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Cilia are micro-scale hair-like organelles. They can exhibit self-sustained oscillations
which play crucial roles in flow transport or locomotion. Recent studies have shown
that these oscillations can spontaneously emerge from dynamic instability triggered by
internal stresses via a Hopf bifurcation. However, the flow transport induced by an
instability-driven cilium still remains unclear, especially when the fluid is non-Newtonian.
This study aims at bridging these gaps. Specifically, the cilium is modelled as an elastic
filament, and its internal actuation is represented by a constant follower force imposed at
its tip. Three generalized Newtonian behaviours are considered, i.e. the shear-thinning,
Newtonian and shear-thickening behaviours. Effects of four key factors, including the
filament zero-stress shape, Reynolds number (Re), follower-force magnitude and fluid
rheology, on the filament dynamics, fluid dynamics and flow transport are explored
through direct numerical simulation at Re of 0.04 to 5 and through a scaling analysis
at Re ≈ 0. The results reveal that even though it is expected that inertia vanishes at
Re � 1, inertial forces do alter the filament dynamics and deteriorate the flow transport at
Re ≥ 0.04. Regardless of Re, the flow transport can be improved when the flow is shear
thinning or when the follower force increases. Furthermore, a linear stability analysis is
performed, and the variation of the filament beating frequency, which is closely correlated
with the filament dynamics and flow transport, can be predicted.

Key words: micro-organism dynamics, flow-structure interactions

1. Introduction

Cilia are micro-scale hair-like organelles protruding from the surfaces of many kinds of
cells. They can exhibit self-sustained oscillations and play crucial roles in flow transport
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(Sleigh, Blake & Liron 1988; Chateau et al. 2017; Loiseau et al. 2020), fluid mixing
(Ding et al. 2014; Shapiro et al. 2014) and locomotion (Brennen & Winet 1977) in
nature. For instance, beating cilia can pump fluid and produce directional flow to facilitate
the removal of mucus in the mucociliary clearance process (Chateau et al. 2017) as
well as the transport of the female reproductive fluid and ovum in the fallopian tube
(Fauci & Dillon 2006). When covering the surface of a coral, cilia can generate arrays
of counter-rotating vortices enhancing the exchange of nutrient and oxygen with the
ambient fluid (Shapiro et al. 2014). If anchored on organisms, such as Paramecium and
Ctenophore, their oscillatory motions can give rise to body locomotion (Brennen & Winet
1977; Matsumoto 1991). Due to its excellent performance in microscale flow transport, it
inspired the design and the utilization of artificial cilia in some promising applications for
fluid propulsion, such as lab-on-a-chip devices (Shields et al. 2010; Hanasoge, Hesketh &
Alexeev 2018). On these topics, Brennen & Winet (1977), Fauci & Dillon (2006), Satir &
Christensen (2007), Gilpin, Bull & Prakash (2020) and Ul Islam et al. (2022) have given
comprehensive reviews.

Typically, cilia beating motion results from their internal motile structure called the
axoneme, which is composed of arrays of microtubule doublets and dynein molecular
motors (Sartori et al. 2016). Nevertheless, the mechanisms for triggering the movement
of the axoneme remain elusive. A popular hypothesis states that the motion is actuated
by regulating dynein motors in spatial and temporal manners through geometric feedback
control schemes (Sartori et al. 2016; Man, Ling & Kanso 2020), such as sliding control
(Jülicher & Prost 1997; Chakrabarti & Saintillan 2019), curvature control (Elgeti &
Gompper 2013) and geometric clutch (Lindemann 1994). Recently, Bayly & Dutcher
(2016) proposed that such regulation may not be necessary since dynein motors can supply
sufficient axial stresses for the onset of the dynamic instability through a Hopf bifurcation,
and hence induce sustained oscillations. When considering that cilia are expected to be
curved in equilibrium states like flagella (Sartori et al. 2016), they can present realistic
asymmetric beating patterns if they are instability driven, as demonstrated in a recent
study (Ling, Guo & Kanso 2018). This mechanism is very attractive due to its extreme
simplicity, as the sustained beating can emerge in the absence of any feedback control
mechanism, and it could be potentially applied for actuating artificial cilia in microscale
devices for flow transport. However, the performance of such cilia in the flow transport
remains to be investigated.

Furthermore, the fluid around cilia usually exhibits various types of non-Newtonian
behaviours, such as shear-dependent viscosity and viscoelastic behaviours (Dawson, Wirtz
& Hanes 2003; Vélez-Cordero & Lauga 2013; Vasquez et al. 2014). For example, the
airway liquid and the reproductive liquid can manifest viscoelastic, shear-thinning or
slightly shear-thickening behaviours (Dawson et al. 2003; Lauga 2007; Vasquez et al.
2014), while all types of liquids could be encountered when using artificial cilia for flow
transport. For simplification, however, the fluid is widely assumed as Newtonian (Shields
et al. 2010; Ding et al. 2014; Chateau et al. 2017; Guo et al. 2018). As such, the effects
of the non-Newtonian behaviours on the flow transport have not been fully understood,
especially when the newly proposed instability-driven mechanism is assumed.

The purpose of this study is to bridge the aforementioned gaps and further
our understandings on the flow transport of an instability-driven cilium in a
non-Newtonian fluid flow. In particular, the cilium is modelled as an elastic filament.
Three generalized Newtonian behaviours, i.e. the shear-thinning, Newtonian and
shear-thickening behaviours, are taken into account. In nature, the Reynolds number (Re)
varies within a wide range, i.e. generally from around O(10−5), such as for cilia in human
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Figure 1. Schematic of a filament located at the centre of the computational domain (not to scale). Here, L, H
and W are the length, height, width of the domain, respectively, D is the filament diameter, Lc is the filament
length, θ is the filament arc angle, s is the Lagrangian coordinate along the filament and F t is the compressive
follower force imposed at the filament free end.

lungs (Chateau et al. 2017), to O(102), such as for those of Ctenophore (Matsumoto
1991). In lab-on-a-chip devices, Re can also vary across a broad range. Although it
is usually set between O(0.01) and O(1) (Shields et al. 2010; Hanasoge et al. 2018;
Milana et al. 2020), it could get lower with the development of technologies. Herein,
the ciliary transport at Re ranging from values close to zero to O(1) is investigated
in different ways. In particular, the direct numerical simulation (DNS) is adopted at
Re ∼ O(0.01) to O(1), while a scaling analysis is proposed at lower Re to circumvent the
high numerical expense of DNS (Elgeti & Gompper 2013; Guo & Kanso 2017). The DNS
is performed using a well-validated numerical framework, where the structure dynamics
is simulated by the nonlinear finite element method and the fluid dynamics and its
interaction with the structure are computed by the immersed-boundary lattice Boltzmann
method.

The remainder of this paper is organized as follows. The problem set-up and numerical
method are described in § 2. The simulation results at Re � O(0.01) are provided and
discussed in § 3 and a scaling analysis at lower Re is performed in § 4, in which the filament
dynamics, fluid dynamics and flow transport are revealed under a variety of conditions. A
linear stability analysis is conducted to analyse how the filament dynamics is influenced in
§ 5, and a conclusion is given in § 6.

2. Problem description and methodology

2.1. Problem description
In this study, a filament of diameter D is placed in an initially quiescent generalized
Newtonian fluid contained in a domain with the length L, height H and width W, as
shown in figure 1. In the absence of external loading, the at-rest filament can exhibit
a zero-stress shape which is modelled as a circular arc with the arc length Lc and arc
angle θ . Its base end (s = 0, where s is the Lagrangian coordinate along the filament) is
perpendicularly clamped at the centre of the bottom, while the other end (s = Lc) is free.
When a compressive follower force F t is tangentially imposed at the free end, the filament
deforms, and the force keeps compressing the structure with its direction always tangential
to the free end and with its magnitude unchanged. If the force is sufficiently large, it
can trigger the dynamic instability of the filament which thus exhibits a self-sustained
oscillation.
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Although cilium beating motion is intrinsically three-dimensional, which may further
benefit fluid transport, it is found that the fundamental mechanisms of generating a
directional flow remain the same if it beats two-dimensionally (Eloy & Lauga 2012; Elgeti
& Gompper 2013; Ding et al. 2014). For simplification, therefore, it is extensively assumed
that the cilium only undergoes two-dimensional deformation (Ding et al. 2014; Chateau
et al. 2017; Guo et al. 2018; Mesdjian et al. 2022). For the same reason, this assumption is
also made in this study, and the filament is only allowed to deform in the y = 0 plane, as
shown in figure 1. Furthermore, cilia are slender bodies in nature, since their diameters are
much smaller than their lengths. For instance, the diameter-to-length ratio usually varies
from 0.03 to 0.05 in human lungs (Sleigh et al. 1988). Hence, the filament can be simplified
as a slender body, whose dynamics is typically governed by (Favier, Revell & Pinelli 2014;
Wang et al. 2022)

ρcA
∂2X
∂t2

− ∂

∂s

[
EA

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1
)

∂X
∂s

]
+ ∂2

∂s2

[
EI

(
∂2X
∂s2 − ∂2X 0

∂s2

)]
= F e, (2.1)

where ρc is the filament density, E is the Young’s modulus, A is the cross-section area
of the filament (A = πD2/4), I is the moment of inertia (I = πD4/64), EA and EI can
be considered as the stretching and bending stiffnesses, respectively, X is the filament’s
position, X 0 denotes the zero-stress shape of the filament and F e is the external loading
acting on the filament.

The dynamics of the incompressible flow can be described by the continuity and
momentum equations as follows:

∇ · v = 0, (2.2)

ρf
∂v

∂t
+ ρf v · ∇v = −∇p + ∇ · τ + f e, (2.3)

where ∇ is the gradient operator, v is the flow velocity, ρf is the fluid density, p is the
pressure, f e is the external force per unit volume and τ is the deviatoric stress tensor
which is given by

τ = 2μS, (2.4)

for the generalized-Newtonian fluid, μ is the fluid dynamic viscosity, and S is the strain
rate tensor defined as

S = 1
2 [∇v + (∇v)T ]. (2.5)

As such, the momentum equation, i.e. (2.3), can be rewritten as

ρf
∂v

∂t
+ ρf v · ∇v = −∇p + 2∇ · (μS) + f e. (2.6)

Since one objective of this study is to investigate the effects of the shear-thinning
and shear-thickening behaviours, a power-law model is applied to represent these
generalized-Newtonian behaviours, where the dynamic viscosity is given by (Chai et al.
2011)

μ = κ(γ̇ )n−1, (2.7)

κ is the power-law consistency index, n is the power-law index of the fluid (n < 1 for
shear-thinning flow, n = 1 for Newtonian flow and n > 1 for shear-thickening flow), and
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γ is the shear rate, which can be expressed as

γ̇ =
√

2(S : S). (2.8)

To parameterize this fluid–structure interaction (FSI) system, Lc and ρf are chosen as
the repeating variables. The reference time scale is chosen as

Tr =
(

κL4
c

EI

)1/n

, (2.9)

which corresponds to the balancing between the fluid viscosity and the filament elasticity,
and is selected as the third repeating variable for the parameterization. When n = 1, Tr
recovers the reference time scale proposed in Guo et al. (2018). As such, the dimensionless
forms of (2.1), (2.2) and (2.6) can be written as

m∗Re
∂2X ∗

∂t∗2 − ∂

∂s∗

[
E∗A∗

(
1 −

∣∣∣∣∂X ∗

∂s∗

∣∣∣∣
−1
)

∂X ∗

∂s∗

]

+ ∂2

∂s∗2

[
E∗I∗

(
∂2X ∗

∂s∗2 − ∂2X 0∗

∂s∗2

)]
= F ∗

e ,

(2.10)

∇∗ · v∗ = 0, (2.11)

Re
(

∂v∗

∂t∗
+ v∗ · ∇∗v∗

)
= −∇∗p∗ + (γ̇ ∗)n−1∇∗2v∗ + 2∇∗(γ̇ ∗)n−1 · S∗ + f ∗

e . (2.12)

For ease of reference, the definitions of the dimensionless parameters in (2.10)–(2.12)
are shown in table 1 alphabetically. Furthermore, some other dimensionless parameters,
such as the length, width and height of the computational domain and the follower-force
magnitude, are also included in this table.

To satisfy the slender-body condition, the dimensionless filament diameter (D∗) is set
to 0.1 throughout this study. Thus, the dimensionless moment of inertia (I∗) is equal to
4.91 × 10−6. Substituting (2.9) into the definition of the dimensionless Young’s modulus,
i.e. E∗ = ETn

r /κ , yields E∗ = 1/I∗ = 2.04 × 105. As ρc is close to ρf in nature, they are
assumed to be equal.

Similar to Chateau et al. (2017), the filament dynamics and flow transport in this study
are quantified by several dimensionless quantities, mainly including the beating frequency
( f ∗), time-averaged flux (Q̄∗) across the computational domain, time-averaged input power
per unit area (P̄∗), transport efficiency (η) and mean effectiveness (ξ ) quantifying the
time-averaged directional pushing efficiency. Specifically, f ∗ is defined as

f ∗ = fTr, (2.13)

where f is the dimensional beating frequency. Also, Q̄∗ is given by

Q̄∗ =

∫
T∗

Q∗ dt∗

H∗W∗T∗ , (2.14)

where Q∗ = Q/ρf UrL2
c is the instantaneous dimensionless flow rate in the x direction, Ur

is the reference velocity defined as Ur = Lc/Tr and T∗

˙

is the dimensionless beating period
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Dimensionless parameter Definition Value

Cross-section area A∗ = A/L2
c 7.85 × 10−3

Diameter D∗ = D/Lc 0.1
Young’s modulus E∗ = ETn

r /κ = 1/I∗ 2.04 × 105

External force per unit volume f ∗
e = f eLcTn

r /κ —
External loading F ∗

e = F eTn
r /κLc —

Follower-force magnitude F∗
t = FtTn

r /κL2
c 20, 30, 40, 50, 60

Domain height H∗ = H/Lc 3
Moment of inertia I∗ = I/L4

c = 1/E∗ 4.91 × 10−6

Domain length L∗ = L/Lc 1
Mass ratio m∗ = ρcA/ρf L2

c 7.85 × 10−3

Power-law index of the fluid n 0.75, 1, 1.25, 1.5
Pressure p∗ = pTn

r /κ —
Reynolds number Re = ρf Tn−2

r L2
c/κ 0.04, 0.2, 1, 5

Lagrangian coordinate s∗ = s/Lc —
Strain rate tensor S∗ = STr —
Time t∗ = t/Tr —
Velocity v∗ = vTr/Lc —
Domain width W∗ = W/Lc 1
Filament’s position X ∗ = X/Lc —
Shear rate γ̇ ∗ = γ̇ Tr —
Arc angle θ 0, 3π/4
Derivative operator ∇∗ = Lc∇ —

Table 1. Definitions and selected values of dimensionless parameters in this study. Here, θ = 0 means that
the filament is straight in its zero-stress state. Symbol ‘-’ indicates that the corresponding parameter is updated
during the simulation.

defined by T∗ = 1/f ∗. P̄∗ is expressed as

P̄∗ =

∫
T∗

(P∗)p dt∗

L∗W∗T∗ , (2.15)

where P∗ is the dimensionless input power defined as P∗ = F ∗
t · v∗

t , v∗
t is the

dimensionless filament-tip velocity defined by v∗
t = vt/Ur and vt is the dimensional

counterpart of v∗
t . In this study, negative input power implies that energy is transferred

from the filament to the actuation system. Since this part of energy may not be recovered,
only positive input power represented by (P∗)p is taken into account. Since the flow
horizontally passes through the surfaces normal to the x direction, the flux Q̄∗ is equal
to the time-averaged flow rate divided by the corresponding area, i.e. H∗W∗. In contrast,
P̄∗ corresponds to the time-averaged power normalized by the area of the bottom surface
where the filament is located, i.e. L∗W∗. η is defined as

η = |Q̄∗|n+1

P̄∗ , (2.16)

ξ is written as

ξ = Q̄∗
p − Q̄∗

n

Q̄∗
p + Q̄∗

n
, (2.17)
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where Q̄∗
p and Q̄∗

n are the positive and negative time-averaged flux evaluated by

Q̄∗
p =

∫
T∗

(Q∗)p dt∗

H∗W∗T∗ , (2.18)

Q̄∗
n =

∫
T∗

(Q∗)n dt∗

H∗W∗T∗ , (2.19)

the subscripts ‘p’ and ‘n’ mean that only the positive or negative flow rate is considered
in the integral. Therefore, ξ quantifies the filament capability of consistently pushing the
fluid towards a certain direction. Specifically, when ξ = −1 and 1, the fluid is always
transported in the negative and positive x directions throughout the whole beating period,
respectively, while the flow direction changes occasionally when −1 < ξ < 1.

2.2. Methodology
To solve the aforementioned FSI problem, a co-rotational finite element formulation
(Doyle 2013) is applied to solve the structure dynamics governed by (2.10). The
multiple-relaxation-time lattice Boltzmann method (Chai et al. 2011) is adopted for solving
the three-dimensional generalized-Newtonian flow. To solve the interplay between the
flow and structure dynamics, the immersed-boundary method (IBM) (Peskin 2002) is
incorporated to impose the no-slip boundary condition on the structure surface as well
as accurately evaluate the fluid stresses. Similar to prior works (Chateau et al. 2017; Han
& Peskin 2018), the filament radius is assumed equal to half the support length of the
Dirac delta function adopted in the IBM. Details on the current numerical algorithm and
its validation can be found in our previous works (Favier et al. 2014; Li et al. 2016; Wang
& Tang 2018, 2019; Gsell, D’Ortona & Favier 2019).

According to (2.7), the dynamic viscosity μ turns to infinity as the shear rate γ̇

approaches zero if the power-law index n < 1, which poses a critical numerical issue.
To overcome this problem, the lower limit of γ̇ is arbitrarily set as a value close to zero
herein, i.e. γ̇min = 10−14. It is confirmed that this value is sufficiently small, so that when
another value of similar order of magnitude is selected, the simulation results are nearly
unaffected.

In this study, the no-slip boundary condition is imposed on the bottom wall representing
the substrate from which the filament protrudes. The periodic boundary condition is
applied in the x and y directions, meaning that an infinite number of filaments beat in
phase in the domain which is infinitely large in these two directions. In contrast, the
domain height (H∗) is finite, and the free-slip boundary condition is imposed on the top
wall at z∗ = H∗. This setting can represent different physical scenarios. One can be where
a free surface presents on the top boundary, and another one can be where the current
computational domain is only one half of a channel symmetric about the plane at z∗ = H∗.
However, it does not correspond to the scenario with a semi-infinite domain.

Although the dimensions of the computational domain could affect the quantities of
interest to different extents, their effects are not explored in this study, but they are fixed as
follows. The length and width are set the same as the filament length, i.e. L∗ = W∗ = 1,
the height is selected as three times the filament length, i.e. H∗ = 3. According to the
convergence test conducted in the Appendix, the mesh spacing (Δx) and the time step
(Δt) depend on the Reynolds number (Re) and n, as given in table 3. Hence, different Δx
and Δt are adopted for the cases with different Re and n.
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Figure 2. Interpolated contours of the dimensionless beating frequency ( f ∗) of the straight filament (the arc
angle θ = 0) when the follower force F∗

t = 30 (a), F∗
t = 40 (b), F∗

t = 50 (c) and F∗
t = 60 (d). Transparent

symbols denote DNS data points.

2.3. Case summary
As shown in § 2.1, the filament dynamics and flow transport depend on the power-law
index (n), Reynolds number (Re), arc angle (θ ) and follower-force magnitude (F∗

t ).
To cover the shear-thinning and shear-thickening behaviours and also to make a
comprehensive investigation, n is selected from 0.75 to 1.5 with an interval of 0.25. Re
is chosen from both low-Re and Re ≈ 0 regimes. In particular, Re is selected as 0.04,
0.2, 1 and 5 in the low-Re regime, where inertial effects are exhibited in the domain,
as will be shown in § 3.2.5. Due to extremely high computational demand, however, the
investigations in the Re ≈ 0 regime where viscous effects are overwhelmingly dominant
are not conducted numerically, but are performed through a scaling analysis. In addition,
two θ values are considered, i.e. θ = 0 and 3π/4. When θ = 0 the filament is completely
straight in its zero-stress state and usually exhibits symmetric beating, and it presents
asymmetric beating when θ = 3π/4. Furthermore, F∗

t varies in the range of 20 to 60 with
an interval of 10, whose lower bound is roughly equal to the critical value to trigger the
dynamic instability of a straight filament in vacuum (Timoshenko & Gere 1961). For ease
of reference, the above selected values of these four dimensionless parameters are listed in
table 1.

3. Flow transport in the low-Re regime

3.1. Symmetric beating
Figure 2 gives an overview of the beating frequency ( f ∗) for the straight-filament cases.
To numerically trigger the dynamic instability, a small constant force, i.e. a force whose
magnitude is 1 % of the follower-force magnitude (F∗

t ), is initially imposed on the filament
tip in the x direction and is removed after ten time steps of simulation in all cases. It is
found that F∗

t of 20 is not sufficiently large for the onset of the dynamic instability. Thus,
the filament remains stationary and straight. As F∗

t approaches 30, the instability sets in,
as shown in figure 2(a). Additionally, it is seen that f ∗ increases with F∗

t . At each F∗
t ,

f ∗ decreases with the power-law index (n) and the Reynolds number (Re). As such, f ∗
approaches the maximum when F∗

t = 60, n = 0.75 and Re = 0.04.
Since the filament is straight and vertically clamped in its zero-stress state, its

beating pattern is spatially symmetric. Under this condition, the beating filament only
causes an oscillatory flow with zero mean flux, i.e. Q̄∗ = 0, in all cases. Hence, the
transport efficiency (η) and the mean effectiveness (ξ ) are zero. All of these can be
illustrated by one representative case, i.e. the case with F∗

t = 40, n = 1 and Re = 0.2.
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dashed line represents the filament-tip trajectory.
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Figure 4. Time history of the flow rate (Q∗) in the case with F∗
t = 40, n = 1 and Re = 0.2. The dashed line

represents the time-averaged flux (Q̄∗).

Figure 3 shows that the filament beating pattern is symmetric with respect to the x∗ = 0
plane and the trajectory of the filament tip forms a symmetric figure ‘8’ in this case. Under
these circumstances, the flow rate (Q∗) varies almost sinusoidally with the amplitude
of 5.5 as well as with Q̄∗ = 0, as shown in figure 4, where the time origin t∗ = 0 is
set as the instant when the x position of the filament tip reaches its minimum after the
periodic steady state of the flow has been achieved. The variation of Q∗ originates from
the periodically oscillating flow forced by the beating filament, while the zero mean flux is
due to the spatio-temporal symmetry of the flow–structure response, as shown in figure 5.
Furthermore, comparing figures 4 and 5 reveals that Q∗ always lags behind the filament
motion due to the flow inertia. For instance, at t∗ = 0 the mid-portion of the filament
starts to flap rightward, while the flow above the filament still moves leftward, as shown
in figure 5(a), yielding the negative Q∗, as shown in figure 4. Note that for consistent
comparison, the colour bar scale in figure 5 is adopted throughout this study. However,
the x velocity could exceed the scale range (especially in the shear-thinning case). To
represent the fluid and filament velocities precisely under this condition, velocity vectors
are also plotted in scale in the contour figures.

3.2. Asymmetric beating

3.2.1. Overview of results
Figure 6 provides an overview of the simulation results for the curved-filament cases. It is
found that the critical follower force (F∗

t ) to trigger the dynamic instability is the same for
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Figure 5. Contour of the x velocity (u∗) in the y∗ = 0 plane in the case with F∗
t = 40, n = 1 and Re = 0.2 at

the instant t∗/T∗ = 0 (a), t∗/T∗ = 0.25 (b), t∗/T∗ = 0.5 (c) and t∗/T∗ = 0.75 (d).

the straight and curved filaments. In addition, the beating frequency ( f ∗) and its variation
with F∗

t , the power-law index (n) and the Reynolds number (Re) are generally the same
when the filament is straight and curved, as shown in figure 2 and the first row of figure 6.
This implies that the filament dynamics is not largely changed when its zero-stress shape
is altered from straight to arc.

When the filament is curved, the time-averaged flux (Q̄∗) is no longer zero due to the
breaking of the spatial symmetry, as shown in the second row of figure 6. Although the
filament is curved rightward in its zero-stress state (see figure 1), it is bent leftward more
largely after the self-sustained oscillation is achieved (see figure 7). As such, the overall
flow is leftward in most cases, corresponding to negative Q̄∗. If comparing the first three
rows of figure 6, it is found that the effects of F∗

t , n and Re on Q̄∗ and the time-averaged
input power per unit area (P̄∗) are similar to those on f ∗, indicating that Q̄∗ and P̄∗ are
closely correlated with f ∗. However, the contour patterns of Q̄∗ and P̄∗ are different at the
same F∗

t , meaning that they are not influenced by n and Re in the same way. In particular,
P̄∗ is reduced roughly by the same amount when Re increases from 0.04 to 5 and when
n increases from 0.75 to 1.5. By contrast, Q̄∗ mainly changes with n instead of Re, as
shown in the second and third rows of figure 6. This results in a quite different variation
of the transport efficiency (η) with F∗

t , n and Re, as shown in the fourth row of figure 6.
Specifically, η reduces with F∗

t . At each F∗
t , η generally increases with Re but decreases

with n. The last row of figure 6 shows that the mean effectiveness (ξ ) remains at −1
roughly at Re ≥ 1 and n < 1.25, where thus the instantaneous flow is always along the
negative x direction. In the other cases, ξ falls between −1 and 0, meaning that the flow
is not unidirectional over each beating period. Overall, figure 6 shows that as n decreases,
Q̄∗, η and ξ can be improved simultaneously at all F∗

t , suggesting that the shear-thinning
behaviour is more beneficial to the flow transport.
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Figure 6. Interpolated contours of the (the first row) dimensionless beating frequency ( f ∗), (the second row)
time-averaged flux (Q̄∗), (the third row) time-averaged input power per unit area (P̄∗), (the fourth row) transport
efficiency (η) and (the last row) mean effectiveness (ξ ) of the curved filament with the arc angle θ = 3π/4 when
the follower force F∗

t = 30 (a), F∗
t = 40 (b), F∗

t = 50 (c) and F∗
t = 60 (d). Transparent symbols denote DNS

data points.

In the following, the case with F∗
t = 40, n = 1 and Re = 0.2 is selected as the baseline

case for unveiling the filament dynamics, fluid dynamics and flow transport in detail.
Afterwards, more cases are selected and discussed to further reveal the effects of F∗

t , n
and Re.
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Figure 7. Beating pattern of the curved filament in the baseline case where F∗
t = 40, n = 1 and Re = 0.2.
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Figure 8. Time histories of the (a) flow rate (Q∗) and (b) input power (P∗) in the baseline case where
F∗

t = 40 and the cases with F∗
t = 30, 50 and 60 when n = 1 and Re = 0.2.

3.2.2. Baseline case
In the baseline case, the curved filament beats asymmetrically with its tip trajectory
forming a figure ‘8’, as shown in figure 7. Similar to that in nature, the beating pattern
consists of two strokes, i.e. the power and recovery strokes. However, unlike in nature
where the duration of the power stroke is usually around half that of the recovery one,
these two strokes last for roughly the same amount of time. Since the power stroke occurs
when the filament flaps leftward, the resulting overall flow is along the negative x direction,
yielding the time-averaged flux Q̄∗ = −0.97, as shown in figure 6(b-ii).

Due to the successive alternation of the power and recovery strokes, the flow rate (Q∗)
varies in a sinusoidal manner while the input power (P∗) changes with two peaks and two
troughs appearing over each beating period, as shown in figure 8. Such variations of Q∗
and P∗ are determined by the filament dynamics and the corresponding unsteady flow
field.

At the instant t∗/T∗ = 0, the filament is undergoing the stroke reversal from the power
to the recovery one. During this period, the filament reaches its leftmost position and is
starting to flap rightward, as shown in figure 9(a). Under this condition, the filament moves
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Figure 9. Contours of the x velocity (u∗) in the y∗ = 0 plane (first row) and in the z∗ = 0.7 plane (second
row) in the baseline case where F∗

t = 40, n = 1 and Re = 0.2 at the instant t∗/T∗ = 0 (a), t∗/T∗ = 0.25 (b),
t∗/T∗ = 0.5 (c) and t∗/T∗ = 0.75 (d).

slowly, resulting in the local minimum P∗ at around this instant, as shown in figure 8(b).
Due to the flow inertia, only the flow closely wrapping the filament is along the positive x
direction, while that in the rest region goes in the opposite direction. Hence, Q∗ approaches
a large negative value, i.e. Q∗ = −6.38, at this instant, as shown in figure 8(a).

As time advances to t∗/T∗ = 0.25, the filament is beating rightward roughly with the
maximum speed during the recovery stroke, as shown in figure 9(b). This leads to the
local maximum P∗ at around this instant, as shown in figure 8(b). Compared with that
at the instant t∗/T∗ = 0, more flow is directed by the filament towards the positive x
direction with larger speed. Meanwhile, the negative x-direction flow is slowed down and
the corresponding region shrinks. As such, the flow rate reduces to Q∗ = −0.81 at this
instant.

At around the instant t∗/T∗ = 0.5, the filament approaches the other stroke reversal,
as shown in figure 9(c). Accordingly, P∗ reaches the other local minimum, as shown in
figure 8(b). Compared with that at around t∗/T∗ = 0.25, the interface between the positive
and negative x-direction flow regions approximately rises to z∗ = 1.8, while the flow in
both regions becomes slower. As a result, the overall flow goes in the positive x direction
with Q∗ = 2.03 at this instant. This explains why the mean effectiveness ξ = −0.75 rather
than −1 in this case, as given in figure 6(b-v).

As time progresses to t∗/T∗ = 0.75, the filament is beating leftward approximately
with the maximum speed during the power stroke, as shown in figure 9(d). As such,
P∗ approaches the other local maximum at around this instant, as shown in figure 8(b).
Since the filament is the least bent and the most vertical at around this instant, it generally
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Figure 10. Beating patterns of the curved filament in the cases with F∗
t = 30 (a), F∗

t = 40 (b), F∗
t = 50 (c)

and F∗
t = 60 (d) when n = 1 and Re = 0.2. Note that the filament number in each panel is arbitrary and is not

related to f ∗. The same applies to the other figures showing filament beating patterns.

produces the strongest nearby flow within the whole beating period, if comparing the
x-velocity contours at the four selected instants shown in figure 9. Moreover, the flow
within the entire domain moves in the negative x direction. Hence, Q∗ rapidly reaches the
negative maximum, i.e. Q∗ = −8.44, at t∗/T∗ = 0.87, as shown in figure 8(a).

3.2.3. Effects of follower-force magnitude
Figure 10 shows the beating patterns in the baseline case where the follower force F∗

t = 40
as well as three other cases with F∗

t = 30, 50 and 60 when the power-law index n = 1 and
the Reynolds number Re = 0.2. It is seen that, as F∗

t increases, the filament beating pattern
becomes wider in the x direction and slightly shorter in the z direction. This variation is
the most obvious when F∗

t augments from 30 to 40, whereas it turns less visible for larger
F∗

t , as it is constrained by the negligible extensibility of the filament. Accordingly, the
time-averaged flux (Q̄∗) is enhanced from −0.64 to −0.97 as F∗

t increases from 30 to 40,
while it remains at around −1.0 as F∗

t further rises, as shown in the second row of figure 6.
This implies that |Q̄∗| is positively correlated with the beating amplitude, and the effects
of F∗

t on them become saturated when it is sufficiently large. Furthermore, a larger F∗
t can

drive the filament to beat faster, which causes the stronger oscillation of the flow rate (Q∗)
and the higher input power (P∗), as shown in figure 8.

3.2.4. Effects of power-law index
To unveil the influences of the power-law index (n), the baseline case (where n = 1 and the
flow is Newtonian) as well as two representative non-Newtonian cases, i.e. the cases with
n = 0.75 and n = 1.5 (corresponding to the shear-thinning and shear-thickening flows,
respectively) when the follower force F∗

t = 40 and the Reynolds number Re = 0.2, are
selected for detailed investigation.

Figure 11 shows that the filament beating pattern is similar but the beating amplitude
increases as n increases from 0.75 to 1.5. The reason can be revealed from figure 12
through examining the competition of three types of forces in the x direction along which
the major deformation of the filament occurs, namely, the x-component follower force
(F∗

tx), the dimensionless drag force (F∗
D) and the x-component inertial force which can be

represented by that at the filament tip (F∗
ix). F∗

D = FDTn
r /κL2

c , where FD is the x component
of the hydrodynamic force acting on the filament and is evaluated through the IBM (Gsell
et al. 2019), and F∗

ix = −m∗Re(∂2X∗
1/∂t∗2), where X∗

1 is the x coordinate of the filament
tip according to the first term of (2.10).
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Figure 11. Beating patterns of the curved filament in the cases with n = 0.75 (a) and n = 1.5 (c) as well as
the baseline case where n = 1 (b) when F∗

t = 40 and Re = 0.2.
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Figure 12. Time histories of (a) the x-component follower force (F∗
tx), (b) the x-component inertial force at the

filament tip (F∗
ix) and (c) the drag force (F∗

D) in the cases with n = 0.75, 1 and 1.5 when Re = 0.2 and F∗
t = 40.

In these cases, F∗
tx is roughly independent of n, while F∗

D is nearly anti-phase with F∗
tx and

generally has an amplitude comparable to that of F∗
tx, as shown in figure 12. In contrast, F∗

ix
is greatly dependent of n, and its amplitude decreases with n, as shown in figure 12(b). This
stems from the fact that the drag-force amplitude can be generally scaled as F∗

DA ∼ (ζu∗
m)n,

where u∗
m is the maximum nominal filament beating speed in the x direction, and ζ is a

constant determined by the filament geometry, as will be shown in § 5. If assuming that the
filament generally undergoes a sinusoidal oscillation with the nominal beating amplitude
of half the filament length, u∗

m ∼ πf ∗, where f ∗ is the beating frequency. Hence, F∗
DA ∼

(πζ f ∗)n. As such, when the drag-force amplitude is the same, the filament has to beat
faster in the shear-thinning flow (n < 1) and slower in the shear-thickening (n > 1) flow
than in the Newtonian flow (n = 1), as also evidenced by figures 9, 13 and 14 (refer to § 5
for more accurate and detailed explanations). Since a faster beating commonly corresponds
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Figure 13. Contours of the x velocity (u∗) in the y∗ = 0 plane (first row) and in the z∗ = 0.7 plane (second row)
in the case with F∗

t = 40, n = 0.75 and Re = 0.2 at the instant t∗/T∗ = 0 (a), t∗/T∗ = 0.25 (b), t∗/T∗ = 0.5 (c)
and t∗/T∗ = 0.75 (d).

to a larger acceleration and thus a greater inertial force, it is reasonable to see that the F∗
ix

amplitude decreases with n. As F∗
tx and F∗

ix are roughly anti-phase, their resultant force,
which can be regarded as the effective actuation force, generally increases with n. Thus, a
wider beating pattern presents at a higher n. These analyses show that the increase of n is
equivalent to that of F∗

t when the structure inertia is not negligible.
Due to the different fluid-filament dynamics, the time histories of the flow rate (Q∗) and

input power (P∗) are distinct in these cases, as shown in figure 15. In particular, as the
filament beating speed in the case with n = 0.75 is much larger than that in the baseline
case, P∗ is generally larger (see figure 15b) and the ambient fluid speed is higher in the
case with n = 0.75. Owning to the shear-thinning behaviour, however, the fluid velocity
decays much faster in space in the case with n = 0.75, suggesting a smaller viscous length
scale, as shown in figure 13. Therefore, only the flow closely surrounding the filament
is evidently directed, and the oscillation of Q∗ is weaker. Also for this reason, a strong
unidirectional flow right above the filament is developed in the case with n = 0.75, which
does not emerge in the baseline case. Consequently, the flow is always in the negative x
direction in the case with n = 0.75, as shown in figure 15(a).

The influences of the shear-thickening behaviour on the filament and fluid dynamics are
opposite to those of the shear-thinning one, as demonstrated in figures 9, 13 and 14. In
the case with n = 1.5, the filament beats the most slowly, leading to the smallest P∗, as
shown in figure 15(b). While a unidirectional flow is observed above the filament in the
cases with n = 0.75 and 1, in that with n = 1.5 the viscous length scale is larger and the
flow is oscillating across the whole domain. However, a clear phase lag develops in the z

16

https://doi.org/10.1017/jfm.2023.381


3.0

2.5

2.0

1.5

1.0

0.5

0

0.5

–0.5

0y∗

z∗

0 0.5

x∗
–0.5 0 0.5

x∗
–0.5 0 0.5

x∗
–0.5 0 0.5

x∗

5

0

–5

u∗

(a) (b) (c) (d )

Figure 14. Contours of the x velocity (u∗) in the y∗ = 0 plane (first row) and in the z∗ = 0.7 plane (second row)
in the case with F∗

t = 40, n = 1.5 and Re = 0.2 at the instant t∗/T∗ = 0 (a), t∗/T∗ = 0.25 (b), t∗/T∗ = 0.5 (c)
and t∗/T∗ = 0.75 (d).
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Figure 15. Time histories of the (a) flow rate (Q∗) and (b) input power (P∗) in the baseline case where n = 1
and the cases with n = 0.75 and 1.5 when F∗

t = 40 and Re = 0.2.
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Figure 16. Beating patterns of the curved filament in the cases with Re = 0.04 (a), Re = 0.2 (b), Re = 1 (c)
and Re = 5 (d) when n = 1 and F∗

t = 40.
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Figure 17. Time histories of (a) the x-component follower force (F∗
tx) and (b) the x-component inertial force

at the filament tip (F∗
ix) in the cases with Re = 0.04, 0.2, 1 and 5 when n = 1 and F∗

t = 40.

direction, as shown in figure 14. The flow rate is generally smaller with larger oscillations
than those in the other two cases, indicating that the flow transport is the least effective in
the case with n = 1.5, as shown in figure 15.

Although it is expected that the increase of the beating amplitude could enhance the
absolute time-averaged flux (|Q̄∗|), as discussed in § 3.2.3, the opposite is true in this
section. This implies the existence of a mechanism enhancing the flow transport in the
shear-thinning case, despite the smaller beating amplitude. It could be related to the
drastic variation of the viscous length scale with n, as shown in figures 9, 13 and 14.
In the shear-thinning case, the length scale is the smallest, resulting in the presence of the
unidirectional flow right above the filament and maximizing |Q̄∗|.

3.2.5. Effects of Reynolds number
Figure 16 shows the filament beating pattern in the cases with the Reynolds number
Re = 0.04, 0.2, 1 and 5 when the follower force F∗

t = 40 and the power-law index n = 1.
It is noted that the beating amplitude and the time-averaged flux (Q̄∗) generally decrease
with Re. This stems from that the x-component follower force (F∗

tx) is roughly independent
of Re, while the x-component inertial force (F∗

ix) is generally anti-phase with F∗
tx and

its strength increases with Re. As such, their resultant force, i.e. the effective actuation
force, diminishes with Re, as shown in figure 17. Hence, the increase of Re is similar to
reducing F∗

t in § 3.2.3. Also for this reason, the filament beats slowly when Re is large,
and the oscillation amplitude of the input power (P∗) turns smaller with Re, as shown in
figure 18(b).
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Figure 18. Time histories of the (a) flow rate (Q∗) and (b) input power (P∗) in the cases with Re = 0.04, 0.2,
1 and 5 when n = 1 and F∗
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Figure 19. Contours of the x velocity (u∗) in the y∗ = 0 plane (first row) and in the z∗ = 0.7 plane (second
row) in the cases with Re = 0.04 (a), Re = 0.2 (b), Re = 1 (c), Re = 5 (d) when F∗

t = 40 and n = 1 at the
instant t∗/T∗ = 0.25.

As Re increases, the viscous length scale decreases, and the region within which the fluid
can be aligned with the beating filament shrinks, as evidenced by figure 19. This variation
is quite similar to that when the flow goes from shear thickening to shear thinning, as
discussed in § 3.2.4. As such, the oscillation amplitude of the flow rate (Q∗) is reduced,
as shown in figure 18(a). Furthermore, it is interesting to note that, even at Re = 0.04,
the fluid close to the top wall does not move synchronously with the filament, indicating
that the inertial effects cannot be neglected in the corresponding region, as shown in
figure 19(a). Similar findings have also been reported by Wei et al. (2021).
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Extremely low-Reynolds-number flow, where Re is small enough to satisfy the
creeping-flow condition, is attracting considerable attention due to extensive biological
applications such as mucociliary transport and inspired potential engineering applications
such as flow transport in microfluidic devices. Although numerical simulations at such low
Re are not conducted due to high computational cost, a scaling analysis together with the
discussion in the previous section can provide useful insights into the filament dynamics
and the flow transport under this circumstance.

4.1. Effects of Reynolds number
Equations (2.10) and (2.12) show that, when Re ≈ 0, the inertial terms in both equations
become negligible, meaning that the dynamics of such a fluid-filament system is no longer
affected by the variation of Re.

4.2. Effects of follower-force magnitude and power-law index
Similarly to the low-Re regime, the filament dynamics at Re ≈ 0 can be represented by
the beating amplitude and the beating frequency ( f ∗), while the flow transport can be
represented by the time-averaged flux (Q̄∗), the time-averaged input power per unit area
(P̄∗), the oscillation amplitudes of the flow rate and input power (Q∗

A and P∗
A), the transport

efficiency (η) and the mean effectiveness (ξ ). How these quantities are influenced by the
follower-force magnitude (F∗

t ) and the power-law index (n) in this regime is discussed in
detail below.

4.2.1. Beating amplitude
When the filament achieves the maximum deformation, its velocity is close to zero.
In the absence of inertia, the drag force turns negligible at such an instant, and thus
the beating amplitude is expected to be only governed by a balance between F∗

t and
the bending moment (M∗). Since a larger F∗

t can cause a greater M∗ which requires a
larger deformation, the beating amplitude increases with F∗

t at Re ≈ 0, similarly to when
Re ≥ 0.04. In contrast, the effect of n is expected to be negligible. This also corroborates
the analysis performed in § 3.2.4, which suggests that the influence of n on the beating
amplitude is highly associated with that on the inertial force.

4.2.2. Beating frequency
At Re ≈ 0, the inertial force (F∗

i ) is neglected. Under this condition, the actuation force
needs to be balanced by the drag force, i.e. F∗

t ∼ F∗
DA, where F∗

DA is the drag-force
amplitude. As §§ 3.2.4 and 5 show that F∗

DA ∼ (πζ f ∗)n, f ∗ can be scaled as

f ∗ ∼ (F∗
t )1/n

πζ
, (4.1)

where ζ is a geometry-dependent constant. Thus, f ∗ increases with F∗
t . As F∗

t has to be
much larger than 1 to trigger the dynamic instability, f ∗ decreases with n, just as in the
low-Re regime.

4. Flow transport at Re ≈0
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4.2.3. Time-averaged flux
In the Re ≈ 0 regime, the viscous length scale is much larger than the distance between two
adjacent filaments. Hence, the flow can be instantaneously directed by the filament, and
its velocity is nearly the same as the filament beating velocity. Under this circumstance, it
is reasonable to suppose that the shear stress in the x direction is evenly distributed on the
bottom wall, and the absolute mean shear stress can be written as

|σ̄ ∗| = |F̄∗
F|

L∗W∗ , (4.2)

where |F̄∗
F| is the absolute time-averaged friction force on the bottom wall in the x

direction, and L∗ and W∗ are the length and width of the computational domain,
corresponding to the filament spacing in the x and y directions, respectively.

According to the power-law model, |σ̄ ∗| can be scaled as

|σ̄ ∗| ∼ |Ū∗|n, (4.3)

where |Ū∗| is the absolute time-averaged flow velocity and equals the absolute
time-averaged flux (|Q̄∗|) according to (2.14). As such,

|Q̄∗| ∼ |σ̄ ∗|1/n. (4.4)

Additionally, the time-averaged spatial integration of the momentum equation over the
whole computational domain yields

|F̄∗
D| = |F̄∗

F|, (4.5)

where |F̄∗
D| is the absolute time-averaged drag force on the filament, it is defined as |F̄∗

D| =
| ∫T∗ F∗

D dt∗/T∗|, F∗
D is the instantaneous drag force and T∗ is the filament beating period.

Considering |F∗
D| ∼ (πζ f ∗)n at Re ≈ 0, it could be assumed that

|F̄∗
D| ∼ φ(πζ f ∗)n, (4.6)

where φ is a non-negative asymmetry-dependent constant that is expected to be much
smaller than 1. In general, the more asymmetric the beating pattern is, the larger φ is. As
such, (4.4) can be rewritten as

|Q̄∗| ∼ πζ f ∗
(

φ

L∗W∗

)1/n

. (4.7)

This suggests that |Q̄∗| is proportional to f ∗, which is generally in accord with that in the
low-Re regime.

Furthermore, (4.1) and (4.7) give rise to

|Q̄∗| ∼
(

φF∗
t

L∗W∗

)1/n

, (4.8)

meaning that |Q̄∗| increases with F∗
t for a certain n, similarly to the low-Re regime. On the

other hand, the influence of the fluid rheology on |Q̄∗| depends on the value of φF∗
t /L∗W∗.

Generally, |Q̄∗| decreases with n at φF∗
t /L∗W∗ > 1, increases with n at φF∗

t /L∗W∗ < 1
and is independent of n at φF∗

t /L∗W∗ = 1. Therefore, if filaments are densely packed,
beat in a sufficiently asymmetric manner, and F∗

t is large enough, φF∗
t /L∗W∗ can be larger
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than 1. Under this condition, flow transport can be enhanced by shear-thinning behaviour.
If the opposite is true, it can be improved by shear-thickening behaviour.

In nature, cilia usually undergo apparently asymmetric beating in bundles, and their
spacing is much smaller than their length (Sleigh et al. 1988; Schweickert et al. 2007),
i.e. L∗W∗ � 1. Considering that F∗

t can be up to 120 for the cilia on eukaryotic cells (De
Canio, Lauga & Goldstein 2017), φF∗

t /L∗W∗ can be larger than 1 with great possibilities.
Under this circumstance, if the ambient fluid exhibits shear-thinning behaviour, such as
mucus in the human respiratory system, cilia could take this opportunity to enhance the
flow transport.

4.2.4. Oscillation amplitude of flow rate
Section 3 reveals that in the low-Re regime the oscillation amplitude of the flow rate (Q∗

A)
mainly depends on two factors, i.e. the viscous length scale within which the ambient
fluid can be directed by the filament as well as the filament beating speed. At Re ≈ 0,
the viscous length scale is overwhelmingly large. Thus, the fluid can always be directed
by the filament throughout the entire domain. As such, the influence of the first factor is
negligible, and Q∗

A only depends on the filament beating speed. If the maximum nominal
filament beating speed in the x direction is u∗

m, Q∗
A can be scaled as

Q∗
A ∼ H∗W∗u∗

m ∼ πH∗W∗f ∗, (4.9)

considering u∗
m ∼ πf ∗ as discussed in § 3.2.4, where H∗ is the height of the computational

domain. Substituting (4.1)–(4.9) yields

Q∗
A ∼ H∗W∗(F∗

t )1/n

ζ
, (4.10)

meaning that Q∗
A increases with the increase of F∗

t or the decrease of n.

4.2.5. Input power
The instantaneous input power (P∗) exhibits two peaks and two troughs over each beating
period in the low-Re regime, and it nearly remains positive and always approaches zero
near the troughs during the stroke reversals, as shown in figures 8, 15 and 18. This
variation trend indicates that the time-averaged input power is generally proportional to the
oscillation amplitude (P∗

A), and this relation is expected to hold in the Re ≈ 0 regime. Since
P∗ = F ∗

t · v∗
t , where F ∗

t is the follower-force vector and v∗
t is the filament-tip velocity

vector, P∗
A and the time-averaged input power per unit area (P̄∗) can be scaled as

P∗
A ∼ P̄∗L∗W∗ ∼ πF∗

t f ∗ ∼ (F∗
t )1+1/n

ζ
. (4.11)

Hence, P∗
A and P̄∗ increase as F∗

t increases or as n decreases, similarly to the low-Re
regime.

4.2.6. Transport efficiency and mean effectiveness
Based on (2.16), (4.7) and (4.11), η can be scaled as

η ∼ ζφ1+1/n

(L∗W∗)1/n . (4.12)

This relation implies that if n < 1, i.e. the flow is shear thinning, the closer the filaments
are, i.e. the smaller L∗W∗ is, the higher the transport efficiency is.
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due to the large viscous length scale, the flow cannot be unidirectional. Considering
that the power stroke occurs when the filament moves leftward in this study, the mean
effectiveness (ξ ) falls between −1 and 0.

Although the effects of F∗
t and n on the filament and fluid dynamics are roughly similar

in the two regimes, the scaling analysis conducted above is not directly applicable in the
low-Re one, since the inertial effects can be important. For instance, the viscous length
scale is comparable to or much smaller than the filament spacing in the low-Re regime.
Therefore, the shear stress cannot be assumed to be evenly distributed on the bottom wall,
which could nullify the scaling in (4.4) and the following.

4.3. Effects of viscosity
For the practical application of mucociliary transport, the fluid (mucus) viscosity varies
in a wide range (Lai et al. 2009). Hence, it is also interesting and meaningful to examine
how the viscosity influences the flow transport of the instability-driven filament. Herein,
the power-law consistency index κ (which becomes the dynamic viscosity when n = 1) is
taken as the nominal viscosity, while n is fixed. According to table 1, F∗

t is defined by

F∗
t = FtTn

r

κL2
c

, (4.13)

where Ft is the dimensional follower-force magnitude, Tr is the reference time scale and
Lc is the filament length. Substituting (2.9) into (4.13) yields

F∗
t = FtL2

c

EI
, (4.14)

where EI denotes the bending stiffness. Assuming that Lc, EI and Ft are constant and
irrelevant to κ , F∗

t is fixed and is also independent of κ . As the beating frequency f ∗ only
depends on F∗

t in the Re ≈ 0 regime when n is fixed, f ∗ is unrelated to κ . Substituting
(2.9) into (2.13) gives rise to the dimensional frequency

f =
(

EI
κL4

c

)1/n

f ∗, (4.15)

meaning that f is only a function of κ and is proportional to 1/
n√
κ . Hence, f diminishes

with κ . The decrease of f suggests the reduction of the filament beating speed, since the
beating amplitude which is mainly determined by F∗

t remains unchanged. This results
in the decrease of the dimensional time-averaged flux and input power with the increase
of κ .

The above analysis agrees well with in vitro experimental observation (Gheber,
Korngreen & Priel 1998) in terms of the variation trend of f with the viscosity. However,
Gheber et al. (1998) demonstrated the dependence of the beating pattern on the viscosity,
differing from the independent relation found in this study, as partly evidenced by figure 16
showing that the filament beating pattern nearly remains the same as Re increases from
0.04 to 0.2. Such a discrepancy may result from that, compared with those in in vitro
experiment, several factors are neglected in the current numerical model, such as more
complex ciliary dynamics, ciliary coordination and fluid heterogeneity.

As the flow is expected to be aligned by the filament all the time in the Re ≈ 0 regime
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5. Linear stability analysis

The previous section reveals that the beating frequency ( f ∗) is closely correlated with the
time-averaged flux (Q̄∗) and the time-averaged input power per unit area (P̄∗). Thus, it
is an important indicator for flow transport induced by an instability-driven filament. In
this section, a linear stability analysis is conducted to reveal how f ∗ is affected by three
parameters, i.e. the power-law index (n), the follower force (F∗

t ) and the Reynolds number
(Re), from a theoretical point of view.

In this study, the follower force imposed at the filament tip is non-conservative due to the
fact that it keeps changing its direction as the filament flaps (Timoshenko & Gere 1961).
Under this condition, the dynamic criterion of stability is required in the analysis. Such a
kind of analysis on an inertial-force-dominated system has been done in Timoshenko &
Gere (1961), while that on a viscous-force-dominated Newtonian creeping-flow system has
been conducted in De Canio et al. (2017). Herein, this analysis is extended to a problem
simultaneously involving the inertial and viscous forces in a power-law-model-based
generalized-Newtonian flow.

Assuming that the filament is inextensible, and that it is straight in its zero-stress state
and only undergoes small deformation, the governing equation for the filament dynamics
can be written as (Timoshenko & Gere 1961)

EI
∂4x
∂z4 + Ft

∂2x
∂z2 = FE, (5.1)

where EI is the bending stiffness and FE is the lateral loading per unit length acting on
the filament. In this study, FE consists of two components. One is the inertial force of the
filament, which is expressed as

FI = −ρcA
∂2x
∂t2

, (5.2)

according to d’Alembert’s principle, where ρc and A are the filament density and
cross-section area, respectively. The other is the hydrodynamic force, i.e. the drag force.
According to the resistive-force theory in the absence of background flow, it can be
evaluated as (De Canio et al. 2017)

FD = −βμ
∂x
∂t

, (5.3)

if the flow is creeping and Newtonian, where μ is the dynamic viscosity, β =
4π/[ln(Lc/D) + 1/2], and Lc and D are the filament length and diameter, respectively.

Riley & Lauga (2017) extended the resistive-force theory to the Carreau-model-based
shear-thinning flow. Specifically, they made a locally Newtonian assumption and found
that the average shear rate on the surface of a rod can be estimated as

γ̇avg = βuγ̇√
2Dπ

, (5.4)

where uγ̇ is the shear rate velocity. Then, they replaced the shear rate (γ̇ ) in the Carreau
model with γ̇avg to estimate the dynamic viscosity and drag force.

Inspired by Riley & Lauga (2017), the aforementioned approach is extended to the
power-law-model-based generalized-Newtonian flow in this study. Since the filament is
inextensible and its deflection is small by assumption, the major component of the velocity
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γ̇ is approximated as |∂x/∂t|. As such, the drag
force can be expressed as

FD = −κβn(
√

2πD)1−n
∣∣∣∣∂x
∂t

∣∣∣∣
n−1

∂x
∂t

. (5.5)

When n = 1, (5.5) recovers (5.3). Although the drag-force modelling is based on the
assumption that the background flow is creeping and stationary, it is hypothesized that
(5.5) is roughly valid even when the flow is slightly inertial and time dependent.

Substituting (5.2) and (5.5) into (5.1) which is then parameterized with the three
repeating variables selected in § 2.1, i.e. the fluid density (ρf ), the reference time scale
(Tr) and Lc, gives rise to

mRe
∂2x
∂t2

+ ∂4x
∂z4 + α

∂x
∂t

+ Ft
∂2x
∂z2 = 0, (5.6)

where α = βn(
√

2πD)1−n|∂x/∂t|n−1 represents the fluid damping coefficient, and EI = 1
(see table 1) has been substituted. The third term in this equation means that the absolute
non-dimensional drag force can be roughly scaled as |FD| ∼ (ζ |∂x/∂t|)n, as has been used
in the previous sections, where ζ = β/(

√
2πD), and ζ ≈ 10 due to D = 0.1 in this study,

as given in table 1. Note that the stars of all the dimensionless parameters in (5.6) have
been dropped, and this convention will be used henceforth for simplicity.

Since one end of the filament (z = 0) is clamped on the bottom surface, while the other
end (z = 1) is free, the boundary conditions can be written as

x(t, 0) = ∂x
∂z

(t, 0) = ∂2x
∂z2 (t, 1) = ∂3x

∂z3 (t, 1) = 0. (5.7)

In (5.6), all the terms are linear except the third one corresponding to the drag force. In
order to perform the linear stability analysis, this term needs to be linearized. In particular,
α is calculated in the map of |∂x/∂t| vs n, as plotted in figure 20(a). It is seen that
α generally rises with n. When n > 1, α increases with |∂x/∂t|, whereas α decreases
with |∂x/∂t| when n < 1. At n = 1, α remains constant, i.e. 4.48, meaning that it is
independent of |∂x/∂t| in Newtonian flow. More importantly, it is observed that, roughly
at |∂x/∂t| > 1, the α contour line becomes relatively vertical, indicating that α depends
much more on n than |∂x/∂t|. The simulation results in § 3.1 reveal that the minimum
absolute time-averaged velocity of the filament tip is 2.22 among all the cases. Under this
circumstance, α can be approximately assumed to be independent of |∂x/∂t|, and it is
precalculated at all n given in table 1 with |∂x/∂t| = 2.22 for the linearization. These α

are defined as the effective fluid damping coefficient (ᾱ), and the curve of ᾱ vs n is plotted
in figure 20(b).

The linearized equation has a general solution which can be expressed as

x = [C1 cosh(λ1z) + C2 sinh(λ1z) + C3 cos(λ2z) + C4 sin(λ2z)] eωt, (5.8)

with

λ1 =

√√√√√F2
t

4
− (mReω2 + ᾱω) − Ft

2
, (5.9)

and

λ2 =

√√√√√F2
t

4
− (mReω2 + ᾱω) + Ft

2
, (5.10)

is perpendicular to the filament axis. Thus,u
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Figure 20. Contour of α in the map of |∂x/∂t| vs n (a), and ᾱ at different n (b).

where ω is a complex parameter, its real component (Re(ω)) represents the growth/decay
rate subjected to a perturbation, while its imaginary component (Im(ω)) corresponds to
the beating frequency f = Im(ω/2π).

Substituting (5.8) into (5.6) and imposing the boundary conditions given in (5.7) yield
four linear algebra equations for the undetermined coefficient Ci where i = 1 to 4. One
solution of this linear system is Ci = 0 for all i, meaning that the filament remains
stationary all the time. This requires the existence of another solution according to the
dynamic criterion of stability, for which the determinant of the corresponding coefficient
matrix has to be zero. Hence

F2
t − 2mReω2 − 2ᾱω + Ft

√
−(mReω2 + ᾱω) sinh(λ1) sin(λ2)

− 2(mReω2 + ᾱω) cosh(λ1) cos(λ2) = 0, (5.11)

from which ω can be solved numerically. Taking the case with n = 1 and Re = 0.2 as
an example, figure 21 shows the solution of (5.11) for this case as Ft varies from 0 to
60 in terms of Re(ω) and Im(ω/2π). It is seen that, in the range of Ft = 0 to 20.06,
Re(ω) is negative while Im(ω/2π) remains at zero, meaning that the filament subjected
to a perturbation exponentially recovers to its original shape without oscillation. When
Ft is between 20.06 and 37.3, Re(ω) remains negative while Im(ω/2π) becomes positive,
indicating that, once a perturbation is introduced, the filament will undergo oscillations
with decayed amplitude and eventually return to its original shape. At Ft larger than
the critical value, i.e. 37.3, Re(ω) and Im(ω/2π) are positive, meaning the onset of the
dynamic instability. As such, the filament exhibits a self-sustained oscillation.

From figure 21, Im(ω/2π) at Ft = 40, 50 and 60 is identified as 7.20, 9.01 and 11.32
respectively. In this way, Im(ω/2π) in the cases involved in § 3.1 is determined and then
plotted in figure 22. Note that it is observed that the dynamic instability is not triggered in
most cases with Ft = 30 according to the stability analysis. Thus, they are not included in
this figure. Comparing figure 2 with figure 22 shows that the contours attained from the
DNS and the theoretical analysis are reasonably close, meaning that the effects of n, Ft
and Re on the beating frequency can be predicted by the proposed linear stability analysis.

However, there also exist some evident discrepancies between the theoretical and
numerical results. For instance, the analysis usually overestimates the critical value of Ft
for the onset of the instability as well as the beating frequency. This mainly stems from the
oversimplification of the adopted hydrodynamic force model, such as that the drag-force
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t = 40 (a), F∗
t = 50 (b) and F∗
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denote data points obtained from the linear stability analysis.

modelling based on the creeping-flow assumption is supposed to be valid despite the
presence of inertial effects, as well as the simplified assumptions made for the linearization
of this model.

Furthermore, figure 23 shows the contour of the absolute non-dimensional drag force
(|FD|) in the map of |∂x/∂t| vs n, according to the third term in (5.6). It can be seen that
|FD| increases with |∂x/∂t| and n. This, from a more accurate perspective, explains why the
filament beats faster as the flow behaviour changes from shear thickening to shear thinning
if |FD| roughly stays the same, as well as why the filament beating speed increases with
|FD| at a given n, as discussed in the previous sections.

6. Conclusion

This study extends our understanding on the transport of the power-law-based
non-Newtonian fluid by the active beating of an instability-driven filament from numerical
and theoretical perspectives. Two regimes are considered, i.e. the low-Re and Re ≈ 0
regimes, where inertial effects are present and negligible, respectively. The major findings
are summarized below.
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Figure 23. Contour of the theoretical absolute non-dimensional drag force (|FD|) in the map of |∂x/∂t| vs n.

(i) In the low-Re regime where Re = 0.04 to 5, the filament zero-stress shape
represented by the arc angle θ does not have a significant influence on its beating
frequency ( f ∗), but is crucial for the flow transport. Only when θ /= 0, i.e. the
filament is curved in its zero-stress state, is the beating pattern asymmetric and yields
a non-zero time-averaged flux (Q̄∗).

(ii) When θ /= 0, the follower force (F∗
t ) is a key factor in dictating the filament dynamics

and the resulting flow transport. The value of F∗
t determines the onset of the

dynamic instability of the filament. In all cases, the critical F∗
t is around 30. Once

the instability sets in, the increasing F∗
t enhances the beating amplitude and f ∗,

associated with the augmentation of the flow rate (Q∗), the input power (P∗) and
their time- and space-averaged counterparts, i.e. Q̄∗ and P̄∗.

(iii) The increase of Re enhances the filament inertial force which offsets F∗
t , resulting

in the reduction of the effective actuation force. As such, the influences of Re on the
filament dynamics and the flow transport are generally opposite to those of F∗

t , i.e.
the increase of Re weakens the flow transport.

(iv) The variation of the power-law index (n) is also correlated with the alternation of
the effective actuation force, i.e. the decrease of n increases f ∗, which thus globally
amplifies the inertial force and weakens the effective actuation. Furthermore, as
the viscous length scale reduces with the decrease of n, a unidirectional flow can
be developed above the filament in the shear-thinning case, which enhances Q̄∗.
Considering that the transport efficiency (η) and the mean effectiveness (ξ ) can also
be improved by reducing n, the shear-thinning behaviour is more beneficial to the
flow transport.

(v) In the Re ≈ 0 regime, the scaling analysis shows that the effects of F∗
t and n are

roughly the same as those in the low-Re regime. Exceptions are that in this regime
the beating amplitude is nearly independent of n and the oscillation amplitude of Q∗
decreases with n.

(vi) The linear stability analysis is performed by extending the resistive-force theory
to the power-law-model-based generalized-Newtonian flow. The analysis shows that
the variation of f ∗ with F∗

t , n and Re can be generally predicted. However, f ∗ and
the critical F∗

t are overestimated due to the oversimplifications made in the analysis.

This study also provides some physical insights into ciliary transport in nature.
In particular, the scaling analysis reveals that |Q̄∗| ∼ (φF∗

t /L∗W∗)1/n, suggesting the
influences of the fluid rheology on |Q̄∗| are determined by the value of φF∗

t /L∗W∗ where
φ represents the asymmetry of the beating pattern. As it is expected that φF∗

t /L∗W∗ > 1 in
the human respiratory system where mucus commonly exhibits shear-thinning behaviour
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Mesh spacing
(Δx)

Time step
(Δt/Tr)

Beating
frequency ( f ∗) Flux (Q̄∗)

Input power
(P̄∗) Effectiveness (ξ )

Lc/20 2.5 × 10−5 4.27 −0.95 277.95 −0.78
Lc/40 1.25 × 10−5 4.12 −0.97 292.95 −0.75
Lc/60 8.3 × 10−6 4.01 −0.97 296.01 −0.75
Lc/80 6.25 × 10−6 3.97 −0.96 298.67 −0.74

Table 2. Results for the convergence test at the Reynolds number Re = 0.2 and n = 1, where Tr is the
reference time scale defined in (2.9).

(n < 1), cilia could make use of this fluid behaviour to enhance the flow transport.
Furthermore, the scaling analysis reveals that the increase of the fluid viscosity can reduce
the beating frequency, agreeing well with in vitro experimental observations (Gheber et al.
1998).

Although insightful, this study has some limitations. In nature and practical
applications, the flow field and the fluid properties can be more complicated than those
assumed herein. For instance, in mucociliary transport two layers of fluid are usually
involved, including the low-viscosity periciliary layer and the high-viscosity mucus layer
which can exhibit complex non-Newtonian behaviours, such as the viscoelastic behaviour.
Moreover, cilia typically coordinate with their neighbours and manifest a collective
behaviour, i.e. the metachronal wave. The flow transport of the instability-driven filament
under these circumstances will be a subject of our near-future investigations.
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Appendix. Convergence test

To guarantee the independence of the numerical results on the mesh and time-step
resolutions, a series of convergence tests is performed. It is found that the resolution highly
depends on the Reynolds number (Re) and the power-law index (n), i.e. the smaller Re
or the larger n, the finer resolution is usually required. Therefore, to avoid unnecessary
computational cost as well as to ensure the numerical accuracy, the convergence tests are
conducted at all Re and n involved in this study, i.e. Re = 0.04, 0.2, 1 and 5, and n = 0.75,
1, 1.25 and 1.5, when the follower force F∗

t = 40 and the arc angle θ = 3π/4.
Taking Re = 0.2 and n = 1 as an example, four cases are selected for the convergence

test, and four primary quantities are used for examining the convergence, including the
beating frequency ( f ∗), time-averaged flux (Q̄∗), time-averaged input power per unit area
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Reynolds number (Re) Power-law index (n) Mesh spacing (Δx) Non-dimensional time step (Δt/Tr)

0.04 0.75, 1 Lc/40 5 × 10−6

1.25, 1.5 Lc/60 3.3 × 10−6

0.2 0.75, 1, 1.25 Lc/40 1.25 × 10−5

1.5 Lc/60 8.3 × 10−6

1 0.75, 1, 1.25, 1.5 Lc/40 5 × 10−5

5 0.75, 1, 1.25, 1.5 Lc/40 1.25 × 10−4

Table 3. Mesh spacing and non-dimensional time step at different Re and n.

(P̄∗) and mean effectiveness (ξ ), as listed in table 2. Herein, it is assumed that the most
accurate results are yielded by the finest mesh and time resolutions, i.e. Δx = Lc/80 and
Δt/Tr = 6.25 × 10−6, where Tr is the reference time scale. If another set of Δx and
Δt/Tr gives rise to results which differ by no more than 5 % when compared with the
most accurate ones, the results are considered converged and such a set is adopted for the
simulation. As such, the set of Δx = Lc/40 and Δt/Tr = 1.25 × 10−5 is identified when
Re = 0.2 and n = 1. Those for other Re and n are determined in the same way and given
in table 3.
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