
the bubble becomes unstable and the equivalent radius grows linearly in dimensionless
time.
It is also interesting to note that in the unstable case (ii), the bubble shape also

starts to deviate from a spherical cap as the viscous stresses close to the wall start to
become relevant (see figure 2(b)). Moving further away from the stability line, either by
decreasing Oh or by increasing Ca, the viscous stresses become increasingly important in
comparison to the surface-tension stress at the interface. Consequently, in case (iii; Oh =
0.03,Ca = 0.57), where for given Oh and Ca/Cac ≫ 1, the liquid layer is trapped in the
gap between the bubble and the solid wall forming what is known as a microlayer. Outside
the microlayer, the bubble dynamics is primarily governed by the inertial effects and the

growth rate of the interface matches well with the asymptotic velocity (Uc =
√

2
3
∆p
ρ )

predicted from the Rayleigh–Plesset model with negligible acceleration. This is consistent
with the experimental results of Bremond et al. (2006) for the expansion of bubbles from
the cylindrical pits and the growing in contact with a rigid wall.
In figure 3, we show the bubble shapes at different instants re-scaled with the asymp-

totic velocity Uc for cases (ii) and (iii) of figure 2. Certainly, the interface velocity outside
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Figure 3. (a) The bubble shapes re-scaled with asymptotic velocity Uc for dif-
ferent instances of times from cases (ii) and (iii) of figure 2a. For each case,
tUc/Rc,0 ∈ {0, 0.2, 0.5, 0.7, 0.8, 0.9, 1.2, 1.3}. (b) Vorticity near the wall during the bubble
nucleation for cases (ii) and (iii) of figure 2a

the boundary layer tends to Uc and the interface shape from different times overlap well
when re-scaled with this velocity. However, inside the boundary layer, the bubble shape is
harder to describe as a consequence of three competing effects, namely viscosity, surface-
tension and inertia depending upon the control parameters (Ca,Oh and α). We also
visualize the boundary layer in cases (ii) and (iii) by plotting the vorticity field in figure
6(b). In case (ii), Reynolds number Re = Ca/Oh2 ≈ 20 is small as compared with the
case (iii) where Re ≈ 600, making the boundarylayer thicker in case (ii) as compared
to case (iii). This effect can also be seen in figure 2(b) where the slope of the equivalent
radius deviates noticeably from unity.

4. Microlayer formation dynamics

We study now the dynamics of microlayer formation as function of the capillary
number Ca, Ohnesorge number Oh and the equilibrium contact angle α. We identify
three characteristic points on the bubble interface whose evolution is used to describe
the transition into the microlayer formation regime. These points are shown in figure 4
and defined as follows. (a) The point where the bubble interface meets the z axis, which
is a measure of the bubble height h(t) (the velocity of this point is denoted as uh). (b)
The point where the bubble interface meets the r axis, which gives the length of contact
at the wall c(t) and characterizes the motion of contact line (the velocity of this point is
denoted as uCL). (c) The third point is defined as the interface point at the maximum
radial distance (cm(t)) from the z axis, which characterizes the width of the bubble (the
velocity of this point is denoted as ucm).
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Figure 4. The definition of characteristic points on the bubble interface. These are used to
describe the bubble expansion and formation of a microlayer. These points are the height of
bubble h(t), the width of bubble cm(t) and the contact line location c(t).

4.1. Transition to microlayer formation regime

We begin by investigating the effect of varying the capillary number Ca for a fixed
Ohnesorge number Oh = 0.037, fixed value of equilibrium contact angle α = 90◦ and
sliplength λnum = 0.02Rc,0. The evolution of the velocity of three characteristic points
(non-dimensionalized with the characteristic velocity Uc) are plotted in figure 5(a-c), for
different capillary numbers (colourmap). The point h(t) always lies outside the boundary
layer for all values of the capillary number and reaches the characteristic velocity Uc

after an initial acceleration phase that lasts for the time scales of the order of convective
time (t ≈ Rc,0/Uc). As shown in figure 5(c), for sufficiently large capillary numbers
(Ca > 0.5), the bubble width velocity ucm always reaches a constant value which is equal
to Uc, while for Ca < 0.5, this value slightly decreases until reaching an asymptotic limit
around ucm ≈ 0.8Uc due to the presence of the viscous boundary layer. Remarkably, in
the low-capillary-number limit, the contact line velocity uCL also tends to approximately
the same value (figure 5(b)). In these cases, the interface does not bend much inside the
boundary layer as surface-tension stresses dominate over the viscous stresses (see figure 6
a−d). For high capillary numbers (e.g. Ca > 0.5), the viscous stresses become dominant
and the contact line velocity at sufficiently large times takes values smaller than Uc. In
this regime, we observe a clear microlayer formation (figure 6 f − h).
The difference between bubble width velocity and the contact line velocity ucm −

uCL is an indicator of whether a microlayer forms or not. In figure 7(a), we show the
velocity of the three points h, c, cm in the same plane at an instant tUc/Rc,0 = 1.22 (after
the initial transient). The transition from the bending to a clear microlayer formation
regime happens at Ca ≈ 0.5 in this case. Because, for Ca > 0.5, the velocity of bubble
width ucm is approximately equal to Uc, the formation of a microlayer can be discussed
solely in terms of the dimensionless contact line velocity uCL/Uc. This velocity decreases
monotonically with Ca and consequently the growth rate of microlayer length increases
monotonically with Ca. In section 4.2, we will analyse the contact line velocity in detail.
To characterize the bending of the interface, we introduce an apparent contact angle

αapp defined as the minimum angle between the tangent to the interface and the axis
parallel to the wall inside a small region near the wall arbitrarily chosen as z ⩽ 0.25Rc,0.
In this region, the interface height is denoted as δ(r) (see figure 4). For a hemispherical
cap, the apparent angle αapp is π/2 at t = 0 but the interface bending near the contact line
can result in a decrease of the minimum apparent contact angle for t > 0. In figure 7(b),
we plot the temporal evolution of the apparent contact angle αapp. For small capillary
numbers Ca, the apparent angle decreases slightly below the α. As Ca increases, the
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Figure 5. Results for bubble expansion in the case of α = 90◦,Oh = 0.037 and varying Ca.
This figure characterizes the motion of the interface using three characteristic points defined in
figure 4. (a) The dimensionless velocity of bubble height uh/Uc. (b) The dimensionless velocity
of contact line uCL/Uc. (c) The dimensionless velocity of bubble width ucm/Uc

Figure 6. Zoomed-in view of interface shapes near the wall during the bubble expansion for
α = 90◦, Oh = 0.037 and varying Ca. Each panel corresponds to different capillary numbers Ca
represented with the colourmap. In each panel, the interface evolves from left to right and each
line corresponds to different non-dimensional time. The contours in each panel are shown at
tUc/Rc,0 ∈ {0, 0.41, 0.82, 1.22, 1.63, 2.04, 2.44}.

interface bends significantly and this angle decreases quickly to zero as the interface
becomes parallel to the wall.
The regimes where a microlayer form in the Oh - Ca plane is represented in figure 7(c)

using as colour scale the velocity difference between bubble width and the contact line
ucm − uCL. A clear microlayer appears in the cases where ucm − UCL ≳ 0.5Uc (region
iii). Notably, the capillary numbers above which the microlayer forms (shown by the
beige curve in figure 7c) depend upon the pressure forcing as compared to the critical
pressure predicted for the nucleation (blue curve in figure 7c), a microlayer becoming
visible in the cases where Ca/Cac(Oh) ≫ 1. This correlation between the transition into
microlayer formation and the critical capillary number for the bubble growth has often
been overlooked in previous microlayer formation studies. In these cases, the Reynolds
number Re = Ca/Oh2 ≫ 1 and the Weber number We ≫ 1, indicating that the
liquid inertia is important for the formation of a microlayer. If the capillary number is
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Figure 7. (a) The non-dimensional velocity of three interface points defined in figure 4 at
non-dimensional time tUc/Rc = 1.22 is shown for different values of capillary numbers (for
α = 90◦,Oh = 0.037). (b) The minimum value of apparent angle defined as the angle between
the tangent to the interface and the radial axis r inside liquid for α = 90◦, Oh = 0.037 and
varying Ca. (c) The difference in velocity of bubble width and the contact line velocity is plotted
with colourmaps in the Ca − Oh plane to characterize three regions. Region (i), where bubble
remains stable and does not grow; Region (ii), where the bubble becomes unstable but the
microlayer does not forms and Region (iii), where the bubble is unstable and the microlayer
forms. The blue line separating regions (i) and (ii) is the theoretical prediction from (3.1) and
the beige line separating regions (ii) and (iii) is the iso-countour of ucm − uCL ≈ 0.5Uc.

comparable to the critical capillary number, the formation of a microlayer is suppressed
(region ii in figure 7c).

4.2. Contact line velocity

Close to the contact line, the flow is mainly governed by visco-capillary effects, thus
the velocity scale σ/µ is expected to be a relevant parameter. In figure 8, we plot the
evolution of the local dimensionless contact line capillary number, Ca(uCL) = µuCL/σ.
Interestingly, for Ca > 0.3 and at tUc/Rc,0 > 1, the contact line capillary number seems
to converge to an asymptotic value. We highlight this fact in figure 8(b) (blue cross),
where we show that CaCL at time tUc/Rc,0 ≈ 1.25 reaches a plateau for large Ca → ∞.
A similar asymptotic behaviour was observed in the numerical simulations of Guion
(2017). The asymptotic value of the contact line capillary number Ca∞(t) can be found
by fitting the numerical data with the harmonic average formula

Ca(uCL) =
1

1

Ca + 1

Ca∞(t)

, (4.1)
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Figure 8. Results for bubble expansion in the case of α = 90◦,Oh = 0.037 and varying Ca. (a)
The evolution contact line capillary number Ca(uCL) = µuCL/σ for different values of global
capillary numbers Ca (colourmap). Asymptotic value Ca∞(t) obtained from fitting the (4.1) is
also shown with a dashed line. (b) Local capillary numbers for the three interface points defined
in figure 4 at non-dimensional time tUc/Rc = 1.22 are shown for different values of global
capillary numbers. The dotted line is Ca = Calocal and the solid line is fitted using harmonic
averaging (4.1).

where Ca∞(t) is the value that the contact line capillary number Ca(uCl) would reach in
the limit of Ca/Cac → ∞. Equation (4.1) matches well with the numerical data (see figure
8b) obtaining Ca∞(t = 1.25Rc,0/Uc) ≈ 0.4 for α = 90◦. The time evolution of Ca∞(t)
fitted from 4.1 is also shown in figure 8(a) with a dashed line and the in supplementary
video 1. We note that the asymptotic contact line capillary number Ca∞(t) depends
on the contact angle, as discussed next. The local capillary numbers defined with the
velocity of bubble height and the velocity of maximum bubble width are equal to the
global capillary number Ca (see figure 8b) because Uc = uh = ucm (see figure 7a).

4.3. Effect of equilibrium contact angle

We investigate the effect of the equilibrium contact angle α (angle implemented at
the smallest grid cell) by performing a parametric study for varying α ∈ (30◦, 135◦)
and capillary number Ca ∈ (0.07, 1.4) for fixed Ohnesorge number Oh = 0.037. We
restrict ourselves to the regime where Ca > Cac. In figure 9(a), we show the contact
line capillary number Ca(uCL) with circles as a function of global capillary number
Ca for several contact angles α (colourmap), and their respective fitting curves (dotted
lines) obtained using 4.1. Small contact angles favour the formation of a microlayer.
In particular, for α < 60◦, the velocity of the contact line remains so small that even
for a capillary number slightly above its critical value for nucleation, the microlayer
forms almost instantaneously. Similar to the hemispherical nuclei case, for large capillary
numbers Ca the contact line capillary number Ca(uCL) approaches an asymptotic value
(Ca∞). In figure 9(b), we show the variation of Ca∞(t) obtained by fitting the Ca(uCL)
with (4.1) for several times (colourmap). The numerical data for Ca(uCL) versus Ca and
the fitting with (4.1) for all times are also shown in the supplementary videos 1 and 2.
Remarkably, for all angles, Ca∞ approaches an asymptotic value which is proportional
to the cube of the contact angle α (for α ⩽ 90◦). The cubic relation of the local capillary
number with the contact angle can be recovered from the well-known Cox–Voinov law
(Voinov 1976; Cox 1986), originally derived for an asymptotic limit of small interface
slope and small capillary numbers,

α3
app = α3

m + 9
µuCL

σ
ln

(
lo
li

)
, (4.2)



12 M. Saini, X. Chen, S. Zaleski and D. Fuster

Figure 9. Results for bubble expansion in the case of Oh = 0.037 and varying capillary numbers
Ca as well as contact angle α. (a) The numerical results (circles) for contact line capillary
number Ca(uCL) as a function of global capillary number Ca; the dashed lines show the fitting
curves obtained using (4.1) for different contact angles (colourmap). (b) The evolution of fitting
parameter Ca∞(t) that is the contact line capillary number for Ca → ∞ is plotted as a function
of α, along with the (4.3) (dashed line).

where αapp is the apparent contact angle, αm is the microscopic contact angle at
equilibrium, and lo/li is the ratio of outer (macroscopic) length scale and the inner
(microscopic) length scale. The contact angle α is the numerical equivalent of αm, as
discussed by Afkhami et al. (2018). Also, the apparent contact angle αapp approaches to
zero near the contact line (see figure 7). Substituting αapp = 0 and αm = α, we readily
obtain a relation between the Ca(uCL) and α as

Ca(uCL) =
1

9ln(lo/li)
α3, (4.3)

which gives a cubic dependence of the contact line capillary number Ca(uCL) on the
contact angle α. Furthermore, matching the numerical and theoretical prefactors, i.e.

1
9ln(lo/li)

≈ 0.05, results in lo/li ≈ 10. The microscopic length li is given by the

regularization parameter near the contact line which is the slip length in our set-up
that further yields l0 = 0.1Rc,0, which is a reasonable value as it lies between the bounds
of the bubble size and the slip length which are the largest and smallest length scales of
the problem, that is, λnum < l0 < Rc,0.

5. Microlayer morphology

Finally, we characterize the shape of the microlayer in the regimes where the capillary
number is much larger than the critical capillary numbers Ca/Cac ≫ 1. Two very
distinctive features of the interface near the wall are the formation of a bulge or rim
near the contact line, and a long and flat microlayer region (see figure 10a). Similar
features were observed by Guion (2017) and Urbano et al. (2018). figure 10a and 10b
show that inside the microlayer region, the morphology of the microlayer does not evolve
significantly in time as the velocity in this region becomes very small. However, the
contact line still moves with a faster velocity due to the surface tension stresses which
results in accumulation of liquid in the bulge. Ming et al. (2023) and Guion (2017)
have discussed the growth of the bulge. In this article, we shift our attention to the
characterization of a microlayer region from figure 10(a).

Cooper & Lloyd (1969) and Guion et al. (2018) predict a square root of time
√
t

behaviour for the growth of the microlayer height from the scaling arguments based on
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Figure 10. (a) The shape of a microlayer and the velocity magnitude for α = 90◦, Ca = 1.4,
Oh = 0.37, at tUc/Rc,0 = 2.65. (b) The evolution of microlayer shape at different dimensionless
times tUc/Rc,0 ∈ (0.45, 0.88, 1.33, 1.77, 2.22, 2.65) for α = 90◦, Ca = 1.4. (c) Different
inequalities that indicate the relative importance of viscous, capillary and the inertial effects
based on the Ohnesorge and capillary numbers. The hatched region is where the diffusive
(Cooper & Lloyd 1969) scaling is expected. It approximately coincides with the microlayer
formation region in figure 7(c). (d) Microlayer shape rescaled using (5.1) for all the cases from
figure 7(c) choosing the constant C1 = 1.

the boundary layer theory

δ1(x) ≃ C1

√
νx

Uc
≡ C1

√
x
Rc,0

Re
, (5.1)

where C1 is a constant of the order unity, x is the radial coordinate shifted by the initial
location of the contact line x = r − c0 and ν is the kinematic viscosity in the liquid.
Alternatively, for the Bretherton problem, we know that the height of a thin liquid film
in the limit of Ca ≪ 1 is

δ2(x) ≃ C2r2Ca
2/3, (5.2)

where C2 is a constant of the order unity and r2 is the radius of the capillary tube
Bretherton (1961) (in the LLD problems, the capillary length replaces the radius rc, see
Landau & Levich (1988); Gennes et al. (2004)). The characteristic length equivalent to r2
in the microlayer problem is the nose radius a schematically shown in figure 4 which varies
in time and is related to the relative importance of inertial, viscous and surface-tension
effects near the bubble nose. The largest length scale of the problem is the bubble radius
that evolves like R(t) ∼ Uct. The viscous and surface-tension (capillary) effects may also
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impose smaller length scales. Viscosity gives the diffusive scale lν =
√

νR(t)/Uc, while
the capillary scale is lσ = σ/(ρU2

c ). The nose radius cannot be larger than the bubble
radius, so provided that

R(t) > l, (5.3)

we have a = l where l is either the diffusive or the capillary scale. This smaller length is
decided by the relative importance of the viscous and surface-tension effects

l = max(lν , lσ). (5.4)

Equation (5.3) is verified if (
lν

R(t)

)2

=
Oh2

Ca

Rc,0

R(t)
≪ 1, (5.5)

and

lσ
R(t)

=
Oh2

Ca2

(
Rc,0

R(t)

)2

≪ 1. (5.6)

Both of the above inequalities are verified in region (iii) of figure 7(c). If we compare the
viscous and capillary length, the viscous effects dominate if

Ca3

Oh2
R

Rc,0
≫ 1. (5.7)

Again in region (iii) of figure 7(c), this inequality is verified. We thus expect the boundary
layer regime to dominate in region (iii) with the conclusion that the microlayer thickness
is given by the expression of Cooper & Lloyd (1969), that is, (5.1). Aussillous & Quéré
(2000) showed that for the bubbles moving in tubes at large capillary numbers, it is
possible to observe a transition from the regime where the height of the liquid layer is
given by (5.2) to a regime where (5.1) applies. In figure 10(c), the inequalities of 5.5 -
5.7 are sketched and the region of validity of the boundary layer theory is shaded with
hatched lines. The numerical results shown in figure 10(d) confirm that for different cases
in the shaded region, the scaling given by the boundary layer theory works well as the
microlayer shapes for these cases overlap well when re-scaled using (5.1).

The effect of the contact angle on the shape of the microlayer shape is shown in figure
11(a), where we draw the interface and velocity field near the microlayer at (tUc/Rc,0 =
2.65) for α ∈ (30◦, 45◦, 60◦, 75◦) and Ca/Cac ≫ 1. The morphology of the interface near
the contact line depends on the contact angle, the bulge near the contact line disappearing
for small contact angles (see figure 11a). As seen from colourmaps in figure 11(a) and
from Section 4.3, the speed of the contact line decreases markedly for small contact
angles; therefore, the liquid accumulation near the contact line and the formation of the
bulge are not observed for small angles (roughly α ≲ 45◦). The footprint of the bulge
also affects the boundary layer scaling given in (5.1). Since we are in the regime where
lν ≫ lσ, we expect the microlayer height to scale with the Reynolds number Re. By
fitting our numerical data with power laws of the form C3Rem, where C3 and m are
fitting parameters represented in figure 11(b), we find that m takes a classical value for
viscous boundary layer evolution in single phase flows for large angles (roughly m = 1/2
for α ≳ 60◦), whereas smaller values of exponent m are predicted for the smaller values
of the contact angle. In these conditions, the interface is shown to significantly influence
the classical development of the viscous boundary layer thickness.
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Figure 11. (a) The velocity magnitude and the bubble interface near the wall and inside the
microlayer at dimensionless time tUc/Rc,0 = 2.65, for α ∈ (30◦, 45◦, 60◦, 75◦), Oh = 0.037,
Ca = 1.4. (b) The height of the microlayer at r = 1.25Rc,0 as a function of Reynolds number Re
for different contact angle α in the cases where a clear microlayer is formed among those described
in figure 9(a). Dotted lines indicate power law (δ/Rc,0 = C3Rem) fitting of the numerical data
with exponents m written as labels for different angles (colormap).

6. Conclusions

We have performed fully resolved direct numerical simulations of the expansion of
bubbles from spherical cap nuclei when the pressure far from the bubble changes suddenly.
In agreement with the theory of heterogeneous bubble nucleation, the bubble becomes
unstable when the capillary number is larger than the critical capillary number for a
given Ohnesorge number. A clear microlayer forms in the regimes where the difference
between the velocity of the contact line and the bubble width is larger than 0.5 times
the inertial velocity scale ucm − uCL > 0.5Uc. In these cases, the capillary number is
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much larger than the critical capillary number, while no microlayer is observed when
the capillary number is comparable or smaller than this critical capillary number. In the
regime where microlayer forms, both Reynolds and Weber numbers are large, signaling
the importance of inertial effects. The speed of the apparent contact line in our numerical
simulations recover a cubic dependence on the contact angle, as given by the Cox–Voinov
law. The capillary effects play a critical role only in the close vicinity of the contact line
and are responsible for the formation of the bulge. From scaling arguments, we show that
the height of the microlayer is influenced by viscous effects and not by surface tension
effects. We then conclude that a microlayer forms in the regime where the visco-inertial
effects are much more important than the capillary effects and propose scaling laws for
the evolution of the microlayer height that depend on the Reynolds number and the
contact angle.
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